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We discuss various questions that emerge in connection with the Lie-algebraic deformation of the CP1

sigmamodel in two dimensions. First, we supersymmetrize the original model endowing it with the minimal
N ¼ ð0; 2Þ and extendedN ¼ ð2; 2Þ supersymmetries. Thenwe derive the general hypercurrent anomaly in
both cases. In the latter case this anomaly is one-loop but is somewhat different from the standard expressions
one can find in the literature because the targetmanifold is nonsymmetric.We also show how to introduce the
twisted masses and the θ term, and study the Bogomol'nyi–Prasad–Sommerfield equation for instantons, in
particular the value of the topological charge. Then we demonstrate that the second loop in the β function of
the nonsupersymmetric Lie-algebraic sigma model is due to an infrared effect. To this end we use a
supersymmetric regularization. We also conjecture that the above statement is valid for higher loops too,
similar to the parallel phenomenon in four-dimensional N ¼ 1 super-Yang-Mills. In the second part
of the paper we develop a special dimensional reduction—namely, starting from the two-dimensional
Lie-algebraic model we arrive at a quasi-exactly solvable quantum-mechanical problem of the Lamé type.
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I. INTRODUCTION

In this paper we continue the studies of one(complex)-
dimensional sigma models on Kählerian target spaces
which generalize the CP1 model in a Lie-algebraic way
[1–3]. For practical applications in baby skyrmions this
model is usually formulated in the form

L ¼ 1

2g2ðS3Þ
ð∂SiÞð∂SiÞ; S⃗ S⃗ ¼ 1; ð1Þ

where the coupling g2 becomes a function of S3, the third
component of the isovector S⃗,

g2ðS3Þ ¼ g2 ·
�
1þ k
2

þ 1 − k
2

S23

�
: ð2Þ

Moreover, k is a numerical parameter defined below in
Eq. (5). At k ¼ 1 we return to the Heisenberg O(3) model.
With k ≠ 1 the round metric is deformed.
For theoretical applications in two dimensions (2D) it is

more convenient to use the geometric representation

L ¼ G11̄ð∂μφ̄∂μφÞ; ð3Þ

where G11̄ is a generalization of the Fubini-Study metric,1

G11̄ ¼
1

n1 þ n2φ̄φþ n3ðφ̄φÞ2
; ð4Þ

n1 ¼ n3 ¼
g2

2
; n2 ¼ g2k: ð5Þ

If k ¼ 1, the metric (4) is the standard Fubini-Study metric.
In what follows we will use a simplified notation,

G11̄ ≡ G; G11̄ ≡G−1:

Other abbreviations are introduced in Eqs. (12) and (14).
One can consider another deformation of this model, by

the so-called twisted mass term [4,5]. Then, Eq. (3) takes
the form

Lm ¼ G11̄ð∂μφ̄∂μφ −m2φ̄φÞ; ð6Þ

In terms of representation (1) we then have

L ¼ 1

2g2ðS3Þ
½ð∂SiÞð∂SiÞ − jmj2ð1 − S23Þ�: ð7Þ
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1The equality n1 ¼ n3 can always be achieved by rescaling the
fields φ; φ̄.
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Both deformations (i.e., the metric deformation k ≠ 1 and a
“potential” deformation m ≠ 0) destroy O(3) invariance of
the target space and introduce a dependence on the ori-
entation of S⃗ with respect to the third axis in the isospace
(see Fig. 1).
Perturbation theory in the model at hand have been

studied in [1,2] in the framework of the so-called first-order
formalism related to an operator product expansion (OPE)
(see the list of references in [1,2]). The following phenom-
ena have been observed there.
At one-loop OPE for certain chiral currents have the form

JaðzÞJbð0Þ ¼
1

z
fcabJcð0Þ; ð8Þ

where fcab are the slð2Þ algebra structure constants. The
above expression fully reveals the Lie-algebraic structure
of (4). However, a straightforward calculation of the second
loop produces a term

1

z2
∂iv

j
a∂jvib; ð9Þ

where vja are Killing vectors. The above structure is
obviously nongeometric. However, one can show that with
a proper regularization within the first-order formalism the
partial derivatives in (9) are replaced by covariant deriva-
tives, and the required “geometricity” is recovered. In
Ref. [2] the regularization method was based on supersym-
metry despite the fact that the calculated β function
was that of the nonsupersymmetric model (3). In [1] the
following H hypothesis was formulated: In (nonsupersym-
metric) Kählerian sigma models, an anomaly is present in
the calculation of the second and higher loops. In [2] the
validity of theH hypothesis was verified in the second loop.
In this paper we reveal an infrared anomaly in the second

β-function coefficient. We use the standard perturbation
theory and standard two-loop Feynman graphs. Our deri-
vation is based onN ¼ ð2; 2Þ supersymmetry; however, the
strategy is different from that in [2]. Our analysis has close
parallels with the holonomy anomaly in N ¼ 1 super-
symmetric Yang-Mills (SYM) theory [6] and two-
dimensional sigma models [7,8]. Just as in the latter
case it is likely that the anomalous effect detected in

nonsupersymmetric Kählerian sigma models can be refor-
mulated as a subtlety in the measure in the corresponding
path integral [9].
Our work consist of several parts. First, we super-

symmetrize the model (3), (4), presenting both N ¼ ð2; 2Þ
and N ¼ ð0; 2Þ versions. Section II A 3 is devoted to the
study of the hypercurrents in N ¼ ð2; 2Þ and N ¼ ð0; 2Þ
versions of the model. The standard expressions known in
the literature have to be modified to take into account the
nonsymmetric nature of the target space. Then, in Secs. II B
and II C we introduce the twisted mass and the θ angle.
In Sec. III we calculate the two-loop β function coefficient

in the nonsupersymmetric sigma model by virtue of a
supersymmetric regularization. Our calculation is trans-
parent and demonstrates the role of the infrared contribution.
Section IV is devoted to an interesting aspect of reducing the
two-dimensional model under consideration to a Lie-
algebraic quantum-mechanical model [10,11] presenting
the so-called Lamé problem [12]. Under certain values of
quantized free parameters it becomes quasi-exactly solv-
able, and, moreover, exhibits duality in the nonsupersym-
metric case.

II. EXTENDING THE DEFORMED CP1 MODEL

In this section, we elaborate on supersymmetric exten-
sions of the deformed CP1 model, incorporating twisted
masses and a topological term in a consistent manner.
Applications of the present construction to the analysis of β
functions and the reduced quantum-mechanical model can
be found in Secs. III and IV, respectively.

A. N = ð2; 2Þ and N = ð0; 2Þ supersymmetrization

1. N = ð2; 2Þ
We start with a brief review of the general construction of

two-dimensional N ¼ ð2; 2Þ and N ¼ ð0; 2Þ sigma mod-
els. The target space of the model under consideration is a
one (complex) dimensional manifold; it is Kählerian and
admits theN ¼ ð2; 2Þ structure [13]. Since the basics of the
N ¼ ð2; 2Þ model can be found in standard textbooks, we
just quote the results and remind the reader of the relevant
geometric data. Suppose the target space is parametrized by
the complex coordinates φ and φ̄. By promoting the scalar
field to the corresponding superfields, Φ, Φ†, and integrat-
ing out the Grassmann coordinates, one finds the compo-
nent formulation (see, for example, [14,15]), namely,

Lð2;2Þ ¼G½∂μφ∂μφ̄þ iψ̄=∂ψþ iψ̄γμðΓ∂μφÞψ �−
1

2
R11̄11̄ðψ̄ψÞ2;

ð10Þ
where ψ is a Dirac fermion,

ψ ¼
�
ψR

ψL

�
; ψ̄ ¼ ψ†γ0; ð11Þ

FIG. 1. The orientation of the S⃗-vector embedding in a three-
Euclidean space. The contours from inside to outside (i.e., red to
blue) correspond to k equal to 1.0, 9.5, 200, and 1000, respectively.
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and

Γ≡ Γ1
11 ð12Þ

is the Christoffel symbol. The essential geometric data [in
addition to Eq. (4)] are

Γ ¼ −
φ̄ðn2 þ 2n3jφj2Þ

n1 þ n2jφj2 þ n3jφj4
; ð13aÞ

R11̄11̄ ¼ −
1

2
G2R

¼ −
n1n2 þ 4n1n3jφj2 þ n2n3jφj4

ðn1 þ n2jφj2 þ n3jφj4Þ3
; ð13bÞ

in which R is the scalar curvature,

R ¼ 2Gn̄mRmn̄; Rmn̄ ¼ −Gj̄iRij̄mn̄: ð14Þ

2. N = ð0; 2Þ
As for the N ¼ ð0; 2Þ formulation, we limit our dis-

cussion to the so-called minimal model [7]. Following the
same lines as in [8,16,17], we introduce an N ¼ ð0; 2Þ
chiral superfield A which, in terms of component fields,
takes the form

Aðx; θ; θ†Þ ¼ φðxÞ þ
ffiffiffi
2

p
θψLðxÞ þ iθ†θ∂LφðxÞ; ð15Þ

where ∂L ¼ ∂t þ ∂z and θ; θ† are the Grassmann coordi-
nates. The (0, 2) supersymmetric transformation of A is

δϵ;ϵ†A ¼ ∂Lφ · 2iϵ†θ þ
ffiffiffi
2

p
ϵψL: ð16Þ

The Lagrangian can be written as

Lð0;2Þ ¼
1

4

Z
d2θ½K1ðA; A†Þi∂RAþ H:c:�

¼ G½∂μφ∂μφ̄þ iψ̄L∂RψL þ iψ̄LðΓ∂RφÞψL�: ð17Þ
Note that K1 is the first derivative of the Kähler potential,

2

K1 ≡ ∂K
∂A

¼ 2

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 − 4n1n3

p arctanh

�
AA†

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 − 4n1n3

p
2n1 þ n2AA†

�
: ð18Þ

By construction, Eq. (17) is N ¼ ð0; 2Þ invariant. In
contrast to the undeformed model, there is no nonlinear
transformation of A corresponding to the global rotations
other than the Uð1Þ, which can be straightforwardly seen in
the above formulation.

As a side remark, we note that the N ¼ ð2; 2Þ super-
symmetry can be recovered from Eq. (17) by introducing
another N ¼ ð0; 2Þ superfield B,

Bðx; θ; θ†Þ ¼ ψRðxÞ þ
ffiffiffi
2

p
θFðxÞ þ iθ†θ∂LψRðxÞ; ð19Þ

obeying the transformation

δϵ;ϵ†B ¼ ∂LψR · 2iϵ†θ þ
ffiffiffi
2

p
ϵF: ð20Þ

The corresponding Lagrangian is

LB ¼ 1

2

Z
d2θ½GðA; A†ÞB†B�

¼ G½iψ̄R∂LψR þ iψ̄RðΓ∂LφÞψR� −
1

2
R11̄11̄ðψ̄ψÞ2; ð21Þ

whereGðA; A†Þ is the metric obtained by promoting φ; φ̄ to
A; A†, respectively, in (13a). Note that we have integrated
out the auxiliary F field. One can then see that the
combination of (17) and (21) leads to Eq. (10). The
enhancement of the supersymmetry from N ¼ ð0; 2Þ to
N ¼ ð2; 2Þ was first demonstrated in [18] for the unde-
formed CP1 case.

3. Hypercurrent multiplet

In the following, we analyze the hypercurrent multiplet
J μ (see [5,19–21] for review and examples) of the
deformed CP1 model. Our discussion on the case of N ¼
ð2; 2Þ will run parallel to that of [5]. This supermultiplet
contains a R-current vμ, a supercurrent sμα, and the energy-
momentum tensor ϑμν,

J μ ¼ vμ þ ½θγ0sμ þ H:c:� − 2θ̄γνθϑμν þ � � � ; ð22Þ
where the γ matrices are defined as

γ0 ¼ σ2; γ1 ¼ iσ1; γ5 ¼ σ3: ð23Þ

Here the Grassmannian coordinate has two complex com-
ponents θ ¼ ðθ1; θ2Þ in contrast to the case of N ¼ ð0; 2Þ,
which has only one relevant Grassmannian coordinate. The
lowest component vμ in the hypercurrent is the vector U(1)
current. Although classically vμ is algebraically related to
the axial current discussed in Sec. II C, at the quantum level
they are different—the axial current has an anomaly.3 In the

2The explicit form of the Kähler potential K of the deformed
CP1 model is given in [3].

3In fact, there are three independently conserved U(1) currents
in this model. The first is the axial current presented in Eq. (44). It
is generated by the transformation (45), is conserved at the
classical level, and acquires a one-loop anomaly in ∂μJ

μ
5. The

second conserved current Jφμ is purely bosonic, and it is generated
by the transformation φ → eiβφ and φ̄ → e−iβφ̄. Needless to say,
it is anomaly-free. The third is purely fermionic vector current,
also anomaly-free.
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spinorial notation, it takes the form

J αβ ¼ ðγ0γμÞαβJ μ ¼ GD̄αΦ̄DβΦ; ð24Þ

where Dα and D̄β are superderivatives and Φ and Φ̄ are the
chiral superfields with the lowest components φ and φ̄,
respectively. At the classical level, the spinorial components
J 11 and J 22 are conserved, namely,

½D̄2J 11�classical ¼ ½D̄1J 22�classical ¼ 0: ð25Þ

In J μ, only two diagonal components of J αβ are relevant.
Quantum mechanically, the hypercurrent expressions

in (25) are anomalous The anomaly is exhausted by the
one-loop effect. For CP1 the anomaly equations were
derived in [5]. In our deformed model the anomaly in
the right-hand side takes the form

D̄2J 11 ¼
1

4π
D̄1

�
1

2
GRD̄2Φ̄D1Φ

�
;

D̄1J 22 ¼
1

4π
D̄2

�
1

2
GRD̄1Φ̄D2Φ

�
: ð26Þ

Note the emergence of the scalar curvature R on the right-
hand side.
The coefficient in (26) can be verified through the scale

anomaly of the energy-momentum tensor, i.e., the anomaly
in γμs

μ
α [5,22],

ðϑμμÞanom ¼ 1

4π
GRð∂μφ∂μφ̄þ iψ̄γμ∇μψÞ; ð27aÞ

ðγμsμÞanom ¼ 1

4π
GRð∂μφ̄Þγλψ : ð27bÞ

Note that the hypermultiplet J μ falls in the class of the RV

multiplets in [21] since ∂μJ μ ¼ 0. In fact, Eq. (26) can be
recast in the standard form of the hypercurrent multiplet
proposed in [20,21]. Namely,4

D̄αJ βα ¼ χβ; χβ ¼ D̄β

�
−

1

4π
DαD̄α logG

�
ð29Þ

for which we use the fact that only the twisted chiral

(antichiral) part of DαD̄α contributes in the first (second)
equations in (26).
The hypercurrent for the CP1 N ¼ ð0; 2Þ model was

discussed in [7,8]. Taking into account our Lie-algebraic
extension we arrive at the classical expressions

J 2 ¼
1

2
J 22

���
θ1¼0

¼ 1

2
GD̄A†DA; ð30aÞ

T̃ 1111 ¼ −
1

2
½D̄1; D1�J 11

���
θ1¼0

¼ G∂RA†
∂RA; ð30bÞ

where J 2 and T̃ 1111 stand for two components in the
hypercurrent in the N ¼ ð0; 2Þ model, and A is the N ¼
ð0; 2Þ superfield defined in Sec. II A 2. In the N ¼ ð0; 2Þ
superspace, the reduced superderivatives are

D ¼ ∂

∂θ
− iθ†∂L; D̄ ¼ −

∂

∂θ†
þ iθ∂L: ð31Þ

Here the lowest component of J 2 is the chiral Uð1Þ current
Gψ†

LψL and is not conserved as the quantum corrections are
taken into account. Also, the bosonic component of T̃ 1111

is the part of the energy-momentum tensor, T1111.
In general, as in the N ¼ ð2; 2Þ case, the hypercurrent

(30) is conserved classically and becomes anomalous due
to one-loop corrections. In other words, the general
anomaly equations turn out to be

∂RJ 2 ¼ −
1

2
D2X þ 1

2
D̄2X̄; D̄2T̃ 1111 ¼ ∂RX;

X ≡ −
1

8π
GRð∂RAÞD̄A†; ð32Þ

where X encodes the anomalous part of two real super-
multiplets J 2 and T̃ 1111. Note that the coefficient of
Eq. (32) can be fixed by the anomalous chiral Uð1Þ current
Gψ†

LψL in parallel with the consideration of the axial Uð1Þ
current in Appendix B,

∂RðGψ†
LψLÞ ¼ 2 ·

�
i
8π

GRϵμν∂μφ∂νφ̄

�
; ð33Þ

where the prefactor 2 indicates the number of the fermion
zero modes in the instanton background, which is half of
the number in N ¼ ð2; 2Þ theory [see also (46)].
Important warning: In the N ¼ ð0; 2Þ case, the β

function is not exhausted by one-loop; see Sec. III.
Therefore, the one-loop anomaly expression given in
(32) should be understood as an operator expression subject
to further infrared multiloop corrections, just in the same
way as in N ¼ 1 super-Yang-Mills (see [6] and
Secs. 10.16.1–10.16.4 in [23]). In our problem, the latter
conjecture is not yet proven.

4For a general N ¼ ð2; 2Þ σ model, the anomalies of the
hypercurrent take the form

χβ ¼ D̄β

�
−

1

8π
DαD̄α log detGij̄

�
: ð28Þ

This issue was previously discussed in [20] for the case of the
symmetric Kähler manifolds. Since in our deformed CP1 model
the target space is nonsymmetric, the expression in the right-hand
side of (28) is somewhat different from that in [20].

CHAO-HSIANG SHEU and MIKHAIL SHIFMAN PHYS. REV. D 109, 125017 (2024)

125017-4



B. Adding twisted masses

As observed in [4,24–26], one can introduce the twisted
mass parameter consistent with the underlying supersym-
metries in the presence of the Uð1Þ isometry of the system.
That is, the infinitesimal transformations read

δφ ¼ it1φ; δφ̄ ¼ −it1φ̄; ð34Þ

where t1 is the variable parametrizing the isometry. Notice
that for the deformed CP1 model, such an isometry can be
summarized by the Killing potential Dðφ; φ̄Þ,

Dðφ; φ̄Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p log

�jφj2 þ k −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p

jφj2 þ kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p
�
; ð35Þ

generating the Killing vectors, namely,

dφ
dt1

¼ −iG−1 ∂D
∂φ̄

;
dφ̄
dt1

¼ −iG−1 ∂D
∂φ

: ð36Þ

Here the Killing potential is defined up to an additive
constant.
One can then introduce a constant auxiliary vector

multiplet V parametrized by the twisted masses, m and
m̄, to modify the Uð1Þ invariant combination jΦj2 in the
associated Kähler potential as Φ†eVΦ. In the following, we
directly quote the resulting Lagrangian. The interested
readers can find a concise review in Sec. 2 of [5]. The
deformedCP1 model with the twisted masses is formulated
as follows5:

Lm ¼ G½∂μφ∂μφ̄ − jmj2φφ̄þ iψ̄∇ψ − ð1þ ΓφÞψ̄ μ̃ ψ �

−
1

2
R11̄11̄ðψ̄ψÞ2; ð37Þ

where ∇μ is the covariant derivative

∇μψ ¼ ∂μψ þ ðΓ∂μφÞψ ð38Þ

and

μ̃≡m
1 − γ5
2

þ m̄
1þ γ5

2
: ð39Þ

Similarly, one can introduce the twisted mass for the
N ¼ ð0; 2Þ model by replacing the aforementioned
constant auxiliary N ¼ ð2; 2Þ vector multiplet with a
N ¼ ð0; 2Þ one. As a result, the N ¼ ð0; 2Þ model with
twisted mass takes the form

Lm;ð0;2Þ ¼ G½∂μφ∂μφ̄ −m2φφ̄þ iψ̄L∇RψL

−mð1þ ΓφÞψ̄LψL�; ð40Þ

where m is real in the N ¼ ð0; 2Þ case.

C. The θ term

The θ termcan be added in a straightforwardmanner [5,22],

Lθ ¼
iθ
8π

GRdφ ∧ dφ̄: ð41Þ
Note that the theta term is topological and invariant under the
2πZ translation since the topological charge is defined as

Q≡ 1

8π

Z
GRd2φ∈Z: ð42Þ

In particular, jQj ¼ 1 for the (anti-)instanton solution. For
completeness, the theta term can also be expressed as a total
derivative

R11̄dφ∧dφ̄¼d
�
−

2n1þn2jφj2
n1þn2jφj2þn3jφj4

·dlogφ
�
: ð43Þ

This also indicates that (42) saturates at the small field
configuration.
The theta term (41) can be further utilized to detect

the number of fermion zero modes and then the number
of the bosonic zero modes via supersymmetry. To this
end, let us consider the divergence of the axial Uð1Þ
current

Jμ5 ≡Gψ̄γμγ5ψ ð44Þ
generated by the Uð1ÞA transformation

ψ → eiαγ5ψ ; ψ̄ → ψ̄eiαγ5 ; ð45Þ

where α is the variable parametrizing the transformation.
Classically, jμ5 is conserved, but it becomes anomalous as
the quantum effects are taken into account. Namely, in
N ¼ ð2; 2Þ,

∂μJ
μ
5 ¼ 4 ·

�
−

i
8π

GRϵμν∂μφ∂νφ̄

�
; ð46Þ

implying the number of the fermion zero modes is four
and therefore the same for the bosonic sector through

5Generally speaking, for a sigma model with a complex target
space with the Killing vectors Xi, X̄j̄ for the Uð1Þ isometries the
associated Lagrangian takes the form

Lm ¼ Gij̄½∂μφi
∂
μφ̄j̄ − jmj2XiX̄j̄ þ iψ̄ j̄∇ψ i − iðDkXiÞψ̄ j̄ψk�

−
1

2
Rij̄kl̄ψ̄

j̄ψ iψ̄ l̄ψk;

where DkXi ¼ ∂kXi þ Γi
kjX

j is the covariant derivative on the
target space.
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supersymmetry. See Appendix B for further details.
Comparing with Eq. (41), one sees that θ → θ − 4α under
the axial Uð1ÞA rotation (45), which breaks Uð1ÞA into Z4.
Furthermore, it is worth pointing out how the instanton

action is related to the topological charge defined in (42).
According to the standard Bogomol'nyi–Prasad–
Sommerfield (BPS) argument, the action satisfies

S ¼
Z

G

�
1

2
j∂μφ� ϵμν∂

νφj2 ∓ ϵμν∂
μφ∂νφ̄

�
d2x

≥
2π log ½ n2

2n1n3
ðn2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 − 4n1n3

p
Þ − 1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n22 − 4n1n3
p · jQj; ð47Þ

where Q is the topological charge. The action saturates the
BPS bound for the instanton configuration. In the non-
degenerate case (i.e., n1; n3 ≠ ∞; 0), the overall coefficient
in front of jQj in (47) is

4π arccoshk

g2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − 1

p for k ≥ 1 ð48Þ

as was previously derived in [3]. The CP1 expression can
be obtained by further taking the k → 1 limit.

III. ANALYSIS OF THE TWO-LOOP BETA
FUNCTION

A. The two-loop beta function of the bosonic model
from supersymmetry

We will start from the universal fact that the second (and
all higher) coefficients of two-dimensional N ¼ ð2; 2Þ
sigma models vanish [27,28]; see also [29,30] for recent
discussions.6 In supersymmetric sigma models the two-
loop contributions to the β function can be separated into
the (purely) bosonic β2;b and fermionic β2;f parts. In other
words,

βð2Þ ¼ βð2Þb þ βð2Þf ¼! 0; ð49Þ

which implies, in turn, that the purely bosonic component
can be extracted from the fermionic part (which is much
more amenable for loop calculations),

βð2Þb ¼ −βð2Þf : ð50Þ

Note that βð2Þb is identical to the beta function of the
nonsupersymmetric case.
To confirm the previous assertion, let us apply the

background field method. It suffices to consider the two-
loop fermionic diagram in Fig. 2—the only nontrivial
diagram with the required logarithmic divergence. Here
∂φ, ∂φ̄ are the external legs, and q, ψ , and their complex
conjugates are the quantum scalar field and fermions,
respectively. To proceed, we consider the background
expansion via the Kähler coordinates [36,37]. The only
relevant interactions in Fig. 2 are the three-vertices, namely,

iR11̄11̄ðq̄∂μφ − q∂μφ̄Þðψ̄γμψÞ; ð51Þ

where R11̄11̄ ¼ R11̄11̄ðφ; φ̄Þ. Therefore, the two-loop fer-
mion correction to the Lagrangian (10) is

iΔS2;f ¼
Z

d2xd2yðR11̄11̄Þ2∂μφ∂νφ̄hðq̄ ψ̄ γμψÞxðqψ̄γμψÞyi

¼ −
i

8π2ϵ

Z
d2xðR11̄11̄Þ2G−3

∂μφ∂
νφ̄þ � � � ; ð52Þ

where the ellipses stand for nonlogarithmic divergences
and ϵ ¼ 2 −D in dimensional regularization. In accor-
dance with the renormalization group equation (see,
e.g., [27,38]), we then have

βð2Þf ¼ 2 ·

�
−

1

8π2

�
ðR11̄11̄Þ2G−3 ¼ −

1

16π2
GR2: ð53Þ

Note that to get the second equality, the first equation in
(13) is used.
Now, invoking (50) we arrive at

βð2Þb ¼ −βð2Þf ¼ 1

16π2
GR2; ð54Þ

which matches with the general formula in the purely
bosonic model [38]

βð2Þb ¼ −
1

4π2
R1μ̄νλ̄R

μ̄νλ̄
1̄

¼ 1

16π2
GR2: ð55Þ

FIG. 2. The two-loop fermion diagram in a background field
calculation.

6In the mid-1980s this fact was questioned by Grisaru, van de
Ven, and Zanon [31] who analyzed the β functions in two-
dimensional Kähler σ models up to four loops. In the case of the
Ricci-flat manifolds they arrived at the conclusion that there is a
nonvanishing contribution to the β function cubic in the Riemann
curvature of the target space at the fourth loop. This result is in
direct contradiction with those reported in [32,33]. The class of
models we study is not Ricci flat. Moreover, in Sec. III C we will
argue that the result [31] cannot be applied to the model under
discussion. Our argument is based on Dorey’s exact solution [26]
for the mass spectrum in CPN−1 à la the Seiberg-Witten type
[34,35].
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In the present case, all the Greek indices μ, ν, λ are 1. As a
consistent check, taking the limit k ¼ 1 in (5) we recover
the CP1 result7

βð2Þ
�
2

g2

�
¼ g2

2π2
⇒ βð2Þðg2Þ ¼ −

g6

4π2
: ð56Þ

As explained in detail in [23] on pages 674–676, the
calculation of the graph in Fig. 2 becomes transparent if we
first deal with the fermion loop keeping fixed the momen-
tum flowing through the dashed (bosonic) line. As is clear
from Eq. (51) the fermion loop is exactly the same as in the
two-dimensional Schwinger model. It has no logarithms
and is saturated in the infrared. Including the bosonic loop
provides us with the first power of log μ. This is exactly
what is expected in the two-loop graph for the beta
function. The Schwinger “anomaly” is crucial.

1. Verification around the origin

If we limit ourselves to the vicinity of the origin in the
target space and forget for a short while about the target
space invariance, the proof of our assertion can be greatly
simplified. Indeed, because the overall structure of the field
dependence is constrained by the target space geometry of
the deformed CP1 model, we can accept that the second
coefficient of the beta function in the bosonic model takes
the form

βð2Þ ¼ c2GR2: ð57Þ

Plugging the explicit expression for the geometric data
given in Eq. (13), one sees that

βð2Þ → c2 ·
4n22
n1

ð58Þ

for φ; φ̄ ≈ 0. In the same approximation, the leading terms
in the Lagrangian are

Lð2;2Þ ¼
1

n1
ð∂μφ∂μφ̄þ iψ̄=∂ψÞ − i

�
n2
n21

�
φ̄∂μφðψ̄γμψÞ þ � � � :

ð59Þ

Then, considering the same two-loop diagram in Fig. 2, we
obtain the two-loop Lagrangian

ΔL ¼
�
−2 ·

�
n2
n21

�
2

Tfðφ̄ ψ̄ γμψÞ; ðφψ̄γνψÞg
�
∂μφ∂νφ̄

¼ −
�
2n22
n1

�
∂μφ∂

μφ̄ ·
1

8π2
log

M
μ
; ð60Þ

where M and μ are the ultraviolet and infrared cutoffs,
respectively. The constant c2 turns out to be

c2 ¼ −
1

16π2
; ð61Þ

consistent with the covariant derivation given in (53).

2. The two-loop beta function of the N = ð0; 2Þ extension
Based on the result of Eq. (53), the second coefficient of

the beta function for minimal N ¼ ð0; 2Þ sigma models
with a one-complex-dimensional target space can be
readily identified. To see that this is the case, note that
the fermion sector in N ¼ ð2; 2Þ models consists of two
Weyl fermions (one left-hand fermion and one right-hand)
while in N ¼ ð0; 2Þ models, there exists only one Weyl
fermion. This indicates that the contribution from fermions
at the two-loop level is half of Eq. (53) in the N ¼ ð0; 2Þ
case. Consequently, combining with the bosonic contribu-
tion, we obtain the second coefficient of the beta function
that

βð2Þð0;2Þ ¼
�
1 −

1

2

�
·

1

16π2
GR2 ¼ 1

32π2
GR2: ð62Þ

Going through the same process around (56), one
would see the second coefficient of the N ¼ ð0; 2Þ CP1

model

βð2Þð0;2ÞðCP1Þ ¼ −
g6

8π2
; ð63Þ

which was first derived in [7] through the superfield
calculation.

B. Comparison with the first-order formalism

Our results (54) for the bosonic model coincides with
that obtained in [2] by virtue of the first-order formalism.
The regularization procedure used in [2] was as follows.
We start from the N ¼ ð2; 2Þ theory. In first-order formal-
ism it is obvious that all loops in β beyond the first loop
vanish—there is no anomaly and holomorphy is preserved.
Then we endow the fermion field with a mass term mf and
compute the β function coefficients with large but fixed
value mf. In the limit mf → ∞ we discover that some
“extra” terms do not vanish. It is just these extra terms that
are responsible for the transition from ∂iv

j
a∂jvib in (9) to

∇iv
j
a∇jvib where ∇l stands for the covariant derivative.

This procedure can be viewed as an ultraviolet derivation of
the anomaly.

C. Comment on the literature

We started Sec. III A from the statement that “the second
(and all higher) coefficients of two-dimensionalN ¼ ð2; 2Þ

7This calculation for βð2Þb in CP1 was first presented in [23],
page 265; see also Sec. III A 1.
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sigma models vanish.” In this subsection we will discuss
this statement in more detail. A series of papers on this
subject was published in [32,33,39] in the early 1980s.
Then this issue was revisited in 1985–1986, approximately
simultaneously with the publication [31].
The authors of [31] state the opposite—that the β

functions in two-dimensional Ricci-flat Kähler σ models
have a nonvanishing contribution at four loops cubic in the
Riemann curvature of the target space [see their Eq. (5.16)].
The class of Lie-algebraic models we are interested in (it

includes, in particular CPN−1 models) is not not Ricci flat.
In the 37 years that have elapsed since the publication of
Grisaru et al. significant progress happened in understand-
ing both perturbation theory and exact solutions in CPN−1
models (and their extensions) and, in “parallel” to them,
exact solutions in Yang-Mills theories with various degrees
of supersymmetry.
If supersymmetry is minimal, the β functions are indeed

multiloop, but are exactly calculable. For N ¼ 2 super-
symmetry the perturbative β functions are exhausted by the
first loop. This is seen from the analysis of the holomorphy
properties with regards to the complexified coupling
constant

1=g2holom ¼ 1=g2 þ iθ=ð8π2Þ

in super-Yang-Mills and

1=g2holom ¼ 1=g2 þ iθ=ð4πÞ

in 2D CPN−1 models (see below). Moreover, this statement
is confirmed by the exact solutions.
The exact solution for the mass spectrum of the Seiberg-

Witten N ¼ 2 super-Yang-Mills [34,35] [say, for
SUð2Þgauge], parametrized by a single modular invariant
u, being expanded in the ratio u=Λ2 exhibits the first order
in logðu=ΛÞ plus all powers of

ðu=ΛÞ4n; n ¼ 1; 2; 3; 4;…: ð64Þ

The power terms of the expansion (64) do not contain
logarithms and come from instantons (this series can be—
and in fact, has been—obtained by using the Nekrasov
localization [40]).
Next, in 1998 Dorey published a paper [26] in which

he obtained the exact solution à la Seiberg-Witten for the
N ¼ ð2; 2Þ CPN−1 models with twisted masses (in CP1

there is only one twisted mass parameter). Dorey’s method
repeats Seiberg-Witten’s analysis [34,35] in N ¼ 2
Yang-Mills step by step.
If one replaces the twisted mass of the CPN−1 model by

the modular parameters ui of the Seiberg-Witten derivation
in Yang-Mills, then the formula for the spectrum in Yang-
Mills in four dimensions is exactly the same as Dorey’s

formulas inCPN−1 in two dimensions [see Eqs. (112) in the
general case and (117) for a particular case of CP1

in [26]].
Dorey’s observation [26] can be summarized as follows:
The mass spectrum on the Coulomb branch (ξ ¼ 0where

ξ is the Fayet-Iliopoulos term) of the Seiberg-Witten theory,
with unconfined ‘t Hooft-Polyakov-like monopoles and
dyons coincides with that of CPN−1 models emerging on
the vortex string [41,42] in the Higgs phase (i.e., ξ ≠ 0).
In [41] it was proved that the central charges cannot depend
on the nonholomorphic parameter ξ in the BPS sector.
This established a one-to-one correspondence between the
mass spectra of the two seemingly different theories. They
prove to be identical in the BPS sectors, hence, 2D–4D
correspondence.
Dorey’s formula for the BPS mass spectrum depends on

the ratio m=Λ, where m is the twisted mass and Λ is the
scale parameter of the theory, obtained through the dimen-
sional transmutation (as in any asymptotically free theory).
Let us assume that this parameter is large and expand
Dorey’s exact solution in the ratio m=Λ. In parallel with
N ¼ 2 Yang-Mills the Dorey expansion contains the first
order in logðm=ΛÞ plus powers of

ðm=ΛÞ2nN; n ¼ 1; 2; 3; 4;…;

where N comes from CPN−1, with nothing else.
We emphasize that the perturbative term logðm=ΛÞ is

unique. There are no terms log2 or log log, etc., in the
expansion of the exact formula. Since the masses are
physically observable, their expression must be consistent
with the β function. This can happen only if the perturbative
β function is purely one-loop in the class of models under
consideration.
Just for completeness, let us mention that in minimal

supersymmetries [such as N ¼ 1 Yang-Mills or N ¼
ð0; 2Þ CP1] the β functions contain all loops. However,
if it were not for holomorphic anomaly [43,44], all
coefficients, starting from the two-loop coefficient, would
vanish—only the one-loop coefficient would survive. The
breakdown of holomorphy is an infrared effect [43,44],
which is well understood. This is best illustrated by the
instanton formula (IR is automatically regularized in the
instanton background). Its general form valid for both
super-Yang-Mills and CPN−1 (without matter fields) is as
follows:

βðαÞ ¼ −
�
nb −

nf
2

�
α2

2π

�
1 −

ðnb − nfÞα
4π

�−1
; ð65Þ

where nb and nf are the numbers of the bosonic and
fermionic zero modes, respectively. Above, α ¼ g2=ð4πÞ in
super-Yang-Mills and α ¼ g2=2 in CPN−1.
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All coefficients in the β function (65) are integers
and, moreover, of a purely geometric nature. They are in
one-to-one correspondence with the number of symmetries
nontrivially realized on the Belavin-Polyakov-Schwarz-
Tyupkin or BP instanton. Equation (65) is valid for N ¼
2 and 4 (nb ¼ nf and nb ¼ 1

2
nf, respectively).

For the minimal supersymmetriy (N ¼ 1 in 4D Yang-
Mills) it stays valid too and presents an all-loop β function
in the form of the geometric progression [45–48]. Minimal
supersymmetry in the class of σ models is N ¼ ð0; 2Þ.
Only CP1 and its generalizations can be considered in this
class since CPN−1 with N ≥ 3 do not allow the minimal
N ¼ ð0; 2Þ superextension because of the geometric
anomalies (see [8,49,50] and references therein). In
Ref. [3] it is demonstrated in detail that the term in the
square brackets in Eq. (65) remains intact in the Lie-
algebraic deformation of CP1 [see Eq. (49) in [3]].

IV. REDUCTION TO QUANTUM MECHANICS

In this section, we explore quantum mechanics (QM)
associated with the deformed CP1 model, derived through
compactification along the spatial dimension. Under a
particular scheme of compactifications, the resulting quan-
tum-mechanical system is the Lamé QM problem, which is
Lie-algebraic and quasi-exactly solvable. It can also be
viewed as the interpolation between two solvable quantum
mechanics, the sine-Gordon and the Pöschl-Teller systems
[51].8 For additional insights regarding the connection to
other integrable and Lie-algebraic models, interested readers
are referred to earlier discussions from the 1990s [52–54].
For the time being, let us consider only the bosonic

version of the deformed CP1 model with nonsingular
parameters; i.e., n1, n3 are neither zero nor infinity.
Equation (3) can be recast via the field redefinition [3]
such that the Lagrangian reads

Lb ¼
2

g22d

∂μφ∂
μφ̄

1þ 2kjφj2 þ jφj4 ; ð66Þ

where the parameters ni are

n1 ¼ n3 ¼
g22d
2

and n2 ¼ g22dk ð67Þ

in which k∈ ½1;∞Þ. Then to understand the connection
between the deformed CP1 model and the Lamé equation,
one can take the following reparametrization of our main
model. Namely,

φðt; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
sdðθðt; zÞjκÞ

1þ cdðθðt; zÞjκÞ eiαðt;zÞ;

φ̄ðt; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
sdðθðt; zÞjκÞ

1þ cdðθðt; zÞjκÞ e−iαðt;zÞ;

where sdðθjκÞ and cdðθjκÞ are two kinds of Jacobi
elliptic function and α is the azimuthal angle. The param-
eter θ is defined on ½0; 2KðκÞÞ where KðκÞ is the complete
elliptic integral of the first kind and the other parameter
κ is associated with the original elongation factor k in the
way

κ ≡ k − 1

kþ 1
∈ ½0; 1Þ: ð68Þ

The conventions and further properties of the Jacobi
elliptic functions and their integrals used in this paper
are summarized in Appendix A. Plugging (68) into the
Lagrangian (66), we can write down the bosonic
Lagrangian in terms of θ and α,

Lb ¼
2

g22dð1þ kÞ ½∂μθ∂
μθ þ sn2ðθjκÞ∂μα∂μα�: ð69Þ

As shown in (69), we already observe some signals of the
emergence of the Lamé potential as the coefficient of the
kinetic term of α.
Next, we can apply the Scherk-Schwarz dimensional

reduction [55] such that the underlying spacetime isR × S1L
where L is the circumference of the compactified circle
and the spacetime dependences of θ and α fields are
restricted

θðt; zÞ ¼ θðtÞ; αðt; zÞ ¼ α0 − α1z; ð70Þ

where α0 and α1 are real time-independent constants and
the latter one is constrained by the boundary condition
along S1L. For example, the periodic boundary condition
on φ; φ̄,

αðt; zþ LÞ ¼ α0 − α1ðzþ LÞ
¼! α0 − α1 þ 2πn; n∈Z; ð71Þ

implies that

α1 ¼
2πn
L

: ð72Þ

Similar arguments can be applied to the antiperiodic
boundary condition and the twisted boundary conditions.
Note that only a subset of the field configurations in the
deformed CP1 model aligns with the condition specified in
Eq. (70). For instance, mutlifractional instanton solutions
are not compatible with the Scherk-Schwarz scenario while8The Pöschl-Teller case, i.e., k → ∞, is not periodic.
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composites with pairs of fractional and antifractional
instantons satisfies the assumption.9

This phenomenon was initially identified in the com-
parison of theCP1 model with the sine-Gordon model [56],
demonstrating that not all field configurations from the
two-dimensional model are preserved under the Scherk-
Schwarz reduction. A more detailed comparison of
deformed CP1 quantum mechanics and Lamé quantum
mechanics is provided in Appendix C.
To proceed with the dimensional reduction, we then

insert (70) into the two-dimensional Lagrangian and
integrate over the z-direction, which leads to

L1 ¼
2L

g22dð1þ kÞ
��

dθ
dt

�
2

− α21sn
2ðθjκÞ

�
: ð73Þ

For what follows it is convenient to denote the one-
dimensional coupling constant

1

g2
≡ 2L

g22dð1þ kÞ ð74Þ

and rescale the time variable t → 2t=g2. The system of
Eq. (73) can be quantized adhering to the standard lore of
the quantum mechanics, wherein the time-independent
Schrödinger equation is expressed as

1

g2

�
−

d2

dθ2
þ α21sn

2ðθjκÞ
�
ΦðθÞ ¼ EΦðθÞ ð75Þ

in which ΦðθÞ is the corresponding wave function as a
function of the compact coordinate θ. Equation (75) is
recognized in the literature as the Lamé model
[10,12,57,58].

A. Two limits of the Lamé equation

In the ordinary construction [1–3], we have seen that the
two-dimensional deformed CP1 model is a (Lie-algebraic)
generalization of the classic CP1 model. This can also be
realized in its one-dimensional reduction (75). Figure 3
shows the transition of the potentials from the sine-Gordon
model through to the Lamé one and finally to the Pöschl-
Teller system.
Starting with the limit κ approaching zero, one has

snðθjκÞ → sin θ and the Hamiltonian in this case

g2Hκ¼0 ¼ −
d2

dθ2
þ α21sin

2θ ð76Þ

in which θ∈ ½0; πÞ. This Hamiltonian is precisely the one of
sine-Gordon quantum mechanics whose potential is
periodic.
On the other hand, the one-dimensional model is also

nontrivial in the other limit κ reaching the unity. Before
proceeding to the reduced quantum mechanics, we briefly
review some basic results of the deformed model in the
large k limit. From the two-dimensional perspective, the
deformed CP1 model turns out to be the sausage/cigar
model [59,60] as the elongation k becomes large [3]. And
in the exact limit κ → 1, or equivalently k → ∞, the target
space of the complex fields φ; φ̄ deforms to a cylinder [29]
in the present limit. Namely,

L ∼
∂μφ∂

μφ̄

jφj2 ↔
φ¼eu

∂μu∂μū: ð77Þ

On the one-dimensional side, the Schrödinger equation (75)
can be written as10

1

g2

�
−

d2

dx2
þ α21ð1 − sech2xÞ

�
ΦðxÞ ¼ EΦðxÞ ð78Þ

in which x now is defined on the half-real line R≥0.
Certainly, Eq. (78) is reflection invariant, and we can
extend the domain from x∈R≥0 to x∈R. Note that
Eq. (78) is recognized as the Pöschl-Teller system [61]
and is also quasi-exactly solvable for judiciously chosen
coefficient α1 (cf. [10,11]).

B. Comparison to Dunne-Shifman

As is well-known in the literature, the Lamé model is
Lie-algebraic and quasi-exactly solvable [10–12,57,58].

FIG. 3. The demonstration of the potential of three quantum-
mechanical systems, sine-Gordon, Lamé, and Pöschl-Teller one.
The elliptic modulus of the Lamé potential κ is 0.7. The blue,
orange, and green curves represent the potentials of sine-Gordon,
Lamé, and Pöschl-Teller systems, respectively.

9This observation can be straightforwardly deduced from the
findings related to the CP1 model [56]. As demonstrated in [3],
the instanton equation for the deformed CP1 model is identical to
that of the original CP1 model, leading to equivalent (fractional/
antifractional) instanton solutions. Consequently, the discussions
pertinent to the CP1 model are equally applicable to the deformed
variant. 10We have used the fact that limκ→1snðθjκÞ ¼ tanh θ.
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In other words, the associated Hamiltonian can be
expressed as a matrix-valued function of a certain Lie
algebra in some representation and a subset of the spectrum
can be solved exactly. In [12], the Lamé system is studied in
detail and shows that there exists a duality between bands
and gaps in the spectrum. In the following, we detail the
condition when our system is algebraic and its connection
to the boundary condition is imposed in the Scherk-
Schwarz reduction. Without loss of generality, we may
set g2 and the circumference of the compactified dimension
L to be unity for convenience.
To this end, recall that in the original construction of the

Lie-algebraic sigma model [1–3], the differential represen-
tation of slð2Þ algebra in the spin-j representation is

Tþ¼2jη−η2∂η; T0¼−jηþη∂η; T−¼∂η; ð79Þ

where j is a semi-integer and

η≡ 1 − sn2ðθjκÞ ð80Þ

following [12]. Then (75) is recast in the form

H ¼ 4½ð−1þ κÞT0T− þ ð−1þ 2κÞTþT− − κTþT0�
þ 2½−ð1þ 6jÞκTþ − 2ð1þ 2jÞð−1þ 2κÞT0

þ ð1þ 2jÞð−1þ κÞT−� − 4jð1þ 2jÞð−1þ 2κÞ þ α21

þ η½4jð4jþ 1Þκ − α21�: ð81Þ

For (81) to be Lie algebraic, there should be no dependence
on the variable η in the Hamiltonian. Hence, one requires
that11

α21 ¼ 4jð4jþ 1Þκ: ð82Þ

Note that with the condition (82), the coefficient of the
potential term in (75) is a multiple of κ satisfying the quasi-
exactly solvable condition [11,12]. As discussed in the
dimensional reduction process, the constant α1 depends on
the boundary condition. Unlike (72) obtained under a
periodic boundary condition, the condition specified in
Eq. (82) necessitates the imposition of the twisted boundary
condition

φðt; zþ LÞ ¼ e�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jð4jþ1Þκ

p
φðt; zÞ: ð83Þ

C. Generalizations

So far, we have provided a comprehensive discussion on
the relation between quasi-exactly solvable quantum
mechanics and the Lamé quantum mechanics, as derived
from dimensional reduction through a specific scheme. In

Sec. II, we also see some generalizations to the bosonic
deformed CP1 model. Let us examine how these additional
elements in the extended deformed model influence the
corresponding quantum mechanics.

1. Reduction of the deformed CP1 model
with twisted masses

In the case of the deformed model with twisted mass
(37), one has

Lm;b ¼ G½∂μφ∂μφ̄ − jmj2φφ̄� ð84Þ

in which the fermionic part is ignored for the time being.
Then, taking the same elliptic parametrization (68) and
going through the same dimensional reduction process, one
deduces the Hamiltonian with twisted mass

Hm ¼ −
d2

dθ2
þ ðα21 þ jmj2Þsn2ðθjκÞ: ð85Þ

By introducing an additional mass parameter, we can relax
the twisted boundary condition as specified in Eq. (83), and
instead, define a quantization condition for the mass
parameter to satisfy the Lie-algebraic criterion. For exam-
ple, let us keep the periodic boundary condition (72) intact.
Then the quantization condition for the system to be quasi-
exactly solvable (QES) is

jmj2 ¼ JðJ þ 1Þκ −
�
2πn
L

�
2

ð86Þ

for J∈N and n∈Z. Similar treatments can be applied to
antiperiodic and other boundary conditions along the
compactified dimension.

2. Supersymmetric Lamé model

Another direction to generalize the Lamé model is to
supersymmetrize it. Generally speaking, a supersymmetric
quantum mechanics deformed by a potential term takes the
form (see, for example, [14])

Ho ¼ −
d2

dθ2
þ ðW0ðθÞÞ2 þW00ðθÞ

�
1 0

0 −1

�
; ð87Þ

where WðθÞ is the superpotential and the matrix repre-
sentation of fermions is adopted. By projecting onto the
subspaces of different fermion numbers, the Hamiltonian
(87) can be further simplified to an effective bosonic
system, namely,

H ¼ −
d2

dθ2
þ ðW0ðθÞÞ2 ∓ W00ðθÞ: ð88Þ

In particular, in the supersymmetric Lamé quantum
mechanics, we have11The dimension of α1 can be recovered by taking α1 → α1=g2.
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H ¼ −
d2

dθ2
þ V∓ðθÞ

¼ −
d2

dθ2
þ α2κsn2ðθjκÞ ∓ α

ffiffiffi
κ

p
cnðθjκÞdnðθjκÞ ð89Þ

with the Schrödinger equation HΦðθÞ ¼ EΦðθÞ. Note that
the superpotential12 WðθÞ in our case is

WðθÞ ¼ −αarctanh
� ffiffiffi

κ
p

cdðθjκÞ	: ð90Þ

With the potential V�ðθÞ in Eq. (89) at hand, the super-
symmetry is manifest, but this is not the case of Lie-
algebraicity. The later part of this section is devoted to
this issue.
Before moving on to the discussion on the Lie-algebraic

structure of the supersymmetric Lamé QM, let us have a
closer look at other interesting features of this system. First,
we note that (89) is compatible with the 2D construction
(17) and the dimensional reduction scheme. To see this is
the case, in addition to (70), one also needs the reduction of
the fermions

ψðt; zÞ ¼ ψðtÞeiðα0−α1zÞ ð91Þ

with the same boundary condition as the scalar fields. As a
result, the reduced one-dimensional Lagrangian is

g2L̃ð0;2Þ ¼
1

2
½θ̇ðtÞ2 − α21sn

2ðθjκÞ�
þ iχ̄ χ̇ −α1cnðθjκÞdnðθjκÞχ̄χ; ð92Þ

where χ is the normalized fermion field via vielbein. This
Lagrangian is obtained from (17) by substituting φ and ψ
within the compactification scheme (70) and (91) and
integration over z. It implies that the Hamiltonian indeed

matches with the one proposed in (89) by taking χ̄ and χ to
be σþ and σ−, respectively, in the matrix representation.
The ordering of the fermions is fixed such that the original
Hamiltonian is fQ; Q̄g=2 where Q; Q̄ are supercharges.
Last, the potential of the supersymmetry (SUSY) quantum-

mechanical model is depicted in Fig. 4. It is clear that the
potential is periodic with period 4KðκÞ due to its elliptic
function nature. As thevalue ofα increases, it is observed that
the period is halved compared to cases with smaller α. This is
because the portion of the potential modified by the super-
symmetric effect (or, equivalently, the presence of Weyl
fermions) is proportional to α, whereas the nonsupersym-
metric part of the potential is proportional to α2 and has a
period of 2KðκÞ. Furthermore, if one intends to conduct
analysis via the Wentzel–Kramers–Brillouin perturbation, it
is noteworthy that there exist two distinct types of instanton
events in the inverted potential: one involves tunneling
through a tall barrier, while the other occurs via a low barrier.

3. Lie-algebraic features of supersymmetric Lamé
Hamiltonian

To advance our understanding on the Lie-algebraic
nature of the supersymmetric Lamé model, let us analyze
the potential terms in the Hamiltonian in detail. In accor-
dance with the argument in [58], the Hamiltonian (89),
especially the last term, does not match the general form of
the quasi-exactly solvable model with a double-periodic
potential. However, this is not the end of the story. The
system can be transformed into a Lie-algebraic form via an
appropriate coordinate transformation, though the quasi-
exactly solvable condition requires separate verification.
The aforementioned assertion is elaborated as follows.
Consider the coordinate transformation

θ0 ¼ iðθ − K − iK0Þ; ð93Þ

where

FIG. 4. The potential V−ðθÞ of the supersymmetric Lamé model defined in (89). The blue and orange lines correspond to the potential
with κ equal to 0.5 and 0.8, respectively. VþðθÞ has the identical structure to V−ðθÞ, but is shifted by a half period.

12Here the parameter α1 ¼ α
ffiffiffi
κ

p
compares to the previous case.
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K0 ≡ Kð1 − κÞ ¼ Kðκ0Þ: ð94Þ

Utilizing the identities of Jacobi elliptic functions, we
rephrase the corresponding Schrödinger equation of (89)
in terms of dual variables θ0; κ0,

�
−

d2

dθ02
þ α2κ0sn2ðθ0jκ0Þ � iακ0snðθ0jκ0Þcnðθ0jκ0Þ

�
Φ

¼ ðα2 − EÞΦ; ð95Þ

which fits into the Lie-algebraic form given in [58]. The
Hamiltonian (95) is not in the canonical form of SUSY
QM. However, we can use the identity of the Jacobi elliptic
functions presented in Appendix A such that the dual
superpotential is

W̃0ðθ0Þ ¼ idnðθ0jκ0Þ: ð96Þ

Then, the Lie-algebraic feature of the system is realized by
the similar differential representation in (79), but with a
different variable

ξ≡ snðθ0jκ0Þ
cnðθ0jκ0Þ : ð97Þ

Note that the Hamiltonian H̃ is formulated in the general
form

H̃ ¼ −
X

a;b¼0;�
CabTaTb −

X
a¼0;�

CaTa − d ð98Þ

with

Cþþ ¼ ð1 − κ0Þ; C00 ¼ 1þ κ0; C−− ¼ 1;

C�0 ¼ C0� ¼ 0; C�∓ ¼ 0;

d ¼ 1

4κ0

�
C2
− − ðC2

0 þ 2CþC−Þ þ
C2þ

1 − κ0

�
− 2jðjþ 1Þ:

ð99Þ

The other coefficients C� and C0 can be derived from the
consistency condition (D1) given in [58]. The derivation is
tedious, but straightforward, and we left further illustrations
in Appendix D. The complete set of solutions to (D1) can
be categorized into three groups, as summarized in Table I.
Qualitative discussions on this set of solutions and some
examples of specific representations are provided as
follows.
To start with, note that the group (A1) in Table I with

j ¼ 0 coincides with the supersymmetric ground state. To
see this is the case, for j ¼ 0, there are no contributions
from T� and T0, but from the constant term, which is 1=4.
On the other hand, we have from the right-hand side of (95)
that

1

4
¼

��
1þ 4j

2

�
2

− Ej

�
j¼0

; ð100Þ

implying the vanishing of the ground state energy.
Generally speaking, due to the existence of the solutions

in Table I to consistency equations, one would hence
conclude that the supersymmetric is quasi-exactly solvable.
In other words, the tasks of solving the differential equation
for the eigenstates and eigenenergy are then translated to
the problem of solving eigenvalues and eigenvectors of
ð2jþ 1Þ × ð2jþ 1Þ matrices of the spin-j representations
of slð2Þ algebra. The explicit matrix form of the dual
Hamiltonian can be found by inserting the solutions given
in Table I to the general expression (98). However, this
observation does not hold universally across all values of κ0
as some eigenvalues emerge as complex for these specific
κ0 values. We consider some numerical investigations on
the eigenvalues of the dual Hamiltonian for different sets of
solutions in Table I.
Here we give the examples of quasi-exact solvability of

some lower spin representations, for instance, j ¼ 1=2 and
1. For the spin-1=2 sector, the Hamiltonian takes the forms

HðA1Þ
j¼1=2 ¼

� 3
4
ð2þ κ0Þ �ið1 − κ0Þ
∓i 1

4
ð6 − κ0Þ

�
; HðB1Þ

j¼1=2 ¼
� 1

4
ð7þ 8κ0 − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p Þ �ið1 − κ0 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p Þ
∓ið1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p
Þ 1

4
ð7 − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p
Þ

�
;

HðB2Þ
j¼1=2 ¼ HðB1Þ

j¼1=2ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p
→ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p
Þ; ð101Þ

TABLE I. A set of solutions to consistency equations of QES.

Group Cþ C− C0 α

(A1) ∓ ið1 − κ0Þ �i −2jκ0 ∓ 1
2
ð1þ 4jÞ

(B1) ∓ ið
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p
− 1þ κ0Þ �ið−1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p
Þ −ð2jþ 1Þκ0 �ð2jþ 1Þ

(B2) ∓ ið
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p
þ 1 − κ0Þ �ið1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p
Þ −ð2jþ 1Þκ0 ∓ ð2jþ 1Þ
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with eigenvalues

EðA1Þ
j¼1=2 ¼

6þ κ0

4
� 2 − κ0

2
; ð102aÞ

EðB1Þ
j¼1=2¼

1

4



7þ4κ0−2

ffiffiffiffiffiffiffiffiffiffiffi
1−κ0

p

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ02þ

ffiffiffiffiffiffiffiffiffiffiffi
1−κ0

p
ðκ0−2Þþ2ð1−κ0Þ

q �
; ð102bÞ

EðB2Þ
j¼1=2 ¼ EðB1Þ

j¼1=2ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p
→ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ0

p
Þ: ð102cÞ

The energy of the group (A1) with j ¼ 1=2 is real for
all κ0. Regarding cases (B1) and (B2), it is observed that the
elements in the square roots of Eqs. (102b) and (102c)
remain non-negative for 0 < κ0 < 1. This signifies that
the system is fully quasi-exactly solvable across the
entire interval for all three parametrizations. In the spin-
1 sector, a slightly different observation is made as in the

FIG. 5. Eigenenergy of groups (A1) and (B1) in spin-1 representation.

FIG. 6. Energy of eigenstates of dual Hamiltonians for j ¼ 1=2; 3=2; 2; 5=2. The case of j ¼ 1 was presented in Fig. 5.
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spin-1=2 scenario, where the associated energy within the
group (B2) is real over a specific interval of κ0. Meanwhile,
the energy for groups (A1) and (B1) remains real across the
entire range of κ0. This is most effectively illustrated by
Fig. 5, given that the expressions for the dual Hamiltonians
are lengthy and their physical meaning is not immediately
clear from their precise formulations. The energy of the
eigenstates of the dual Hamiltonian for j ¼ 1=2; 1;…; 5=2
are depicted in Fig. 6.
To wrap up the current section, we comment on the

supersymmetric Lamé model with twisted masses. By
employing the same steps as outlined earlier, one can
similarly derive the supersymmetric Lamé model. The
configuration of the potential terms remains nearly iden-
tical to that of the model without twisted masses, with the
primary distinction being in the associated coefficients.
Namely,

α2 → α2 þ jmj2; α → αþm; ð103Þ

in which we assume m is real for simplicity. Also, we can
expect that this system is Lie algebraic and quasi-exactly
solvable because the twisted mass as an additional param-
eter increases the degree of freedom of (D1).

V. CONCLUSIONS AND OUTLOOKS

In our study, we explored various aspects related to the
Lie-algebraic deformation of the CP1 sigma model in two
dimensions. We stated from generalizing the original
model endowing it with heterotic N ¼ ð0; 2Þ and extended
N ¼ ð2; 2Þ supersymmetries. Then, we identified the
hypercurrent anomaly in both scenarios. Notably, in the
extended supersymmetry case, the anomaly, while being
one-loop, deviates from conventional formulations found in
the literature [20] due to the nonsymmetric nature of the
target Kähler manifold. We further elucidated the incorpo-
ration of twisted masses and the θ term and examined the
BPS equation for instantons, focusing on its connection to
the topological charge.
Moreover, we established that the second-loop

contribution to the β function in the nonsupersymmetric
Lie-algebraic sigma model arises from an infrared phe-
nomenon. We used a supersymmetric regularization to
substantiate our findings. We suggest that this inference
extends to higher loops, drawing a parallel with similar
behaviors observed in four-dimensional N ¼ 1 super-
Yang-Mills theory.
In the second half of the paper, we point out the

relationship between the Lie-algebraically deformed CP1

model and Lamé-type quantum mechanics, achieved
through the Scherk-Schwarz dimensional reduction
technique. This result is then further generalized to the
case of N ¼ ð0; 2Þ supersymmetry. Upon certain addi-
tional requirements, the supersymmetric quantal problem
obtained in this way proves to be quasi-exactly solvable.

Further research into the link between two-dimensional
Lie-algebraic models and quasi-exactly solvable quantum
mechanics could focus on the deformation of 2D sigma
models via specific potentials and the generalization of
Lamé quantum mechanics, including the study of the
associated Lamé equation.

ACKNOWLEDGMENTS

M. S. is grateful to A. Turbiner and O. Gamayun for
useful discussions. This work is supported in part by DOE
Grant No. DE-SC0011842 and the Simons Foundation
Targeted Grant No. 920184 to the Fine Theoretical Physics
Institute.

APPENDIX A: CONVENTIONS ON ELLIPTIC
INTEGRALS AND JACOBI ELLIPTIC FUNCTION

In this appendix, we provide a summary of the defi-
nitions and several useful identities of Jacobi elliptic
functions that are used in the main text. Further properties
can be found in, for example, Refs. [62,63]. First, the
elliptic integral of the first kind is defined as

FðκjϕÞ≡
Z

ϕ

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κsin2t

p ; ðA1Þ

where the complete elliptic integral KðκÞ ¼ Fðκjπ=2Þ. To
define Jacobi elliptic functions, it suffices to consider the
inverse of the incomplete integral FðκjϕÞ

ϕ≡ a:m:ðFjκÞ: ðA2Þ

Then the Jacobi elliptic functions are represented as

snðFjκÞ≡ sinϕ; cnðFjκÞ≡ cosϕ;

dnðFjκÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κsin2ϕ

q
;

sdðFjκÞ≡ sinϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κsin2ϕ

p ; cdðFjκÞ≡ cosϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κsin2ϕ

p ;

ðA3Þ

with the elliptic modulus κ∈ ½0; 1Þ and κ0 ≡ 1 − κ.
The following identities are used in the discussion of the

Lamé systems, in particular, in Sec. IV for the dual
transformations,

κsn2ðθ; κÞ ¼ 1 − κ0sn2ðθ0; κ0Þ;ffiffiffi
κ

p
cnðθ; κÞdnðθ; κÞ ¼ iκ0snðθ0; κ0Þcnðθ0; κ0Þ: ðA4Þ

LIE-ALGEBRAIC KÄHLER SIGMA MODELS WITH U(1) … PHYS. REV. D 109, 125017 (2024)

125017-15



APPENDIX B: DERIVATION OF ANOMALOUS
AXIAL Uð1Þ CURRENT

In this section, we outline the derivation of the con-
nection between the divergence of the anomalous axial
current and the theta term of the deformed CP1 model.
Parallel to the discussion in [64], one has that

∂μðGψ̄γμγ5ψÞ ¼ ∂μðχ̄γμγ5χÞ ¼ 2iTrγ5f

�
=D2

Λ2

�
; ðB1Þ

where fðxÞ is the regularization function with cutoffΛ such
that

fð0Þ ¼ 1 and lim
x→∞

fðxÞ ¼ 0:

Here we consider the vielbein to decompose the metric, say,

χ̄ ¼
ffiffiffiffi
G

p
ψ̄ ; χ ¼

ffiffiffiffi
G

p
ψ ; ðB2Þ

and the covariant derivative Dμ under this frame is

Dμ ≡ 1

2
ðΓ∂μφ − Γ̄∂μφ̄Þ:

Consequently, the trace turns out to be

Trγ5f

�
=D2

Λ2

�
¼ Λ2tr

Z
d2k
ð2πÞ2 γ5f

�
−k2 þ 2iðk ·DÞ

Λ
þD2

Λ2
−

1

4Λ2
½γμ; γν�Rð2Þ;μν

�
→

1

2π
R11̄ϵ

μν
∂μφ̄∂νφ: ðB3Þ

To get the second line of (B3), we take the limit Λ → ∞
and employ the commutation relation

½Dμ; Dν� ¼ −Rð2Þ;μν

in which

Rð2Þ;μν ≡ R11̄ð∂μφ̄∂νφ − ∂νφ̄∂μφÞ: ðB4Þ

Therefore, combining (B1) and (B3), we have

∂μðGψ̄γμγ5ψÞ ¼ −
i
π
R11̄ϵ

μν
∂μφ∂νφ̄: ðB5Þ

Together with (14), we arrive at (46).

APPENDIX C: COMPARISON BETWEEN
DEFORMED CP1 QUANTUM MECHANICS AND

LAMÉ QUANTUM MECHANICS

Here the distinction between different dimensional
reduction scenarios are detailed. In particular, we compare
the resultant quantum mechanics from the Kaluza-Klein
(KK) and the Scherk-Schwarz reductions.
In the Kaluza-Klein framework, one assumes the space-

time dependence of the field to be

φðt; zÞ ¼
X∞
n¼0

φðnÞðtÞ exp
�
i
2πnz
L

�
;

φ̄ðt; zÞ ¼
X∞
n¼0

φ̄ðnÞðtÞ exp
�
−i

2πnz
L

�
: ðC1Þ

As substituting this into (3), integrating along the
z-direction, and keeping only the lowest mode, we have

LKK ¼ Gφ̇ ˙̄φ ¼ θ̇2 þ sn2ðθjκÞα̇2 ðC2Þ

from which we can see that there will be some additional
pieces in the deformed CP1 Hamiltonian, comparing with
the Lamé equation. Indeed, according to Eq. (C2), the
Hamiltonian of the deformed CP1 model is

HdCP1 ¼ −
1

4
Δ

¼ −
1

4

�
d2

dθ2
þ 1

snðθjκÞ
d
dθ

þ 1

sn2ðθjκÞ
d2

dα2

�
; ðC3Þ

where Δ is the Laplace operator. Note that (C2) is a two-
dimensional quantum-mechanical system while the Lamé
model (75) is of one dimension that depends only on θ.
Thus, even when we consider the zero-angular momentum
sector of the Hilbert space (i.e., ∂Φ=∂α ¼ 0), there is still an
additional linear contribution in θ in the deformed CP1

Hamiltonian than in the Lamé one. If one keeps a higher
mode rather than the lowest one, it will introduce an extra
mass term, but can still do nothing with eliminating the
linear differential part in θ. The further discussion on the
deformed CP1 quantum mechanics derived from the KK
reduction can be found in [65]. In fact, the similar issue
between the CP1 model and the sine-Gordon model was
discussed in [66] from the perspective of resurgence
analysis.
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APPENDIX D: DETAILS OF LIE-ALGEBRAIC
FEATURES OF SUPERSYMMETRIC LAMÉ

QUANTUM MECHANICS

The sufficient and necessary condition for rendering the
system quasi-exactly solvable is that there exists nontrivial
solutions ðC�; C0; αÞ to the equations of consistency13

given in [58], namely,

κ0jðjþ 1Þ − C0

2
ð2jþ 1Þ þ 1

4κ0
½C2

0 − ðCþ − C−Þ2� ¼ α2κ0;

ðD1aÞ

1

2κ0
ðCþ − C−Þ½κ0ð2jþ 1Þ − C0� ¼ iακ0; ðD1bÞ

1

2κ0
½Cþ − ð1 − κ0ÞC−�½κ0ð2jþ 1Þ þ C0� ¼ 0; ðD1cÞ

κ0jðjþ 1Þ þ C0

2
ð2jþ 1Þ

þ 1

4κ0

�
C2
0 −

ðCþ − ð1 − κ0ÞC−Þ2
1 − κ0

�
¼ 0: ðD1dÞ

For group (A1), it corresponds to taking Cþ ¼ ð1 − κ0ÞC−,
while taking C0 ¼ κ0ð2jþ 1Þ is related to groups (B1)
and (B2).
As reducing to the (bosonic) Lamé case, we have the

vanishing right-hand side of (D1b). The solution to this
reduced case is C� ¼ 0, C0 ¼ −2jk, α ¼ 2jð1þ 2jÞ as
claimed in [12] since j is a semi-integer.
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