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Quantum mechanical bootstrap on the interval:
Obtaining the exact spectrum
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We show that for a particular model, the quantum mechanical bootstrap is capable of finding exact
results. We consider a solvable system with Hamiltonian H = SZ(1 — Z)S, where Z and S satisfy canonical
commutation relations. While this model may appear unusual, using an appropriate coordinate trans-
formation, the Schrodinger equation can be cast into a standard form with a Poschl-Teller-type potential.
Since the system is defined on an interval, it is well-known that S is not self-adjoint. Nevertheless, the
bootstrap method can still be implemented, producing an infinite set of positivity constraints. Using a
certain operator ordering, the energy eigenvalues are only constrained into bands. With an alternative
ordering, however, we find that a finite number of constraints is sufficient to fix the low-lying energy levels

exactly.
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I. INTRODUCTION

The quantum mechanical bootstrap provides a method to
numerically approximate the expectation values of a given
system [1]. Initially proposed as a way to solve random
matrix models [2], numerous systems have now been
analyzed with the bootstrap procedure including the quan-
tum anharmonic oscillator which produces rapidly con-
verging energy vs position expectation value ‘islands’ with
increased bootstrap matrix size [1,3,4], the Mathieu prob-
lem with band behavior [5-7], PT-symmetric systems [8]
and even models with exponentiated canonical operators as
found in Calabi-Yau discussions [9]. For a selection of
alternative systems and further explorations within the
literature, see [10-15].

In this paper, we use the bootstrap construction to
constrain the energy eigenvalues of a system defined on
the interval. Such systems are interesting due to the
subtleties in defining operator domains, which may poten-
tially lead to anomalies [12]. Our exploration of this system
will add to the growing bootstrap literature by providing a
valuable interval-based example. We will show that,
remarkably, the constraints are sufficiently strong to fix
these energy eigenvalues exactly, as seen previously in [4].
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We begin by discussing the Hamiltonian, its analytic
solutions and the boundary conditions in Sec. II. The
bootstrap is then reviewed in Sec. III. Here we describe the
method to find recursion relations and assess the associated
anomalies. We then detail the composition of the bootstrap
matrices that are built from such relations. In Sec. IV we
provide the numerical results and figures depicting both the
bandlike and exact behavior. Finally, Sec. V provides a
summary of the findings and suggests future directions of
investigation. The appendixes provide additional technical
details of the calculations.

II. THE MODEL

A. The Hilbert space

We take the Hilbert space H to be the space of square
integrable functions over the interval z € [0, 1]. The inner
product is defined on H as

Bly) = / L p@) w2, (1)

Note that this also defines a product on a larger function
space consisting of potentially nonsquare integrable func-

tions. The norm on M is defined by |jy| = /(y|w).
Let wus consider a densely defined linear

operator A:D(A) — H. The domain and the action of A"
are defined by
(1) D(AY) :={peH|IneH: ¥ aeD(A):
($lAa) = (nla) },
2) Afp=n.
Self-adjoint operators must satisfy two properties:
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(1) Symmetricity: (Adly) — ($|Ay) = 0;
(2) Equality of operator domains: D(A) = D(A");

for arbitrary wave functions ¢ € D(A"),w € D(A). In the
following we consider the canonical operators S and Z. In
the z-basis, S = ind, (note the sign choice) and Z = z-
satisfy the commutation relation [S, Z] = ih, and hence-
forth we take 72 = 1. It is well-known that the operator S is
not self-adjoint on the interval.'

B. The Hamiltonian

We consider the Hamiltonian
H=SZ(1-2)S. (2)

This Hamiltonian appeared in [19] where it described a
folded string in two-dimensional anti-de Sitter (AdS) space,
and the radius of AdS has been sent to zero. This is one of
the simplest string systems and quantizing it serves as a
starting point for understanding how to quantize strings
generally.

In the z-basis, the time-independent Schrodinger equa-
tion becomes

2(1=2)w"(z) +

where FE is the eigenvalue of the system for the particular
energy eigenfunction y(z). We want H to be self-adjoint
and therefore we consider it on the dense domain

(1 =22)y'(z) + Ew(z) = O, (3)

D(H) = {y. Hy €H| lim z(1 - 2)d.y(z) = 0}. (4)

H must be symmetric, which means for any ¢ €H,
HpeH and weD(H) CH

(| Hy) = (Hply) = 0. (5)

Note that ¢ is not necessarily in D(H), therefore what is
meant by H¢ is that the differential operator H acts on
¢(z). Since ||[Hp|| < o0, ¢p must at most be logarithmically
divergent and subleading terms are either constant or vanish
faster than z'/2 or (1 —z)"/2:

¢<z>co+colog( : )+0< 4. aszo0, (6)

?(z )—cl—i-cllog(l_ )—l—O(( 2)), asz—1, (7)

"There does exist a self-adjoint extension of S on the interval,
see for example [16] where the wave functions are restricted to
have boundary values identified up to a parameter-dependent
phase. Further information about extensions on the interval can
be found in [17,18].

where ¢, ¢, ¢; and ¢/ are constants. Since y € D(H), the
condition in (4) eliminates the logarithmically divergent
terms,

w(z) = cf + O(z2), asz—0, (8)

p(z)=c{ +O((1-2)). asz— 1, ©)

where ¢(j and ¢/ are constants. To perform the symmetricity
calculatlon of (5) we focus on its first term and integrate by
parts,

(¢|Hy) = / #(z

= —¢(2)"2(1 = 2)0.y(2)|:Z)

+ /Ol(azqﬁ(z)*)z(l —2)0y(2)dz (11)

z(1 = z)o.w(z)]dz (10)

z—1

= —(z)*z(1 = 2)0w(2) 2,

n (w(z)z(l — 2)0,h(2) )

- [fokt-0permen)  2)

= —¢(2)"z(1 —2)0.w ()24
+y(2)z(1 = 2)0,0(2)* 226 + (Holw). (13)

Since ¢*, 0,y and d,¢* may potentially blow up, these
boundary terms must be evaluated using limits lim,_ ;.
Each of the expressions in (10)—(13) must be finite. Since
w€H, then (Hp|y) meets this criteria. The first term
in (13) always vanishes. The second term is finite owing to
the z(1 — z) factor, but generally does not vanish. A natural
choice of conditions that ensure it does vanish is

Jim 2(1 - 2)0.¢(2) = 0. (14)

The set of ¢’s which satisfy (14) determines D(H"). We
conclude that H is a self-adjoint operator since it is
symmetric and D(H) = D(H"). Although we will use the
boundary conditions of (4) and (14) throughout, we note that
more general boundary conditions do exist, see Sec. I E.

C. The spectrum

The Schrodinger equation (3) has a general analytic
solution,

wa(z) = aiP,(2z = 1)+ a,0,(2z - 1),  (15)

where a; and a, are constants, P, is the Legendre poly-
nomial, O, is the Legendre function of the second kind and

=1(=1++V/1+4E). Note that P, and Q, are real.
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Evaluating the boundary conditions,

lim z(1 - 2)y'(2) = 0, (16)
—U,

using the general solution (15) implies that n =0, 1, 2...
and a, = 0. The non-negative integer n provides the
quantization condition for the energy eigenvalues,

(WalHly,) =E, =n(n+1), (17)
where
v, (z) =V2n+1P,(2z - 1), (18)

and constant a; has been fixed by normalization condition
(wnlw,) = 1. Having the analytic solution at hand provides
a useful diagnostic tool for the bootstrap.

D. Poschl-Teller coordinates

To understand where the Poschl-Teller potential is mani-
fest in our system, we can choose alternative coordinate

eP

= 19
5o (19)
such that the Schrédinger equation becomes
V' (P)+ ey (p) = . (20)
4 cosh*(§)

This is related to the work of [8] where they studied equation

AA+1)
4 cosh?(%)

Ex

w"(p) + w(p) = —Tw(p), (21)

and applied the bootstrap to identify the eigenvalues E.
Notably, by taking Ex =0 and A(1+ 1) = E the two
equations coincide.” Under this coordinate transformation,
the boundary condition of Eq. (16) becomes

lim y/(p) = 0. (22)

p——00,00

There appears to be a typo in the original recursion relation
proposed in [8]. We find the relation to be

3
<4EKt+§> (sech’(x))
+ (—4Eg(t+1)+2(t4+ 1)A(14+1) — 2 = 31> =41 —2)(sech’ "2 (x))
r 11
+ <E+3tz+7t+3 =2(t+2)A(A+ 1)) (sech™™(x)) =0,
where x = p/2. Upon scaling/redefining Ex — %E x and swap-

ping the (sech’*?(x)) and (sech’**(x)) coefficients in the above
expression, this is equal to Egs. (5) and (35) of [8].

which is a Neumann-type boundary condition. Another
transformation is achieved by setting

z==(1+sin(0)). (23)

l\)l'—

The Schrodinger equation (3) then becomes
y"(6) — tan(0)y'(0) + Ew(0) = 0, (24)

which, upon redefining the wave function and the energy to

L pl!

W)= —il6)  E=E-g. ()
may be rewritten as

()~ oo 70 = WO (9

Here (26) appears in a Schrodinger equation form, with E
representing the energy. This is in contrast to (20), where E
appears as a coupling constant.

E. General boundary conditions

The expectation values (¢p|Hy) and (Hep|y) in (5)
remain well-defined when both y and ¢ have logarithmic
divergences. However, upon integrating by parts the
boundary term and resultant integral in (11) will
become infinite as z — 0, 1. If we introduce a small ¢
cutoff and change the Hilbert space to the space of square
integrable functions over the interval z € [¢, 1 — €], then the
expressions stay well-defined. Using wave function
Ansditze

¢(z) = dy + dq 10g< > +0(z2), asz—e, (27

#)=d+diog(E) +O((1-2, sz
9

where dy., dj,, d; and d are constants and

II/(Z) = d// d/// 10g<1 z > + O( %) as 7 — €, (29)

w(z)= J#JWgQ )+o« 9. aszol-c,
(30)

where djj, djf', d{ and d'’ are constants, the general boun-
dary conditions can be written as
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[aoz(l -2y (2) +y(z) — 2(1 —z) log (%) w’(Z)]

[alz(l —2)y'(2) +w(z) —z(1 —z)log (ﬁ) w’(Z)]

where «;; are constants and these same boundary con-
ditions are also applied to ¢(z). By plugging the functions
(27)—(30) into (31) and (32) respectively, this enforces

do + a0d6 = dl + ald/l = d(/)/ + (Zodm = dll/ + ald/l// =0,
(33)

in the € — 0 limit. Providing oy €R and a; €R, these
equations mean the boundary terms are equal in the
symmetricity calculation (13) and will cancel, thus H is
self-adjoint. Note, in the p coordinates of Sec. I D, the
boundary conditions become

w(p) + (@ — P (P)lp=a. =0, (34)
w(p) + (a1 = P (P)lp=a, =0, (35)

where a_ = log;% and a, = log 16;‘ These are similar to
Robin boundary conditions.

III. BOOTSTRAP

The bootstrap begins® with a Hamiltonian H and a set of
operators, {O;}, where the type and the number of
operators required, depends on the model. These are used
to produce energy and commutation equations

(HO;) —E(0;) =0 and ([H,O;])=0. (36)
Note that (O;) = (wg|O;|lwg), where |yg) is a specific
energy eigenstate. After using the commutation rules
between the various required O; and H, it is potentially
possible to form closed recursion relations between expect-
ation values, based on the contents of the ;. A subset of
these expectation values therefore generate the remaining
moments and together with the energy F, they form a set of
initial data for the bootstrap. In quantum mechanics, a
general operator O must adhere to the positivity constraint,

(0T0) > 0. (37)

The operator O will often be referred to as the bootstrap
operator. Following [1], we write O as a linear combination

*We note that by using fewer constraints than the method we
outline, it is possible to bound the ground-state energy from
below, see [20]. For an early use of this approach, see [21].

=0, (31)

—Z

=0, (32)

z=1-€

[
of operators,

0= Zciai,

(010) = “cic;(0[0;).  (38)

where ¢; € C. These O; may consist of either the canonical
operators directly or a general combination from the O; set
introduced. This leads to the definition of the bootstrap
matrix B,

B, = (0}0)). (39)

The constraint in (37) can therefore be written as a positive
semidefinite condition on B,

B> 0. (40)

Using this condition, the expectation values of a system
can be bounded. The significant point about this con-
struction is that the matrix elements of 55 should be
obtainable from the output of the recursion relations.
Therefore, via appropriate choice of bootstrap operator
and utilization of recursion relations, we may populate
this matrix with different choices of initial data and test its
positivity. If the result is negative, then the trialed initial
data is ruled out. By reiterating the process for different
initial data sets, we aim to carve out regions in the initial
data space that satisfy the constraint, indicating where the
actual, physical values exist. We can increase the number
of operators in the linear combination that form O (i.e.,
introduce more (~’),~), which naturally translates to an
increase in the size of the bootstrap matrix B in (39).
This can lead to strong convergence of expectation values
in some cases [9]. In theory, one can increase the number
of (~’),~ operators indefinitely, which is why the set of
constraints are potentially infinite. The matrix size thus
provides an important parameter labeled ‘K, for a K x K
bootstrap matrix.

A. Recursion relations

We define general 2d moments

fog=(5°Z%). (41)

as well as 1d moments

fe=for = (Z5), (42)
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fn' = fo',O = <SO—>7 (43)

and, as in [1], find recursion relations between them.

Here and in the rest of the paper, ¢ and { are integers. We
begin by inserting operator O, (S, Z) = S°Z¢ into the two
possible forms of energy equation and upon completing the
various commutations, we arrive at

(HO,)—E(O,)=(6(c+1)=E)for—i(6+1)frris
+2i(6+1)f o101+ forc1 —foracin
=0, (44)
|

(OH) —E(O,) = =8foe 1+ (P +C—E)fs¢
=20+ 1) fopr e +2i(C+ D) f iic
+ fa+2,§+1 - fa+2,§+2 =0. (45)

With these, we can construct ([H, O,]) = 0 and in turn find
equations that relate various moments in this two-dimen-
sional (o, ) space. We find

EE t=C o1 = (0= QA+ 0+ ) foc + il —20) forrc +2i(¢ = 0) forr,c41 =0, (46)

P =200~ O(E — 0(0 + 1)) forg — i1+ P — 2o+ 20(0 + 1) frpu g

which explicitly relate moments involving both (o, ). We
choose to denote these recursion relations by block
symbols based on how their constituent moments appear

47
+i(c = O = ¢+ 30) forr,c+1+ (0 + 1) fora,c41 =0, (47)
B ~dF| P ,
(5:717<) (0:717C) (0:71&71)
(51)

on the (0,{) plane. Eﬁ is simply the commutator
([H,0,]) = 0. - is generated by shifting indices in Eﬁ
by (6,{) = (6 4+ 1,{ + 1), solving for f,,» > and sub-
stituting this into (44).

Using Egs. (44)—(47), we can find three recursion

relations which are one-dimensional i.e., each depends
on a single index,

0 (C=12Fat(20—1) 2B = +¢) fer

- - - (48)
+¢(¢P—4E-1) fc =0,

7 (CHCB) e+ 20(CH ) feyncan — feaacra =0,
(49)

00 :0(4E+1-0)fo —(0+ 1) for2=0.  (50)

Relation g is found* by forming the following linear
combination of Egs. (46) and (47),

*For an alternative derivation, see Appendix A.

then shifting the result by { — - 1. [FP is found by

setting 6 = ¢ in Eﬁ, followed by shifting the indices
{ = ¢+ 1, solving for fr,5 | and then substituting this
into Eq. (44), which also sets ¢ = {. To obtain (-, we first
solve Eﬁ at{ =0and{ = 1for f 1 and f,,,, then shift
these expectation values by ¢ — ¢ + 1 to find f,,,,; and
fo122- We then substitute these into Eq. (45) at { = 0 and
solve for f ., ;. Finally, we insert [, 55, fo101 and foyq
into Eq. (44), evaluated at { = 0.

By setting ¢ = 1 in ﬁ of (48), we find relation f, = 1 fo.
Since we normalize using foo = fo = fo =1, all higher
order f, moments are therefore defined by a single piece of
initial data’; {E}. The other 1d recursion relations found,

and O-0O, have two dimensional search/initial data
spaces: {E, f1,} and {E, f| o} respectively. Any positive
quadrant (¢ > 0, { > 0), 2d moment f, - can be generated

using a selection of the five total recursion relations and
will generally depend on the initial data, {E, f, ¢, 1}

>One-dimensional initial data spaces/search spaces have been
encountered in previous studies; the Coulomb potential model
n [10] for instance.
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As a preliminary check, we evaluate the moments f»

using E and compare this to the direct integration method.

From the recursion relation, one obtains

. 3E-2

fo (52)
Alternatively, using the analytic solution y,, and calculating
(w,|Z*|w,) via integration, we achieve the same result
upon applying E = n(n + 1).

B. Restrictions on (6.,¢)

We choose to restrict the 2d (o,{) space we explore,
considering only a subset of f,; - moments. This ensures
that the expectation values we use are finite. The three
‘negative’ quadrants in the (o,() spa(:f:,6 introduce
operators with negative exponents, and when the associated
operators have a well defined action on an eigenstate,
they can produce nonconvergent expectation values from
analytic checks. As a simple example, if we take ¢ = 0,
{ = —1, then f  evaluated on some energy eigenstate y is

fori =iz ) = [ Tw@Pdz = e ()

owing to the polynomial form of the eigenstate solutions .
To avoid such issues, we restrict the range to the positive
quadrant, (6 >0,{>0). A recursion relation can be
plotted on a lattice of { vs ¢ points, by placing a square
at the pair of integers (o, {) corresponding to every moment
foc present in said relation. Figure 1 demonstrates these
equation plots as well as the forbidden (red) and permitted
(dark and light green) regions for moments f,. in the

(0,¢) plane.

C. Anomalies

Corrections to the recursion relations may occur due to
anomalies [16,22] which can appear upon careful consid-
eration of operator domains. Let us take an operator, A, for
which [H,A] =0. As seen from the definition of self-
adjointness in Sec. I A, it is important to consider the
domains of such operators, D(A) and D(H). Indeed, given
that w € D(H), if equation

[H.Aly = (HA - AH)y = H(Ay) — A(Hy),  (54)

is to make sense, we must have Ay e€D(H) and
HyeD(A). If Ay ¢ D(H) then we say that A does not
leave the domain of H invariant, the symmetry generated
by A is broken and an anomaly appears. The exact form of
this commutator-based anomaly, expressed in terms of A

®Those quadrants defined by (o < 0,¢>0), (6 <0,¢ < 0)
and (6 >0,{ <0).

¢

FIG. 1. A section of the (o, {) plane, displaying the lattice
representations of the five recursion relations, based on the
moments f,, = (S°Z°) they contain. The green regions
(6>0,{>0) cover (6,{) pairs which define permitted f,,
while the red region represents the moments we do not explore.
The darker green region ({ > ¢ > 0) contains the f, . that will be
used in specific bootstrap matrices.

and H, can be found by deriving the Heisenberg equation in
the Hamiltonian formalism,

2 o) = (a0 ) + (o] Do)
+ <l//(t)|A 6{//0_51‘)> (55)
~ irpolawo) + (5)
+ (w ()| (=) AHw (1)) (56)

_ <§> + i(Hy (1) Ay (1))
— i{y(1)|AHy(1)). (57)

Here y(¢) belongs to Hilbert space H, the Hamiltonian H is
self-adjoint with domain D(H) and A is a general operator.
If we assume that y € D(H) N D(A) then (Hy (1)|Ay (1)) is
well-defined. However, this assumption does not cover the
third term in (57), since it requires Hy € D(A). If [A, H] is
well-defined in all of H, then we may make replacement
AH = [A,H] + HA. Substituting this in, and using that

(Hy (1)|Aw (1)) = (w(1)|H Ay (1)), we find

GO0 = (5) 4 it 0l )
SO - MAp(). (58)

Therefore, we see that the Heisenberg equation receives a
correction owing to the subtleties of the operator domains.
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It indicates that when computing the expectation value of a
commutator there is an additional contribution,

<l//| [H’ Ah//>t0tal = <W|[H’A]l//>reg + -AA' (59)

Here, (y|[H,A]y),, is the standard algebraic commutator
expectation value, where again, [H, A| is defined in all of
‘H, while the additional piece

Ay = (w|(H" - H)Ay), (60)

is known as the anomaly.

While we do not have a symmetry, we do have the
commutator ([H, O,]) = 0 (where O, = $°Z¢), which may
suffer anomalies. Since this is the only commutator needed
to derive the recursion relations, we check if it receives
anomalous corrections by calculating Ay . Additionally,
the states used in the anomaly calculations are energy
eigenstates y, hence we use notation (y|Ay) = (A). Using
integration by parts, the result for anomaly Ap, is
|

ao—+ 1

Ao, =i?z(1-2) (w(Z)* PR

1

(@)= @) (o))

(61)

Unfortunately, we could not show that Ay = 0 using the
boundary conditions alone, but by employing the explicit
energy eigenstate solutions, y,(z) =y, (z)* =v2n+ 1
P,(2z—1), it can be argued to vanish as follows. Since
any derivative of y,(z) results in another polynomial, the
contents of the large bracket in (61) will be a well-behaved
polynomial in z, for any n. The factor of z(1 — z) outside the
bracket then ensures that the total expression vanishes in the
both limits z — 0, z — 1, therefore A, = 0.

As an aside, by following the alternative derivation of
in Appendix A, it is possible to show that this 1d relation 1s
anomaly free using only the boundary conditions. The
derivation utilizes two commutator equations, namely

(H.0,(2)]) =0.  ([H.0.(8.2)]) =0. (62)
with operators O, = —4({-1)2'(1-Z) and O, =

SZ¢(1 — Z). Therefore, by inserting these operators into
(60), we compute Ay and Ap_ using integration by parts

Ao, = %i(C = DET (1 =2)(1 =1 =) + 221 =2 (W' (2) v (2) —w(2)'v'(2)lo. (63)

Ao, =i(=5" (1= 2)[Ez + C(1 + 2= (1 = 2)]lw(2) P = 24 (1 = 2)* |y (2) |
— 25 (1= 2)(1 =241 = 2))y(2)"y/(2) + 25 (1 = 2)(z = {(1 = 2))y/ (2)"w(2))]o- (64)

Note, we have substituted the Schrédinger equation
into (64) to remove the second derivatives. Providing7
{>1 and that evaluation at z =0, z =1 is exchanged
for limits z — 0, z — 1 such that the boundary conditions
of (16) can be applied, we find that Ap = Ap, = 0.
Here we have used that w, w* is finite according to
Egs. (8) and (9). This reconfirms that the 1d recursion
relation in (Z¢)-type moments does not receive anomalous
corrections.

D. Bootstrap matrices

This section details how the bootstrap matrices are
constructed using the recursion relations, as well as the
differences in the bootstrap operator ordering.

"Note that ¢ > 1 here simply ensures the operator @, contains
no negative powers of Z. This is also relevant to the derived 1d

recursion relation; under this choice, a relates upper octant
moments.

I
1. One-operator matrix
The 1d recursion relation in (Z¢) moments, g, provides

the means to build a Hankel bootstrap matrix, B;;. We
choose the bootstrap operator to be

O=> cZ-, (65)

¢>0

with ¢, €C. Given Z = Z', the elements of B, defined
from <OTO> = ZC,C’ZO CC(B]d)C,C/CC/ are

(Bia)ey = ((2°)12°) = (Z5¢) = feip. (66)

The size of the matrix is hence determined by the order
of the moments. For maximum index values ¢, and £, we
must obtain moments up to fr - . The matrix size
parameter is also defined in terms of these values,
K = Cmax + 1 = Chax + 1. As an explicit example, choosing
(£,¢')e{0,1,2} (ie., K=3), we provide B;; below

populated with values obtained from the ﬁ equation of (48),
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1 1 3E-2
2 2(4E=3)
| 3E-2 5E-3
Bia = S s Ty . (67)
3E-2 5E-3 SE(7E-30)+72
2(4E=3) A(4E-3) S(AE-15)(4E-3)

where we have set f; = 1 as the chosen normalization. Given
that Z is Hermitian, B, is real and symmetric and we also
note that the matrix contains a single initial data, E. We
explore the results of bootstrapping B, at different matrix
sizes in Sec. IV.

2. Two-operator matrix

The 2d bootstrap matrix constructed here, 5,,, features
expectation values of products of S and Z operators. These
two-operator type matrices have previously been encoun-
tered in the literature, see [9,14,23]. As such, we use the
following bootstrap operator:

0= c,c57(2(1 - 2)F. (68)

0.0>0

where ¢, . € C. The choice of O comes from an educated
|

¢ ¢

guess by first looking at the Hamiltonian which contains
Z(1 = Z) and secondly looking at Pdschl-Teller potentials
as seen by changing coordinates.® Since (OTO) > 0, we
express the corresponding elements of B,,; as

(Baa) (0.0).(orc) = ((S71Z2(1 = Z)]9) 787 [2(1 = 2))¥)
([Z(1=2)]5(s°)'s7[z(1 = Z)F), (69)

such that B,,; > 0. Importantly, to evaluate this expression
we must take care since S is not self-adjoint and the
recursion relations only contain S, not S*. The following
lemma bypasses this issue.

“Dagger” Lemma. For f > a > 0, the following is true:

[Z(1=2))P(8)" = [2(1 - 2))’s". (70)

The proof of this lemma is provided in Appendix B. It
should also be noted that initial numerical checks of operator
O using the analytic solutions, encouraged investigation into
the proof of (70). Upon applying the lemma, using the
binomial expansion for (1 — Z)¢ and (1 — Z)¢ then applying
the McCoy formula [24], the element in (69) becomes

(Boa) iy oy = D D (-1 <l€> <i/> (<S”+”’ZC+C’+K+H>
=0

k=0 &’
min({+k,6+0")

+

(=i)* (o + )¢ +x)!

A=1

The rows of matrix B,, are indexed by the tuple (o, ()
and the columns by (¢’,{’). Another reason why O =
$°[Z(1 — Z))° is employed is seen from this binomial
expansion form of the matrix element: it is a sum of
foc-type moments, which can be readily found from the
recursion relations of Sec. IIT A.
|

Mo+ =D +x—2)!

<S¢7+6’—Azé’+§’+l<+x’—ﬂ>) . (71)

|

B,y can be built from any general combination of
0,(,0,{, providing the Dagger lemma is satisfied and
the appropriate restrictions in the (¢,() space are used,
according to Sec. III B. We choose to focus on a simple
subset of (o, {), constructing two matrices with the follow-
ing element definitions:

(Bra)w0). 0.y = Bra) 0.0y Torall L =o, '=d, 0,0 >0,
By w010 ¢y = Baa) (o) (wey  for all { =20, =20, c,0' >0. (72)
Explicit examples of B, and B}, at size K = 3 are given below,
(Bra)00).00)  (Baa)o0).1y  (Bra)00).22) ! 0 2E(E£S_—23))
By = Brdaaoo Badanany Bradaner | = 0 Ez((’izz_);)z 0 . (73)
(B/zd)(z.z),(om (BIZd)(2,2).(1,1) (B/Zd)(2,2),(2,2) E(E=2) 0 3(E(E—4)(E+2)(E+14)+96)

2(4E-3) S(AE—15)(4E—3)

¥In [8], they analyzed a system with Pschl-Teller potential using coordinates proportional to the p coordinate in Sec. I1 D, to develop a 1d
recursion relation. Their relation focussed on moments {sech’ (p/2)) which, under the coordinate transformation of (19), are proportional to
([Z(1 = Z)]¥). Therefore, extending this idea by introducing the simplest dependence on S, we arrive at O = Y, 5 ¢,/S°[Z(1 = Z)]°.
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(B2) 0000 Bra)woni2 Bra)wo).24

2z

Vo= Ba)ao.00 Brdao.az (Braao).ea

/!

(B/zl(z)(z.4)4(0.o) (Blzld)(z.4).(1,2) (Bz(z)(2.4)4,(2.4)

1 0

SE*—52E3 +20E?+512E-480

= 0 16(4E-35)(4E—15)(4E-3)

E(5E*-68E>+236E—-240)
16(4E—35)(4E—15)(4E-3)

0

3(77E8 —4872E7 +46536 E° 42214656 E5 —49787 184 E* +286032000E3 +25484544 E> —2505572352 E+2299207680)

E(SE*-68E>+236E-240) 0
16(4E-35)(4E—15)(4E-3)

where we have set f), = 1. Note that these are not Hankel
matrices, as O contains both S and Z. The matrix elements
in both cases were obtained utilizing three of the recursion

relations; ﬁ EFP and BH Surprisingly, we see that although

this set of recursion relations use initial data {E, f ; }, the
matrices themselves only depend on the energy E. This is
due to cancellations of the f;; moments in the matrix
elements. This makes the matrices real and symmetric: a
fact that does not necessarily hold true when initial data f ;
is also present.

3. Alternative two-operator matrix

We can generate an alternative bootstrap matrix, l~3’2d, by
switching the operator order from (O'O) to (OO"). In
doing so we restrict the range of the bootstrap operator O
further,

O= Y c.:S1Z(1 - 2)F, (75)

0,LEQ

where ¢, - € C. Here,’ Q refers to the positive upper octant:
Q ={{>02>0}. This restriction is applied since the
expectation values appearing in the BZd matrix elements
are shown to be finite in this region. By contrast, in the
positive lower octant, (¢ > ¢ > 0), they can blow up. The
proof of this statement may be found in Appendix C, where
|

1024(4E—143)(4E—99) (4E—63) (4E—35) (4E—15)(4E-3)

(74)

we insert a complete set of energy eigenstates y,, to show
that the finiteness is linked to the Wigner (3) coefficient
and its selection rules. We provide explicit examples of
positive, lower and wupper octant -calculations in
Appendix D, to show how these infinities arise. Also,
depending on the insertion point of the complete set of
states (i.e., between which operators they are inserted),
infinities can arise in the both upper and lower positive
octant cases. However, by applying regularization, only the
upper positive octant appears to yield consistent outcomes,
as can be seen in Appendix E.

From the O defined in (75), the alternative 2d matrix,

B,,, therefore has matrix elements

(Baa) 00). () = (8°12(1 = Z)]5(87[2(1 = 2))*)")
= (§°1z(1 = 2)[*[z(1 = Z)]* (57)")
= (§°[z(1 = 2)]*¢'57), (76)

N

where the Dagger lemma (70) was once again employed to
remove the T from (S”J ), and thus, ¢ + ¢’ > ¢’ must be
enforced throughout the calculation. Using the commuta-
tion relation, binomial expansion and the McCoy formula
we bring it to its final form, where like 53,,, each element is
a sum of f, --type expectation values,

€Y , min(o’,{+4k) N4/t y
~ - x é’+€ o4 ¢ g/ K <_l) <O' )'(C"’C +K)' o+-6'—) C C/ K—1
Bod) ooy =3 _(=1) < i} ><S toze ey Y ﬂ!(a’—ﬂ)!(é’—l—é"—l—}(—ﬂ)!s tol-AziH =l o (77)

k=0 A=1

We establish two unique matrices, 35, and /B3, which are defined by applying the same subsets of indices as presented in
(72) for B,,. These (o,¢) choices are in Q and also ensure the lemma index constraint is automatically satisfied. Taking
matrix size parameter K = 3, the explicit matrices are given below

?As a note of clarification, the operator indices ¢ and { appear in two different contexts. The first instance is on operator S°Z¢ which
appear via f,  in the recursion relations. The second instance is on the bootstrap matrix operator S°[Z(1 — Z)]*. In the second instance,
since the bootstrap matrix elements can be decomposed via the McCoy formula into sums over f, ~type moments, see (71) and (77),
then these elements also follow the same restrictions that apply to the first instance. The additional restrictions of (72), which are used in
both (OTO) and (OO") cases, hence apply to the associated S that appear and this is demonstrated by the darker green region
(¢ >0 >0)in Fig. 1.
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One-operator bootstrap results

—

——

30 40 50

E

FIG. 2. Matrix size parameter K vs energy E for the bootstrap matrix ;. Black dashed lines indicate energy eigenvalues, while red
crosses indicate those E values which produce singularities in the matrix elements. At larger K, we see more bands forming, revealing
localized regions around the energy eigenvalues. The plot also indicates the results for small negative E.

(B 24)(00).000) (B'M)(o,om.l) (B/Zd)(o,o),(z,z) 1 0 %
By = | Badanoo Brdanan Buanea |=| 0 ey 0 , (78)
Braenoo Brdezan Braeaeo M0 i
(B5y) (0,0).(0,0) (By) (0.0),(1.2) (B,) 0.0).(2.4)
By, = (N/zld)(l_z),(o,o) (Blzld)(m),(l,z) (B/zld)u,z),(z,‘;)

1 0
_ 0 E*(SE>—64E+180)
- 16(4E-35)(4E—15)(4E-3)
E(SE®—68E>+236E—240) 0

16(4E—35)(4E—15)(4E—3)

where we have set fyo = 1. The same three recursion
relations @ [FP and EE are used to generate all element

moments, and the initial data is once more just the energy
E, due to f;; cancellations.

IV. RESULTS

With the bootstrap matrices constructed, we now test that
they are positive semidefinite on a selection of initial data.
For '5111 five types of matrices considered, {Bi,, B,

Y Bhy, By}, the initial data'® is simply the energy E.

'"To reiterate, the matrices generally depend on {E, f11}, but
due to cancellations of f; ; in B,, and B,,, the energy is the only
initial data in the discussed cases.

(~/2/d)(2,4).(0.0) (Blzld)(z.@,(l,z) (B/zld)(z,4),(2,4)

E(5E3—68E>+236E-240)
16(4E—35)(4E—15)(4E-3)

0 , (79)

21(E=2)2E2(11E*—940E3 127948 E2—340224 E+1425600)
1024(4E—143)(AE—99)(4E—63) (AE—35)(4E—15)(4E—3)

|

Given this one-dimensional search space, we scan
over energy values in the interval E € [0, 50|, with a step
size of AE = 1072 for matrix sizes 2 < K < 8 (for K x K
bootstrap matrices). In Appendix F we present a self-
contained description of an alternative, semidefinite pro-
gramming search method that uses a so-called slack
variable.

A. One-operator matrix

For B, the results are presented in Fig. 2, plotting
matrix size parameter K vs energy E. Here the black dashed
lines indicate the energy eigenvalues of the model, which
are E, =n(n+1) for n =0,1,2... and calculated using
the analytic solution integration of (w,|H|y,). The red

126002-10



QUANTUM MECHANICAL BOOTSTRAP ON THE INTERVAL.: ...

PHYS. REV. D 109, 126002 (2024)

Two-operator bootstrap results

1 ; : ; :
7 % ; :
6 FH————1 % 4
K s———t %
LR
3
21+
0 10 20 30 40 50

FIG. 3.

E

K vs E for matrix B),. The plot shows that the bootstrap fails to constrain the energy eigenvalues of the system. Even for

K = 8, the bands remain large, with a performance worse than the 3, case. Red crosses represent matrix singularities, and black dashed

lines are energy eigenvalues.

Two-operator bootstrap results

8 - —H——H | 4 4 4

7 HE—H——H " % % %

6 FH-—H——4 n 4 4 4
K s —H—— : 4 4 %

4 HE—— : 4 4 4

3 4 4 4

2t

0 10 20 30 40 50

E

FIG. 4. K vs E for matrix B5,. The bootstrap performs poorly in isolating the energy eigenvalues. We see slight improvement
compared to the B}, case in Fig. 3, but the band size reduction with increasing K is still minimal.

crosses denote singularities'' in the matrix at a given K.
The primary result for this matrix is that the allowed
energies E are confined to bands. The figure shows that
bands for larger energy eigenvalues emerge as we increase
K. Although some bands shrink as K is increased, it is
possible that they remain finite at K = oo. For example the
bands around E = 2 decrease between K = 3 and K = 8§,
but slowly relative to the size of the matrix.

"Note, the proof in Appendix C of finite matrix elements
applies to eigenstates and therefore finiteness is only guaranteed
at the energy eigenvalues.

B. Two-operator matrix

Here the results of the bootstrap for matrices 535, and 135,
are presented in Figs. 3 and 4, respectively. The black
dashed lines refer to energy eigenvalues and red crosses to
matrix singularities. In both cases, the bootstrap performs
poorly, unable to constrain the energy eigenvalues effec-
tively. The BB}, performs slightly better, with smaller bands
appearing compared to B}, for example at K = 8 around
E = 2. For larger energies, these B,, cases provide almost
no restriction on the energies. This is seen by how close the
vertical black bars (ends of the bands) are to the singular-
ities and for E > 20, the bootstrap essentially rules no
energies out.
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Two-operator bootstrap results, alternative ordering

X x X {_

30 40 50
E

FIG. 5. K vs E for matrix B’zd- The colored bands/black crosses correspond to the regions/points in the energy space which make
B3, = 0. The black crosses are the most significant result, indicating that the bootstrap is capable of identifying a number of energy

eigenvalues exactly.

Two-operator bootstrap results, alternative ordering

8t %~ 3 x P x ® x X K x *
Theex - x x x b
61 % * x * {__| |__|
K s x x H— -l | |
s | S ' i
3 b [ f t
21 %
0 10 20 30 40 50

E

FIG. 6. K vs E for matrix B,. Here we find that not only are a set of energy eigenvalues identified exactly for a given K, but larger
values of E are also constrained into bands. For every integer increase in K, we appear to obtain an additional energy eigenvalue.

C. Alternative two-operator matrix

Figures 5 and 6 display the most significant finding of
the paper, corresponding to the bootstrap results of matrices
B, and Bj,. In both cases, the bootstrap is capable of
identifying the lower-lying energy eigenvalues of the
Hamiltonian exactly, up to the chosen step size. Figure 5
shows that at a given K, a certain number of energy
eigenvalues are precisely located and are indicated by black
crosses. Then, at energies larger than a particular singu-
larity, a single energy band remains. Figure 6 associated to
B/z’d, locates the same energy eigenvalues, but also con-
strains a selection of the larger energies into bands. The
number of energy levels found exactly in both cases,

appears to be equal to K — 1. This alternative ordering
therefore greatly outperforms the ordering encountered in
both Bld and 82(1.

D. Obtaining exact energy levels

Here we study the eigenvalues of the Blzd matrix, to help
understand the emergent exactness'> of E. Positive semi-
definiteness is equivalent to its eigenvalues, 4;, satisfying
4; >0, for all i =1,..., K. We compute 4; directly using
the characteristic equation, det (85, — AI) = 0, and solve

2We note that the authors of [4] show that the bootstrap can
identify eigenvalues exactly in the harmonic oscillator.
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Two-operator bootstrap eigenvalues, alternative ordering
25 -

” /
1.5
1.0 / A
)\7, // )\2
0.5 P 5
3
0.0 p— ~
-05
-0 2 4 6 8
E
FIG. 7. Matrix eigenvalues A; vs energy E, for the alternatively

ordered bootstrap matrix, B5;, at K = 3. Only at the precise
energy levels E =0, 2 and in band E > 15/4 are all matrix
eigenvalues non-negative. Red dashed lines are singularities in
the B), eigenvalues and black dashed lines are the energy
eigenvalues.

the constraints analytically. Using K = 3 as an example,
the solutions of these positivity constraints are £ = 0, E =

2 and E > 15/4. The product of the B'M matrix’s [see (78)]
eigenvalues is captured by the determinant,

E*(E—2)*(4E +21)

d t B/ == )
P2 T 6(4E — 3)3(4E — 15)

(80)

and to provide a visual overview of the analytic results, we
plot the corresponding eigenvalues vs energy in Fig. 7. In
the interval E€[—1,15/4] there is always at least one
negative eigenvalue, except at E = 0, 2. These are precisely
the first two energy levels of the system. This coincides
with the findings in Fig. 5, which were obtained numeri-
cally. We have checked the determinant of this matrix up to
K = 12. As in (80), the energy eigenvalues of the system
appear in the numerator of the determinant.

We tested the positivity of both B, and 15, directly, up
to K = 5. The exact solutions to these constraint equations
are the energy eigenvalues £ = 0, 2, 6, 12 in both cases.
The final single band behavior of B3, and the multiple-band
behavior for the B’Z’d matrix are also solutions, in agreement
with the step search. In summary, for B,, at the finite K
considered, the first K — 1 energy eigenvalues are fixed
exactly by solving constraints 4, > 0, for all i =1, ..., K.
While a general proof remains to be found, the analysis
hints that this result should hold for arbitrary K.

V. CONCLUSION

In this article, we have explored a quantum mechanical
model defined on an interval and have shown that the
bootstrap is capable of fixing its energy eigenvalues
exactly. This adds to a number of examples in the literature,
see [1-5,8-14], where numerical approximations

constrained the expectation values. We began by construct-
ing a self-adjoint Hamiltonian, H = SZ(1 — Z)S, where S
and Z are operators with [S, Z] = i. We found a set of 2d
recursion relations on moments (S°Z¢). The system is
solvable which proves beneficial in showing the recursion
relations are anomaly-free. A set of bootstrap matrices were
then constructed using these relations, by considering the
positivity of (OTO) and (OO") where bootstrap operator O
is a linear combination of operators Z°, or composite
S°[Z(1 = Z))¢. In the first case, we denote these by Oy,
and in the second by O,,.

Importantly, S is not self-adjoint, therefore the calcu-
lation of <(92d(’)§d> requires some care. In a particular
octant of the (o,()-plane, see the dark green region in
Fig. 1, the Dagger lemma (70) guarantees that S can be
treated as a self-adjoint operator. Outside of this octant, we
are forced to insert a complete set of states to evaluate the
expectation values. The result can be a divergent sum,
which after regularization, depends on the position of the
insertion, thereby making the <(’)2d(9;d> ill-defined, see
Appendix E.

The positivity of (O] 4O14) confined the possible energy
eigenvalues into bands. We note that as in [12], one can
consider the positivity of (Z"(1 — Z2)"O! 0,,). We have
tested m, n =0, 1 and did not find qualitatively better
results. The positivity constraints of <(’); 1O>4) performed
poorly, unable to confine the eigenvalues as strongly as the
1d case. Quite unexpectedly, the positivity of the alter-
natively ordered <(’)2d(9§ ,) was able to identify an increas-
ing number of energy eigenvalues exactly, for increasing
matrix size. This same behavior was encountered in Table 3
of [4]. Here the authors studied the harmonic oscillator and
showed that by using bootstrap matrix constructed from
O =3 % gc,a", where a=_5(X+iP) is the ladder
operator. This matrix turns out to be diagonal, and
upon applying a recursion relation, we can exactly deter-
mine the energy eigenvalues. Perhaps a similar approach
for the current system would also explain the emergent
exactness.

The outcome of the bootstrap depends heavily on the
choice and ordering of the bootstrap matrix operators.
Understanding which choices are optimal would be ben-
eficial. It is possible this particular model is special and
therefore perturbations of the system could provide more
intuition about the bootstrap. Surprisingly, the (SZ)
moment does not feature in the bootstrap, dropping out
of the positivity calculations. Understanding these cancel-
lations may provide insight into why the bootstrap pro-
duces exact results.

A shortcoming of the current paper is the calculation of
anomalies, where we used the analytic solution to show that
they vanish. This may not be true for the general boundary
conditions of Sec. II E and such considerations are left for
future work. Another possible research avenue is to better
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understand the finiteness argument in Appendix C, poten-
tially utilizing the underlying supersymmetry of the system.

Using the coordinate transformation in Sec. II D, it is
possible to recast the calculations in terms of canonically
conjugate coordinates p and u = id,. One can then con-
sider bootstrap operators of form O = u™sech”(p/2)
tanhk(p/Z), for integers m, n and k=0, 1 and repeat
the same tests for positivity. This may lead to interesting
results.

In closing, we have shown that the bootstrap is able to
identify the energy eigenvalues of the system exactly upon
applying a finite number of positivity constraints. We look
forward to revisiting the issues and challenges discussed in
this section in our future endeavors.
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APPENDIX A: ALTERNATIVE DERIVATION
OF THE (Z¢) RECURSION RELATION

The recursion relation in {§Z§ ) moments can be alter-
natively derived as follows."™ To begin, we restate the
Hamiltonian,

H=SZ(1-2)S=8Z(1-2)+iS(2Z-1), (Al)
the operator S = id, and the commutator [S,Z] =i. We
introduce three operators; O,(Z), O.(S,Z) = SO,(Z) and
0,4(Z) that feature in two commutation equations and an
energy equation,

([H,04(2)]) = 0, (A2)
([H,0.(8,2)]) =0, (A3)
(HO4(2)) = E(O4(2)). (A4)

The motivation for this initial setup is based on similar
calculations seen in the literature, for example [1,10].
Starting with Eq. (A2), using the commutator to order
all S operators to the left, we obtain

13Note, the result from deriving this recursion relation is valid
provided there are no anomalies, as discussed in Sec. III C.

([H,04(2)]) = 2(5[S, 0u(2)]2(1 - Z))
+ (I8, 04(2)], 512(1 = 2))

+i([S.0,(2)]2Z=1)) =0.  (A5)
Similarly for Eq. (A3)
([H.0.(8.2)]) = (S’ (Z)) + (Say(Z)) = 0. (A6)
where
a1(2) =2[5.04(2)12(1-Z) + [Z(1-Z).5]04(Z), (A7)
x(Z)=[[5.0,(2)].512(1-2)
+iRZ-1.510,(2)+i[S.0,(2)](2Z-1).  (A8)

As we want to create a recursion relation in Z alone, we
must eliminate the expectation values of form (S?A(Z)) and
(Sg(Z)), for the arbitrary functions h(Z), g(Z) that may
appear. By defining

0u(2) = (2(1 = 2))" ' (2). (A9)

we can insert this into (A4) to obtain

($°Z(1 = 2)04(2)) +i(S(2Z = 1)04(2)) = E{04(Z)).

(A10)
which, after expanding out, becomes
($%a)(2)) +i(S2Z - 1)(Z(1 = Z))"'a,(2))
= E((Z(1-2)) o (2)). (Al1)

We now substitute Eq. (All) into (A6), to remove the
(S?a,(Z)) term,

E((z(1-2))"a(2))
+{(S(an(2) —i(2Z -1)(Zz(1 - Z))'a1(2))) =0,
(A12)

where we have grouped the terms that S acts on. We are left
with two equations, (AS5) and (A12), containing terms of
(Sg(Z)) form. To eliminate these terms, we look to
substitute one equation into the other and can do so,
providing that the operators S acts on in both equations
are equal. Hence,

205, 0,(2))2(1 - 2)

=a(2)-i2Z-1)(Z(1 -2)"'ay(Z).  (Al3)
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Acting on an arbitrary wave function with each side of this
operator equation, produces a differential equation in
functions O, (z) and O,(z)."* This equation is

1 '
(m - 2) Op(2) + (22 = 1)0),(2)

+z2(1 = 2)0}(z) = 2iz(1 — 2) O, (2). (Al4)
with O'(z) = 0,0(z). Setting"
Oy(z) = (1 = 2), (Al5)

produces a differential equation in O,(z), with solution

0,0) =~ (=D (1=, (Al6)

where the integration constant has been set to zero. We then
promote these functions of coordinate z, back to functions
of operators,

i

0y)(2)=24(1=2), 0,(2)==5(-1)Z"1(1-2).

(A17)

Therefore, under these choices, the operators multiplying S
in (AS5) and (A12) are equal and we proceed to substitute
(A12) into (AS) giving

- E((Z(1 = 2)) a1 (2)) + ([[S, 0u(2)). S|Z(1 - Z))
(]S, 0,(2)](2Z - 1)) = 0. (A18)

Inserting O,(Z) and O, (Z) from (A17) and evaluating the
commutators reveals the final recursion relation,

H:(C—1fea+ (-1 (2B - C+Q) fon

(A19)
+((CP—4E-1) f¢ =0,

where f; = fo, = (Z¢), with general 2d moments defined
as f,r = (S°Z%). This agrees with the original result in
Eq. (48) of Sec. Il A, and the process outlined here can also
be repeated to identify the O-O recursion relation exclu-
sively in (S°) moments, seen in (50).

"“Note that a,(Z), a,(Z) are functions of the operator O, (Z).

5This choice of Oy, leads to a final recursion relation that is
expressed in terms of (Z¢)-type moments. The motivation for this
form of O, was an educated guess, based on the form of the
Hamiltonian [containing Z(1 — Z)] as well as the aim to relate
(Z)-type moments.

APPENDIX B: PROOF OF DAGGER LEMMA

In this appendix we provide the proof of the Dagger
lemma introduced in Sec. III D 2.
“Dagger” Lemma. For f > a > 0, the following is true:

[Z(1=2))P(s)" = [2(1 - Z2))’s". (B1)

Proof. For a = 0, the statement is trivial so the following
considers a > 1. Take ¢ and y as arbitrary wave functions
and calculate

(S*(2(1=-2)Pply) - (¢l [2(1 - 2))’Sy)
N Al ([S2(1=2)Pp(2)]" = p(2)"[2(1 - Z)PS*)w (2)dz.
(B2)

Then when (B2) vanishes, it implies Eq. (B1). Integrating
(B2) by parts, and equating to zero gives

a=1 —1—x 1

Y () @) 1 = ) (@) =0,

k=0 0
(B3)

The aim is to show that, for an appropriate choice of a and
p, each term in the above sum contains sufficient factors of
z(1 — z) such that when we apply the boundary conditions
[see Eqgs. (14) and (16)], they vanish. To start, we set
62“) w(z) = %y/(z) and apply the general Leibniz rule'® to

rewrite Eq. (B3) as

a—1 «
DB (ﬂ) () - (1 - )Y

k=0 =0

Ty () = 0. (B4)

Factors of z(1 — z) are introduced either by the deriv-
atives of the wave functions w(z) and ¢(z)*, or by
derivatives of [z(1—2))f. 0¥ " ™y(z) and o V(2)*
can be written in terms of zeroth and first order derivatives
by applying multiple derivatives and substitutions of the
Schrodinger equation. We have that

Oy (z) =" (2) = [2(1 - )] (22 - D' (z) — Ew(2)).
(BS)

and hence each subsequent derivative introduces another
[2(1—2)]"" factor, e.g., for a—1—x>2, o ™y(z)
introduces [z(1 — z)]7*"**2. Therefore, in order to apply
the boundary conditions, the exponent of the z(1 —z)

factor in the summand should be the sum of the derivative

“Defined by ol (¢(2)"[z(1 - 2)IF) = 5o 5o Vep(z)70
[z(1=2)]~.
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exponents'’: (a—1—x)+(k—A)=a—1-1 We already
have a contribution of [z(1 —z)}/~* from the o¥[z(1 —
7)) term, hence f—A>a—1—-1= > a— 1. We note
that this counting argument is only sufficient when there is
at least one derivative present on y or ¢b*. For the term in the
summand that has no wave function derivatives, the sum of
derivative exponents is zero and hence the previous
counting argument implies f — 1 > 0. However, this fails
at f—1=0 as the wave functions do not necessarily
vanish at the boundaries. To ensure the summand term does
vanish, we must introduce an additional z(1 —z) factor
which leads to the strongest constraint, § > a. By taking
p > a, every term in (B4) individually vanishes and there-
fore the lemma equation (B1) is satisfied. =

APPENDIX C: FINITENESS OF MATRIX
ELEMENTS

This section analyses the finiteness of 2d bootstrap
matrix elements. This involves placing restrictions on the
indices of expectation values of form (S°[Z(1 — Z)]°).
These restrictions also apply to the f,, = (S°Z¢) moments
since these comprise the matrix elements, see Eq. (77).

The 2d bootstrap matrix BZd consists of elements,

(Baa) ) ) = (S7IZ(1 = 2)P7 (7)), (C1)
and here we show that upon taking >« and f' > o/,
such elements are finite. Note that throughout this
section, we explicitly use the energy -eigenfunctions
w,=+2a+1P,(2z—1) = 2a + 1P,(z). This is to
emphasize that this proof relies on the specific analytic
form of the solutions.

To begin, consider the B,, bootstrap matrix element,
evaluated on eigenfunction v,

(Bad) apy (@) = WalSUZ(1 = Z)PH (S9) )

=) WS Z(1 = 2)/lw.)
c=0
<z -2V () w).  (C2)
where a complete set of energy eigenstates » % [w.) (w,|
has been inserted centrally. To show that (C2) is finite, it
suffices to show that at a chosen a,a, 8, ', 5/, the vectors
indexed by c,

Iga,a,/)’) _ <l//a|S“[Z(1 - Z)]ﬁ|Wc>’

T = (20 - 2P () ). (C3)

""This ensures there are enough z(1 — z) factors that even the
@'(2)*y'(z) terms that appear, vanish under application of the
boundary condition.

only have a finite number of nonzero components. Noting
that since Z&%# = (Z¢“")*, then providing we apply the
same condition between o and ' as we do between a and

B, then we need only show Z'“*? is finite. We start by
exchanging the derivatives onto the y,(z) using repeated

integration by parts,

7) — Gy, 5°(2(1 = 2) ) (C4)
=" A @0 (- DPu)de  (CS)
a—1 1

=i (= 1)k (0P, ()0 ([2(1 = 2) P (2)
k=0 0
+ (—i)“ /0 1(0§('>wa(Z))[Z(1 -2y (z)dz  (C6)
= ()" /0 1(0§a>wa(Z))[Z(1 - )Py (2)dz  (C7)

= (=)*/(2a +1)(2c + 1)

x /0 1 (0P, (2))[z(1 = 2)IPP,(2)dz, (C8)

where again, P,(z) = P,(2z — 1). Importantly, since y,
and . are polynomials, the boundary term sum in (C6)
will vanish, providing that f > a. This inequality ensures
there are sufficient factors of z(1 — z) in each term so that
when evaluated at z = 0, 1, they all vanish individually.18
Binomially expanding (1 — z)” gives

B
.
Lo = S 2k (P ek )
-0 =Y 0 (;): (©9)
and by using
P =2-1=:=3(1+P(). (CI0)
we have
p A\ [1 Ptk
—_\F = _1)k _
-0 =3¢ () [0+ Pi)
8 ftk I\AH (BN (B4 -
— Y Pl f’
S (O
(C11)

18Note, for a = 0, we do not require this process—there are no
derivatives, so no boundary terms and the integrand will simply
be a well-defined polynomial in z.
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where (1 + P;(z))#** has also been expanded. To evaluate ~ Where
(Pi(z))Y we use the Legendre polynomial product

rule [25,26] m n £ 1 5
wmae= (5 0 o) = | Pr@PsP 0]
B B min s w2\ 2 _ ’ 0 0 0 0
P,(2)P,(2) = 20+ 1)Py(z
Oh= 3 (g o) B R cis)
m—+n B
= Z (Wine)* (26 + 1)Py(2), (C12) is the Wigner (3) coefficient. Applying the rule multiple
£=|m—n| times gives general formula,

Po(z)v for=0
(Pi(2))" = P\(z), fore=1 (C14)
Hf:zpif(z)zl:’l]ﬂ (Wi, )*(2i,+1) for£>2,

i=li,_—1|

I
where ;=1 1in the ¢>2 «case. Note that integer less than or equal to (a —a)/2. V4_gom IS 2
(P1(2))° =1 = Py(z). So, we can cast [z(1 —z)]/P.(z)  recursion coefficient and can be obtained from formula,
from the (C8) integrand in terms of multiple sums, over the
product of two Legendre polynomials by substituting (C14) a+2m (a 1) (a—m)m(a— ) m

into (C11) and multiplying by P.(z). The last term in the — y,_4_0,, = (2m)2’” (a- %)ﬂ

integrand to consider is aﬁ“) P,(z) which can be evaluated"’

(see [27]) as e (a2
d*P,(z) (a=a)/2] = ))u Ya—a—2js (C16)
IP,(2) = dz“a —a Z Vaca—amPaca—om(2),
m=0

where (x)2 represents the falling factorial. Combining these
component expressions together, the full formula for
Ig‘”’»ﬁ)

(C15)

with the floor expression, | (a — a)/2], meaning the largest
|

s~ o TS S (O () S e [ Bt

=0 =0

4 i_1+1
8¢0Po(2) + 641 P1(2) + (1 =8,0)(1 = b,1) H ( Z wii i (204 1))‘%(1)] P.(z)dz,  (C17)

r=2 ir:‘ir—]_]‘

may be written as

where Kronecker deltas have been introduced according to (C14). The equation is a set of sums over {k, £, m, i,, ..., i,} and
the key terms are the triple integrals of form,

1 - - a—a—-2m q c\? 5
/ Praam(2)Py(2)Pu(2)dz = — (Waoazmae)?: (C18)
0 0 0 0

where ¢ €0, 1,i,}. Using (C18) to exchange the integrals, the result is determined by the (3j) coefficients

PNote the factor of 2% appearing in (C15) due to the fact P, (z) is used instead of P,(z).

126002-17



LEWIS SWORD and DAVID VEGH

PHYS. REV. D 109, 126002 (2024)

TP = (=i)a/(2a + 1

L(a—a)/2]

Z Ya—a—2m

m=0

4
+(1—5f,0)(1—6f,1>H<

r=2

Importantly, since a — a — 2m and ¢ can only take finite
values (that is, these values are either chosen directly, or if
they correspond to sum variables, their limits are fixed and
finite), then w,_q_s,, 4. s nonzero for only a finite number
of values for c¢. This is due to the Wigner (3) coefficient’s
triangle inequality property/selection rule; w,_q_2y 4. = 0,
unless

la—a—2m—qg|<c<a-—-a-2m+q. (C20)
In turn, Z@*#) as a c-component vector for selected
(a,a,p) with > a, is restricted to have a finite number
of nonzero components, even though ¢ runs from 0 to oo.
Hence, ensuring that # > a and /> o means matrix B,,
consists of finite elements when the associated expectation
values are evaluated using the energy eigenstates. When
a=d and f = ' we see that this also implies the state
with index c¢ has a finite norm squared. B

The above proof considered the alternatively ordered B,,
and not B,,. Following the same arguments, the elements
of matrix B,, are finite with no additional relation between
a and f required. The reason for this is that in the 5,,
elements, the derivatives act directly on the chosen state y,,
and not on y.. This means no boundary terms appear as
there is no integration by parts. However, we still need to
remove the S operators from the matrix elements
to employ the bootstrap. For B,,, it means we must take
|

T8 = (y,[S2Z(1 - Z) )

1

=2/ (2a+1)(2c + 1)

1

—V/(2a +1)(2¢ + 1) [ Py(2)0.[2(1 = 2) P.(2)]

~ N

0

1

/a1 [Pu<z>az[z<1 B2

0

P,(2)02[z(1 — 2)P.(z)]dz

= (0:P4(2))z(1 = 2)P.(2)

+ [l @@ - 0P aa:)

S O

820Waca—2m0.c)* + 621 Waaermi )

i,_1+1

Z W%,ir,l,ir(zir + 1)) (wa—(x—Zm.ihc)z .

ir:‘ir—l_l‘

(C19)

f > a according to the Dagger lemma of Sec. III D 2, but
leaves freedom to choose other o and #' in this case. Such
choices are reserved for future investigation.

APPENDIX D: UPPER AND LOWER OCTANT
EXAMPLES

Here we provide explicit upper and lower octant exam-
ples of the c-index vectors discussed in Appendix C. Let us

concentrate on matrix elements (Bzd)(a, A p) Witha =,
p = p' for simplicity. Beginning with the lower octant, i.e.,
a> f,set a =2, f =1 such that

(B, .ol

=S WS Z(1 - Z2) ) e 201 - 2) (8 ). (DY)
=0

To show this leads to an infinite matrix element, it suffices
to show that

Ia21

<l//a|SZZ<1 - )|l//c>v (DZ)

has infinitely many nonzero components as a c-index
vector. These components are evaluated using integration
by parts twice as

1

+/01(0§I~3 (2))z(1 = 2)P.(2)dz
(Ds)

0

(Do)

The second boundary term that appears in (D5) will vanish for all states a due to the z(1 — z) factor [using knowledge that
P,(z) are polynomials for all a]. However, the remaining boundary term and integral generally do not vanish. The integral
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can contribute a number of nonzero components to the
vector, but as argued previously from (C8) onwards, the
number is finite. On the other hand, there are insufficient
z(1 — z) factors in the remaining boundary term to ensure
that every c-component contribution it provides, will
vanish. From the polynomial form of P, and P, for any
a, the vector Z¢*! can therefore potentially contain
infinitely many nonzero components. If we further specify
state a = 1, we can observe such a vector:

Ilvz'lz(o’ 6’ 0, 2\/2_], 0, 2\/§g O, 6\/57 )’
(D7)
|

T4 = (y ISZ(1 = Z)ly.)

=i\/(2a +

=iy/Q2a+ )(2c+1) {Pa(z)z(l - 2)P.(2)

Clearly in this case the boundary term will vanish for all a
and ¢ while again, as shown from Eq. (C8) onwards, the
remaining integral will contribute a finite number of non-
zero vector components for a chosen a. The resulting vector
with state a = 1 for example is

I"“:(—%’ 0, <=, 0, 0, 0, 0, 0, )
(D12)

APPENDIX E: REGULARIZING MATRIX
ELEMENTS

The examples of Appendix D showed how the vector
calculations imply that the corresponding matrix elements
can blow up, depending on octant choice. Here we discuss
the regularization of such matrix elements. In the lower
octant case, the vector of (D7) leads to an infinite sum for
the matrix element,

(Bzd)<2,1),(2,1) = ZIV’](IE’M)* (E1)
c=0
=0+36+0+84+0
+1324+04+ 180+ ... (E2)
=6 (2n—1)(1+(-1)"), (E3)
n=1

1 g
1)(2¢ + 1)/) P,(2)0.[z(1 = 2)P.(z)]dz

which continues indefinitely, owing to the infinite range
of c.

For the upper octant example, choose a =1, f =1, to
give element

0

([32[1)(1,1),(1,1) = WalSZ(1=Z) |y ) (w.|Z(1 —Z)STW/a)-
=0

c

(D8)
Following the same process as above,
(D9)
(D10)
1 1 -
) —/) (0.P,(2))z(1 = 2)P.(z)dz|. (D11)

[

where Z"? is as defined in (C3). By inserting a

regularization factor ¢~ into the summand and series
expanding about € = 0, the sum can be regularized,

- 12 6 4¢?
(Bad) o)1) =3 — = + 2-2¢+ 5 +0(&)
(Brzed )(2,1),(2,1) =2. (E4)
This was achieved by removing the ¢!, =2 divergences

and then taking ¢ — 0.

The proof in Appendix C and examples of Appendix D
considered a central insertion of the complete set of states.
Trialing other positions of insertion shows that the upper
octant c-vectors can also become infinite. However, it
appears that while the upper octant regularized matrix
elements are consistent with any state insertion position, the
lower octant elements produce different/inconsistent
results. For example, by inserting the complete set of
states in the a =1, a=1, f=1 upper octant case,
between SZ2 and (1 — Z)2S" instead, we have™

Baadonon = > 0115220 wel(1 - 27Ty} (ES)

*These calculations were achieved using the analytic solution
integration.
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1 196
44+ 2 21427

3T A
+39-45+51-57+63+... (E6)
1 196 &

=z~ 4+og+ (=1)"(6n + 15), (E7)

n=1

and upon regularizing the sum using the e~ factor as
above we obtain,

- 1 196 15¢ 3¢?
Ba)ayany =3 =4+ 5 — 9+ + 5 +0(),
(E8)
oreg 2
(BZd)(l,l).(l,l) = g (E9)

where we have taken ¢ — 0, in the last line. This result is in
agreement with the central insertion example (D8), as seen
by evaluating the inner product of Z(-1') from (D12):

© e (TEM)* = 2. Repeating a similar exercise for
the lower octant example a = 1, « = 2, f = 1, we trial an
insertion of form

(Bzd)(z 1).(2.1)

=3 IS 2w el (1 - 2282 ) (E10)
c=0

=0+ 36 — 540 + 3024 — 10800 + 29700 + ...

(E11)
= (=1)"(=3n+ 122 = 15n* + 6n°)  (EI2)
n=1
27¢  27¢* 3
ST El

where the last line applies the series expansion around e,
after inserting regularization factor e~ in (E12). Hence,
upon taking € — 0 we have
oreg o
(Bari) a1y =0, (E14)
which contradicts the previous result in (E4). Such out-
comes can naturally lead to inconsistent positivity calcu-

lations, which is why the positive upper octant was used for
the 2d matrix calculations.

APPENDIX F: SLACK VARIABLE METHOD

Here we provide an alternative method to search the £
space, referred to as the slack variable method. In the
context of the quantum mechanical bootstrap, this approach

was introduced in [13], and here we provide a brief
overview of the algorithm. Given the bootstrap matrices
are Hermitian by construction, to satisfy B> 0 it suffices
that the minimal (smallest) eigenvalue of B is positive. In
the context of optimization, the objective is to

maximize A, [B(E)]. (F1)

Here B is the K x K bootstrap matrix, and its eigenvalues 4,
withi =1, ..., K, depend on initial data E. If the optimised/
maximized minimal eigenvalue 4, is negative, the initial
data E is rejected. Equivalently, this optimization problem
can be phrased using a slack variable ¢

maximize t,

subject to  B(E) — 1> 0. (F2)
This is a semidefinite programming problem in linear
matrix inequality form, where the only initial/primal
variable is 7. In this description, at any given E the method
can always identify an optimal ¢ such that constraint (F2) is
satisfied. Since these optimal ¢, values depend continu-
ously on E, we can use this dependence as an indicator of
where the physical energies exist. Regions of E for which

> 0 indicate 5 > 0, and conversely, ¢, < 0 indicates
B # 0. This method is particularly useful for a large initial
data space, but as will be shown, it still performs well for
the single data E here, and supports the findings of the step
search approach.

We apply the slack variable method to the B;,, B5, and
BY, matrices, and comment on their results. Each figure
plots log |¢,| vs E for matrix sizes K = 2, 4, 6, 8, and use
step size 1072 and energy range E €[0,50] as before.
The energy eigenvalues of the system are displayed in the
figures as black dashed lines and the singularities of the
K = 8 bootstrap matrices are presented by red dashed lines.
Taking the log of ¢, allows the significant behavior to be
seen more clearly, primarily the inverted spike (using the
name assigned in [13]) behavior appearing around the
eigenvalues.

The B, plot is given in Fig. 8. A clear example of the
inverted spike behavior occurs for the K = 4, 6, 8 curves,
around E = 2 (second black dashed line), where an arch is
bound by two inverted spikes; the negative log |z, | values
with large magnitude. The width of the arch reduces with
increasing K, i.e., the spikes become closer together. This is
equivalent to a reduction in size of the band in the step
search. The K = 2 curve does not feature inverted spikes
around E = 2, since the local energy band could not be
constrained at this matrix size. The final feature is the sharp
spike at the singularities. B3, evaluated at energies close to
these singularities, yield large eigenvalues. This implies
that |r,] becomes (relatively) large in order to
ensure By; —t,1>0.

126002-20



QUANTUM MECHANICAL BOOTSTRAP ON THE INTERVAL.: ... PHYS. REV. D 109, 126002 (2024)

One-operator bootstrap result

5
0
5| |
_10f ’*/ _K=2
log |t B \ _K=4
—K=6
_20 | —K=8
-25
-30
0 10 20 30 40 50

E
FIG. 8. Plotting the log of the optimal slack variable 7, vs energy E for 3,,, at matrix sizes K = 2, 4, 6, 8. Pairs of inverted spikes

appear around energy eigenvalues. At E =2 we see the distance between neighboring spikes decrease from K =4 to K = 8,
corresponding to the shrinking of the energy band. The plot also indicates the results for small negative E.

Two-operator bootstrap results

0
| 1 _ K-
log [t.] _s K=
K=
K=
10
0 10 20 30 20 50

E

FIG.9. log|z,| vs E for B, at matrix sizes K = 2,4, 6, 8. The inverted spike behavior occurs close to the singularities (red dashed) and

shows that two neighboring spikes do not significantly approach each other as K increases. This demonstrates the difficulty in
constraining the energies for this matrix.

Two-operator bootstrap results, alternative ordering

0
.
-5
K=
-10
log [¢.] =
-15 K=
K =8
-20
-25
0 10 20 30 40 50

E
FIG. 10. log|t,| vs E for Blzld at matrix sizes K = 2, 4, 6, 8. This plot features inverted spikes that surround exact energy eigenvalues

e.g., K = 6at E = 30, 42, but also spikes that have joined together e.g., K = 8 at E = 30, 42. The converging of two neighboring spikes
implies the location of an energy eigenvalue. The K = 8 curve is able to find all seven energy eigenvalues in the range presented.
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The B, plot of Fig. 9 exhibits different behavior. The
inverted spikes predominantly appear close to the singu-
larities. Only at E =2 do the spikes become somewhat
more distinct; moving slightly away from these singular-
ities. This agrees with Fig. 4, showing how the bootstrap
performed poorly in constraining the energy into bands
compared to the B, case. _

Finally, we consider the B85, results in Fig. 10. Here we
see significantly negative log|z,| values occurring at
specific points in the E space. This is where two spikes
join and become indistinguishable (the arch between
becomes pointlike), converging on a single energy eigen-
value. For example, the K = 6 curve appears to show
joined inverted spikes at the first five energy eigenvalues,
followed by pairs of spikes enclosing E = 30, 42

corresponding to energy bands at this K. On the other
hand the K =8 curve finds all energy eigenvalues for
E€0,50]. The fact that log|z,| is negative with large
magnitude at these joined-spike points is indicative of a
t = 0 crossing, implying B5, >0 is effectively satisfied.

All numerics were generated in Mathematica [28] and
the slack variable calculations were obtained using the
“SemidefiniteOptimization™ function, with method option
“CSDP”. We minimized over —t, as opposed to the
alternative convention of maximizing over f. Since this
function is limited to machine precision, to identify larger
eigenvalues with a higher precision using the slack variable
search, alternative programs should be considered. As a
diagnostic tool however, it is sufficient for the present
workings.
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