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The universal eigenvalue distribution characterizing the Gram matrix of semiclassical ensembles of
black hole microstates is recognized as the Marchenko-Pastur distribution, which plays a prominent role
as the universal limit distribution in a large class of random matrix and vector models. It is proposed that
this distribution also universally determines the energy spectral density of black holes, which allows one to
construct a Krylov space for the time evolution of typical black hole states and calculate their state
complexity. It is checked that the state complexity growth at late times saturates Lloyd’s bound. Some
implications of the proposed spectral density for the generation of Hawking radiation and black hole
evaporation are discussed.
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I. INTRODUCTION

In a recent series of papers [1–3], the Gram matrix
hΨijΨji of a generic large family of black hole microstates
FΩ ¼ fjΨii∈H∶i ¼ 1; 2;…;Ωg was calculated for black
holes in asymptotically anti–de Sitter or Minkowski
spacetimes, with or without electric charge and angular
momenta, as well as for certain supersymmetric black
holes. The microstates were constructed using thin matter
shells in a heavy-shell limit and with the appropriate
charges, similar to Wheeler’s “bag of gold” configurations
[4]. Specifically, the heavy-shell limit served the purpose of
making the families as generic as possible and placing the
microstates at an infinite distance from each other in the
semiclassical phase space. Despite this, connected worm-
hole geometries with multiple boundaries generate non-
trivial overlaps in the gravitational path integral that
evaluates the moments of the Gram matrix.
In all cases discussed in [1–3], the Gram matrix

possesses a spectral density given by

DðλÞ ¼ δðλÞðΩ − eSÞIfΩ>eSg
þ eS

2πλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ − λ−Þðλþ − λÞ

p
Ifλ∈ ðλ−;λþÞg; ð1:1Þ

where

S ¼ A
4Gℏ

ð1:2Þ

is the Bekenstein-Hawking black hole entropy. IfEg denotes
the event indicator function,1 and the limits of the con-
tinuum part of the spectrum are

λ� ¼
�
1�

ffiffiffiffiffiffiffiffiffiffiffi
Ωe−S

p �
2
: ð1:3Þ

The rank of the Gram matrix, i.e., the number of nonzero
eigenvalues, counts the independent microstates within FΩ
and turns out to be dΩ ¼ min ðeS;ΩÞ. This result provides a
very strong statistical interpretation of the Bekenstein-
Hawking formula.
The distribution (1.1) is, apart from the normalization,

nothing but the Marchenko-Pastur (MP) distribution [5],

fðλÞ ¼ δðλÞ
�
1 −

1

c

�
Ifc>1g

þ 1

2πcλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ − λ−Þðλþ − λÞ

p
Ifλ∈ ðλ−;λþÞg; ð1:4Þ

with λ� ¼ ð1� ffiffiffi
c

p Þ2. More precisely, DðλÞ ¼ ΩfðλÞ with
c ¼ Ωe−S ∈ ð0;∞Þ. The significance of the MP distribution
stems from the MP theorem [5], which can be stated as
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1The event indicator function is defined by

Ifeventg ¼
�
1 if event is true;
0 if event is false:

Alternatively, one may write it in terms of the Heavyside Θ
function.
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follows. Let X be an M × N matrix with independent and
identically distributed real or complex entries. Then, in the
large N limit withM=N → c∈ ð0;∞Þ fixed, the asymptotic
eigenvalue distribution of the M ×M matrix A ¼ 1

N XX
†

(also called the Wishart matrix) is universal and given by
the MP distribution. See Ref. [6] for an example in the
context of random matrix theory. The MP distribution also
appears under the name of free Poisson distribution in free
probability theory [7]. Since MP’s original proof from
1967, many different proofs have appeared in the math-
ematical literature (see Refs. [8–10] and references therein).
For physicists, a proof using Feynman diagrams [11] seems
especially interesting.
The MP theorem also finds an application in random

vector models [12,13]. Consider a sequence Φ ¼
ðϕ1;ϕ2;…;ϕKÞ of randomly generated vectors in an N-
dimensional Hilbert space H, and let ΓΦ be the Gram
matrix of the sequence Φ. Such sequences can be thought
of as mimicking the dynamics of chaotic systems. The rank
of ΓΦ coincides with the number of independent vectors
in Φ. In the limit N;K → ∞, with K=N → c, the spectral
distribution of ΓΦ converges to the MP distribution.
Bearing in mind the above statements, it is perhaps not

surprising that one universally encounters the MP distribu-
tion when studying the quantum properties of black holes.
Black holes are maximally chaotic thermal systems [14–18],
and essential aspects of chaos and black hole physics can be
studied using random matrix models [19–25].
In this paper, we shall extend the results of [1–3] by

proposing a linear relation between (binding) energy and
the variable λ, such that the MP distribution with parameter
c ≈ 1 universally determines the semiclassical energy
spectral density of black holes. This places a semiclassical
black hole ensemble at the threshold between densities with
purely continuous spectra and spectra consisting of a
continuum and a discrete energy level. Having a spectral
density allows one to construct a Krylov space and a one-
dimensional hopping model, which captures in precise
detail the time evolution of a certain initial quantum state.
In particular, it allows for an unambiguous2 definition of
state complexity [27]. The relation between state complex-
ity and Nielson’s notion of circuit complexity has been
discussed in [28,29]. The late-time behavior of state
complexity is generic for typical states in a chaotic system.
We will show that the growth of state complexity in our
model saturates Lloyd’s bound [30] at late times. The
proposed model also provides for a simple mechanism of
the emission of Hawking radiation. We will discuss some
implications and check that the mean emitted energy is
compatible with the Hawking temperature.

The remainder of the paper is structured as follows.
In Sec. II, the general framework of Krylov space and state
complexity is reviewed. In Sec. III, this framework is
applied to the MP distribution. Our proposal for the relation
between the MP distribution and a universal energy spectral
density for black hole ensembles is presented and discussed
in Sec. IV. Finally, Sec. V contains the conclusions.

II. KRYLOV STATE COMPLEXITY

Krylov state complexity [27], sometimes called spread
complexity, is a measure for how fast a state spreads out in
Hilbert space as it evolves in time. It is a generalization of
operator, or Krylov, complexity [31], which measures the
spread of an observable in the space of operators and was
originally proposed as an alternative to out-of-time-ordered
correlators to measure chaos. In this section, the math-
ematical framework of state complexity will be reviewed
following the very nice expositions in [27,32,33]. A similar
analysis restricted to Krylov (operator) complexity was
presented in [24,26].

A. Krylov space

In a quantum system described by a Hilbert spaceH and
a time-independent Hamiltonian H, the unitary time evo-
lution of a state jψðtÞi∈H in the Schrödinger picture is
given by

jψðtÞi ¼ e−itHjψð0Þi: ð2:1Þ

Formally, the exponential can be expanded into an infinite
series involving the states jψni¼Hnjψð0Þi, n ¼ 0; 1; 2;….
These states span a Hilbert space K ⊂ H, which is the
minimal subspace of H containing the entire trajectory of
jψðtÞi. Let dH and dK denote the dimensions of H and K,
respectively. Clearly, one has dK ≤ dH. K is called the
Krylov subspace.
However, the jψni defined above do not form a nice basis

ofK; they need neither be orthogonal to nor independent of
each other. The Gram-Schmidt procedure that produces an
ordered, orthogonal basis of K, which is called the Krylov
basis, is known as the Lanczos algorithm [34,35]. The
essence of the Lanczos algorithm is captured by the three-
term recurrence relation3

HjKni ¼ jKnþ1i þ anjKni þ ΔnjKn−1i; ð2:2Þ

with the initial state jK0i ¼ jψð0Þi and the coefficients an
and Δn given by

2For Krylov (operator) complexity, there is some ambiguity
related to the choice of an operator inner product [24,26]. For
states in a Hilbert space, we assume that the inner product is
unique, so that state complexity depends only on the initial state.

3This is the monic version of the recurrence relation giving rise
to monic orthogonal polynomials. In the literature, one more
often finds the version that produces normalized polynomials
and states [27,33]. It is, however, easy to keep track of the
normalization.
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an ¼
hKnjHjKni

hn
; Δn ¼

hn
hn−1

ðn > 0Þ;

hn ¼ hKnjKni; Δ0 ¼ 0: ð2:3Þ

If dK < ∞, the Lanczos algorithm terminates with hdK ¼ 0.
Given (2.2), it is now possible to explicitly write

jKni ¼ PnðHÞjK0i; ð2:4Þ

where Pn is a monic orthogonal polynomial of degree n
satisfying the same recurrence relation,

EPnðEÞ ¼ Pnþ1ðEÞ þ anPnðEÞ þ ΔnPn−1ðEÞ; ð2:5Þ

and the orthogonality relations

Z
dμðEÞPnðEÞPmðEÞ ¼ hnδmn: ð2:6Þ

The measure μðEÞ appearing in (2.6) is implied by

Z
dμðEÞfðEÞ ¼ hK0jfðHÞjK0i ð2:7Þ

and coincides with the heuristic measure

dμ
dE

¼
X
n

δðE − EnÞjhEnjK0ij2; ð2:8Þ

where the sum is over all eigenstates jEni of the
Hamiltonian.

B. Hopping model

The fact that the Krylov basis is an ordered basis plays a
crucial role in what follows. Define the expansion coef-
ficients of jψðtÞi in the Krylov basis,

ϕnðtÞ ¼
inffiffiffiffiffi
hn

p hKnjψðtÞi: ð2:9Þ

They obviously satisfy4

X
n

jϕnðtÞj2 ¼
X
n

hψðtÞjKnihKnjψðtÞi
hn

¼ hψðtÞjψðtÞi ¼ 1

ð2:10Þ

and may be rewritten, using (2.7), as

ϕnðtÞ ¼
inffiffiffiffiffi
hn

p hK0jPnðHÞe−iHtjK0i

¼ in
Z

dμðEÞPnðEÞffiffiffiffiffi
hn

p e−iEt: ð2:11Þ

Then, the Schrödinger equation for jψðtÞi translates into
the following hopping equation on the one-dimensional
chain of wave functions [35],

∂tϕnðtÞ ¼ −
ffiffiffiffiffiffiffiffiffiffi
Δnþ1

p
ϕnþ1ðtÞ − ianϕnðtÞ þ

ffiffiffiffiffiffi
Δn

p
ϕn−1ðtÞ:

ð2:12Þ
The initial condition of this hopping problem is
ϕnð0Þ ¼ δn;0.
It is evident from (2.12) that the function ϕ0ðtÞ, which is

called the survival amplitude, contains all the information
about the entire chain of wave functions. An important
task is to calculate it from the knowledge of the Lanczos
coefficients. In the classic work [35], this problem is
approached by introducing the Laplace transform of ϕn,

cnðzÞ ¼
Z

∞

0

ϕnðtÞe−zt ðℜz > 0Þ; ð2:13Þ

in terms of which (2.12) becomes

zcnðzÞ ¼ −
ffiffiffiffiffiffiffiffiffiffi
Δnþ1

p
cnþ1ðzÞ − iancnðzÞ

þ
ffiffiffiffiffiffi
Δn

p
cn−1ðzÞ þ δn;0: ð2:14Þ

In a slightly more modern language, the cnðzÞ are closely
related to the functions of the second kind [36,37],

QnðzÞ¼
Z

dμðEÞPnðEÞ
z−E

; z ∈ CnsuppðμðEÞÞ: ð2:15Þ

More precisely, inserting (2.11) into (2.13) yields

cnðzÞ ¼
inþ1ffiffiffiffiffi
hn

p QnðizÞ; ð2:16Þ

which also provides the analytic continuation of (2.13) to
ℜz < 0. The QnðzÞ satisfy, apart from the case n ¼ 0, the
same recurrence relation as the PnðEÞ,

zQnðzÞ¼Qnþ1ðzÞþanQnðzÞþΔnQn−1ðzÞþδn;0: ð2:17Þ

The function Q0 is the resolvent,

Q0ðzÞ ¼ hK0j
1

z −H
jK0i: ð2:18Þ

It encodes the spectrum and the measure via

dμ
dE

¼ 1

2πi
lim
ϵ→0þ

½Q0ðE − iϵÞ −Q0ðEþ iϵÞ�: ð2:19Þ4We do not include evolution in imaginary time, which was
considered in [33].
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A continuous fraction representation of the resolvent can
be found from (2.17) as follows. Defining

RnðzÞ ¼
QnðzÞ
Qn−1ðzÞ

ðn > 0Þ; ð2:20Þ

(2.17) can be rewritten as

Q0ðzÞ ¼
1

z − a0 − R1ðzÞ
; RnðzÞ ¼

Δn

z − an − Rnþ1ðzÞ
:

ð2:21Þ

This yields

Q0ðzÞ ¼
1

z − a0 −
Δ1

z−a1−
Δ2

z−a2−���

: ð2:22Þ

C. State complexity

State complexity is defined as the expectation value of
the position n along the chain of wave functions,

CðtÞ ¼
X∞
n¼0

njϕnðtÞj2: ð2:23Þ

Because the index n also counts the basis vectors in Krylov
space, this definition suggests that state complexity should

be understood as an effective dimension, not as a distance.
In fact, the distance axioms are in general not satisfied by
state complexity [29].
Following a similar treatment for Krylov complexity

[26], we will elaborate on this formula with the purpose of
providing an expression that is more useful for practical
calculations. Consider the Laplace transform of CðtÞ,

C̃ðzÞ ¼
Z

∞

0

dtCðtÞe−zt ðℜz > 0Þ: ð2:24Þ

After substituting (2.23) and (2.11) and integrating, this
becomes

C̃ðzÞ¼
X∞
n¼1

n
Z

dμðEÞ
Z

dμðE0Þ PnðEÞPnðE0Þ
hn½zþ iðE−E0Þ� : ð2:25Þ

One may recognize the function of the second kind (2.15),
so that

C̃ðzÞ ¼ −i
X∞
n¼1

n
Z

dμðEÞPnðEÞQnð−izþ EÞ
hn

: ð2:26Þ

The factor n makes this sum difficult to compute, but the
recurrence relations (2.5) and (2.17) can be used to obtain a
handier expression. The trick is to multiply by z, write
−iz ¼ ð−izþ EÞ − E, and then use (2.5) and (2.17). After
shifting the summation index in some of the terms, this
results in

zC̃ðzÞ ¼
X∞
n¼0

Z
dμðEÞPnþ1ðEÞQnð−izþ EÞ − PnðEÞQnþ1ð−izþ EÞ

hn
: ð2:27Þ

Multiplying once more by z and applying the same procedure, one obtains

z2C̃ðzÞ ¼ i
X∞
n¼0

Z
dμðEÞ

�
2ðΔn − Δnþ1Þ

hn
PnðEÞQnð−izþ EÞ

þ an − anþ1

hn
½PnðEÞQnþ1ð−izþ EÞ þ Pnþ1ðEÞQnð−izþ EÞ�

�
: ð2:28Þ

The analog of (2.28) in real time, i.e., its inverse Laplace
transform, was called the Ehrenfest theorem for complexity
in [33]. An instructive way to derive it is as follows. The
complexity (2.23) may also be written as

CðtÞ¼hψð0ÞjKðtÞjψð0Þi; KðtÞ¼eiHt
X∞
n¼0

n
jKnihKnj

hn
e−iHt;

ð2:29Þ
where KðtÞ is the complexity operator in the Heisenberg
picture. Obviously,

∂
2
tKðtÞ ¼ −½H; ½H;KðtÞ��: ð2:30Þ

The right-hand side of (2.30) can be manipulated using the
recurrence relations, and taking the expectation value gives
the Ehrenfest theorem.
To conclude this section, we will make a few general

statements based on the properties of orthogonal polyno-
mials [38,39]. These statements will address, in particular,
the generic late-time behavior of state complexity.
If K is finite dimensional, then the spectrum is discrete

and finite, and dK is an upper bound of the complexityCðtÞ.
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At late times, CðtÞ may approach a constant value, CðtÞ →
C∞ < dK, known as the plateau [40,41], or it may oscillate,
even maximally between zero and dK. Therefore, the
presence of a late-time plateau in physical systems, in
contrast to unlimited growth, is a simple consequence of
the fact that any physical system ultimately has a finite
number of degrees of freedom. If dK is huge, it will
typically take an exponentially long time to reach the
plateau. A late-time plateau with more or less pronounced
oscillations also appears to occur in cases with unbounded
discrete spectra [26].
Systems with a very large number of degrees of freedom

can be effectively described in a large-N (thermodynamic)
limit for timescales that are short compared to the time
needed to approach the plateau. The continuum approxi-
mation is a useful tool [26,32,33,40] to study such systems.
In the large-N limit, the spectrum becomes continuous and
may be either bounded or unbounded. The following
general statements can be made [38,39]. The spectrum is
bounded if and only if both sets of Lanczos coefficients, Δn
and an, are bounded. If, for n → ∞, these coefficients
approach limits, Δn → Δ̄ and an → ā, then the spectrum is
bounded with at most countably many points outside the
interval ½ā − 2

ffiffiffiffi
Δ̄

p
; āþ 2

ffiffiffiffi
Δ̄

p
�, and the limits of this interval

are limit points of the spectrum. The MP distribution is an
example of such a spectrum and will be discussed in
Sec. III.

D. Linear transformation of energy

This subsection addresses the impact of the linear map

H0 ¼ αH þ β; α ≠ 0; ð2:31Þ

with real constants α and β, on the quantities characterizing
Krylov space and state complexity. We emphasize that the
case of negative α is not excluded, which is possible as long
as the spectrum is bounded. The linear map (2.31) induces
the following transformations:

P0
nðE0Þ ¼ αnPnðEÞ; jK0

ni ¼ αnjKni; ð2:32Þ

a0n ¼ αan þ β; Δ0
n ¼ α2Δn; ð2:33Þ

h0n ¼ α2nhn; ð2:34Þ

Q0
nðαzþ βÞ ¼ αn−1QnðzÞ: ð2:35Þ

Clearly, the normalized Krylov basis states remain
unchanged. However, the time-dependent wave functions
ϕn transform by

ϕ0
nðtÞ ¼ e−iβt

�
ϕnðαtÞ for α > 0;

ϕ�
nðjαjtÞ for α < 0:

ð2:36Þ

The distinction between the two cases is necessary, because
the time domain is always t ≥ 0. It follows that the
complexity transforms according to

C0ðtÞ ¼ CðjαjtÞ; C̃0ðzÞ ¼ 1

jαj C̃
�

z
jαj

�
: ð2:37Þ

III. KRYLOV SPACE OF THE MP DISTRIBUTION

A. MP distribution from Lanczos algorithm

Consider the following simple set of Lanczos
coefficients,

Δn ¼ c; an ¼ 1þ c ðn > 0Þ; a0 ¼ 1; ð3:1Þ

where c ≥ 0 is a free parameter. In this subsection, it will
be shown that these Lanczos coefficients are associated
with the MP distribution discussed in the introduction. For
uniformity of notation, λ will be used as the formal energy
variable instead of E.
Consider the resolvent Q0ðzÞ, which can be calculated

with the help of (2.21). More precisely, with (3.1) one has
RnðzÞ ¼ RðzÞ for n > 0, which satisfies

RðzÞ ¼ c
z − ð1þ cÞ − RðzÞ : ð3:2Þ

This yields

RðzÞ ¼ 1

2

	
z − 1 − c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 1 − cÞ2 − 4c

q 

; ð3:3Þ

which, in turn, implies

Q0ðzÞ ¼
1

z − 1 − RðzÞ

¼ 1

2cz

	
z − 1þ c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 1 − cÞ2 − 4c

q 

: ð3:4Þ

The sign is determined by the condition Q0ðzÞ → 0 for
jzj → ∞. The spectral density that follows from (2.19) is
the MP distribution (1.4).
For completeness, we report the following moments:

hλi ¼
Z

dμλ ¼ 1; ð3:5Þ

hλ2i ¼
Z

dμλ2 ¼ 1þ c: ð3:6Þ

B. Late-time state complexity

Using the general framework of Sec. II, the Lanczos
coefficients (3.1) give rise to a Krylov basis and a chain of
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wave functions, to which one can assign a state
complexity (2.23). This is the state complexity associated
with the MP distribution.
In this subsection, we shall calculate the late-time linear

growth coefficient of this state complexity. Recall that λ
formally parametrizes energy, but one should keep in mind
the possibility of a linear transformation, as discussed
in Sec. II D. The late-time behavior of CðtÞ is encoded
in the small-z expansion of the Laplace transform C̃ðzÞ.
In particular, a leading order behavior C̃ðzÞ ∼ C0

z2 implies the
late-time complexity CðtÞ ∼ C0t. This is relevant in the
present case.
The starting point is the general formula (2.28). With the

Lanczos coefficients (3.1), the sum reduces to the n ¼ 0
summand,

z2C̃ðzÞ ¼ i
Z

dμðλÞf−2cQ0ð−izþ λÞ

− c½Q1ð−izþ λÞ þ P1ðλÞQ0ð−izþ λÞ�g: ð3:7Þ

Using Q1ðzÞ ¼ ðz − 1ÞQ0ðzÞ − 1 from (2.17) and P1ðλÞ ¼
λ − 1 from (2.5), (3.7) becomes

z2C̃ðzÞ ¼ ic

	
1þ

Z
dμðλÞðiz − 2λÞQ0ð−izþ λÞ



: ð3:8Þ

Furthermore, substituting Q0 using its definition (2.15)
yields

z2C̃ðzÞ ¼ −ic
Z

dμðλÞ
Z

dμðλ0Þ λþ λ0

−izþ λ − λ0
: ð3:9Þ

To continue, one must take care of the delta function part
of the measure. For this purpose, formally write (1.4) as

dμ
dλ

¼ð1−AÞdμ̃
dλ

þAδðλÞ; A¼
�
1−

1

c

�
Ifc>1g; ð3:10Þ

where the measure μ̃ is normalized on the continuum. With
this abbreviation, (3.9) becomes

z2C̃ðzÞ ¼ −ic
	
Að1 − AÞ

Z
dμ̃ðλÞ 2izλ

z2 þ λ2

þ ð1 − AÞ2
Z

dμ̃ðλÞ
Z

dμ̃ðλ0Þ λþ λ0

−izþ λ − λ0



:

ð3:11Þ

At this point, the limit z → 0 can be taken in order to
extract the coefficient C0. The measure μ̃ has support for
λ > 0, so that the first term in the bracket vanishes in this
limit. The fraction in the second term reduces to a principal
value and a delta function, but the integral with the

contribution from the principle value vanishes by sym-
metry. The surviving term stems from the delta function
and reads as

C0 ¼ lim
z→0

z2C̃ðzÞ ¼ 2πcð1 − AÞ2
Z

λþ

λ−

dλ

�
dμ̃
dλ

�
2

λ

¼ 1

2πc

Z
λþ

λ−

dλ
ðλ − λ−Þðλþ − λÞ

λ

¼ 1

4πc

�
λ2þ − λ2− − 2λþλ− ln

λþ
λ−

�

¼ 2

π

	
c
1
2 þ c−

1
2 −

1

2
ðc1

2 − c−
1
2Þ2 ln

���� c
1
2 þ 1

c
1
2 − 1

����


; ð3:12Þ

where (1.3) has been used in the last step.
A small change of variable puts this into a more

suggestive form. Defining s by

c ¼ es; ð3:13Þ

(3.12) becomes

C0 ¼
4

π

	
cosh

�
s
2

�
þ sinh2

�
s
2

�
ln

���� tanh s4
����


: ð3:14Þ

This is an even function of s, sharply peaked at s ¼ 0 with
C0;max ¼ 4

π, and asymptotically decays as C0 ∼Oðe−1
2
jsjÞ for

jsj → ∞. A graph is shown in Fig. 1.

IV. BLACK HOLE ENSEMBLE

As discussed in the Introduction, the MP distribution
appears in the context of black hole physics as the
eigenvalue distribution of the Gram matrix of generic
families of black hole microstates. In this section, we will
extrapolate this result and propose that the MP distribution
with parameter c ≈ 1, in fact, captures also the distribution
of (gravitational) binding energy of a black hole, which is
seen as a many-body bound state. The state complexity

FIG. 1. Plot of C0 as a function of s.
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associated with the MP distribution according to the general
framework of state evolution in Krylov space is shown to
saturate Lloyd’s bound. We shall also discuss some impli-
cations of this proposal for black hole evaporation.

A. MP distribution and black hole spectrum

Recall that the MP distribution appears as the universal
limit distribution of the eigenvalues of the Gram matrix for
an ensemble of size Ω of microstates that are macroscop-
ically indistinguishable from a black hole with given massM
and possibly other charges, which determine its macroscopic
entropy S [1–3]. The absence or presence of zero eigenvalues
signals whether the microstates in the ensemble are inde-
pendent of each other or not. These two cases exactly occur
for lnΩ < S (c < 1) and lnΩ > S (c > 1), respectively.
This immediately leads to the conclusion that an ensemble
truly representing a black hole in or close to equilibrium
should have the MP distribution with parameter c ≈ 1 as its
limit distribution. We will call such an ensemble a black hole
ensemble. In terms of the parameter s defined in (3.13),
a black hole ensemble is characterized by

s ¼ lnΩ − S ≈ 0: ð4:1Þ
For the time being, let us ignore this specific value

and consider s as a free parameter. Consider some large
physical system and assume that it has a spectrum of
energies given by

E ¼ −M
λ − λ−
1 − λ−

; ð4:2Þ

where λ is distributed according to the MP distribution.
This particular map from λ to E has been chosen such that
the continuum part of the spectrum describing a (gravita-
tionally) bound state has E ¼ 0 as its upper bound, and the
total binding energy is5

hEi ¼ −M: ð4:3Þ
The variance of energy is

hE2i − hEi2 ¼ M2

ð2 − es=2Þ2 : ð4:4Þ

Furthermore, the delta function part of the spectrum, which
appears for s > 0, is located at

E ¼ ωs ¼
Mλ−
1 − λ−

> 0: ð4:5Þ

Obviously, the relations above require λ− < 1, which
restricts s by s < 2 ln 2. This restriction is actually unes-
sential, because, as will be discussed in the next subsection,
s > 0 represents unstable systems, and the range of
parameters needed to describe the physical process of
black hole evaporation is limited to small, positive values
of s. It can be observed that, in the limit s → −∞ (c → 0),
the distribution becomes a semicircle distribution on
E∈ ð−2M; 0Þ, whereas in the opposite physical limit,
s → 0− (c → 1−), one has E∈ ð−4M; 0Þ with a sharp peak
at E ¼ 0. Some examples are illustrated in Fig. 2.
Given the spectrum, it is now possible to associate a

Krylov basis with it according to the general framework
described in Sec. II. This also provides the Krylov state
complexity, which can be interpreted as the complexity of a
typical state in the ensemble. In particular, the late-time
complexity growth is CðtÞ ≈ Ċt, where the growth rate Ċ is
found from (2.37), (3.14), and (4.2) as

Ċ ¼ 4M

πes=2ð2 − es=2Þ
	
cosh

�
s
2

�
þ sinh2

�
s
2

�
ln

���� tanh s4
����


:

ð4:6Þ

A plot of Ċ is shown in Fig. 3. Clearly, the rescaling
from λ to E breaks the symmetry s ↔ −s that was present
in (3.14). At the same time, it changes the asymptotic
behavior for s → −∞, which is now

Ċ →
8M
3π

for s → −∞: ð4:7Þ

However, the value at s ¼ 0 remains unchanged, which is
also the maximum for s ≤ 0,

Ċmax ¼
4M
π

: ð4:8Þ

This value saturates Lloyd’s bound [30], in agreement with
the interpretation of s ¼ 0 as the value appropriate for a

FIG. 2. Illustration of spectral densities dμ
dE for various values of s.

The solid vertical line represents the delta function for s ¼ 0.5.

5In black hole physics, the fact that the binding energy is minus
the total massM is supported by the Brown-York quasilocal energy
[42], or by the teleparallel approach to gravity [43]. The energy
contained in the gravitational field outside a Schwarz-schild black
hole with Arnowitt-Deser-Misner massM is −M. The bare energy
contribution from inside the black hole radius is 2M.
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black hole ensemble. We mention that, for positive s, Ċ has
a local minimum barely visible at the end of the plot and
diverges for s ¼ 2 ln 2. However, as mentioned above, this
parameter region is outside the physical range of interest.

B. Black hole evaporation

The entropy S of a black hole with a certain massM and
possibly other charges is the maximum entropy any
physical system with the same mass and charges can
possess. Therefore, interpreting the parameter s in (4.1)
as a measure of the entropy of an ensemble compared to the
maximum attainable, one must conclude that systems with
s > 0 are physically unstable. In the context of black hole
ensembles, which lie at the threshold between stable and
unstable systems, this instability leads to Hawking radia-
tion and black hole evaporation.
Because s is a semiclassical parameter, it is natural to

think that it is subject to quantum fluctuations. Consider
now what would happen if, by means of vacuum fluctua-
tions, s reached some small, positive value. Recall that for
s > 0, the spectrum has a delta function contribution, and
the gap above the continuum is

ωs ¼
Mλ−
1 − λ−

≈
Ms2

4
: ð4:9Þ

In the last relation λ− ¼ ðes=2 − 1Þ2 has been expanded for
small s. This discrete part of the spectrum represents a
quantum of Hawking radiation ready to be emitted. The
model does not provide the probability for the emission of
Hawking radiation with exactly this energy (i.e., at this
particular value of s), but it reproduces the correct scaling
relations with M. Identifying the weight of the delta
function in the distribution [see Eq. (3.10)] with the number
of Hawking particles emitted per unit of time, the lumi-
nosity, i.e., the energy radiated by the black hole in a unit of
time, would be given by

L ¼ Aωs ¼ ð1 − e−sÞωs ≈
Ms3

4
: ð4:10Þ

This should be compared to the luminosity of a black hole.
Let us omit numerical factors for simplicity. For a
Schwarzschild black hole [44], L ∼ 1=M2 in Planck units.
Together with (4.10), this implies the scaling relations

s ∼
1

M
; ωs ∼

1

M
: ð4:11Þ

Clearly, the scaling of ωs, i.e., the mean energy of a single
emitted particle, agrees with the Hawking temperature,
as expected.
A qualitative picture of black hole evaporation can

now be sketched as follows. Semiclassically, a black hole
ensemble in thermal equilibrium has a limit distribution
characterized by s → 0−. This value is subject to quantum
fluctuations. As long as s stays negative, nothing special
happens, because the spectrum only contains bound states.
However, when s becomes positive, the distribution under-
goes a phase transition in which states with E > 0 appear.
These may be spontaneously emitted as Hawking radiation.
After emission, the remainder of the black hole is again
described by a distribution with a continuous spectrum of
bound states (but with a slightly lower mass). It will quickly
rearrange by thermal equilibration to a limit distribution
with s → 0−, so that the whole process can repeat itself.

V. CONCLUSIONS

In summary, the universal eigenvalue distribution of the
Gram matrix for semiclassical ensembles of typical black
hole microstates found in [1–3] has been recognized as the
MP distribution, which is a well-known limit distribution
for random matrix and vector models. We have extended
this result by proposing a spectral density for ensembles
representing black holes of mass M. The proposed spectral
density is based on the MP distribution for c ¼ 0, i.e., the
distribution at the threshold between a purely continuous
spectrum and a continuum plus a discrete eigenvalue. This
has allowed us to construct a Krylov basis and calculate the
state complexity of a black hole. State complexity is found
to grow linearly at late times saturating Lloyd’s bound,
which is an important check. An interesting observation is
that the variance of energy in the proposed ensemble scales
as M2, which is different from a canonical ensemble,
such as the thermofield double state, in which case it
would scale asM. However, if one assumes that there exists
a universal energy spectral density of black holes, up to a
simple rescaling of energy relative to the black hole mass,
then the variance must scale as M2. This is also consistent
with the scaling of the late-time complexity growth rate
discussed in Sec. II D.
The fact that the proposed black hole ensemble lies at

the threshold between two qualitatively different spectra

FIG. 3. Plot of Ċ=M as a function of s.
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provides for a natural mechanism to spontaneously emit
Hawking radiation. Indeed, it is natural to think that
quantum fluctuations will occasionally push the system
beyond threshold, leading to Hawking radiation and black
hole decay. The scaling of the mean energy (black hole
temperature) and luminosity in terms of M have been
checked for the proposed model and turn out to be
consistent. This mechanism of black hole evaporation is
reminiscent of another proposal on the nature of black holes
known as the quantum N-portrait [45,46], although we
have not been concerned with the microscopic details
behind the quantum fluctuations. It would certainly be

interesting to develop specific microscopic models that
exhibit the proposed limit spectral density and allow for a
deeper understanding of the evolution of black holes. It
would also be interesting to embed the model into some
open quantum system [47,48] in order to include both
absorption and emission.
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