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We show that for a particular model, the quantum mechanical bootstrap is capable of finding exact
results. We consider a solvable system with HamiltonianH ¼ SZð1 − ZÞS, where Z and S satisfy canonical
commutation relations. While this model may appear unusual, using an appropriate coordinate trans-
formation, the Schrödinger equation can be cast into a standard form with a Pöschl-Teller-type potential.
Since the system is defined on an interval, it is well-known that S is not self-adjoint. Nevertheless, the
bootstrap method can still be implemented, producing an infinite set of positivity constraints. Using a
certain operator ordering, the energy eigenvalues are only constrained into bands. With an alternative
ordering, however, we find that a finite number of constraints is sufficient to fix the low-lying energy levels
exactly.
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I. INTRODUCTION

The quantum mechanical bootstrap provides a method to
numerically approximate the expectation values of a given
system [1]. Initially proposed as a way to solve random
matrix models [2], numerous systems have now been
analyzed with the bootstrap procedure including the quan-
tum anharmonic oscillator which produces rapidly con-
verging energy vs position expectation value ‘islands’ with
increased bootstrap matrix size [1,3,4], the Mathieu prob-
lem with band behavior [5–7], PT-symmetric systems [8]
and even models with exponentiated canonical operators as
found in Calabi-Yau discussions [9]. For a selection of
alternative systems and further explorations within the
literature, see [10–15].
In this paper, we use the bootstrap construction to

constrain the energy eigenvalues of a system defined on
the interval. Such systems are interesting due to the
subtleties in defining operator domains, which may poten-
tially lead to anomalies [12]. Our exploration of this system
will add to the growing bootstrap literature by providing a
valuable interval-based example. We will show that,
remarkably, the constraints are sufficiently strong to fix
these energy eigenvalues exactly, as seen previously in [4].

We begin by discussing the Hamiltonian, its analytic
solutions and the boundary conditions in Sec. II. The
bootstrap is then reviewed in Sec. III. Here we describe the
method to find recursion relations and assess the associated
anomalies. We then detail the composition of the bootstrap
matrices that are built from such relations. In Sec. IV we
provide the numerical results and figures depicting both the
bandlike and exact behavior. Finally, Sec. V provides a
summary of the findings and suggests future directions of
investigation. The appendixes provide additional technical
details of the calculations.

II. THE MODEL

A. The Hilbert space

We take the Hilbert space H to be the space of square
integrable functions over the interval z∈ ½0; 1�. The inner
product is defined on H as

hϕjψi ¼
Z

1

0

ϕðzÞ�ψðzÞdz: ð1Þ

Note that this also defines a product on a larger function
space consisting of potentially nonsquare integrable func-
tions. The norm on H is defined by kψk ¼ ffiffiffiffiffiffiffiffiffiffiffiffihψ jψip

.
Let us consider a densely defined linear

operator A∶DðAÞ → H. The domain and the action of A†

are defined by
(1) DðA†Þ ≔ fϕ∈Hj ∃ η∈H∶ ∀ α∈DðAÞ∶

hϕjAαi ¼ hηjαig,
(2) A†ϕ ≔ η.

Self-adjoint operators must satisfy two properties:
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(1) Symmetricity: hAϕjψi − hϕjAψi ¼ 0;
(2) Equality of operator domains: DðAÞ ¼ DðA†Þ;

for arbitrary wave functions ϕ∈DðA†Þ;ψ ∈DðAÞ. In the
following we consider the canonical operators S and Z. In
the z-basis, S ¼ iℏ∂z (note the sign choice) and Z ¼ z·
satisfy the commutation relation ½S; Z� ¼ iℏ, and hence-
forth we take ℏ ¼ 1. It is well-known that the operator S is
not self-adjoint on the interval.1

B. The Hamiltonian

We consider the Hamiltonian

H ¼ SZð1 − ZÞS: ð2Þ

This Hamiltonian appeared in [19] where it described a
folded string in two-dimensional anti-de Sitter (AdS) space,
and the radius of AdS has been sent to zero. This is one of
the simplest string systems and quantizing it serves as a
starting point for understanding how to quantize strings
generally.
In the z-basis, the time-independent Schrödinger equa-

tion becomes

HψðzÞ ¼ EψðzÞ;
zð1 − zÞψ 00ðzÞ þ ð1 − 2zÞψ 0ðzÞ þ EψðzÞ ¼ 0; ð3Þ

where E is the eigenvalue of the system for the particular
energy eigenfunction ψðzÞ. We want H to be self-adjoint
and therefore we consider it on the dense domain

DðHÞ ≔ fψ ; Hψ ∈Hj lim
z→0;1

zð1 − zÞ∂zψðzÞ ¼ 0g: ð4Þ

H must be symmetric, which means for any ϕ∈H,
Hϕ∈H and ψ ∈DðHÞ ⊂ H

hϕjHψi − hHϕjψi ¼ 0: ð5Þ

Note that ϕ is not necessarily in DðHÞ, therefore what is
meant by Hϕ is that the differential operator H acts on
ϕðzÞ. Since kHϕk < ∞, ϕ must at most be logarithmically
divergent and subleading terms are either constant or vanish
faster than z1=2 or ð1 − zÞ1=2:

ϕðzÞ ¼ c0 þ c00 log
�

z
1 − z

�
þOðz12Þ; as z → 0; ð6Þ

ϕðzÞ¼c1þc01 log
�

z
1−z

�
þOðð1−zÞ12Þ; as z→1; ð7Þ

where c0; c00; c1 and c01 are constants. Since ψ ∈DðHÞ, the
condition in (4) eliminates the logarithmically divergent
terms,

ψðzÞ ¼ c000 þOðz12Þ; as z → 0; ð8Þ
ψðzÞ ¼ c001 þOðð1 − zÞ12Þ; as z → 1; ð9Þ

where c000 and c
00
1 are constants. To perform the symmetricity

calculation of (5), we focus on its first term and integrate by
parts,

hϕjHψi ¼ −
Z

1

0

ϕðzÞ�∂z½zð1 − zÞ∂zψðzÞ�dz ð10Þ

¼ −ϕðzÞ�zð1 − zÞ∂zψðzÞjz→1
z→0

þ
Z

1

0

ð∂zϕðzÞ�Þzð1 − zÞ∂zψðzÞdz ð11Þ

¼ −ϕðzÞ�zð1 − zÞ∂zψðzÞjz→1
z→0

þ
�
ψðzÞzð1 − zÞ∂zϕðzÞ�jz→1

z→0

−
Z

1

0

∂z½zð1 − zÞ∂zϕðzÞ��ψðzÞdz
�

ð12Þ

¼ −ϕðzÞ�zð1 − zÞ∂zψðzÞjz→1
z→0

þ ψðzÞzð1 − zÞ∂zϕðzÞ�jz→1
z→0 þ hHϕjψi: ð13Þ

Since ϕ�, ∂zψ and ∂zϕ
� may potentially blow up, these

boundary terms must be evaluated using limits limz→0;1.
Each of the expressions in (10)–(13) must be finite. Since
ψ ∈H, then hHϕjψi meets this criteria. The first term
in (13) always vanishes. The second term is finite owing to
the zð1 − zÞ factor, but generally does not vanish. A natural
choice of conditions that ensure it does vanish is

lim
z→0;1

zð1 − zÞ∂zϕðzÞ ¼ 0: ð14Þ

The set of ϕ’s which satisfy (14) determines DðH†Þ. We
conclude that H is a self-adjoint operator since it is
symmetric and DðHÞ ¼ DðH†Þ. Although we will use the
boundary conditions of (4) and (14) throughout, we note that
more general boundary conditions do exist, see Sec. II E.

C. The spectrum

The Schrödinger equation (3) has a general analytic
solution,

ψnðzÞ ¼ a1Pnð2z − 1Þ þ a2Qnð2z − 1Þ; ð15Þ

where a1 and a2 are constants, Pn is the Legendre poly-
nomial,Qn is the Legendre function of the second kind and
n ¼ 1

2
ð−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4E
p Þ. Note that Pn and Qn are real.

1There does exist a self-adjoint extension of S on the interval,
see for example [16] where the wave functions are restricted to
have boundary values identified up to a parameter-dependent
phase. Further information about extensions on the interval can
be found in [17,18].
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Evaluating the boundary conditions,

lim
z→0;1

zð1 − zÞψ 0ðzÞ ¼ 0; ð16Þ

using the general solution (15) implies that n ¼ 0; 1; 2…
and a2 ¼ 0. The non-negative integer n provides the
quantization condition for the energy eigenvalues,

hψnjHjψni≡ En ¼ nðnþ 1Þ; ð17Þ
where

ψnðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
Pnð2z − 1Þ; ð18Þ

and constant a1 has been fixed by normalization condition
hψnjψni ¼ 1. Having the analytic solution at hand provides
a useful diagnostic tool for the bootstrap.

D. Pöschl-Teller coordinates

To understand where the Pöschl-Teller potential is mani-
fest in our system, we can choose alternative coordinate

z ¼ ep

1þ ep
; ð19Þ

such that the Schrödinger equation becomes

ψ 00ðpÞ þ E
4 cosh2ðp

2
ÞψðpÞ ¼ 0: ð20Þ

This is related to thework of [8] where they studied equation

ψ 00ðpÞ þ λðλþ 1Þ
4 cosh2ðp

2
ÞψðpÞ ¼ −

EK

2
ψðpÞ; ð21Þ

and applied the bootstrap to identify the eigenvalues EK .
Notably, by taking EK ¼ 0 and λðλþ 1Þ ¼ E the two
equations coincide.2 Under this coordinate transformation,
the boundary condition of Eq. (16) becomes

lim
p→−∞;∞

ψ 0ðpÞ ¼ 0; ð22Þ

which is a Neumann-type boundary condition. Another
transformation is achieved by setting

z ¼ 1

2
ð1þ sinðθÞÞ: ð23Þ

The Schrödinger equation (3) then becomes

ψ 00ðθÞ − tanðθÞψ 0ðθÞ þ EψðθÞ ¼ 0; ð24Þ

which, upon redefining the wave function and the energy to

ψðθÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
cos θ

p ψ̃ðθÞ; E ¼ Ẽ −
1

4
; ð25Þ

may be rewritten as

−ψ̃ 00ðθÞ − 1

4 cos2ðθÞ ψ̃ðθÞ ¼ Ẽ ψ̃ðθÞ: ð26Þ

Here (26) appears in a Schrödinger equation form, with Ẽ
representing the energy. This is in contrast to (20), where E
appears as a coupling constant.

E. General boundary conditions

The expectation values hϕjHψi and hHϕjψi in (5)
remain well-defined when both ψ and ϕ have logarithmic
divergences. However, upon integrating by parts the
boundary term and resultant integral in (11) will
become infinite as z → 0, 1. If we introduce a small ϵ
cutoff and change the Hilbert space to the space of square
integrable functions over the interval z∈ ½ϵ; 1 − ϵ�, then the
expressions stay well-defined. Using wave function
Ansätze

ϕðzÞ ¼ d0 þ d00 log
�

z
1 − z

�
þOðz12Þ; as z → ϵ; ð27Þ

ϕðzÞ¼d1þd01 log
�

z
1−z

�
þOðð1−zÞ12Þ; as z→1−ϵ;

ð28Þ

where d0; d00; d1 and d01 are constants and

ψðzÞ ¼ d000 þ d0000 log

�
z

1 − z

�
þOðz12Þ; as z → ϵ; ð29Þ

ψðzÞ¼d001þd0001 log
�

z
1−z

�
þOðð1−zÞ12Þ; as z→1−ϵ;

ð30Þ

where d000; d
000
0 ; d

00
1 and d0001 are constants, the general boun-

dary conditions can be written as

2There appears to be a typo in the original recursion relation
proposed in [8]. We find the relation to be�
4EKtþ

t3

2

�
hsechtðxÞi

þð−4EKðtþ1Þþ2ðtþ1Þλð1þλÞ− t3−3t2−4t−2Þhsechtþ2ðxÞi

þ
�
t3

2
þ3t2þ11

2
tþ3−2ðtþ2Þλðλþ1Þ

�
hsechtþ4ðxÞi¼0;

where x ¼ p=2. Upon scaling/redefining EK → 1
2
EK and swap-

ping the hsechtþ2ðxÞi and hsechtþ4ðxÞi coefficients in the above
expression, this is equal to Eqs. (5) and (35) of [8].
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�
α0zð1 − zÞψ 0ðzÞ þ ψðzÞ − zð1 − zÞ log

�
z

1 − z

�
ψ 0ðzÞ

�����
z¼ϵ

¼ 0; ð31Þ

�
α1zð1 − zÞψ 0ðzÞ þ ψðzÞ − zð1 − zÞ log

�
z

1 − z

�
ψ 0ðzÞ

�����
z¼1−ϵ

¼ 0; ð32Þ

where α0;1 are constants and these same boundary con-
ditions are also applied to ϕðzÞ. By plugging the functions
(27)–(30) into (31) and (32) respectively, this enforces

d0 þ α0d00 ¼ d1 þ α1d01 ¼ d000 þ α0d0000 ¼ d001 þ α1d0001 ¼ 0;

ð33Þ

in the ϵ → 0 limit. Providing α0 ∈R and α1 ∈R, these
equations mean the boundary terms are equal in the
symmetricity calculation (13) and will cancel, thus H is
self-adjoint. Note, in the p coordinates of Sec. II D, the
boundary conditions become

ψðpÞ þ ðα0 − pÞψ 0ðpÞjp¼a− ¼ 0; ð34Þ

ψðpÞ þ ðα1 − pÞψ 0ðpÞjp¼aþ ¼ 0; ð35Þ

where a− ¼ log ϵ
1−ϵ and aþ ¼ log 1−ϵ

ϵ . These are similar to
Robin boundary conditions.

III. BOOTSTRAP

The bootstrap begins3 with a Hamiltonian H and a set of
operators, fOig, where the type and the number of
operators required, depends on the model. These are used
to produce energy and commutation equations

hHOii − EhOii ¼ 0 and h½H;Oi�i ¼ 0: ð36Þ

Note that hOii≡ hψEjOijψEi, where jψEi is a specific
energy eigenstate. After using the commutation rules
between the various required Oi and H, it is potentially
possible to form closed recursion relations between expect-
ation values, based on the contents of the Oi. A subset of
these expectation values therefore generate the remaining
moments and together with the energy E, they form a set of
initial data for the bootstrap. In quantum mechanics, a
general operator O must adhere to the positivity constraint,

hO†Oi ≥ 0: ð37Þ

The operator O will often be referred to as the bootstrap
operator. Following [1], we writeO as a linear combination

of operators,

O ¼
X
i

ciÕi; hO†Oi ¼
X
i;j

c�i cjhÕ†
i Õji; ð38Þ

where ci ∈C. These Õi may consist of either the canonical
operators directly or a general combination from the Oi set
introduced. This leads to the definition of the bootstrap
matrix B,

Bij ¼ hÕ†
i Õji: ð39Þ

The constraint in (37) can therefore be written as a positive
semidefinite condition on B,

B≽ 0: ð40Þ

Using this condition, the expectation values of a system
can be bounded. The significant point about this con-
struction is that the matrix elements of B should be
obtainable from the output of the recursion relations.
Therefore, via appropriate choice of bootstrap operator
and utilization of recursion relations, we may populate
this matrix with different choices of initial data and test its
positivity. If the result is negative, then the trialed initial
data is ruled out. By reiterating the process for different
initial data sets, we aim to carve out regions in the initial
data space that satisfy the constraint, indicating where the
actual, physical values exist. We can increase the number
of operators in the linear combination that form O (i.e.,
introduce more Õi), which naturally translates to an
increase in the size of the bootstrap matrix B in (39).
This can lead to strong convergence of expectation values
in some cases [9]. In theory, one can increase the number
of Õi operators indefinitely, which is why the set of
constraints are potentially infinite. The matrix size thus
provides an important parameter labeled ‘K’, for a K × K
bootstrap matrix.

A. Recursion relations

We define general 2d moments

fσ;ζ ¼ hSσZζi; ð41Þ
as well as 1d moments

fζ ≡ f0;ζ ¼ hZζi; ð42Þ
3We note that by using fewer constraints than the method we

outline, it is possible to bound the ground-state energy from
below, see [20]. For an early use of this approach, see [21].
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f̃σ ≡ fσ;0 ¼ hSσi; ð43Þ
and, as in [1], find recursion relations between them.
Here and in the rest of the paper, σ and ζ are integers. We

begin by inserting operator OeðS; ZÞ ¼ SσZζ into the two
possible forms of energy equation and upon completing the
various commutations, we arrive at

hHOei−EhOei¼ðσðσþ1Þ−EÞfσ;ζ− iðσþ1Þfσþ1;ζ

þ2iðσþ1Þfσþ1;ζþ1þfσþ2;ζþ1−fσþ2;ζþ2

¼0; ð44Þ

hOeHi − EhOei ¼ −ζ2fσ;ζ−1 þ ðζ2 þ ζ − EÞfσ;ζ
− ið2ζ þ 1Þfσþ1;ζ þ 2iðζ þ 1Þfσþ1;ζþ1

þ fσþ2;ζþ1 − fσþ2;ζþ2 ¼ 0: ð45Þ

With these, we can construct h½H;Oe�i ¼ 0 and in turn find
equations that relate various moments in this two-dimen-
sional ðσ; ζÞ space. We find

ð46Þ

ð47Þ

which explicitly relate moments involving both ðσ; ζÞ. We
choose to denote these recursion relations by block
symbols based on how their constituent moments appear

on the ðσ; ζÞ plane. is simply the commutator

h½H;Oe�i ¼ 0. is generated by shifting indices in

by ðσ; ζÞ → ðσ þ 1; ζ þ 1Þ, solving for fσþ2;ζþ2 and sub-
stituting this into (44).
Using Eqs. (44)–(47), we can find three recursion

relations which are one-dimensional i.e., each depends
on a single index,

ð48Þ

ð49Þ

ð50Þ

Relation is found4 by forming the following linear

combination of Eqs. (46) and (47),

ð51Þ

then shifting the result by ζ → ζ − 1. is found by

setting σ ¼ ζ in , followed by shifting the indices

ζ → ζ þ 1, solving for fζþ2;ζþ1 and then substituting this
into Eq. (44), which also sets σ ¼ ζ. To obtain , we first

solve at ζ ¼ 0 and ζ ¼ 1 for fσþ1;1 and fσþ1;2, then shift

these expectation values by σ → σ þ 1 to find fσþ2;1 and
fσþ2;2. We then substitute these into Eq. (45) at ζ ¼ 0 and
solve for fσþ1;1. Finally, we insert fσþ2;2, fσþ2;1 and fσþ1;1

into Eq. (44), evaluated at ζ ¼ 0.
By setting ζ ¼ 1 in of (48), we find relation f1 ¼ 1

2
f0.

Since we normalize using f0;0 ¼ f0 ¼ f̃0 ¼ 1, all higher
order fζ moments are therefore defined by a single piece of
initial data5; fEg. The other 1d recursion relations found,

and , have two dimensional search/initial data

spaces: fE; f1;1g and fE; f1;0g respectively. Any positive
quadrant (σ ≥ 0, ζ ≥ 0), 2d moment fσ;ζ can be generated
using a selection of the five total recursion relations and
will generally depend on the initial data, fE; f1;0; f1;1g.

4For an alternative derivation, see Appendix A.

5One-dimensional initial data spaces/search spaces have been
encountered in previous studies; the Coulomb potential model
in [10] for instance.
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As a preliminary check, we evaluate the moments f2
using and compare this to the direct integration method.

From the recursion relation, one obtains

f2 ¼ hZ2i ¼ 3E − 2

2ð4E − 3Þ f0: ð52Þ

Alternatively, using the analytic solution ψn and calculating
hψnjZ2jψni via integration, we achieve the same result
upon applying E ¼ nðnþ 1Þ.

B. Restrictions on ðσ;ζÞ
We choose to restrict the 2d ðσ; ζÞ space we explore,

considering only a subset of fσ;ζ moments. This ensures
that the expectation values we use are finite. The three
‘negative’ quadrants in the ðσ; ζÞ space,6 introduce
operators with negative exponents, and when the associated
operators have a well defined action on an eigenstate,
they can produce nonconvergent expectation values from
analytic checks. As a simple example, if we take σ ¼ 0;
ζ ¼ −1, then fσ;ζ evaluated on some energy eigenstate ψ is

f0;−1 ¼ hψ jZ−1jψi ¼
Z

1

0

1

z
jψðzÞj2dz ¼ ∞; ð53Þ

owing to the polynomial form of the eigenstate solutions ψ .
To avoid such issues, we restrict the range to the positive
quadrant, ðσ ≥ 0; ζ ≥ 0Þ. A recursion relation can be
plotted on a lattice of ζ vs σ points, by placing a square
at the pair of integers ðσ; ζÞ corresponding to every moment
fσ;ζ present in said relation. Figure 1 demonstrates these
equation plots as well as the forbidden (red) and permitted
(dark and light green) regions for moments fσ;ζ in the
ðσ; ζÞ plane.

C. Anomalies

Corrections to the recursion relations may occur due to
anomalies [16,22] which can appear upon careful consid-
eration of operator domains. Let us take an operator, A, for
which ½H;A� ¼ 0. As seen from the definition of self-
adjointness in Sec. II A, it is important to consider the
domains of such operators, DðAÞ and DðHÞ. Indeed, given
that ψ ∈DðHÞ, if equation

½H;A�ψ ¼ ðHA − AHÞψ ¼ HðAψÞ − AðHψÞ; ð54Þ

is to make sense, we must have Aψ ∈DðHÞ and
Hψ ∈DðAÞ. If Aψ ∉ DðHÞ then we say that A does not
leave the domain of H invariant, the symmetry generated
by A is broken and an anomaly appears. The exact form of
this commutator-based anomaly, expressed in terms of A

andH, can be found by deriving the Heisenberg equation in
the Hamiltonian formalism,

d
dt

hψðtÞjAψðtÞi ¼
�
∂ψðtÞ
∂t

����AψðtÞ
	
þ
�
ψðtÞ

���� ∂A
∂t

ψðtÞ
	

þ
�
ψðtÞjA ∂ψðtÞ

∂t

	
ð55Þ

¼ h−iHψðtÞjAψðtÞi þ
�
∂A
∂t

	
ψ

þ hψðtÞjð−iÞAHψðtÞi ð56Þ

¼
�
∂A
∂t

	
ψ

þ ihHψðtÞjAψðtÞi

− ihψðtÞjAHψðtÞi: ð57Þ

Here ψðtÞ belongs to Hilbert spaceH, the HamiltonianH is
self-adjoint with domain DðHÞ and A is a general operator.
If we assume that ψ ∈DðHÞ ∩ DðAÞ then hHψðtÞjAψðtÞi is
well-defined. However, this assumption does not cover the
third term in (57), since it requires Hψ ∈DðAÞ. If ½A;H� is
well-defined in all of H, then we may make replacement
AH ¼ ½A;H� þHA. Substituting this in, and using that
hHψðtÞjAψðtÞi≡ hψðtÞjH†AψðtÞi, we find

d
dt

hψðtÞjAψðtÞi ¼
�
∂A
∂t

	
ψðtÞ

þ ihψðtÞj½H;A�ψðtÞi

þ ihψðtÞjðH† −HÞAψðtÞi: ð58Þ

Therefore, we see that the Heisenberg equation receives a
correction owing to the subtleties of the operator domains.

FIG. 1. A section of the (σ, ζ) plane, displaying the lattice
representations of the five recursion relations, based on the
moments fσ;ζ ¼ hSσZζi they contain. The green regions
(σ ≥ 0; ζ ≥ 0) cover ðσ; ζÞ pairs which define permitted fσ;ζ,
while the red region represents the moments we do not explore.
The darker green region (ζ ≥ σ ≥ 0) contains the fσ;ζ that will be
used in specific bootstrap matrices.

6Those quadrants defined by ðσ < 0; ζ ≥ 0Þ, ðσ < 0; ζ < 0Þ
and ðσ ≥ 0; ζ < 0Þ.
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It indicates that when computing the expectation value of a
commutator there is an additional contribution,

hψ j½H;A�ψitotal ¼ hψ j½H;A�ψireg þAA: ð59Þ

Here, hψ j½H;A�ψireg is the standard algebraic commutator
expectation value, where again, ½H;A� is defined in all of
H, while the additional piece

AA ¼ hψ jðH† −HÞAψi; ð60Þ

is known as the anomaly.
While we do not have a symmetry, we do have the

commutator h½H;Oe�i ¼ 0 (whereOe ¼ SσZζ), which may
suffer anomalies. Since this is the only commutator needed
to derive the recursion relations, we check if it receives
anomalous corrections by calculating AOe

. Additionally,
the states used in the anomaly calculations are energy
eigenstates ψ , hence we use notation hψ jAψi≡ hAi. Using
integration by parts, the result for anomaly AOe

is

AOe
¼ iσzð1−zÞ

�
ψðzÞ� ∂

σþ1

∂zσþ1

×ðzζψðzÞÞ−ψ 0ðzÞ� ∂
σ

∂zσ
ðzζψðzÞÞ

�����1
0

: ð61Þ

Unfortunately, we could not show thatAOe
¼ 0 using the

boundary conditions alone, but by employing the explicit
energy eigenstate solutions, ψnðzÞ ¼ ψnðzÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
Pnð2z − 1Þ, it can be argued to vanish as follows. Since
any derivative of ψnðzÞ results in another polynomial, the
contents of the large bracket in (61) will be a well-behaved
polynomial in z, for any n. The factor of zð1 − zÞ outside the
bracket then ensures that the total expression vanishes in the
both limits z → 0, z → 1, therefore AOe

¼ 0.
As an aside, by following the alternative derivation of

in Appendix A, it is possible to show that this 1d relation is
anomaly free using only the boundary conditions. The
derivation utilizes two commutator equations, namely

h½H;OaðZÞ�i ¼ 0; h½H;OcðS; ZÞ�i ¼ 0; ð62Þ

with operators Oa ¼ − i
2
ðζ − 1ÞZζ−1ð1 − ZÞ and Oc ¼

SZζð1 − ZÞ. Therefore, by inserting these operators into
(60), we compute AOa

and AOc
using integration by parts

AOa
¼ 1

2
iðζ − 1Þðzζ−1ð1 − zÞð1 − ζð1 − zÞÞjψðzÞj2 þ zζð1 − zÞ2ðψ 0ðzÞ�ψðzÞ − ψðzÞ�ψ 0ðzÞÞÞj10; ð63Þ

AOc
¼ ið−zζ−1ð1 − zÞ½Ezþ ζð1þ z − ζð1 − zÞÞ�jψðzÞj2 − zζþ1ð1 − zÞ2jψ 0ðzÞj2
− zζð1 − zÞð1 − 2ζð1 − zÞÞψðzÞ�ψ 0ðzÞ þ zζð1 − zÞðz − ζð1 − zÞÞψ 0ðzÞ�ψðzÞÞj10: ð64Þ

Note, we have substituted the Schrödinger equation
into (64) to remove the second derivatives. Providing7

ζ ≥ 1 and that evaluation at z ¼ 0, z ¼ 1 is exchanged
for limits z → 0, z → 1 such that the boundary conditions
of (16) can be applied, we find that AOa

¼ AOc
¼ 0.

Here we have used that ψ ; ψ� is finite according to
Eqs. (8) and (9). This reconfirms that the 1d recursion
relation in hZζi-type moments does not receive anomalous
corrections.

D. Bootstrap matrices

This section details how the bootstrap matrices are
constructed using the recursion relations, as well as the
differences in the bootstrap operator ordering.

1. One-operator matrix

The 1d recursion relation in hZζi moments, , provides
the means to build a Hankel bootstrap matrix, B1d. We
choose the bootstrap operator to be

O ¼
X
ζ≥0

cζZζ; ð65Þ

with cζ ∈C. Given Z ¼ Z†, the elements of B1d defined
from hO†Oi ¼Pζ;ζ0≥0 cζðB1dÞζ;ζ0cζ0 are

ðB1dÞζζ0 ¼ hðZζÞ†Zζ0 i ¼ hZζþζ0 i ¼ fζþζ0 : ð66Þ

The size of the matrix is hence determined by the order
of themoments. Formaximum indexvalues ζmax andζ0max,we
must obtain moments up to fζmaxþζ0max . The matrix size
parameter is also defined in terms of these values,
K ¼ ζmax þ 1 ¼ ζ0max þ 1. As an explicit example, choosing
ðζ; ζ0Þ∈ f0; 1; 2g (i.e., K ¼ 3), we provide B1d below

populated with values obtained from the equation of (48),

7Note that ζ ≥ 1 here simply ensures the operator Oa contains
no negative powers of Z. This is also relevant to the derived 1d
recursion relation; under this choice, relates upper octant
moments.
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B1d ¼

0
BBBB@

1 1
2

3E−2
2ð4E−3Þ

1
2

3E−2
2ð4E−3Þ

5E−3
4ð4E−3Þ

3E−2
2ð4E−3Þ

5E−3
4ð4E−3Þ

5Eð7E−30Þþ72

8ð4E−15Þð4E−3Þ

1
CCCCA; ð67Þ

wherewe have set f0 ¼ 1 as the chosen normalization. Given
that Z is Hermitian, B1d is real and symmetric and we also
note that the matrix contains a single initial data, E. We
explore the results of bootstrapping B1d at different matrix
sizes in Sec. IV.

2. Two-operator matrix

The 2d bootstrap matrix constructed here, B2d, features
expectation values of products of S and Z operators. These
two-operator type matrices have previously been encoun-
tered in the literature, see [9,14,23]. As such, we use the
following bootstrap operator:

O ¼
X
σ;ζ≥0

cσ;ζSσ½Zð1 − ZÞ�ζ; ð68Þ

where cσ;ζ ∈C. The choice of O comes from an educated

guess by first looking at the Hamiltonian which contains
Zð1 − ZÞ and secondly looking at Pöschl-Teller potentials
as seen by changing coordinates.8 Since hO†Oi ≥ 0, we
express the corresponding elements of B2d as

ðB2dÞðσ;ζÞ;ðσ0;ζ0Þ ¼ hðSσ½Zð1 − ZÞ�ζÞ†Sσ0 ½Zð1 − ZÞ�ζ0 i
¼ h½Zð1 − ZÞ�ζðSσÞ†Sσ0 ½Zð1 − ZÞ�ζ0 i; ð69Þ

such that B2d ≽ 0. Importantly, to evaluate this expression
we must take care since S is not self-adjoint and the
recursion relations only contain S, not S†. The following
lemma bypasses this issue.
“Dagger” Lemma. For β ≥ α ≥ 0, the following is true:

½Zð1 − ZÞ�βðSαÞ† ¼ ½Zð1 − ZÞ�βSα: ð70Þ

The proof of this lemma is provided in Appendix B. It
should also be noted that initial numerical checks of operator
O using the analytic solutions, encouraged investigation into
the proof of (70). Upon applying the lemma, using the
binomial expansion for ð1 − ZÞζ and ð1 − ZÞζ0 then applying
the McCoy formula [24], the element in (69) becomes

ðB2dÞðσ;ζÞ;ðσ0;ζ0Þ ¼
Xζ
κ¼0

Xζ0
κ0¼0

ð−1Þκþκ0
�
ζ

κ

��
ζ0

κ0

��
hSσþσ0Zζþζ0þκþκ0 i

þ
Xminðζþκ;σþσ0Þ

λ¼1

ð−iÞλðσ þ σ0Þ!ðζ þ κÞ!
λ!ðσ þ σ0 − λÞ!ðζ þ κ − λÞ! hS

σþσ0−λZζþζ0þκþκ0−λi
�
: ð71Þ

The rows of matrix B2d are indexed by the tuple ðσ; ζÞ
and the columns by ðσ0; ζ0Þ. Another reason why O ¼
Sσ½Zð1 − ZÞ�ζ is employed is seen from this binomial
expansion form of the matrix element: it is a sum of
fσ;ζ-type moments, which can be readily found from the
recursion relations of Sec. III A.

B2d can be built from any general combination of
σ; ζ; σ0; ζ0, providing the Dagger lemma is satisfied and
the appropriate restrictions in the ðσ; ζÞ space are used,
according to Sec. III B. We choose to focus on a simple
subset of ðσ; ζÞ, constructing two matrices with the follow-
ing element definitions:

ðB0
2dÞðσ;ζÞ;ðσ0;ζ0Þ ¼ ðB2dÞðσ;ζÞ;ðσ0;ζ0Þ for all ζ ¼ σ; ζ0 ¼ σ0; σ; σ0 ≥ 0;

ðB00
2dÞðσ;ζÞ;ðσ0;ζ0Þ ¼ ðB2dÞðσ;ζÞ;ðσ0;ζ0Þ for all ζ ¼ 2σ; ζ0 ¼ 2σ0; σ; σ0 ≥ 0: ð72Þ

Explicit examples of B0
2d and B00

2d at size K ¼ 3 are given below,

B0
2d ¼

0
BB@

ðB0
2dÞð0;0Þ;ð0;0Þ ðB0

2dÞð0;0Þ;ð1;1Þ ðB0
2dÞð0;0Þ;ð2;2Þ

ðB0
2dÞð1;1Þ;ð0;0Þ ðB0

2dÞð1;1Þ;ð1;1Þ ðB0
2dÞð1;1Þ;ð2;2Þ

ðB0
2dÞð2;2Þ;ð0;0Þ ðB0

2dÞð2;2Þ;ð1;1Þ ðB0
2dÞð2;2Þ;ð2;2Þ

1
CCA ¼

0
BBB@

1 0
EðE−2Þ
2ð4E−3Þ

0
EðEþ2Þ−2
2ð4E−3Þ 0

EðE−2Þ
2ð4E−3Þ 0

3ðEðE−4ÞðEþ2ÞðEþ14Þþ96Þ
8ð4E−15Þð4E−3Þ

1
CCCA; ð73Þ

8In [8], they analyzed a systemwith Pöschl-Teller potential using coordinates proportional to thep coordinate in Sec. II D, to develop a 1d
recursion relation. Their relation focussed onmoments hsech2ζðp=2Þiwhich, under the coordinate transformation of (19), are proportional to
h½Zð1 − ZÞ�ζi. Therefore, extending this idea by introducing the simplest dependence on S, we arrive at O ¼Pσ;ζ≥0 cσ;ζS

σ ½Zð1 − ZÞ�ζ.
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B00
2d ¼

0
B@

ðB00
2dÞð0;0Þ;ð0;0Þ ðB00

2dÞð0;0Þ;ð1;2Þ ðB00
2dÞð0;0Þ;ð2;4Þ

ðB00
2dÞð1;2Þ;ð0;0Þ ðB00

2dÞð1;2Þ;ð1;2Þ ðB00
2dÞð1;2Þ;ð2;4Þ

ðB00
2dÞð2;4Þ;ð0;0Þ ðB00

2dÞð2;4Þ;ð1;2Þ ðB00
2dÞð2;4Þ;ð2;4Þ

1
CA

¼

0
BBBBB@

1 0
Eð5E3−68E2þ236E−240Þ
16ð4E−35Þð4E−15Þð4E−3Þ

0 5E4−52E3þ20E2þ512E−480
16ð4E−35Þð4E−15Þð4E−3Þ 0

Eð5E3−68E2þ236E−240Þ
16ð4E−35Þð4E−15Þð4E−3Þ 0

3ð77E8−4872E7þ46536E6þ2214656E5−49787184E4þ286032000E3þ25484544E2−2505572352Eþ2299207680Þ
1024ð4E−143Þð4E−99Þð4E−63Þð4E−35Þð4E−15Þð4E−3Þ

1
CCCCCA;

ð74Þ

where we have set f0;0 ¼ 1. Note that these are not Hankel
matrices, as O contains both S and Z. The matrix elements
in both cases were obtained utilizing three of the recursion

relations; , and . Surprisingly, we see that although

this set of recursion relations use initial data fE; f1;1g, the
matrices themselves only depend on the energy E. This is
due to cancellations of the f1;1 moments in the matrix
elements. This makes the matrices real and symmetric: a
fact that does not necessarily hold true when initial data f1;1
is also present.

3. Alternative two-operator matrix

We can generate an alternative bootstrap matrix, B̃2d, by
switching the operator order from hO†Oi to hOO†i. In
doing so we restrict the range of the bootstrap operator O
further,

O ¼
X
σ;ζ∈Ω

cσ;ζSσ½Zð1 − ZÞ�ζ; ð75Þ

where cσ;ζ ∈C. Here,9 Ω refers to the positive upper octant:
Ω ¼ fζ ≥ σ ≥ 0g. This restriction is applied since the
expectation values appearing in the B̃2d matrix elements
are shown to be finite in this region. By contrast, in the
positive lower octant, ðσ > ζ ≥ 0Þ, they can blow up. The
proof of this statement may be found in Appendix C, where

we insert a complete set of energy eigenstates ψn to show
that the finiteness is linked to the Wigner (3j) coefficient
and its selection rules. We provide explicit examples of
positive, lower and upper octant calculations in
Appendix D, to show how these infinities arise. Also,
depending on the insertion point of the complete set of
states (i.e., between which operators they are inserted),
infinities can arise in the both upper and lower positive
octant cases. However, by applying regularization, only the
upper positive octant appears to yield consistent outcomes,
as can be seen in Appendix E.
From the O defined in (75), the alternative 2d matrix,

B̃2d, therefore has matrix elements

ðB̃2dÞðσ;ζÞ;ðσ0;ζ0Þ ¼ hSσ½Zð1 − ZÞ�ζðSσ0 ½Zð1 − ZÞ�ζ0 Þ†i
¼ hSσ½Zð1 − ZÞ�ζ½Zð1 − ZÞ�ζ0 ðSσ0 Þ†i
¼ hSσ½Zð1 − ZÞ�ζþζ0Sσ

0 i; ð76Þ

where the Dagger lemma (70) was once again employed to
remove the † from ðSσ0 Þ†, and thus, ζ þ ζ0 ≥ σ0 must be
enforced throughout the calculation. Using the commuta-
tion relation, binomial expansion and the McCoy formula
we bring it to its final form, where like B2d, each element is
a sum of fσ;ζ-type expectation values,

ðB̃2dÞðσ;ζÞ;ðσ0;ζ0Þ ¼
Xζþζ0

κ¼0

ð−1Þκ
�
ζþζ0

κ

��
Sσþσ0Zζþζ0þκþ

Xminðσ0;ζþζ0þκÞ

λ¼1

ð−iÞλðσ0Þ!ðζþζ0 þκÞ!
λ!ðσ0−λÞ!ðζþζ0 þκ−λÞ!S

σþσ0−λZζþζ0þκ−λ
	
: ð77Þ

We establish two unique matrices, B̃0
2d and B̃

00
2d which are defined by applying the same subsets of indices as presented in

(72) for B2d. These ðσ; ζÞ choices are in Ω and also ensure the lemma index constraint is automatically satisfied. Taking
matrix size parameter K ¼ 3, the explicit matrices are given below

9As a note of clarification, the operator indices σ and ζ appear in two different contexts. The first instance is on operator SσZζ which
appear via fσ;ζ in the recursion relations. The second instance is on the bootstrap matrix operator Sσ ½Zð1 − ZÞ�ζ. In the second instance,
since the bootstrap matrix elements can be decomposed via the McCoy formula into sums over fσ;ζ-type moments, see (71) and (77),
then these elements also follow the same restrictions that apply to the first instance. The additional restrictions of (72), which are used in
both hO†Oi and hOO†i cases, hence apply to the associated fσ;ζ that appear and this is demonstrated by the darker green region
(ζ ≥ σ ≥ 0) in Fig. 1.
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B̃0
2d ¼

0
BB@

ðB̃0
2dÞð0;0Þ;ð0;0Þ ðB̃0

2dÞð0;0Þ;ð1;1Þ ðB̃0
2dÞð0;0Þ;ð2;2Þ

ðB̃0
2dÞð1;1Þ;ð0;0Þ ðB̃0

2dÞð1;1Þ;ð1;1Þ ðB̃0
2dÞð1;1Þ;ð2;2Þ

ðB̃0
2dÞð2;2Þ;ð0;0Þ ðB̃0

2dÞð2;2Þ;ð1;1Þ ðB̃0
2dÞð2;2Þ;ð2;2Þ

1
CCA ¼

0
BBBBB@

1 0
EðE−2Þ
2ð4E−3Þ

0 E2

2ð4E−3Þ 0

EðE−2Þ
2ð4E−3Þ 0

3E2ðE−2Þ2
8ð4E−15Þð4E−3Þ

1
CCCCCA; ð78Þ

B̃00
2d ¼

0
BB@

ðB̃00
2dÞð0;0Þ;ð0;0Þ ðB̃00

2dÞð0;0Þ;ð1;2Þ ðB̃00
2dÞð0;0Þ;ð2;4Þ

ðB̃00
2dÞð1;2Þ;ð0;0Þ ðB̃00

2dÞð1;2Þ;ð1;2Þ ðB̃00
2dÞð1;2Þ;ð2;4Þ

ðB̃00
2dÞð2;4Þ;ð0;0Þ ðB̃00

2dÞð2;4Þ;ð1;2Þ ðB̃00
2dÞð2;4Þ;ð2;4Þ

1
CCA

¼

0
BBBBB@

1 0
Eð5E3−68E2þ236E−240Þ
16ð4E−35Þð4E−15Þð4E−3Þ

0
E2ð5E2−64Eþ180Þ

16ð4E−35Þð4E−15Þð4E−3Þ 0

Eð5E3−68E2þ236E−240Þ
16ð4E−35Þð4E−15Þð4E−3Þ 0

21ðE−2Þ2E2ð11E4−940E3þ27948E2−340224Eþ1425600Þ
1024ð4E−143Þð4E−99Þð4E−63Þð4E−35Þð4E−15Þð4E−3Þ

1
CCCCCA; ð79Þ

where we have set f0;0 ¼ 1. The same three recursion

relations , and are used to generate all element

moments, and the initial data is once more just the energy
E, due to f1;1 cancellations.

IV. RESULTS

With the bootstrap matrices constructed, we now test that
they are positive semidefinite on a selection of initial data.
For all five types of matrices considered, fB1d;B0

2d;
B00
2d; B̃

0
2d; B̃

00
2dg, the initial data10 is simply the energy E.

Given this one-dimensional search space, we scan
over energy values in the interval E∈ ½0; 50�, with a step
size of ΔE ¼ 10−2 for matrix sizes 2 ≤ K ≤ 8 (for K × K
bootstrap matrices). In Appendix F we present a self-
contained description of an alternative, semidefinite pro-
gramming search method that uses a so-called slack
variable.

A. One-operator matrix

For B1d, the results are presented in Fig. 2, plotting
matrix size parameter K vs energy E. Here the black dashed
lines indicate the energy eigenvalues of the model, which
are En ¼ nðnþ 1Þ for n ¼ 0; 1; 2… and calculated using
the analytic solution integration of hψnjHjψni. The red

FIG. 2. Matrix size parameter K vs energy E for the bootstrap matrix B1d. Black dashed lines indicate energy eigenvalues, while red
crosses indicate those E values which produce singularities in the matrix elements. At larger K, we see more bands forming, revealing
localized regions around the energy eigenvalues. The plot also indicates the results for small negative E.

10To reiterate, the matrices generally depend on fE; f1;1g, but
due to cancellations of f1;1 in B2d and B̃2d, the energy is the only
initial data in the discussed cases.
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crosses denote singularities11 in the matrix at a given K.
The primary result for this matrix is that the allowed
energies E are confined to bands. The figure shows that
bands for larger energy eigenvalues emerge as we increase
K. Although some bands shrink as K is increased, it is
possible that they remain finite at K ¼ ∞. For example the
bands around E ¼ 2 decrease between K ¼ 3 and K ¼ 8,
but slowly relative to the size of the matrix.

B. Two-operator matrix

Here the results of the bootstrap for matrices B0
2d and B

00
2d

are presented in Figs. 3 and 4, respectively. The black
dashed lines refer to energy eigenvalues and red crosses to
matrix singularities. In both cases, the bootstrap performs
poorly, unable to constrain the energy eigenvalues effec-
tively. The B00

2d performs slightly better, with smaller bands
appearing compared to B0

2d, for example at K ¼ 8 around
E ¼ 2. For larger energies, these B2d cases provide almost
no restriction on the energies. This is seen by how close the
vertical black bars (ends of the bands) are to the singular-
ities and for E > 20, the bootstrap essentially rules no
energies out.

FIG. 3. K vs E for matrix B0
2d. The plot shows that the bootstrap fails to constrain the energy eigenvalues of the system. Even for

K ¼ 8, the bands remain large, with a performance worse than the B1d case. Red crosses represent matrix singularities, and black dashed
lines are energy eigenvalues.

FIG. 4. K vs E for matrix B00
2d. The bootstrap performs poorly in isolating the energy eigenvalues. We see slight improvement

compared to the B0
2d case in Fig. 3, but the band size reduction with increasing K is still minimal.

11Note, the proof in Appendix C of finite matrix elements
applies to eigenstates and therefore finiteness is only guaranteed
at the energy eigenvalues.
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C. Alternative two-operator matrix

Figures 5 and 6 display the most significant finding of
the paper, corresponding to the bootstrap results of matrices
B̃0
2d and B̃00

2d. In both cases, the bootstrap is capable of
identifying the lower-lying energy eigenvalues of the
Hamiltonian exactly, up to the chosen step size. Figure 5
shows that at a given K, a certain number of energy
eigenvalues are precisely located and are indicated by black
crosses. Then, at energies larger than a particular singu-
larity, a single energy band remains. Figure 6 associated to
B̃00
2d, locates the same energy eigenvalues, but also con-

strains a selection of the larger energies into bands. The
number of energy levels found exactly in both cases,

appears to be equal to K − 1. This alternative ordering
therefore greatly outperforms the ordering encountered in
both B1d and B2d.

D. Obtaining exact energy levels

Here we study the eigenvalues of the B̃0
2d matrix, to help

understand the emergent exactness12 of E. Positive semi-
definiteness is equivalent to its eigenvalues, λi, satisfying
λi ≥ 0, for all i ¼ 1;…; K. We compute λi directly using
the characteristic equation, det ðB̃0

2d − λIÞ ¼ 0, and solve

FIG. 5. K vs E for matrix B̃0
2d. The colored bands/black crosses correspond to the regions/points in the energy space which make

B̃0
2d ≽ 0. The black crosses are the most significant result, indicating that the bootstrap is capable of identifying a number of energy

eigenvalues exactly.

FIG. 6. K vs E for matrix B̃00
2d. Here we find that not only are a set of energy eigenvalues identified exactly for a given K, but larger

values of E are also constrained into bands. For every integer increase in K, we appear to obtain an additional energy eigenvalue.

12We note that the authors of [4] show that the bootstrap can
identify eigenvalues exactly in the harmonic oscillator.
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the constraints analytically. Using K ¼ 3 as an example,
the solutions of these positivity constraints are E ¼ 0, E ¼
2 and E > 15=4. The product of the B̃0

2d matrix’s [see (78)]
eigenvalues is captured by the determinant,

det B̃0
2d ¼

E4ðE − 2Þ2ð4Eþ 21Þ
16ð4E − 3Þ3ð4E − 15Þ ; ð80Þ

and to provide a visual overview of the analytic results, we
plot the corresponding eigenvalues vs energy in Fig. 7. In
the interval E∈ ½−1; 15=4� there is always at least one
negative eigenvalue, except at E ¼ 0, 2. These are precisely
the first two energy levels of the system. This coincides
with the findings in Fig. 5, which were obtained numeri-
cally. We have checked the determinant of this matrix up to
K ¼ 12. As in (80), the energy eigenvalues of the system
appear in the numerator of the determinant.
We tested the positivity of both B̃0

2d and B̃00
2d directly, up

to K ¼ 5. The exact solutions to these constraint equations
are the energy eigenvalues E ¼ 0, 2, 6, 12 in both cases.
The final single band behavior of B̃0

2d and the multiple-band
behavior for the B̃00

2d matrix are also solutions, in agreement
with the step search. In summary, for B̃2d at the finite K
considered, the first K − 1 energy eigenvalues are fixed
exactly by solving constraints λi ≥ 0, for all i ¼ 1;…; K.
While a general proof remains to be found, the analysis
hints that this result should hold for arbitrary K.

V. CONCLUSION

In this article, we have explored a quantum mechanical
model defined on an interval and have shown that the
bootstrap is capable of fixing its energy eigenvalues
exactly. This adds to a number of examples in the literature,
see [1–5,8–14], where numerical approximations

constrained the expectation values. We began by construct-
ing a self-adjoint Hamiltonian, H ¼ SZð1 − ZÞS, where S
and Z are operators with ½S; Z� ¼ i. We found a set of 2d
recursion relations on moments hSσZζi. The system is
solvable which proves beneficial in showing the recursion
relations are anomaly-free. A set of bootstrap matrices were
then constructed using these relations, by considering the
positivity of hO†Oi and hOO†iwhere bootstrap operatorO
is a linear combination of operators Zζ, or composite
Sσ½Zð1 − ZÞ�ζ. In the first case, we denote these by O1d
and in the second by O2d.
Importantly, S is not self-adjoint, therefore the calcu-

lation of hO2dO
†
2di requires some care. In a particular

octant of the ðσ; ζÞ-plane, see the dark green region in
Fig. 1, the Dagger lemma (70) guarantees that S can be
treated as a self-adjoint operator. Outside of this octant, we
are forced to insert a complete set of states to evaluate the
expectation values. The result can be a divergent sum,
which after regularization, depends on the position of the
insertion, thereby making the hO2dO

†
2di ill-defined, see

Appendix E.
The positivity of hO†

1dO1di confined the possible energy
eigenvalues into bands. We note that as in [12], one can
consider the positivity of hZnð1 − ZÞmO†

1dO1di. We have
tested m, n ¼ 0, 1 and did not find qualitatively better
results. The positivity constraints of hO†

2dO2di performed
poorly, unable to confine the eigenvalues as strongly as the
1d case. Quite unexpectedly, the positivity of the alter-
natively ordered hO2dO

†
2di was able to identify an increas-

ing number of energy eigenvalues exactly, for increasing
matrix size. This same behavior was encountered in Table 3
of [4]. Here the authors studied the harmonic oscillator and
showed that by using bootstrap matrix constructed from
O ¼PK

n¼0 cna
n, where a ¼ 1ffiffi

2
p ðX þ iPÞ is the ladder

operator. This matrix turns out to be diagonal, and
upon applying a recursion relation, we can exactly deter-
mine the energy eigenvalues. Perhaps a similar approach
for the current system would also explain the emergent
exactness.
The outcome of the bootstrap depends heavily on the

choice and ordering of the bootstrap matrix operators.
Understanding which choices are optimal would be ben-
eficial. It is possible this particular model is special and
therefore perturbations of the system could provide more
intuition about the bootstrap. Surprisingly, the hSZi
moment does not feature in the bootstrap, dropping out
of the positivity calculations. Understanding these cancel-
lations may provide insight into why the bootstrap pro-
duces exact results.
A shortcoming of the current paper is the calculation of

anomalies, where we used the analytic solution to show that
they vanish. This may not be true for the general boundary
conditions of Sec. II E and such considerations are left for
future work. Another possible research avenue is to better

FIG. 7. Matrix eigenvalues λi vs energy E, for the alternatively
ordered bootstrap matrix, B̃0

2d, at K ¼ 3. Only at the precise
energy levels E ¼ 0, 2 and in band E > 15=4 are all matrix
eigenvalues non-negative. Red dashed lines are singularities in
the B̃0

2d eigenvalues and black dashed lines are the energy
eigenvalues.
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understand the finiteness argument in Appendix C, poten-
tially utilizing the underlying supersymmetry of the system.
Using the coordinate transformation in Sec. II D, it is

possible to recast the calculations in terms of canonically
conjugate coordinates p and u≡ i∂p. One can then con-
sider bootstrap operators of form O ¼ umsechnðp=2Þ
tanhkðp=2Þ, for integers m, n and k ¼ 0, 1 and repeat
the same tests for positivity. This may lead to interesting
results.
In closing, we have shown that the bootstrap is able to

identify the energy eigenvalues of the system exactly upon
applying a finite number of positivity constraints. We look
forward to revisiting the issues and challenges discussed in
this section in our future endeavors.
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APPENDIX A: ALTERNATIVE DERIVATION
OF THE hZζi RECURSION RELATION

The recursion relation in hZζi moments can be alter-
natively derived as follows.13 To begin, we restate the
Hamiltonian,

H ¼ SZð1 − ZÞS ¼ S2Zð1 − ZÞ þ iSð2Z − 1Þ; ðA1Þ

the operator S ¼ i∂z and the commutator ½S; Z� ¼ i. We
introduce three operators; OaðZÞ, OcðS; ZÞ ¼ SObðZÞ and
OdðZÞ that feature in two commutation equations and an
energy equation,

h½H;OaðZÞ�i ¼ 0; ðA2Þ

h½H;OcðS; ZÞ�i ¼ 0; ðA3Þ

hHOdðZÞi ¼ EhOdðZÞi: ðA4Þ

The motivation for this initial setup is based on similar
calculations seen in the literature, for example [1,10].
Starting with Eq. (A2), using the commutator to order
all S operators to the left, we obtain

h½H;OaðZÞ�i ¼ 2hS½S;OaðZÞ�Zð1 − ZÞi
þ h½½S;OaðZÞ�; S�Zð1 − ZÞi
þ ih½S;OaðZÞ�ð2Z − 1Þi ¼ 0: ðA5Þ

Similarly for Eq. (A3)

h½H;OcðS; ZÞ�i ¼ hS2α1ðZÞi þ hSα2ðZÞi ¼ 0; ðA6Þ

where

α1ðZÞ¼2½S;ObðZÞ�Zð1−ZÞþ½Zð1−ZÞ;S�ObðZÞ; ðA7Þ

α2ðZÞ¼ ½½S;ObðZÞ�;S�Zð1−ZÞ
þ i½2Z−1;S�ObðZÞþ i½S;ObðZÞ�ð2Z−1Þ: ðA8Þ

As we want to create a recursion relation in Z alone, we
must eliminate the expectation values of form hS2hðZÞi and
hSgðZÞi, for the arbitrary functions hðZÞ, gðZÞ that may
appear. By defining

OdðZÞ ¼ ðZð1 − ZÞÞ−1α1ðZÞ; ðA9Þ

we can insert this into (A4) to obtain

hS2Zð1 − ZÞOdðZÞi þ ihSð2Z − 1ÞOdðZÞi ¼ EhOdðZÞi;
ðA10Þ

which, after expanding out, becomes

hS2α1ðZÞi þ ihSð2Z − 1ÞðZð1 − ZÞÞ−1α1ðZÞi
¼ EhðZð1 − ZÞÞ−1α1ðZÞi: ðA11Þ

We now substitute Eq. (A11) into (A6), to remove the
hS2α1ðZÞi term,

EhðZð1 − ZÞÞ−1α1ðZÞi
þ hSðα2ðZÞ − ið2Z − 1ÞðZð1 − ZÞÞ−1α1ðZÞÞi ¼ 0;

ðA12Þ

where we have grouped the terms that S acts on. We are left
with two equations, (A5) and (A12), containing terms of
hSgðZÞi form. To eliminate these terms, we look to
substitute one equation into the other and can do so,
providing that the operators S acts on in both equations
are equal. Hence,

2½S;OaðZÞ�Zð1 − ZÞ
¼ α2ðZÞ − ið2Z − 1ÞðZð1 − ZÞÞ−1α1ðZÞ: ðA13Þ

13Note, the result from deriving this recursion relation is valid
provided there are no anomalies, as discussed in Sec. III C.
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Acting on an arbitrary wave function with each side of this
operator equation, produces a differential equation in
functions OaðzÞ and ObðzÞ.14 This equation is

�
1

zð1 − zÞ − 2

�
ObðzÞ þ ð2z − 1ÞO0

bðzÞ

þ zð1 − zÞO00
bðzÞ ¼ 2izð1 − zÞO0

aðzÞ; ðA14Þ

with O0ðzÞ ¼ ∂zOðzÞ. Setting15

ObðzÞ ¼ zζð1 − zÞ; ðA15Þ

produces a differential equation in OaðzÞ, with solution

OaðzÞ ¼ −
i
2
ðζ − 1Þzζ−1ð1 − zÞ; ðA16Þ

where the integration constant has been set to zero. We then
promote these functions of coordinate z, back to functions
of operators,

ObðZÞ¼Zζð1−ZÞ; OaðZÞ¼−
i
2
ðζ−1ÞZζ−1ð1−ZÞ:

ðA17Þ

Therefore, under these choices, the operators multiplying S
in (A5) and (A12) are equal and we proceed to substitute
(A12) into (A5) giving

− EhðZð1 − ZÞÞ−1α1ðZÞi þ h½½S;OaðZÞ�; S�Zð1 − ZÞi
þ ih½S;OaðZÞ�ð2Z − 1Þi ¼ 0: ðA18Þ

Inserting OaðZÞ and ObðZÞ from (A17) and evaluating the
commutators reveals the final recursion relation,

ðA19Þ

where fζ ≡ f0;ζ ¼ hZζi, with general 2d moments defined
as fσ;ζ ¼ hSσZζi. This agrees with the original result in
Eq. (48) of Sec. III A, and the process outlined here can also
be repeated to identify the recursion relation exclu-
sively in hSσi moments, seen in (50).

APPENDIX B: PROOF OF DAGGER LEMMA

In this appendix we provide the proof of the Dagger
lemma introduced in Sec. III D 2.
“Dagger” Lemma. For β ≥ α ≥ 0, the following is true:

½Zð1 − ZÞ�βðSαÞ† ¼ ½Zð1 − ZÞ�βSα: ðB1Þ
Proof. For α ¼ 0, the statement is trivial so the following

considers α ≥ 1. Take ϕ and ψ as arbitrary wave functions
and calculate

hSα½Zð1−ZÞ�βϕjψi−hϕj½Zð1−ZÞ�βSαψi

¼
Z

1

0

ð½Sα½Zð1−ZÞ�βϕðzÞ��−ϕðzÞ�½Zð1−ZÞ�βSαÞψðzÞdz:

ðB2Þ
Then when (B2) vanishes, it implies Eq. (B1). Integrating
(B2) by parts, and equating to zero gives

−iα
Xα−1
κ¼0

ð−1Þκ ∂
κ

∂zκ
½ϕðzÞ�½zð1 − zÞ�β� · ∂

α−1−κ

∂zα−1−κ
ψðzÞ

����1
0

¼ 0:

ðB3Þ

The aim is to show that, for an appropriate choice of α and
β, each term in the above sum contains sufficient factors of
zð1 − zÞ such that when we apply the boundary conditions
[see Eqs. (14) and (16)], they vanish. To start, we set

∂
ðαÞ
z ψðzÞ≡ ∂

α

∂zα ψðzÞ and apply the general Leibniz rule16 to
rewrite Eq. (B3) as

− iα
Xα−1
κ¼0

Xκ
λ¼0

ð−1Þκ
�
κ

λ

�
∂
ðκ−λÞ
z ϕðzÞ� · ∂ðλÞz ½zð1 − zÞ�β

· ∂ðα−1−κÞz ψðzÞj10 ¼ 0: ðB4Þ
Factors of zð1 − zÞ are introduced either by the deriv-

atives of the wave functions ψðzÞ and ϕðzÞ�, or by

derivatives of ½zð1 − zÞ�β. ∂
ðα−1−κÞ
z ψðzÞ and ∂

ðκ−λÞ
z ϕðzÞ�

can be written in terms of zeroth and first order derivatives
by applying multiple derivatives and substitutions of the
Schrödinger equation. We have that

∂
ð2Þ
z ψðzÞ≡ ψ 00ðzÞ ¼ ½zð1 − zÞ�−1ðð2z − 1Þψ 0ðzÞ − EψðzÞÞ;

ðB5Þ
and hence each subsequent derivative introduces another

½zð1 − zÞ�−1 factor, e.g., for α − 1 − κ ≥ 2, ∂
ðα−1−κÞ
z ψðzÞ

introduces ½zð1 − zÞ�−αþκþ2. Therefore, in order to apply
the boundary conditions, the exponent of the zð1 − zÞ
factor in the summand should be the sum of the derivative

14Note that α1ðZÞ; α2ðZÞ are functions of the operator ObðZÞ.
15This choice of Ob, leads to a final recursion relation that is

expressed in terms of hZζi-type moments. The motivation for this
form of Ob was an educated guess, based on the form of the
Hamiltonian [containing Zð1 − ZÞ] as well as the aim to relate
hZζi-type moments.

16Defined by ∂
ðκÞ
z ðϕðzÞ�½zð1 − zÞ�βÞ ¼Pκ

λ¼0
κ
λ ∂

ðκ−λÞ
z ϕðzÞ�∂ðλÞz

½zð1 − zÞ�β.
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exponents17: ðα−1−κÞþðκ−λÞ¼α−1−λ. We already

have a contribution of ½zð1 − zÞ�β−λ from the ∂
ðλÞ
z ½zð1 −

zÞ�β term, hence β − λ ≥ α − 1 − λ ⇒ β ≥ α − 1. We note
that this counting argument is only sufficient when there is
at least one derivative present on ψ or ϕ�. For the term in the
summand that has no wave function derivatives, the sum of
derivative exponents is zero and hence the previous
counting argument implies β − λ ≥ 0. However, this fails
at β − λ ¼ 0 as the wave functions do not necessarily
vanish at the boundaries. To ensure the summand term does
vanish, we must introduce an additional zð1 − zÞ factor
which leads to the strongest constraint, β ≥ α. By taking
β ≥ α, every term in (B4) individually vanishes and there-
fore the lemma equation (B1) is satisfied. ▪

APPENDIX C: FINITENESS OF MATRIX
ELEMENTS

This section analyses the finiteness of 2d bootstrap
matrix elements. This involves placing restrictions on the
indices of expectation values of form hSσ½Zð1 − ZÞ�ζi.
These restrictions also apply to the fσ;ζ ¼ hSσZζimoments
since these comprise the matrix elements, see Eq. (77).
The 2d bootstrap matrix B̃2d consists of elements,

ðB̃2dÞðα;βÞ;ðα0;β0Þ ¼ hSα½Zð1 − ZÞ�βþβ0 ðSα0 Þ†i; ðC1Þ

and here we show that upon taking β ≥ α and β0 ≥ α0,
such elements are finite. Note that throughout this
section, we explicitly use the energy eigenfunctions
ψa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2aþ 1

p
Pað2z − 1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ 1
p

P̃aðzÞ. This is to
emphasize that this proof relies on the specific analytic
form of the solutions.
To begin, consider the B̃2d bootstrap matrix element,

evaluated on eigenfunction ψa,

ðB̃2dÞðα;βÞ;ðα0;β0Þ ¼ hψajSα½Zð1 − ZÞ�βþβ0 ðSα0 Þ†jψai

¼
X∞
c¼0

hψajSα½Zð1 − ZÞ�βjψci

× hψcj½Zð1 − ZÞ�β0 ðSα0 Þ†jψai; ðC2Þ

where a complete set of energy eigenstates
P∞

c¼0 jψcihψcj
has been inserted centrally. To show that (C2) is finite, it
suffices to show that at a chosen a; α; β;α0; β0, the vectors
indexed by c,

I ða;α;βÞ
c ¼ hψajSα½Zð1 − ZÞ�βjψci;

Ī ða;α0;β0Þ
c ¼ hψcj½Zð1 − ZÞ�β0 ðSα0 Þ†jψai; ðC3Þ

only have a finite number of nonzero components. Noting

that since Īa;α0;β0
c ¼ ðIa;α0;β0

c Þ�, then providing we apply the
same condition between α0 and β0 as we do between α and

β, then we need only show I ða;α;βÞ
c is finite. We start by

exchanging the derivatives onto the ψaðzÞ using repeated
integration by parts,

I ða;α;βÞ
c ¼ hψajSα½Zð1 − ZÞ�βjψci ðC4Þ

¼ iα
Z

1

0

ψaðzÞ∂ðαÞz ð½zð1 − zÞ�βψcðzÞÞdz ðC5Þ

¼ iα
Xα−1
k¼0

ð−1Þkð∂ðkÞz ψaðzÞÞ∂ðα−1−kÞz ð½zð1−zÞ�βψcðzÞÞ
����1
0

þð−iÞα
Z

1

0

ð∂ðαÞz ψaðzÞÞ½zð1−zÞ�βψcðzÞdz ðC6Þ

¼ ð−iÞα
Z

1

0

ð∂ðαÞz ψaðzÞÞ½zð1 − zÞ�βψcðzÞdz ðC7Þ

¼ ð−iÞα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aþ 1Þð2cþ 1Þ

p
×
Z

1

0

ð∂ðαÞz P̃aðzÞÞ½zð1 − zÞ�βP̃cðzÞdz; ðC8Þ

where again, P̃aðzÞ ¼ Pað2z − 1Þ. Importantly, since ψa
and ψc are polynomials, the boundary term sum in (C6)
will vanish, providing that β ≥ α. This inequality ensures
there are sufficient factors of zð1 − zÞ in each term so that
when evaluated at z ¼ 0, 1, they all vanish individually.18

Binomially expanding ð1 − zÞβ gives

½zð1 − zÞ�β ¼
Xβ
k¼0

ð−1Þk
�
β

k

�
zβþk; ðC9Þ

and by using

P̃1ðzÞ ¼ 2z − 1 ⇒ z ¼ 1

2
ð1þ P̃1ðzÞÞ; ðC10Þ

we have

½zð1−zÞ�β¼
Xβ
k¼0

ð−1Þk
�
β

k

��
1

2
ð1þ P̃1ðzÞÞ

�
βþk

¼
Xβ
k¼0

Xβþk

l¼0

ð−1Þk
�
1

2

�
βþk
�
β

k

��
βþk
l

�
ðP̃1ðzÞÞl;

ðC11Þ

17This ensures there are enough zð1 − zÞ factors that even the
ϕ0ðzÞ�ψ 0ðzÞ terms that appear, vanish under application of the
boundary condition.

18Note, for α ¼ 0, we do not require this process—there are no
derivatives, so no boundary terms and the integrand will simply
be a well-defined polynomial in z.
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where ð1þ P̃1ðzÞÞβþk has also been expanded. To evaluate
ðP̃1ðzÞÞl we use the Legendre polynomial product
rule [25,26]

P̃mðzÞP̃nðzÞ ¼
Xmþn

l¼jm−nj

�
m n l

0 0 0

�
2

ð2lþ 1ÞP̃lðzÞ

¼
Xmþn

l¼jm−nj
ðwm;n;lÞ2ð2lþ 1ÞP̃lðzÞ; ðC12Þ

where

wm;n;l ≔
�
m n l

0 0 0

�
¼
�Z

1

0

P̃mðzÞP̃nðzÞP̃lðzÞdz
�1

2

;

ðC13Þ

is the Wigner (3j) coefficient. Applying the rule multiple
times gives general formula,

ðP̃1ðzÞÞl¼

8>>><
>>>:
P̃0ðzÞ; for l¼0

P̃1ðzÞ; for l¼1Q
l
r¼2 P̃ilðzÞ

Pir−1þ1

ir¼jir−1−1jðw1;ir−1;irÞ2ð2irþ1Þ for l≥2;

ðC14Þ

where i1 ¼ 1 in the l ≥ 2 case. Note that
ðP̃1ðzÞÞ0 ¼ 1 ¼ P̃0ðzÞ. So, we can cast ½zð1 − zÞ�βP̃cðzÞ
from the (C8) integrand in terms of multiple sums, over the
product of two Legendre polynomials by substituting (C14)
into (C11) and multiplying by P̃cðzÞ. The last term in the

integrand to consider is ∂ðαÞz P̃aðzÞ which can be evaluated19
(see [27]) as

∂
ðαÞ
z P̃aðzÞ≡ dαP̃aðzÞ

dzα
¼ 2α

Xbða−αÞ=2c

m¼0

γa−α−2mP̃a−α−2mðzÞ;

ðC15Þ
with the floor expression, bða − αÞ=2c, meaning the largest

integer less than or equal to ða − αÞ=2. γa−α−2m is a
recursion coefficient and can be obtained from formula,

γa−α−2m ¼ 2αþ2mða − 1
2
Þαða −mÞmða − α − 1

2
Þ2m

ð2mÞ2mða − 1
2
Þm

−
Xm−1

j¼0

ð2ða − α −m − jÞÞ2ðm−jÞ

ð2ðm − jÞÞ2ðm−jÞ γa−α−2j; ðC16Þ

where ðxÞn represents the falling factorial. Combining these
component expressions together, the full formula for

I ða;α;βÞ
c may be written as

I ða;α;βÞ
c ¼ ð−iÞα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aþ 1Þð2cþ 1Þ

p Xβ
k¼0

Xβþk

l¼0

ð−1Þk
�
1

2

�
βþk
�
β

k

��
β þ k
l

�
2α

Xbða−αÞ=2c

m¼0

γa−α−2m

Z
1

0

P̃a−α−2mðzÞ

×

"
δl;0P̃0ðzÞ þ δl;1P̃1ðzÞ þ ð1 − δl;0Þð1 − δl;1Þ

Yl
r¼2

 Xir−1þ1

ir¼jir−1−1j
w2
1;ir−1;ir

ð2ir þ 1Þ
!
P̃ilðzÞ

#
P̃cðzÞdz; ðC17Þ

where Kronecker deltas have been introduced according to (C14). The equation is a set of sums over fk;l; m; i2;…; ilg and
the key terms are the triple integrals of form,

Z
1

0

P̃a−α−2mðzÞP̃qðzÞP̃cðzÞdz ¼
�
a − α − 2m q c

0 0 0

�
2

≡ ðwa−α−2m;q;cÞ2; ðC18Þ

where q∈ f0; 1; ilg. Using (C18) to exchange the integrals, the result is determined by the ð3jÞ coefficients

19Note the factor of 2α appearing in (C15) due to the fact P̃aðzÞ is used instead of PaðzÞ.
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I ða;α;βÞ
c ¼ ð−iÞα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aþ 1Þð2cþ 1Þ

p Xβ
k¼0

Xβþk

l¼0

ð−1Þk
�
1

2

�
βþk
�
β

k

��
β þ k
l

�

× 2α
Xbða−αÞ=2c

m¼0

γa−α−2m

"
δl;0ðwa−α−2m;0;cÞ2 þ δl;1ðwa−α−2m;1;cÞ2

þ ð1 − δl;0Þð1 − δl;1Þ
Yl
r¼2

 Xir−1þ1

ir¼jir−1−1j
w2
1;ir−1;ir

ð2ir þ 1Þ
!
ðwa−α−2m;il;cÞ2

3
75: ðC19Þ

Importantly, since a − α − 2m and q can only take finite
values (that is, these values are either chosen directly, or if
they correspond to sum variables, their limits are fixed and
finite), then wa−α−2m;q;c is nonzero for only a finite number
of values for c. This is due to the Wigner ð3jÞ coefficient’s
triangle inequality property/selection rule; wa−α−2m;q;c ¼ 0,
unless

ja − α − 2m − qj ≤ c ≤ a − α − 2mþ q: ðC20Þ

In turn, I ða;α;βÞ, as a c-component vector for selected
ða; α; βÞ with β ≥ α, is restricted to have a finite number
of nonzero components, even though c runs from 0 to ∞.
Hence, ensuring that β ≥ α and β0 ≥ α0 means matrix B̃2d
consists of finite elements when the associated expectation
values are evaluated using the energy eigenstates. When
α ¼ α0 and β ¼ β0 we see that this also implies the state
with index c has a finite norm squared.
The above proof considered the alternatively ordered B̃2d

and not B2d. Following the same arguments, the elements
of matrix B2d are finite with no additional relation between
α and β required. The reason for this is that in the B2d
elements, the derivatives act directly on the chosen state ψa
and not on ψc. This means no boundary terms appear as
there is no integration by parts. However, we still need to
remove the S† operators from the matrix elements
to employ the bootstrap. For B2d, it means we must take

β ≥ α according to the Dagger lemma of Sec. III D 2, but
leaves freedom to choose other α0 and β0 in this case. Such
choices are reserved for future investigation.

APPENDIX D: UPPER AND LOWER OCTANT
EXAMPLES

Here we provide explicit upper and lower octant exam-
ples of the c-index vectors discussed in Appendix C. Let us
concentrate on matrix elements ðB̃2dÞðα;βÞ;ðα0;β0Þ with α ¼ α0,
β ¼ β0 for simplicity. Beginning with the lower octant, i.e.,
α > β, set α ¼ 2, β ¼ 1 such that

ðB̃2dÞð2;1Þ;ð2;1Þ

¼
X∞
c¼0

hψajS2Zð1−ZÞjψcihψcjZð1−ZÞðS2Þ†jψai: ðD1Þ

To show this leads to an infinite matrix element, it suffices
to show that

Ia;2;1
c ¼ hψajS2Zð1 − ZÞjψci; ðD2Þ

has infinitely many nonzero components as a c-index
vector. These components are evaluated using integration
by parts twice as

Ia;2;1
c ¼ hψajS2Zð1 − ZÞjψci ðD3Þ

¼ i2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aþ 1Þð2cþ 1Þ

p Z
1

0

P̃aðzÞ∂2z ½zð1 − zÞP̃cðzÞ�dz ðD4Þ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aþ 1Þð2cþ 1Þ

p �
P̃aðzÞ∂z½zð1 − zÞP̃cðzÞ�

����1
0

− ð∂zP̃aðzÞÞzð1 − zÞP̃cðzÞ
����1
0

þ
Z

1

0

ð∂2zP̃aðzÞÞzð1 − zÞP̃cðzÞdz
�
ðD5Þ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aþ 1Þð2cþ 1Þ

p �
P̃aðzÞ∂z½zð1 − zÞP̃cðzÞ�

����1
0

þ
Z

1

0

ð∂2zP̃aðzÞÞzð1 − zÞP̃cðzÞdz
�
: ðD6Þ

The second boundary term that appears in (D5) will vanish for all states a due to the zð1 − zÞ factor [using knowledge that
P̃aðzÞ are polynomials for all a]. However, the remaining boundary term and integral generally do not vanish. The integral
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can contribute a number of nonzero components to the
vector, but as argued previously from (C8) onwards, the
number is finite. On the other hand, there are insufficient
zð1 − zÞ factors in the remaining boundary term to ensure
that every c-component contribution it provides, will
vanish. From the polynomial form of P̃a and P̃c, for any
a, the vector Ia;2;1

c can therefore potentially contain
infinitely many nonzero components. If we further specify
state a ¼ 1, we can observe such a vector:

I1;2;1¼ 
0; 6; 0; 2
ffiffiffiffiffi
21

p
; 0; 2

ffiffiffiffiffi
33

p
; 0; 6

ffiffiffi
5

p
; …

�
;

ðD7Þ

which continues indefinitely, owing to the infinite range
of c.
For the upper octant example, choose α ¼ 1, β ¼ 1, to

give element

ðB̃2dÞð1;1Þ;ð1;1Þ ¼
X∞
c¼0

hψajSZð1−ZÞjψcihψcjZð1−ZÞS†jψai:

ðD8Þ

Following the same process as above,

Ia;1;1 ¼ hψajSZð1 − ZÞjψci ðD9Þ

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aþ 1Þð2cþ 1Þ

p Z
1

0

P̃aðzÞ∂z½zð1 − zÞP̃cðzÞ�dz ðD10Þ

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aþ 1Þð2cþ 1Þ

p �
P̃aðzÞzð1 − zÞP̃cðzÞ

����1
0

−
Z

1

0

ð∂zP̃aðzÞÞzð1 − zÞP̃cðzÞdz
�
: ðD11Þ

Clearly in this case the boundary term will vanish for all a
and c while again, as shown from Eq. (C8) onwards, the
remaining integral will contribute a finite number of non-
zero vector components for a chosen a. The resulting vector
with state a ¼ 1 for example is

I1;1;1 ¼
�
− iffiffi

3
p ; 0; iffiffiffiffi

15
p ; 0; 0; 0; 0; 0; …



:

ðD12Þ

APPENDIX E: REGULARIZING MATRIX
ELEMENTS

The examples of Appendix D showed how the vector
calculations imply that the corresponding matrix elements
can blow up, depending on octant choice. Here we discuss
the regularization of such matrix elements. In the lower
octant case, the vector of (D7) leads to an infinite sum for
the matrix element,

ðB̃2dÞð2;1Þ;ð2;1Þ ¼
X∞
c¼0

I1;2;1
c ðI1;2;1

c Þ� ðE1Þ

¼ 0þ 36þ 0þ 84þ 0

þ 132þ 0þ 180þ… ðE2Þ

¼ 6
X∞
n¼1

ð2n − 1Þð1þ ð−1ÞnÞ; ðE3Þ

where I ða;α;βÞ
c is as defined in (C3). By inserting a

regularization factor e−ϵn into the summand and series
expanding about ϵ ¼ 0, the sum can be regularized,

ðB̃2dÞð2;1Þ;ð2;1Þ ¼
12

ϵ2
−
6

ϵ
þ 2 − 2ϵþ 4ϵ2

5
þOðϵ3Þ

⇒ ðB̃reg
2d Þð2;1Þ;ð2;1Þ ¼ 2: ðE4Þ

This was achieved by removing the ϵ−1; ϵ−2 divergences
and then taking ϵ → 0.
The proof in Appendix C and examples of Appendix D

considered a central insertion of the complete set of states.
Trialing other positions of insertion shows that the upper
octant c-vectors can also become infinite. However, it
appears that while the upper octant regularized matrix
elements are consistent with any state insertion position, the
lower octant elements produce different/inconsistent
results. For example, by inserting the complete set of
states in the a ¼ 1, α ¼ 1, β ¼ 1 upper octant case,
between SZ2 and ð1 − ZÞ2S† instead, we have20

ðB̃2dÞð1;1Þ;ð1;1Þ ¼
X∞
c¼0

hψ1jSZ2jψcihψcjð1 − ZÞ2S†jψ1i ðE5Þ

20These calculations were achieved using the analytic solution
integration.
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¼ 1

3
− 4þ 196

15
− 21þ 27 − 33

þ 39 − 45þ 51 − 57þ 63þ… ðE6Þ

¼ 1

3
− 4þ 196

15
þ
X∞
n¼1

ð−1Þnð6nþ 15Þ; ðE7Þ

and upon regularizing the sum using the e−ϵn factor as
above we obtain,

ðB̃2dÞð1;1Þ;ð1;1Þ ¼
1

3
− 4þ 196

15
− 9þ 15ϵ

4
þ 3ϵ2

8
þOðϵ3Þ;

ðE8Þ

ðB̃reg
2d Þð1;1Þ;ð1;1Þ ¼

2

5
; ðE9Þ

where we have taken ϵ → 0, in the last line. This result is in
agreement with the central insertion example (D8), as seen
by evaluating the inner product of I ð1;1;1Þ from (D12):P∞

c¼0 I
1;1;1
c ðI1;1;1

c Þ� ¼ 2
5
. Repeating a similar exercise for

the lower octant example a ¼ 1, α ¼ 2, β ¼ 1, we trial an
insertion of form

ðB̃2dÞð2;1Þ;ð2;1Þ

¼
X∞
c¼0

hψ1jS2Z2jψcihψcjð1 − ZÞ2ðS2Þ†jψ1i ðE10Þ

¼ 0þ 36 − 540þ 3024 − 10800þ 29700þ…

ðE11Þ

¼
X∞
n¼1

ð−1Þnð−3n2 þ 12n3 − 15n4 þ 6n5Þ ðE12Þ

¼ −
27ϵ

8
þ 27ϵ2

16
þOðϵ3Þ; ðE13Þ

where the last line applies the series expansion around ϵ,
after inserting regularization factor e−ϵn in (E12). Hence,
upon taking ϵ → 0 we have

ðB̃reg
2d Þð2;1Þ;ð2;1Þ ¼ 0; ðE14Þ

which contradicts the previous result in (E4). Such out-
comes can naturally lead to inconsistent positivity calcu-
lations, which is why the positive upper octant was used for
the 2d matrix calculations.

APPENDIX F: SLACK VARIABLE METHOD

Here we provide an alternative method to search the E
space, referred to as the slack variable method. In the
context of the quantummechanical bootstrap, this approach

was introduced in [13], and here we provide a brief
overview of the algorithm. Given the bootstrap matrices
are Hermitian by construction, to satisfy B≽ 0 it suffices
that the minimal (smallest) eigenvalue of B is positive. In
the context of optimization, the objective is to

maximize λmin½BðEÞ�: ðF1Þ

Here B is theK × K bootstrap matrix, and its eigenvalues λi
with i ¼ 1;…; K, depend on initial data E. If the optimised/
maximized minimal eigenvalue λmin is negative, the initial
data E is rejected. Equivalently, this optimization problem
can be phrased using a slack variable t

maximize t;

subject to BðEÞ − tI≽ 0: ðF2Þ

This is a semidefinite programming problem in linear
matrix inequality form, where the only initial/primal
variable is t. In this description, at any given E the method
can always identify an optimal t such that constraint (F2) is
satisfied. Since these optimal t� values depend continu-
ously on E, we can use this dependence as an indicator of
where the physical energies exist. Regions of E for which
t� ≥ 0 indicate B ≽ 0, and conversely, t� < 0 indicates
B⊁ 0. This method is particularly useful for a large initial
data space, but as will be shown, it still performs well for
the single data E here, and supports the findings of the step
search approach.
We apply the slack variable method to the B1d, B00

2d and
B̃00
2d matrices, and comment on their results. Each figure

plots log jt�j vs E for matrix sizes K ¼ 2, 4, 6, 8, and use
step size 10−2 and energy range E∈ ½0; 50� as before.
The energy eigenvalues of the system are displayed in the
figures as black dashed lines and the singularities of the
K ¼ 8 bootstrap matrices are presented by red dashed lines.
Taking the log of t� allows the significant behavior to be
seen more clearly, primarily the inverted spike (using the
name assigned in [13]) behavior appearing around the
eigenvalues.
The B1d plot is given in Fig. 8. A clear example of the

inverted spike behavior occurs for the K ¼ 4, 6, 8 curves,
around E ¼ 2 (second black dashed line), where an arch is
bound by two inverted spikes; the negative log jt�j values
with large magnitude. The width of the arch reduces with
increasingK, i.e., the spikes become closer together. This is
equivalent to a reduction in size of the band in the step
search. The K ¼ 2 curve does not feature inverted spikes
around E ¼ 2, since the local energy band could not be
constrained at this matrix size. The final feature is the sharp
spike at the singularities. B1d evaluated at energies close to
these singularities, yield large eigenvalues. This implies
that jt�j becomes (relatively) large in order to
ensure B1d − t�I≽ 0.
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FIG. 9. log jt�j vs E for B00
2d at matrix sizesK ¼ 2, 4, 6, 8. The inverted spike behavior occurs close to the singularities (red dashed) and

shows that two neighboring spikes do not significantly approach each other as K increases. This demonstrates the difficulty in
constraining the energies for this matrix.

FIG. 8. Plotting the log of the optimal slack variable t� vs energy E for B1d, at matrix sizes K ¼ 2, 4, 6, 8. Pairs of inverted spikes
appear around energy eigenvalues. At E ¼ 2 we see the distance between neighboring spikes decrease from K ¼ 4 to K ¼ 8,
corresponding to the shrinking of the energy band. The plot also indicates the results for small negative E.

FIG. 10. log jt�j vs E for B̃00
2d at matrix sizes K ¼ 2, 4, 6, 8. This plot features inverted spikes that surround exact energy eigenvalues

e.g.,K ¼ 6 at E ¼ 30, 42, but also spikes that have joined together e.g.,K ¼ 8 at E ¼ 30, 42. The converging of two neighboring spikes
implies the location of an energy eigenvalue. The K ¼ 8 curve is able to find all seven energy eigenvalues in the range presented.
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The B00
2d plot of Fig. 9 exhibits different behavior. The

inverted spikes predominantly appear close to the singu-
larities. Only at E ¼ 2 do the spikes become somewhat
more distinct; moving slightly away from these singular-
ities. This agrees with Fig. 4, showing how the bootstrap
performed poorly in constraining the energy into bands
compared to the B1d case.
Finally, we consider the B̃00

2d results in Fig. 10. Here we
see significantly negative log jt�j values occurring at
specific points in the E space. This is where two spikes
join and become indistinguishable (the arch between
becomes pointlike), converging on a single energy eigen-
value. For example, the K ¼ 6 curve appears to show
joined inverted spikes at the first five energy eigenvalues,
followed by pairs of spikes enclosing E ¼ 30, 42

corresponding to energy bands at this K. On the other
hand the K ¼ 8 curve finds all energy eigenvalues for
E∈ ½0; 50�. The fact that log jt�j is negative with large
magnitude at these joined-spike points is indicative of a
t ¼ 0 crossing, implying B̃00

2d ≽ 0 is effectively satisfied.
All numerics were generated in Mathematica [28] and

the slack variable calculations were obtained using the
“SemidefiniteOptimization” function, with method option
“CSDP”. We minimized over −t, as opposed to the
alternative convention of maximizing over t. Since this
function is limited to machine precision, to identify larger
eigenvalues with a higher precision using the slack variable
search, alternative programs should be considered. As a
diagnostic tool however, it is sufficient for the present
workings.
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