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According to the AdS/CFT correspondence, certain quantum many-body systems in d-dimensions are
equivalent to gravitational theories in (dþ 1)-dimensional asymptotically anti–de Sitter (AdS) spacetimes.
When a massless particle is sent from the AdS boundary to the bulk curved spacetime, it reaches another
point of the boundary after a time lag. In the dual quantum system, it should appear as if quasiparticles have
been transferred between two separated points. We theoretically demonstrate that this phenomenon, which
we call “spacetime-localized response”, is actually observed in the dynamics of the one-dimensional
transverse-field Ising model near the quantum critical point. This result suggests that, if we can realize a
holographic spin system in a laboratory, the experimental probing of the emergent extra dimension is
possible by applying a designed stimulus to a quantum many-body system, which is holographically
equivalent to sending a massless particle through the higher-dimensional curved bulk geometry. We also
discuss possible experimental realizations using Rydberg atoms in an optical tweezers array.
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I. INTRODUCTION

The AdS/CFT correspondence [1–3] is a holographic
duality between the gravitational theory in the (dþ 1)-
dimensional anti–de Sitter (AdS) spacetime and the con-
formal field theory (CFT) living in the d-dimensional
boundary of the AdS. Although the correspondence is
originally proposed for a supersymmetric large-N Yang-
Mills theory, its idea has been also applied to more realistic
systems such as condensed matter systems [4–8]. Those
studies indicate that there may be “materials” having their
gravitational duals in our world. Experimenting with such
materials, if realized, opens a new path for tabletop
experiments of quantum gravity.
As a tool of probing the dual spacetime, some of the

authors of this paper and others have proposed a way to
create a null geodesic in the asymptotically AdS spacetime
by the manipulation of the source in the quantum field
theory (QFT) [9–16]. Once a null geodesic is created in
AdS, it bounces repeatedly at the AdS boundary [9,16].

In the viewpoint of the dual QFT, while the energy flux
locally propagates following the conservation law, the
operator expectation value coupled to the source has sharp
peaks at spacetime-points where the null geodesic collides
with the boundary. We refer to this phenomenon as
“spacetime-localized response”. The spacetime-localized
response is naturally understood with the knowledge of the
dual spacetime as schematically drawn in Fig. 1, but is
highly nontrivial in terms of the QFT.
In this paper, we investigate the occurrence of the

spacetime-localized response in the transverse-field Ising
model on a lattice ring, aiming at its experimental reali-
zation. This model is known to be described by a CFTat the
critical point. While it may not have a gravitational dual due
to its small central charge, we demonstrate that the Jordan-
Wigner fermions, generated by a specific form of local
perturbation, do exhibit the spacetime-localized response.
This should be attributed to the fact that the retarded
propagators in CFTs are determined only from conformal
dimensions of operators [14–17]. Because of the univer-
sality of the linear response in CFTs, we can still apply the
“geometrical” interpretation inspired by the AdS/CFT even
for some nonholographic spin systems. (See Fig. 2). This
fact helps our intuitive understanding of nontrivial phe-
nomena in spin systems. Furthermore, we observe that the
spacetime-localized response persists, even in small lattice

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 109, 126003 (2024)

2470-0010=2024=109(12)=126003(10) 126003-1 Published by the American Physical Society

https://orcid.org/0000-0001-9811-0416
https://orcid.org/0000-0002-1263-8656
https://orcid.org/0000-0002-7683-4453
https://ror.org/03zyp6p76
https://ror.org/02kpeqv85
https://ror.org/02kpeqv85
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.126003&domain=pdf&date_stamp=2024-06-05
https://doi.org/10.1103/PhysRevD.109.126003
https://doi.org/10.1103/PhysRevD.109.126003
https://doi.org/10.1103/PhysRevD.109.126003
https://doi.org/10.1103/PhysRevD.109.126003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


systems, well outside the QFT limit. These observations
suggest the universality of the spacetime-localized response
for general quantum many-body models that possess an
(approximate) CFT description.
We also propose experimental realizations using a

well-controllable quantum system of Rydberg atoms in
an optical tweezers array [18–22] in the case of the
transverse-field Ising model. Although our system may
not be holographic, the technique developed in this paper,
both theoretically and experimentally, can directly be
applied to spin systems known to have large central
charges, which will be possibly holographic. If we can
realize such holographic spin systems in a laboratory, we
can probe dual spacetimes (e.g., black hole spacetime) by
tabletop experiments. The observation of the spacetime-
localized response in a laboratory setting can serve as
a foundation for future experiments with holographic
spin systems. This study not only predicts the nontrivial
phenomenon of spacetime-localized response, which is
interesting in its own right, but also offers an experimental
method to see the motion of particles in the dual higher-
dimensional spacetime of a holographic spin system. Thus,
experimenting with our setup represents a crucial first step
in exploring semiclassical gravitational duals for condensed
matter systems in tabletop experiments.

II. NULL GEODESICS IN ADS3

We consider the null geodesic in the global AdS3
spacetime,

ds2 ¼ −ð1þ r2Þdt2 þ dr2

1þ r2
þ r2dϕ2; ð1Þ

where we take the unit of AdS radius ¼ 1. We have the
exact solution of the null geodesic equation in the AdS3 as

t ¼ π

2
þ tan−1λ; r2 ¼ m2 þ λ2

1−m2
; ϕ ¼ π

2
þ tan−1

λ

m
;

ð2Þ

where λ is the affine parameter and m is the angular
momentum per unit energy. A typical orbit of the null
geodesic is shown in Fig. 3(a). Suppose that a null geodesic
is injected into the AdS3 from the AdS boundary at
ðt;ϕÞ ¼ ð0; 0Þ. Such a particle arrives at the antipodal
point ðt;ϕÞ ¼ ðπ; πÞ, bounces back there, and returns to the
original position ðt;ϕÞ ¼ ð2π; 0Þ. Figure 3(b) shows the
points at which the particle reaches the AdS boundary on
ðt;ϕÞ-plane. These points are independent of the angular
momentum M of the null geodesic, although the trajectory
does depend on it.
If a source is applied appropriately in the CFT living on

the AdS boundary, a null geodesic can be produced in the
bulk as a localized configuration of the probe field [9]. The
null geodesic with energy Ω and angular momentum M is
created by the source,

J ðt;ϕÞ ¼ A exp

�
−

t2

2σ2t
−

ϕ2

2σ2ϕ
− iΩtþ iMϕ

�
; ð3Þ

where A, σt, and σϕ are the amplitude and the widths in t
and ϕ, respectively, of the Gaussian part. This source
modifies the action of the CFT as S → Sþ R dtdϕJO
where O is an operator in the CFT. We will consider
the source with finite width σt > 0 and σϕ > 0. Then, in the
gravity side, a wave packet is created instead of the
“particle”. and the response will also has finite width.
(Although the particle-limit is given by σt → 0 and σϕ → 0

while keeping Ω ≫ 1=σt and M ≫ 1=σϕ, we will take
modest values for σt and σϕ because of numerical limi-
tations.) Since the subleading term of the asymptotic
expansion of the bulk probe field corresponds to the
response to J in the CFT, it is zero while the null geodesic

FIG. 2. In the linear response regime, geometrical interpretation
is possible for (nonholographic) critical spin systems.

(a) (b)

FIG. 3. (a) A typical orbit of the null geodesic in AdS3. It
bounces repeatedly at the AdS boundary depicted as the yellow
cylinder. The radial distance ρ≡ r=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
and the azimuthal

angle ϕ correspond to space coordinates, while the axial
coordinate corresponds to the time variable t. The AdS boundary
is located at ρ ¼ 1 (r → ∞). (b) Points at which the null geodesic
collides with the AdS boundary on the ðt;ϕÞ-plane.

FIG. 1. Schematic picture of the spacetime-localized response
in a spin system on a lattice ring. The response to a local
perturbation suddenly appears at a spatially separated point after a
certain time lag.
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is inside the bulk. However, it suddenly stands up just at the
time the geodesic reaches the boundary. Thus, under the
source (3), we can expect sharp signals of the response to
be observed at discrete points, as shown in Fig. 3(b).

III. TRANSVERSE-FIELD ISING MODEL

We consider the Ising model in transverse magnetic field
on the L-site ring,

H ¼ −J
XL
j¼1

σzjσ
z
jþ1 − h

XL
j¼1

σxj ; ð4Þ

where σaj (a ¼ x, y, z) is the Pauli matrix which acts on the
jth spin (σLþ1 ¼ σ1). This Hamiltonian is explicitly diag-
onalizable as summarized in Appendix A. (See also
Refs. [23,24] for nice reviews.) The one-dimensional
spin-1=2 chain can be mapped onto a fermionic system
by the Jordan-Wigner transformation

cj ¼
1

2

Yj−1
l¼1

σxl ð−σzj þ iσyjÞ. ð5Þ

Under the transformation Eq. (5), the Hamiltonian (4) is
rewritten as

H ¼ −J
XL
j¼1

�
c†jcjþ1 þ c†jþ1cj þ c†jc

†
jþ1 þ cjþ1cj

�

− h
XL
j¼1

�
1 − 2c†jcj

� ðwith cLþ1 ¼ −c1Þ; ð6Þ

where we assumed that the total number of fermions is even
N ¼PL

j¼1 c
†
jcj ∈ 2Z since the ground state is always in the

even-N sector [23].
Before showing the behavior of spacetime-localized

response, let us see the QFT description of the lattice
model (6) in the continuum limit. To this end, we introduce
the fermion field ΨðxjÞ ¼ cj=

ffiffiffi
a

p
where a is the lattice

spacing. In the continuum limit a → 0 while keeping the
total length of the ring, l ¼ La, finite, the Hamiltonian
becomes

H ¼ −
Z

l

0

dx

�
v
2

�
Ψ† d

dx
Ψ† −Ψ

d
dx

Ψ
�
þ δΨ†Ψ

�
; ð7Þ

with v ¼ 2Ja and δ ¼ 2ðJ − hÞ. This is just a field theory
for the free Majorana fermion with the mass δ=v2. In the
critical case J ¼ h, the above Hamiltonian describes the
CFT with central charge c ¼ 1=2. (See Appendix D.)
Therefore, one can anticipate the occurrence of space-
time-localized response in the spin model (4) by the virtue
of Fig. 2, particularly for a sufficiently large size L and

when J ≈ h, with the caveat that the CFT is not strongly
coupled (as will be mentioned later).

IV. LINEAR RESPONSE THEORY

Let us consider the linear response of the transverse-field
Ising model with a finite L, whose Hamiltonian is given by
Eq. (4) or (6). The perturbation of the Hamiltonian is

δHðtÞ ¼ −
XL
j¼1

J jðtÞnj; ð8Þ

where nj ¼ c†jcj is the number operator of the fermion at
the jth site and J jðtÞ ¼ J ðt;ϕjÞ is the source function of
the form Eq. (3). Here, we introduced the spacial coordinate
of the jth site on the ring as

ϕj ¼
2π

L

�
j −

L
2

�
: ð9Þ

From Eq. (5), the number operator nj is written as
nj ¼ ð1 − σxjÞ=2. Thus, J jðtÞ is regarded as the transverse
magnetic field which depends on the time and space.
The linear response of the ground state to the dynamic

perturbation δHðtÞ is given by

δhnjðtÞi ¼ −
XL
l¼1

Z
∞

−∞
dt0GRðt − t0; j − lÞJ lðt0Þ; ð10Þ

where GRðt − t0; j − lÞ ¼ −iθðt − t0Þh½njðtÞ; nlðt0Þ�i is the
retarded propagator with njðtÞ ¼ eiHtnje−iHt, and h� � �i
represents the expectation value with respect to the ground
state. We have an explicit expression for the retarded
propagator as

GRðt; jÞ ¼
2

L2
θðtÞ

X
k;k0 ∈K

ukvk0 ðukvk0 þ uk0vkÞ

× sin
	ðϵk þ ϵk0 Þt − ðk − k0Þj
; ð11Þ

where ϵk ¼ 2Jfðcos k − h=JÞ2 þ sin2 kg1=2 is the energy of
the “single particle state”. We have also defined ðuk; vkÞ ¼
N ðϵk þ zk; iykÞ with zk ¼ 2ðh − J cos kÞ and yk ¼ 2J sin k
where N is the normalization constant to make
jukj2 þ jvkj2 ¼ 1. See Appendix B for the derivation of
the above expression. Using Eqs. (3) and (11) in Eq. (10),
we can compute the linear response.
Note that, in the linear response theory, we simulta-

neously describe the formulations for the cosine (real) and
sine (imaginary) parts of the source field in terms of the
“complex” form of J lðt0Þ. In the experiments, one has to
measure the responses δhnjðtÞi against Re½J l� and Im½J l�
separately, and then combined the results into the form
of jδhnjðtÞij.
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V. SPACETIME-LOCALIZED RESPONSE

Taking units of v ¼ 1 and l ¼ 2π, we have

a ¼ 2π

L
; J ¼ L

4π
; h ¼ J −

δ

2
: ð12Þ

The free parameters of the Hamiltonian are now given
by L and δ. We take the amplitude of the source as A ¼
J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðσtσϕLÞ

p
so that

P
j

R
dtjJ jðtÞj2 ≃ J2 is satisfied.

Figure 4 shows the response jδhnjðtÞij for δ ¼ 0,
σt ¼ 0.4, σϕ ¼ 0.4, Ω ¼ 5, and M ¼ 0. The number of
sites are varied as L ¼ 8, 16, 32, 64. As shown in the
figures, the response suddenly stands up around at the
points indicated in Fig. 3(b). [Since the source (3) has finite
width, the response is not completely localized.] This result
shows that the spacetime-localized response can indeed be
observed in the realistic spin model on a finite-size lattice.
Note that the behavior of the spacetime-localized response
is already seen even for a small L (around for L ∼ 16). In
Appendix E, we give a direct calculation of the quantum
state after the perturbation (8). We find that, by the time
translation t → tþ π, the wave function is mapped onto the
antipodes on S1 with a partial sign-flip in the momentum
space near the critical point. It follows that, after the time
translation t → tþ 2π, the same quantum state reappears.
We show the time dependence of the response for fixed

ϕj ¼ 0; π in the rightmost panel of Fig. 4, in which the
spacetime-localized response is clearly seen. According
to the geodesic motion in the AdS3, the peaks of the
response should be at t ¼ 0; 2π; 4π; � � � for ϕ ¼ 0 and t ¼
π; 3π; 5π � � � for ϕ ¼ π, but they seem to appear a little later.
The shift of the peak positions is caused by the finite-L
effect, and it actually gets smaller as L increases.
In Appendix C, we also summarize results of the linear

response for δ ≠ 0 and M ≠ 0.
In this paper, we have taken the unit of v ¼ l=ð2πÞ ¼

ℏ ¼ 1. We can easily restore the dimensions of the
quantities as ðt;Ω; σt; δÞ → ðt=T;ΩT; σt=T; Tδ=ℏÞ where

T ¼ ℏL=ð4πJÞ. Note that M and σϕ are dimensionless
quantities as they are. For example, in Fig. 4, we set Ω ¼ 5.
This implies Ω ¼ 5 × 4πJ=ðℏLÞ.

VI. EXPERIMENTAL REALIZATION

The experimental realization and detection of our theo-
retical findings are feasible using Rydberg atoms trapped
in an optical tweezers array [18–22]. The state-of-the-
art techniques developed in recent years have enabled
us to simulate a programmable Ising-type quantum spin
model with tunable interactions [19], system sizes of up to
hundreds [21,22], and arbitrary lattice geometries [20,22].
The spacetime-localized response can be tested in a ring-
shaped lattice [20] of atoms near the quantum critical
regime (J ≈ h), achieved by global laser light that intro-
duces the coupling between the ground and Rydberg states.
The source fields, Re½J l� and Im½J l�, could be imple-
mented by temporary focused lasers with programmatically
adjusted intensity for each spin on the ring within a range of
∼σϕ, or could be potentially manipulated more effectively
with the help of a spatial light modulator [20,25]. The
response in hσxjðtÞi ¼ 1–2hnjðtÞi of the individual atoms
can be monitored at each time slice via the fluorescence
imaging after inserting a global π=2 pulse. Additionally,
systems of superconducting qubits [26] and trapped
ions [27] should also offer another promising platform
for realizing our theoretical proposal.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduced the concept of “spacetime-
localized response”, a phenomenon where a particle
appears to be transferred, traveling in the dual higher-
dimensional geometry, and showed that this phenomenon
actually takes place in the transverse-field Ising model on a
lattice ring. This phenomenon is expected to be ubiquitous
and working as a probe of the dual higher-dimensional
geometry.

FIG. 4. Response for parameters δ ¼ 0, σt ¼ 0.4, σϕ ¼ 0.4, Ω ¼ 5, and M ¼ 0. The number of sites is varied as L ¼ 8, 16, 32, 64.
The color bar corresponds to jδhnjij. The rightmost panel shows time dependence of the response for fixed ϕ-slices at ϕ ¼ 0 (j ¼ L=2)
and ϕ ¼ π (j ¼ L). The number of sites is fixed as L ¼ 32.
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Although spacetime-localized response can be clearly
understood in the gravity side, its physical interpretation in
the spin system is not trivial. This would result from the
long range correlation of the ground state of the spin system
near the critical point. Revealing the physical interpretation
of spacetime-localized response is an interesting future
challenge.
The transverse-field Ising model reduces to the free QFT

in the continuum limit as in Eq. (7). There has been
attempts for dual descriptions of free quantum theories.
One of them is to consider a higher spin gravity equivalent
to a free N-Majorana fermion representation [28,29].
Therefore, at least some higher spin gravity models may
be a target for the experimental probe of the dual higher-
dimensional spacetime.
Studying finite temperature effects is one of the most

important future directions. For a free QFT such as Eq. (7),
its finite temperature effects is trivial. On the other hand,
for the SUðNÞ Heisenberg model for example, the con-
tinuum limit is a Wess-Zumino-Witten model [30] and
can give nontrivial thermal effects. It would allows us to
probe quantum black hole spacetimes through tabletop
experiments.
Finally, let us suggest possible directions for the appli-

cation of the spacetime-localized response: 1) It may
provide a new method in spintronics or magnonics. The
spacetime-localized response might be used for carrying
spin-wave packets from place to place, bypassing undesired
operating elements existing on the way. Topological mate-
rials whose edge states are gapless CFTwould be a suitable
test ground for it; 2) It is tempting to suggest a similarity
between the spacetime-localized response and a time
crystal. Figure 4 evidently forms a spacetime crystal-like
structure in the two-dimensional spacetime. Although the
spacetime-localized response is not a spontaneous breaking
of time translation, the crystaline pattern formation would
provide some novel holographic understanding of critical
materials. 3) Once at a finite temperature a holographic
quantum black hole is realized, the quantum matter ring
would serve as a quantum “trash can”, when this ring is
connected to quantum circuits. Black holes are the fastest
scramblers [31], and information is effectively lost, which
could be efficiently used in quantum information science.
These are just a list of interesting suggestions, and we like
to explore them in the forthcoming papers.
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APPENDIX A: TRANSVERSE-FIELD
ISING MODEL

The transverse-field Ising mode is a solvable spin
model, which reduces to a CFT at the critical point. In
appendices, we give a brief review of the diagonalization
of the Hamiltonian of the transverse-field Ising model.
Analytical calculations of the two-point function and linear
response are demonstrated. We present some supplemen-
tary results of the linear response which are not covered in
the main text. The quantum state after the perturbation of
the Hamiltonian is also explicitly computed. We take the
CFT limit of the two point function and find that it
coincides with that from the general argument of the CFT.
The Hamiltonian of the transverse-field Ising model on

the L-site ring is

H ¼ −J
XL
i¼1

σziσ
z
iþ1 − h

XL
i¼1

σxi ; ðA1Þ

where σai (a ¼ x, y, z) is the Pauli matrix which acts on the
i-th spin and σLþ1 ¼ σ1. In this section, we give a brief
review of the diagonalization of the transverse-field Ising
model. (See also Refs. [23,24] for nice reviews.) The one-
dimensional spin-1=2 chain can be mapped onto the
fermion system by the Jordan-Wigner transformation,

σxi ¼ 1 − 2c†i ci; −σzi þ iσyi ¼ 2
Yi−1
j¼1

�
1 − 2c†jcj

�
ci:

ðA2Þ

Its inverse transformation is given by

ci ¼
1

2

Yi−1
j¼1

σxjð−σzi þ iσyi Þ. ðA3Þ

The operator ci satisfies the canonical anticommutation
relation, fci; c†jg ¼ δij. By the Jordan-Wigner transforma-
tion, the transverse field Ising model reduces to the system
of the fermions as

H ¼ −J
XL
i¼1

�
c†i ciþ1 þ c†iþ1ci þ c†i c

†
iþ1 þ ciþ1ci

�

− h
XL
i¼1

�
1 − 2c†i ci

�
; ðA4Þ
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where c†i and ci are the creation and annihilation operators
of fermions at ith site. We assume that the total number of
fermions is even; N ¼PL

j¼1 c
†
jcj ∈ 2Z. Then, ci satisfies

the antiperiodic boundary condition cLþ1 ¼ −c1.
We apply the Fourier transformation of the operator cj as

cj ¼
1ffiffiffiffi
L

p
X
k∈K

eikjck: ðA5Þ

From the anti-periodic boundary condition in Eq. (A4), the
domain of the wave number k is given by

K ¼
�
2π

L

�
n −

1

2

�����n ¼ −
L
2
þ 1;…;

L
2



: ðA6Þ

In the momentum space, the Hamiltonian becomes

H ¼ −J
X
k∈K

�
2 cos kc†kck þ eikc†kc

†
−k þ e−ikc−kck

�
þ h

X
k∈K

�
2c†kck − 1

�
: ðA7Þ

Rewriting the Hamiltonian (A4) in terms of ck, we find the
coupling between modes with k and −k. However, after the
Bogoliubov transformation,

�
ck

c†−k

�
¼
�
uk − v�k
vk u�k

��
γk

γ†−k

�
; ðA8Þ

we obtain the diagonalized Hamiltonian as

H ¼ E0 þ
X
k∈K

ϵkγ
†
kγk; ðA9Þ

where

ϵk ¼ 2J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
cos k −

h
J

�
2

þ sin2k

s
;

�
uk
vk

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϵkðϵk þ zkÞ
p �

ϵk þ zk
iyk

�
; ðA10Þ

with zk ¼ 2ðh − J cos kÞ and yk ¼ 2J sin k. The constant
term in Eq. (A9) is the energy of the ground state given
by E0 ¼ −

P
k∈K ϵk=2.

From Eq. (A9), we find that the ground state j0i is the
state which is annihilated by γk,

γkj0i ¼ 0 ð∀ k∈KÞ: ðA11Þ

Excited states are constructed by multiplying the creation
operators to the ground state as

jm⃗i ¼
Y
k∈K

ðγ†kÞmk j0i ðmk ¼ 0 or 1Þ; ðA12Þ

where m⃗ represents the list of mk. As assumed in Eq. (A4),
the total fermion number

P
k∈K mk should be even. Their

energy eigenvalues are Eðm⃗Þ ¼ E0 þ
P

k∈K mkϵk.

APPENDIX B: RETARDED PROPAGATOR
AND LINEAR RESPONSE

We define the two-point function in the transverse-field
Ising model as

CsðtÞ ¼ hnjþsðtÞnjð0Þi: ðB1Þ

where h� � �i is the expectation value with respect to the
ground state. We denoted the number operator of the
fermion at the jth site by nj ¼ c†jcj, and introduced its
Heisenberg picture as njðtÞ ¼ eiHtnje−iHt. We can also
express nj in terms of γk defined in Eq. (A8) as

nj ¼
1

L

X
k;k0 ∈K

eiðk0−kÞj
�
u�kγ

†
k − vkγ−k

��
uk0γk0 − v�k0γ

†
−k0
�
:

ðB2Þ

The two-point function is rewritten as CsðtÞ ¼
h0jnjþse−iðH−E0Þtnjj0i. From Eq. (B2), we have

njj0i ¼ −
1

L

X
k;k0 ∈K

eiðk0−kÞju�kv
�
k0 jk;−k0i þ

1

L

X
k∈K

jvkj2j0i;

ðB3Þ

where we defined the two-particle state

jk;−k0i≡ γ†kγ
†
−k0 j0i: ðB4Þ

This satisfies

h0jk;−k0i ¼ 0;

hp;−p0jk;−k0i ¼ δpkδp0k0 − δp;−k0δp0;−k: ðB5Þ

Since the ground state j0i and the two-particle state jk;−k0i
are energy eigenstates, we also have e−iðH−E0Þtj0i ¼ j0i
and e−iðH−E0Þtjk;−k0i ¼ e−iðϵkþϵk0 Þtjk;−k0i. From these
relations, the two-point function is computed as

CsðtÞ ¼
1

L2

�X
k∈K

jvkj2
�
2
−

1

L2

X
k;k0 ∈K

e−iðϵkþϵk0 Þtþiðk−k0Þs

× ukvk0 ðukvk0 þ uk0vkÞ: ðB6Þ

The regarded propagator is defined as

GRðt − t0; j − lÞ ¼ −iθðt − t0Þh½njðtÞ; nlðt0Þ�i; ðB7Þ
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which is computed from the two-point function (B1) as
GRðt − t0; j − lÞ ¼ −iθðt − t0ÞðCj−lðt − t0Þ − Cl−jðt0 − tÞÞ.
Thus, we obtain the explicit expression for the regarded
propagator as

GRðt − t0; j − lÞ ¼ −
i
L2

θðt − t0Þ
X

k;k0 ∈K

ukvk0 ðukvk0 þ uk0vkÞ

×
X
r¼�1

reirðϵkþϵk0 Þðt−t0Þ−irðk−k0Þðj−lÞ: ðB8Þ

Under the perturbation of the Hamiltonian,

δH ¼ −
XL
l¼1

J lðtÞnl; ðB9Þ

its linear response is given by

δhnjðtÞi ¼ −
XL
l¼1

Z
∞

−∞
dt0GRðt − t0; j − lÞJlðt0Þ: ðB10Þ

We assume the time dependence of the source as

J lðtÞ ¼ Al exp

�
−

t2

2σ2t
− iΩt

�
: ðB11Þ

Although above expression is complex, the real or imagi-
nary part shall be taken to be implicit. This is localized in
time and oscillates with the frequency Ω. Al describes the
spacial dependence of the source. Then, we can perform
the t0-integration analytically in Eq. (B10). Using the error
function, erfcðzÞ ¼ 2π−1=2

R
∞
z e−t

2

dt, we can write the
analytical form of the linear response as

δhnjðtÞi ¼
iσt
L2

ffiffiffi
π

2

r X
r¼�1;k;k0

rukvk0 ðukvk0 þ uk0vkÞ

×

 XL
l¼1

Aleirðk−k
0Þl
!
e−irðk−k0Þj

× exp
�
−
σ2t
2
fΩþ rðϵk þ ϵk0 Þg2 þ irðϵk þ ϵk0 Þt

�

× erfc

�
−

tffiffiffi
2

p
σt

−
iσtffiffiffi
2

p fΩþ rðϵk þ ϵk0 Þg
�
:

ðB12Þ

For a given space dependence of the source Al, we can
numerically compute the summation of k; k0; r, and l.
As the explicit expression for the spacial part of the

source (B11), we use

Al ¼ A exp

�
−

ϕ2
l

2σ2ϕ
þ iMϕl

�
; ðB13Þ

where ϕl ¼ ð2π=LÞðj − L=2Þ. Parameters Ω and M cor-
respond to the energy and orbital angular momentum of the
created particle in the gravity side.

APPENDIX C: DETAILED ANALYSIS
OF THE LINEAR RESPONSE

In the main text, we focused on the response for the
critical case J ¼ h (δ ¼ 0) and for the zero orbital angular
momentumM ¼ 0. Here, the response in a wider parameter
space will be studied. Figure 5 shows the response for
δ ¼ −2, 0, 2. Other parameters are set as L ¼ 32, σt ¼ 0.4,
σϕ ¼ 0.4, Ω ¼ 5, and M ¼ 0. Although the continuum
limit of the system is not a CFT for δ ≠ 0, we can still see
the behavior of the spacetime-localized response, although
it gets blurred as jδj increases. This is because the effect of
the finite gap is negligible for jδj≲ Ω and the system would
be approximated by the CFT. We can also observe the shift
of peak points of the response for δ ≠ 0.
Figure 6 shows the response for L ¼ 32, δ ¼ 0, σt ¼ 0.4,

σϕ ¼ 0.4, and Ω ¼ 5. The angular momentum of the null
geodesic is varied as m ¼ M=Ω ¼ 0, 0.2, 0.4, 0.6, 0.8.
The position of the peak points does not depend on m so
much. This is consistent with the result of null geodesics in
AdS3. In the view of the gravity side, as the value of jmj
approaches 1, the null geodesic passes closer to the

FIG. 5. Response for parameters L ¼ 32, σt ¼ 0.4, σϕ ¼ 0.4,
Ω ¼ 5, and M ¼ 0. δ ¼ −2, 0, 2.

FIG. 6. Response for parameters L ¼ 32, δ ¼ 0, σt ¼ 0.4,
σϕ ¼ 0.4, Ω ¼ 5, and m ¼ M=Ω ¼ 0, 0.2, 0.4, 0, 6, 0.8.
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boundary. Since the null geodesic is realized as a localized
configuration of a probe field in AdS3, it actually has a
tail. When the particle is close to the AdS boundary, the
response has a nonzero value because of the tail. This is the
origin of the right moving tail in Fig. 6.

APPENDIX D: CONFORMAL FIELD THEORY
LIMIT OF THE TRANVERSE-FIELD

ISING MODEL

Let us consider the continuum limit of Eq. (A4). We
introduce the fermion field ΨðxjÞ ¼ cj=

ffiffiffi
a

p
where a is the

lattice spacing. For a → 0, ΨðxÞ satisfies fΨðxÞ;Ψðx0Þg ¼
δðx − x0Þ. Then, the Hamiltonian is written as

H ¼ −
Z

l

0

dx

�
v
2

�
Ψ† d

dx
Ψ† −Ψ

d
dx

Ψ
�
þ δΨ†Ψ

�
; ðD1Þ

where

l ¼ La; v ¼ 2Ja ¼ 2Jl
L

; δ ¼ 2ðJ − hÞ: ðD2Þ

This describe the theory for the free Majorana fermion
with the mass δ=v2. For the critical case J ¼ h, above
Hamiltonian describes the CFT with central charge
c ¼ 1=2. Thus, the CFT limit of the transverse-field
Ising model is given by

h ¼ J; J → ∞; L → ∞; a → 0; ðD3Þ

with fixed v and l in Eq. (D2). In the followings, we take the
unit of v ¼ 1 and l ¼ 2π, i.e., 4πJ=L ¼ 1 and La ¼ 2π.
We consider the CFT limit of the two-point func-

tion (B6). Since the first term of Eq. (B6) is a constant,
we will omit it in the following expressions. We can
decompose the summation of k and k0 as

CsðtÞ ¼ −
1

L2

�
Cuu
s ðtÞCvv

−sðtÞ þ Cuv
s ðtÞCuv

−sðtÞ
�
; ðD4Þ

where

Cuu
s ðtÞ≡X

k∈K

e−iϵktþiksu2k;

Cuv
s ðtÞ≡X

k∈K

e−iϵktþiksukvk;

Cvv
s ðtÞ≡X

k∈K

e−iϵktþiksv2k: ðD5Þ

In the critical case J ¼ h, the dispersion relation becomes
gapless as

ϵk ¼ 4J

���� sin k2
����: ðD6Þ

We also have

uk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�� sin k

2

��
2

s
; vk ¼

i cos k
2
sgnðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ j sin k
2
jÞ

q : ðD7Þ

For the regularization, we shift the time coordinate to the
complex plane as t → t − iε. For the shift parameter ε, we
assume 1=J ≪ ε. Although this is bounded from below,
after taking the CFT limit (D3), we can eventually take the
limit of ε → þ0. Due to the imaginary part of the time
coordinate, only the region of jkj≲ 1=ðJεÞ ≪ 1 contributes
in the summation of Eq. (D5). In this region, we can
write ϵk ≃ 2Jjkj, uk ≃ 1=

ffiffiffi
2

p
and vk ≃ isgnðkÞ= ffiffiffi

2
p

. Thus,
we have

Cuu
s ðt − iεÞ → 1

2

X
k∈K

e−2iJjkjðt−iεÞþiks

¼ 1

2

X∞
n¼−∞

e−ijn−1=2jðt−iεÞþiðn−1=2Þϕ

¼ 1

4i

�
1

sin ðt−iεÞ−ϕ
2

þ 1

sin ðt−iεÞþϕ
2

�
; ðD8Þ

where we introduced the coordinate of the s-th spin site as
ϕ ¼ 2πs=L. Similarly, we also obtain

Cuv
s ðt − iεÞ → 1

4

�
1

sin ðt−iεÞ−ϕ
2

−
1

sin ðt−iεÞþϕ
2

�
;

Cvv
s ðt − iεÞ → −

1

4i

�
1

sin ðt−iεÞ−ϕ
2

þ 1

sin ðt−iεÞþϕ
2

�
: ðD9Þ

Therefore, from Eq. (D4), the CFT limit of the two point
function becomes

Csðt − iεÞ → −
1

4L2

1

sin ðt−iεÞþϕ
2

sin ðt−iεÞ−ϕ
2

: ðD10Þ

Let us consider the two point function from the general
argument of CFT. For Euclidean CFT in R2, the two-point
function for the operator with conformal weight ðh; h̄Þ is
given by

hOðz1; z̄1ÞOðz2; z̄2Þi ¼
1

z2h12 z̄
2h̄
12

; ðD11Þ

where z12 ¼ z1 − z2. Here we will consider the spinless
field; h ¼ h̄ ¼ Δ=2. We can move to the CFT in the
cylinder R × S1 by the conformal transformation,
z ¼ e−iw. From Oðz; z̄Þ ¼ ð∂z=∂wÞ−hð∂z̄=∂w̄Þ−h̄Oðw; w̄Þ
and Eq. (D11), we obtain
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hOðτ;ϕÞOð0Þi ∝ 1�
sin ϕþiτ

2
sin ϕ−iτ

2

�Δ ; ðD12Þ

where we write the complex coordinate in R × S1 as
w ¼ ϕþ iτ. The two-point function in the Lorentzian
signature is given by the analytic continuation of the
Euclidean time as τ ¼ itþ ε [32,33]. Thus, we have

hOðt;ϕÞOð0Þi ∝ 1�
sin ðt−iεÞþϕ

2
sin ðt−iεÞ−ϕ

2

�Δ : ðD13Þ

This coincides with Eq. (D10) by setting Δ ¼ 1.

APPENDIX E: TIME EVOLUTION
OF QUANTUM STATE

By the perturbation of the Hamiltonian (B9), the quan-
tum state is perturbed as jψðtÞi ¼ e−iE0tðj0i þ jδψðtÞiÞ,
where we take the ground state as the nonperturbative state.
Solving the Shrödinger equation in the first order in the
perturbation, we have

ijδψðtÞi ¼ e−iðH−E0Þt
Z

t

−∞
dt0 eiðH−E0Þt0δHðt0Þj0i; ðE1Þ

where we take the lower bound of the integration so that
jδψðtÞi → 0 for t → −∞. As the source function, we take
the real part of Eq. (B11),

JlðtÞ ¼
1

2

X
r¼�1

Ar
l e

−irΩte
− t2

2σ2t ; ðE2Þ

where we introduced Aþ1
l ¼ Al and A−1

l ¼ A�
l . We will

consider the sufficiently late time after the stimulus, t ≫ σt.
Then, the perturbation of the state becomes

ijδψðtÞi ≃ e−iðH−E0Þt
Z

∞

−∞
dt0 eiðH−E0Þt0δHðt0Þj0i: ðE3Þ

Then, from Eqs. (B3), (B9), and (E2), we can perform the
Gaussian integration and obtain,

jδψðtÞi ¼ Ψ0j0i þ
X

k;k0 ∈K

Ψkk0 ðtÞjk;−k0i; ðE4Þ

where

Ψkk0 ðtÞ ¼ −i
ffiffiffiffiffiffi
2π

p
σt

2L

X
r¼�1

 X
l

Ar
l e

iðk0−kÞl
!

× e−
σ2t
2
ðϵkþϵk0−rΩÞ2−iðϵkþϵk0 Þtu�kv

�
k0 ;

Ψ0 ¼ i

ffiffiffiffiffiffi
2π

p
σt

2L

 X
r¼�1;l

Ar
l

!X
k∈K

jvkj2e−
σ2t
2
Ω2

: ðE5Þ

Note that Ψkk0 ðtÞ and Ψ0 can be regarded as wave functions
in the momentum space.
In the main text, we found the spacetime-localized

response to a special source function. Especially, the
spacetime-pattern of the response seems invariant under
the discrete spacetime translation,

t → tþ π; ϕ → ϕþ π: ðE6Þ

Is the quantum state itself be copied to the antipodes in S1

after the time translation t → tþ π? To see this, we apply
the discrete spacetime translation to the perturbed quantum
state jδψðtÞi. The time-translation operator is given by
UðTÞ ¼ e−iðH−E0ÞT . We also define the operator to translate
the site by d∈Z as

T ðdÞjk1;…; kni ¼ e−iðk1þ���þknÞdjk1;…; kni; ðE7Þ

where jk1;…; kni≡ γ†k1 � � � γ
†
kn
j0i. The point reflection on

S1, ϕ → ϕþ π, is performed by the operation of T ðL=2Þ.
After the discrete spacetime translation (E6), the quantum
state becomes

UðπÞT ðL=2ÞjδψðtÞi ¼ Ψ0j0i þ
X

k;k0 ∈K

αkk0Ψkk0 ðtÞjk;−k0i;

ðE8Þ

where

αkk0 ≡ e−iðϵkþϵk0 Þπ−iðk0−kÞL=2: ðE9Þ

Thus, the wave function get the phase αkk0 after the discrete
spacetime translation.
As in Appendix D, in the CFT limit, the energy spectrum

is given by ϵk ≃ Ljkj=ð2πÞ. Thus, in the exponent of
Eq. (E9), we have

ϵk þ ϵk0 þ ðk0 − kÞ L
2π

≃ ðjkj − kþ jk0j þ kÞ0 L
2π

¼ L
π
×

8>>><
>>>:

k0 ðk > 0; k0 > 0Þ
0 ðk > 0; k0 < 0Þ
−kþ k0 ðk < 0; k0 > 0Þ
−k ðk < 0; k0 < 0Þ

:

ðE10Þ

Since k and k0 are components of K defined in Eq. (A6),
above expression becomes an odd integer for kk0 > 0 and
an even integer for kk0 < 0. It follows that, in the CFT limit,
the phase αkk0 is simply written as

αkk0 ≃ −sgnðkk0Þ: ðE11Þ
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Therefore, by the discrete spacetime translation (E6), the
quantum state is not invariant but gets the partial sign-flip in
its wave function.
Why does the response appear invariant under discrete

spacetime translation (E6), while the quantum state does
not exhibit such invariance? One can directly compute the
linear response from the perturbed quantum state (E4) as

δhnjðtÞi ¼ 2Re½hδψðtÞjnjj0i�: ðE12Þ

From Eqs. (B3) and (E4), we obtain,

hδψðtÞjnjj0i ¼
1

L

X
kk0

Ψ�
kk0 ðtÞeiðk

0−kÞjðukvk0 þ uk0vkÞ

þ 1

L
Ψ0

X
k∈K

jvkj2: ðE13Þ

The last term is pure imaginary and does not contribute
to the response. In the summand of above expression, there
is ukvk0 ðukvk0 þ uk0vkÞ. In the CFT limit, we can write
uk ≃ 1=

ffiffiffi
2

p
and vk ≃ isgnðkÞ= ffiffiffi

2
p

. Thus, we have

ukvk0 ðukvk0 þ uk0vkÞ ≃
i
4

�
1þ sgnðkk0Þ�: ðE14Þ

By the discrete spacetime translation (E6), the wave func-
tion is changed as Ψkk0 → αkk0Ψkk0 . From Eqs. (E11) and
(E14), we obtain,

αkk0ukvk0 ðukvk0 þ uk0vkÞ ≃ −ukvk0 ðukvk0 þ uk0vkÞ: ðE15Þ

It follows that the response just change the signature as
δhnjðtÞi → −δhnjðtÞi. Therefore, by the translation (E6),
the response is copied to the antipodes in S1 after a sign flip.
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