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We derive the soft effective action in (dþ 2)-dimensional Abelian gauge theories from the on-shell
action obeying Neumann boundary conditions at timelike and null infinity and Dirichlet boundary
conditions at spatial infinity. This allows us to identify the on-shell degrees of freedom on the boundary
with the soft modes living on the celestial sphere. Following the work of Donnelly and Wall, this suggests
that we can interpret soft modes as entanglement edge modes on the celestial sphere and study
entanglement properties of soft modes in Abelian gauge theories.
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I. INTRODUCTION

The infrared (IR) sector of quantum field theories (QFTs)
has recently enjoyed much attention, primarily due to the
seminal work of Strominger [1,2], which showed that
Weinberg’s leading soft graviton theorem [3] is the Ward
identity for the Bondi-van der Burg-Metzner-Sachs (BMS)
supertranslation symmetry [4,5]. This relationship between
soft theorems and the so-called asymptotic symmetries is
now understood to be a universal feature of all gauge and
gravitational theories in asymptotically flat spacetimes (see
Refs. [6–8] for a review). For example, the leading soft
photon or soft gluon theorems in gauge theories [3,9] are the
Ward identity for large gauge symmetries [10–20], and the
subleading soft graviton theorem in gravitational theories
[21] is the Ward identity for BMS superrotations [22,23].
A particularly important consequence of these sym-

metries is that gauge and gravitational theories do not
have a unique vacuum state. Rather, they have infinitely
many vacua, all related via action by the asymptotic
symmetry charge. In other words, the asymptotic symmetry
is spontaneously broken by the choice of vacuum state.1

The Goldstone mode θðxÞ associated with this spontaneous
breaking lives on the celestial sphere Sd, the codimension-
two boundary of the spacetime (the bulk spacetime dimen-
sion is dþ 2). The symplectic conjugate of the Goldstone
mode is the so-called soft photon operator ϕðxÞ, which
inserts a soft (low energy) photon in a scattering ampli-
tude [18]. Together, the fields θ;ϕ constitute the low energy
sector of the theory. They live on a codimension-two
boundary of the spacetime and, in this sense, are the
boundary or edge modes of Abelian gauge theories.
The effective dynamics of the edge modes are described

by a codimension-two action which was constructed in [24]
(similar actions in various other forms have previously
appeared in [25–29] as well, though they all exclusively
work in four spacetime dimensions). The so-called soft
effective action reproduces all universal soft features of
Abelian gauge theories, namely Weinberg’s leading soft
photon theorem [3] and the IR factorization of scattering
amplitudes (IR divergences in four dimensions) [30]. More
precisely, given a gauge theory with IR cutoff μ, and
denoting the energy scale separating the soft modes from
the hard ones as Λ, scattering amplitudes take the form

hϕðx1Þ � � �ϕðxmÞO1 � � �Oniμ
¼ ðJ ðx1Þ � � �J ðxmÞe−Γðμ;ΛÞÞhO1 � � �OniΛ; ð1:1Þ

where h� � �iE denotes a scattering amplitude evaluated with
IR cutoff E, Ok are the hard insertions (energy above the
scale Λ), ϕðxiÞ are the soft photon insertion (with energy
below Λ but above μ), J ðxiÞ are related to the leading
Weinberg soft factor, and Γðμ;ΛÞ is the contribution from
virtual soft photons. Thus, we see the amplitude factorizes
into a “hard amplitude” and a soft factor that receives
contributions from virtual soft photons and external soft
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1The vacuum degeneracy being discussed here is not the one
associated with the θ-angle in gauge theories, which is related to
gauge transformations that are constant on the boundary but are
topologically nontrivial (i.e., they have a nonzero winding
number). We are interested in degeneracy due to gauge trans-
formations that are nonconstant on the boundary but are topo-
logically trivial.
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photons. When μ and Λ are small compared to all the other
energy scales in the amplitude, the soft factor is universal
and can be reproduced by a path integral of the formZ

½dϕ�½dθ�e−Seff ½ϕ;θ�ϕðx1Þ � � �ϕðxmÞ

¼ J ðx1Þ � � �J ðxmÞe−Γ½μ;Λ�; ð1:2Þ
where the effective action Seff ½ϕ; θ� for the soft or edge
modes is given by (see Sec. II C for details)

Seff ½ϕ; θ� ¼ α

Z
Sd

ddx
ð2πÞd ð∂aϕðxÞÞ

2

−
i

2c1;1

Z
Sd
ddxf∂aθðxÞð∂aϕðxÞ − ∂aJ ðxÞÞ;

ð1:3Þ
where Sd is the celestial sphere. Interestingly, this action is
neither real nor local (the tilde superscript denotes the shadow
transform (2.26), which is a nonlocal integral transform). It
was constructed in [24] using the asymptotic symmetries of
the theory (in this case, large gauge transformations) and relied
heavily on effective field theory techniques. Therefore, it is
interesting to askwhether the action (1.3) involving softmodes
can be derived directly from the bulk action, whose on-shell
degrees of freedom are the edge modes.
Edge modes in gauge theories were introduced to the

study of entanglement entropy by Donnelly [31]. It is
known from [32] that the entanglement entropy of Maxwell
theory in dþ 2 dimensions is equal to that of d scalar fields
plus an additional contact term, whose physical signifi-
cance was not clear. In [33,34], Donnelly and Wall showed
that this contact term is physical and is, in fact, the
contribution of edge modes to the entanglement entropy.
They further showed that the effective action for the edge
modes could be obtained by evaluating the Maxwell action
on-shell with “magnetic conductor boundary conditions.”
These “entanglement edge modes” also live on a codi-
mension-two boundary of the spacetime (specifically, on
the entangling surface), and given their remarkable sim-
ilarity to the “soft edge modes” on the celestial sphere
appearing in (1.3), it is reasonable to expect that they are in
fact related (for example, see Ref. [35]). In this paper, we
prove that this is indeed the case by showing that the soft
contribution to the on-shell action of Abelian gauge
theories is exactly equal to the soft effective action (1.3).
There are, however, two crucial ways in which our setup
differs from that of Donnelly and Wall in [33,34].
First, as was remarked previously, Donnelly and Wall

imposed magnetic conductor boundary conditions, which
fixes Bk ¼ 0 and E⊥, so that the effective action for the
entanglement edge modes is a function of E⊥.2 On the other

hand, the soft degrees of freedom that we are interested in
live on a cut of asymptotic null infinity I�, so we will
instead impose Neumann boundary conditions, which
allows nontrivial radiation flux through the boundary.
This requires us to add extra boundary terms similar to
Gibbons-Hawking-York (GHY) terms in general relativity
to the Maxwell action, so that

S½A;Φ� ¼ SM½A;Φ� þ 1

e2

Z
Σþ

A ∧⋆ F −
1

e2

Z
Σ−

A ∧⋆ F;

ð1:4Þ

where SM is the bulk action (including matter fields Φ),
and Σ� ≡ I� ∪ i� are the nonspacelike boundaries.
Second, the edge mode contribution to the entanglement
entropy studied in [33,34] is an ultraviolet (UV) effect,
which arises from degrees of freedom living close to the
entangling surface and is dealt with in the usual way
through renormalization. However, in our analysis, since
the surface of interest lives on the asymptotic boundary of
spacetime, we have to deal with additional IR divergences
(at least in four dimensions). Therefore, we must be more
careful about how to evaluate the bulk part of the action
(1.4) on-shell, and appropriately determine the iϵ prescrip-
tion in the Lorentzian path integral.3 Our goal is to show
that once these subtleties are dealt with, the relation
between the soft contribution to the on-shell action and
the soft effective action is given by

S½A;Φ�jsoftþon-shell ¼ iSeff ½ϕ; θ�; ð1:5Þ

where the extra factor of i is present due to the fact that
S½A;Φ� is a Lorentzian action whereas Seff is Euclidean
(1.2). This is the main result of our work.
Because the entanglement edge modes that are studied

by Donnelly and Wall [33,34], albeit using different
boundary conditions, are precisely the on-shell modes
living on a codimension-two boundary, our result (1.5)
solidifies the connection between the entanglement edge
modes and the soft modes obtained from a symplectic
analysis [18,19]. This is perhaps not entirely surprising, as
it is natural in many regards to identify the soft modes with
entanglement edge modes, both of which live on codi-
mension-two surfaces. Nevertheless, we view the novel
feature in our analysis to be the determination of precisely
which boundary conditions allow us to establish an
equivalence between the two types of boundary modes.
Relating soft and entanglement edge modes in gauge

theory lays the foundation for doing the same in gravity.
Gravitational edge modes enter into the study of subregions
in gravity, where they help answer the question: What are

2The entanglement entropy of the entanglement edge modes is
then determined by evaluating the path integral over themodesE⊥.

3This was not an issue for Donnelly and Wall in [33,34], as
their entanglement entropy calculation was done in Euclidean
signature.
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the degrees of freedom associated with a subregion in
gravity? We therefore anticipate that applying our approach
to gravity may connect soft modes in gravity to entangle-
ment edge modes and, in turn, to objects utilized to
diagnose entanglement, such as the modular Hamiltonian
proposed in [36]. For instance, by determining the appro-
priate GHY boundary terms needed such that the soft limit
of the on-shell action reproduces the soft effective action in
gravity, we may conclude that the corresponding boundary
conditions for the gravitational edge modes are a “natural”
choice. We leave such directions for future work.
This paper is organized as follows. We will introduce the

preliminaries involving soft theorems and soft factorization
of amplitudes in Sec. II. In Sec. III, we will perform the
computation that establishes the equivalence between the
on-shell action capturing the edge mode degrees of freedom
and the soft effective action. We summarize our results in
Sec. IV. In Appendix A, we prove a technical identity that
relates the matter current to its shadow transform, which is
instrumental in showing the equivalence between the two
actions. In Appendix B, we also take into account massive
matter particles that may be present in the theory.

II. PRELIMINARIES

We begin by establishing the necessary prerequisites. In
Sec. II A, we introduce the notation and conventions used
throughout this paper. We will be following those given in
Appendix A of both [17,19], where more details can be
found. In Sec. II B, we present a brief review of soft
factorization in scattering amplitudes and introduce the soft
effective action derived in [24].

A. Notations and conventions

Position space coordinates: Our theory lives in (dþ 2)-
dimensional Minkowski spacetime, M ¼ R1;dþ1, and for
computational simplicity we will work in flat null coor-
dinates xμ ¼ ðu; xa; rÞ, where u; r∈R and xa ∈Rd. These
are related to Cartesian coordinates XA by

XA ¼ rq̂AðxÞ þ unA; q̂AðxÞ ¼
�
1þ x2

2
; xa;

1 − x2

2

�
;

nA ¼
�
1

2
; 0a;−

1

2

�
: ð2:1Þ

Note that q̂AðxÞ and nA are null and n · q̂ðxÞ ¼ − 1
2
. It

follows the Minkowski line element in flat null coordinates
is given by

ds2 ¼ ηABdXAdXB ¼ −dudrþ r2δabdxadxb: ð2:2Þ

We will throughout this paper use lowercase Greek letters
μ; ν;… to denote flat null coordinates and capital Latin
letters A;B;… to denote Cartesian coordinates. Lowercase
Latin indices denote the transverse directions along the

celestial sphere Sd and are raised and lowered by the
Cartesian metric δab.
The null boundaries I� are located at r → �∞ while

keeping ðu; xÞ fixed, and their topology is given by R × Sd.
The past (future) boundary of Iþ (I−) is located at u ¼ −∞
(u ¼ þ∞) and is denoted by Iþ

− (I−þ). The point labeled by
coordinate xa on Iþ is antipodal to the point with the same
coordinate value on I−.4 In these coordinates, the integration
of forms on M, I� and I�∓ are given by (we follow the
conventions outlined in Appendix A of [19])

Z
M

Cdþ2 ¼ −
1

2

Z
R
du

Z
R
dr

Z
Sd
ddxjrjdð⋆ Cdþ2Þ;Z

I�
Cdþ1 ¼ −

1

2

Z
R
du

Z
Sd
ddxð lim

r→�∞
jrjdð⋆ Cdþ1ÞrÞ;Z

I�∓
Cd ¼

1

2

Z
Sd
ddxð lim

u→∓∞
lim

r→�∞
jrjdð⋆ CdÞurÞ; ð2:3Þ

where Cp denotes a p-form.
Momentum space coordinates: An off-shell momentum

is parametrized by

lA ¼ ωðq̂AðxÞ þ κnAÞ; ð2:4Þ

where l2 ¼ −κω2. The off-shell integration measure is

Z
M

ddþ2l
ð2πÞdþ2

¼ 1

4π

Z
jωj>μ

dωjωjdþ1

Z
Sd

ddx
ð2πÞd

Z
R

dκ
2π

; ð2:5Þ

where to deal with IR divergences, all momentum space
integrals are performed with a cutoff μ, which is taken to be
much smaller than all other scales in the problem. Similarly,
we use the following parametrization for on-shell momenta:

pA ¼ ω

�
q̂AðxÞ þ

�
m2

ω2

�
nA

�
; p2 ¼ −m2: ð2:6Þ

The properties and advantages of using the flat null coor-
dinates for position andmomenta were further expounded in
Appendix A of [17].
Scattering amplitudes: Given an IR cutoff μ, an n-point

scattering amplitude can be written as a time-ordered
vacuum correlation function, such that

An ¼ hO1 � � �Oniμ; ð2:7Þ

where we denoted5

4The antipodal point on Sd can be defined by embedding
Sd ↪ Rdþ1, which maps xa ↦ X⃗ðxÞ, where X⃗ · X⃗ ¼ 1. On Rdþ1,
the antipodal map is given by X⃗ ↦ −X⃗.

5This definition for Ok is the one implemented by the LSZ
reduction formula (see Sec. 4.3 of [18]).
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Ok≡ θðωkÞ½Oþ
k ðωkq̂ðxkÞÞ−O−

k ðωkq̂ðxkÞÞ�
þ θð−ωkÞ½O−

k ð−ωkq̂ðxkÞÞ†−Oþ
k ð−ωkq̂ðxkÞÞ†�: ð2:8Þ

Here, θðωÞ is the Heaviside step function, the� superscript
corresponds to either the outgoing (þ) or incoming (−)
mode, and O�

k (O�†
k ) is the annihilation (creation) operator

for the kth particle. Furthermore, we denote the operator
that inserts a photon with momentum qA ¼ ωq̂AðxÞ and
polarization a byOaðω; xÞ. The corresponding polarization
vector is given by

εAaðxÞ ¼ ∂aq̂AðxÞ ¼ ðxa; δba;−xaÞ: ð2:9Þ

B. Soft factorization

1. Real soft photons

Weinberg’s leading soft photon theorem [3] states that a
scattering amplitude withm photons, each with momentum
qi and polarization ai, and n hard particles, each with
momentum pk and Uð1Þ charge Qk ∈Z, factorizes in the
leading soft limit (q0i ≪ p0

k for all i and k) as6

Amþn⟶
qi→0

S
ð0Þ
m An; S

ð0Þ
m ≡Ym

i¼1

�
e
Xn
k¼1

Qk
pk · εaiðqiÞ
pk · qi − iϵ

�
;

ð2:10Þ

where the superscript on S
ð0Þ
m signifies this is the leading

soft factor. To recast this into a cleaner form, we will utilize
the notation introduced in the previous subsection. First, we
define the soft photon operator

NaðxÞ≡ 1

2e
ð lim
ω→0þ

þ lim
ω→0−

ÞðωOaðω;xÞÞ ¼Nþ
a ðxÞ−N−

a ðxÞ;
ð2:11Þ

where N�
a ðxÞ are the Hermitian out and in soft photon

operators [18],7

N�
a ðxÞ≡ lim

ω→0þ

1

e
ωO�

a ðωq̂ðxÞÞ ¼ N�
a ðxÞ†: ð2:12Þ

Note that the factor of ω is needed to cancel the simple pole
in the soft factor at qi ¼ 0 so that the soft limit is well-
defined. Using this, (2.10) can be written as [24]

hNa1ðx1Þ � � �NamðxmÞO1 � � �Oniμ
¼ J a1ðx1Þ � � �J amðxmÞhO1 � � �Oniμ; ð2:13Þ

where

J aðxÞ≡ ∂a

Xn
k¼1

Qk ln jpk · q̂ðxÞj ¼ ∂aJ ðxÞ: ð2:14Þ

From (2.13) and (2.14), it is clear that when inserted into an
S-matrix element, NaðxÞ satisfies the constraint

∂½aNb�ðxÞ ¼ 0 ⇒ NaðxÞ ¼ ∂aϕðxÞ: ð2:15Þ

A more careful derivation of this constraint by demanding
the invertibility of the symplectic form was given in [18].

2. Virtual soft photons

Scattering amplitudes in four-dimensional gauge theo-
ries formally vanish due to IR divergences. In the pertur-
bative expansion, these arise from diagrams involving
exchanges of virtual photons. Each diagram is separately
divergent, but the infinite sum exponentiates, and the full
amplitude vanishes. Introducing an IR cutoff μ to regulate
the divergences, one finds that an n-point amplitude has the
form (see Chap. 13 of [37] for details)

An ¼ e−Γðμ;ΛÞÃn; ð2:16Þ

where Γðμ;ΛÞ captures the IR divergences, Λ is the energy
scale demarcating the soft from the hard modes, i.e., μ ≪
Λ ≪ jp0

kj for all k, and Ãn is an IR finite amplitude. In
Abelian gauge theories, the explicit form of Γ can be easily
worked out to be8

Γðμ;ΛÞ ¼−
ie2

2

Xn
k;k0¼1

QkQk0

×
Z

Λ

μ

ddþ2l
ð2πÞdþ2

pk ·pk0

ðl2 − iϵÞðpk ·l− iϵÞðpk0 ·lþ iϵÞ ;

ð2:17Þ

where the integration limits above denote integration over
the regime μ < jωj < Λ. The explicit form of Γ was
determined in [24] to be9

6In Abelian gauge theories, the soft limit can be taken either
consecutively or simultaneously without any ambiguity. This is
no longer the case for non-Abelian gauge theories.

7In (2.12), we have used θð0Þ ¼ 1
2
. This choice is not arbitrary

and is rather precisely what we get if we use the LSZ
representation of the operators defined in (2.8) and then take
the limit in (2.11) (see Sec. of 4.3 of [18]).

8The iϵ prescription is a bit different when k ¼ k0, in which
case pk0 · lþ iϵ is replaced with pk · l − iϵ.

9Actually, Γ also has an imaginary part that was calculated
in [24], but the soft effective action constructed there (and the one
we discuss here) does not address this piece. Hence, we will also
only focus on the real part here, and leave the imaginary part of Γ
to be discussed in future work.
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Γ ¼ α

Z
Sd

ddx
ð2πÞd ðJ aðxÞÞ2; α ¼ e2

8π

Z
Λ

μ
dωωd−3: ð2:18Þ

We can then write (2.16) as

hO1 � � �Oniμ ¼ exp

�
−α

Z
Sd

ddx
ð2πÞd ðJ aðxÞÞ2

�
hO1 � � �OniΛ:

ð2:19Þ

Note from (2.18) that α → ∞ as we remove the IR cutoff by
taking μ → 0 in four dimensions (d ¼ 2), from which we
find that An → 0. On the other hand, there are no IR
divergences in dimensions greater than four (d > 2) since α
remains finite as μ → 0, and so amplitudes An are not
automatically vanishing as μ → 0.

C. Soft effective action

Celestial holography postulates that scattering amplitudes
in dþ 2 dimensions are correlation functions in a putative
holographic conformal field theory in d dimensions. While
there have been a few attempts at constructing explicit
examples of flat holography [38–40], these are only applicable
to a very special class of four-dimensional theories. A small
step toward a formulation of flat holography in general
dimensionswas taken in [24], which used effective field theory
techniques to construct a d-dimensional action that partially
reproduces the soft factorization described in the previous
section (see also the related works [16,25–29,41,42]).
Essentially, the analysis in [24] began with the path integral
definitionof ageneric scatteringamplitudewithm soft particles
and n hard particles, given by

hN1 � � �NmO1 � � �Oniμ
¼
Z
μ
½dφ�eiS½φ�N1ðφÞ � � �NmðφÞO1ðφÞ � � �OnðφÞ; ð2:20Þ

where the subscriptμ indicates the path integral is over all fields
φ with jωj > μ. We can now separate φ into a hard piece φh
and a soft piece φs, which respectively have support in the
momentum range jωj > Λ and μ < jωj < Λ. By definition,
the soft operators depend only on the soft fields, so that
Ni ≡ NiðφsÞ, whereas the hard operators factorize as
OkðφÞ ¼ UkðφsÞOkðφhÞ [18]. Substituting these results into
the soft theorem (2.10) and recalling (2.16), we recover the soft
factorization

Amþn⟶
qi→0

e−Γðμ;ΛÞS ð0Þ
m Ãn; ð2:21Þ

with

Ãn ¼ hO1 � � �OniΛ ¼
Z
Λ
½dφ�eiS½φh�O1ðφhÞ � � �OnðφhÞ

ð2:22Þ

and

e−Γðμ;ΛÞS ð0Þ
m ¼ hN1 � � �NmU1 � � �Uniμ

¼
Z
μ
½dφs�e−Ssoft½φs�N1ðφsÞ � � �NmðφsÞU1ðφsÞ

� � �UnðφsÞ; ð2:23Þ

where Ssoft½φs� is the effective action for the soft modes. This
can be constructed by integrating out the hardmodes explicitly.
However, given the universal IR features that this action is
supposed to reproduce, we expect Ssoft½φs� to be universal in
any Abelian gauge theory. Motivated by this, the authors
of [24] used general effective field theory ideas to construct the
action.
The relevant soft fields in gauge theories are the

soft photon operators N�
a ðxÞ, defined in (2.12), and the

Goldstone mode for large gauge transformations10

CaðxÞ≡ AajIþ
−
ðxÞ ¼ ∂aθðxÞ; θðxÞ ∼ θðxÞ þ 2π: ð2:24Þ

Substituting (2.17) into (2.22), it was shown in [24] that the
effective action for the soft modes is given by

Ssoft½ϕ; θ� ¼ α

Z
Sd

ddx
ð2πÞd ðNaðxÞÞ2

−
i

2c1;1

Z
Sd
ddxC̃aðxÞNaðxÞ; ð2:25Þ

where C̃aðxÞ is the shadow transform of CaðxÞ. For a vector
field of scaling dimension Δ, this is defined by

C̃aðxÞ≡
Z
Sd
ddy

Iabðx − yÞ
½ðx − yÞ2�d−Δ CbðyÞ;

IabðxÞ≡ δab − 2
xaxb
x2

: ð2:26Þ

Notice that up to a normalization constant, the shadow
transform is its inverse:

˜̃VaðxÞ ¼ cΔ;1VaðxÞ;

cΔ;1 ¼
πdðΔ− 1Þðd−Δ− 1ÞΓðd

2
−ΔÞΓðΔ− d

2
Þ

ΓðΔþ 1ÞΓðd−Δþ 1Þ : ð2:27Þ

In our case of interest, CaðxÞ has scaling dimension Δ ¼ 1,
and its shadow transform is evaluated first using (2.26) for
generic Δ and then taking the limit Δ → 1.

10Note that the gauge field satisfies an antipodal matching
condition AajIþ

−
¼ AajI−

þ
, so (2.24) could also have been defined

on I−þ.
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Lastly, the operators Uk are given by

UkðθÞ ¼ exp

�
iQk

Z
Sd
ddxθðxÞKdðzk; xk; xÞ

�
; zk ≡ mk

jωkj
;

ð2:28Þ

where we have used the momentum parametrization (2.6),
and KΔ is the bulk-to-boundary propagator in Euclidean
AdSdþ1, given by

KΔðz; x; yÞ ¼
ΓðΔÞ

π
d
2ΓðΔ − d

2
Þ

�
z

ðx − yÞ2 þ z2

�
Δ
: ð2:29Þ

The total product of the operators Uk can be written in a
nicer form as

e−Sint½θ� ≡U1ðθÞ � � �UnðθÞ

¼ exp

�
i
Z
Sd
ddxθðxÞ

Xn
k¼1

QkKdðzk; xk; xÞ
�

¼ exp

�
−

i
2c1;1

Z
Sd
ddxC̃aðxÞJ aðxÞ

�
; ð2:30Þ

where we recall J aðxÞ is the soft factor defined in (2.14),
and in the last equality we used the property

Xn
k¼1

QkKdðzk; xk; xÞ ¼
1

2c1;1
∂
aJ̃ aðxÞ; ð2:31Þ

which was derived in [24], as well as the shadow identity

Z
Sd
ddxCaðxÞJ̃ aðxÞ ¼

Z
Sd
ddxC̃aðxÞJ aðxÞ: ð2:32Þ

The full soft effective action is then

Seff ½ϕ; θ� ¼ Ssoft½ϕ; θ� þ Sint½θ�

¼ α

Z
Sd

ddx
ð2πÞd ðNaðxÞÞ2

−
i

2c1;1

Z
Sd
ddxC̃aðxÞðNaðxÞ − J aðxÞÞ: ð2:33Þ

III. SOFT ON-SHELL ACTION → SOFT
EFFECTIVE ACTION

In this section, we show that the soft effective action
(2.33) can be obtained by evaluating the bulk gauge theory
action on-shell given a specific choice of boundary con-
ditions, and then extracting the contribution from the soft
modes. Consider a generic model describing an Abelian
gauge field coupled to charged matter, which is described
by a Lagrangian of the form

S ¼
Z
M

�
−

1

2e2
F ∧⋆ F þ LM

�
þ Sbdy; ð3:1Þ

where LM is the rest of the Lagrangian and includes all the
matter field contributions and any potential higher deriva-
tive terms in the Lagrangian. Generically, it is a polynomial
function of the arguments

LM ≡ LMð∂A1
� � � ∂An

FAB;DðA1
� � �DAnÞΦ

iÞ;
DAΦi ≡ ∂A − iQiAAΦi; ð3:2Þ

where DðA1
� � �DAnÞ denotes n symmetrized covariant

derivatives.11 In particular, we are interested in the leading
order contribution of the soft gauge field modes to the on-
shell action, which would arise from the lowest derivative
terms in the action. Now, after integrating out the matter
fields, what remains at the lowest derivative order is a term
of the form AAJA, where JA is a background conserved
current that is determined from the boundary conditions
used for the charged matter fields. To summarize, as far as
the contribution of the soft modes is concerned, we can
restrict ourselves to a simple model described by the action

S½A� ¼
Z
M

�
−

1

2e2
F ∧⋆ F þ ð−1ÞdA ∧⋆ J

�

þ 1

e2

Z
Σþ

A ∧⋆ F −
1

e2

Z
Σ−

A ∧⋆ F; ð3:3Þ

where Σ� ¼ I� ∪ i�. A model of this type was considered
in [43–45], where it was indeed shown to reproduce all the
IR effects described earlier in Sec. II B.
Let us begin by focusing on the boundary terms in (3.3),

which are required so that the variational principle imposes
the relevant boundary conditions for our model. To see this,
note that the variation of the action has the form

δS½A� ¼ −
1

e2

Z
M

δA ∧ ðd ⋆ F − ð−1Þde2 ⋆ JÞ

þ 1

e2

Z
Σþ

A ∧⋆ δF −
1

e2

Z
Σ−

A ∧⋆ δF

−
1

e2

Z
i0
δA ∧⋆ F: ð3:4Þ

The first term in (3.4) gives us Maxwell’s equations12

d ⋆ F ¼ ð−1Þde2 ⋆ J ⇒ ∂
AFABðXÞ ¼ e2JBðXÞ: ð3:5Þ

Furthermore, the variational principle holds only if the
terms in the second line of (3.4) vanishes, which requires us

11The commutator of covariant derivatives simplifies to the
field strength, in that ½DA;DB�Φi ¼ −iQiFABΦi. Thus, without
loss of generality, it suffices to consider symmetrized derivatives.

12Notice that (3.5) also implies current conservation, since
acting on both sides by d yields d ⋆ J ¼ 0, or ∂AJA ¼ 0.
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to impose Neumann boundary conditions on Σ� and
Dirichlet boundary conditions on i0, so that

δAji0 ¼ 0; ιnδFjΣ� ¼ 0; ð3:6Þ

where ιn is the interior product with respect to the normal
vector nA, i.e., ðιnFÞA ¼ nBFBA.
Before continuing, we note that for the calculations

presented in this section, we did not need to know the
precise form of the background current JA (aside from the
fact that it is conserved). However, to match the results here
to those of Secs. II B and II C, we will need the current to be
the one corresponding to n charged point-particles (this is
the relevant choice for the scattering problem), so that

JAðXÞ ¼−
Xn
k¼1

θðηkX0ÞηkQk
pA
k

p0
k

δðdþ1Þ
�
X⃗−

p⃗k

p0
k

X0

�
; ð3:7Þ

where ηk ¼ �1 distinguishes outgoing (þ) particles from
incoming (−) ones.13

A. Solutions to Maxwell’s equations

Since we aim to evaluate the action on-shell, we start
by discussing solutions to (3.5). We work in axial null
gauge, given by14

nAAAðXÞ ¼ 0: ð3:8Þ

To solve (3.5), we decompose the gauge field into the
pieces

AAðXÞ ¼ ÂAðXÞ þ ∂AθðXÞ; θðXÞ ∼ θðXÞ þ 2π; ð3:9Þ

where θðXÞ captures the Goldstone mode for large gauge
transformations, and ÂAðXÞ is the part of the gauge field
that admits a Fourier transform, namely

ÂAðXÞ ¼ e
Z
M

ddþ2l
ð2πÞdþ2

eil·XÂAðlÞ: ð3:10Þ

Similarly, we consider the Fourier transform the current,
given by

JAðXÞ ¼
Z
M

ddþ2l
ð2πÞdþ2

eil·XJAðlÞ; lAJAðlÞ ¼ 0; ð3:11Þ

where the second equality is due to current conservation
∂
AJAðXÞ ¼ 0. Substituting the Fourier modes into (3.5), we
obtain

l2ÂAðlÞ − lAlBÂBðlÞ ¼ −eJAðlÞ: ð3:12Þ

To solve this, we will find it convenient to expand the gauge
field and current using the basis of vectors fnA;lA; εAaðlÞg
on R1;dþ1, where the polarization vectors εAaðlÞ are defined
in (2.9) [with xa related to lA via (2.4)] and satisfy the
properties

nAεAaðlÞ ¼ lAε
A
aðlÞ ¼ 0; ηABε

A
aðlÞεBb ðlÞ ¼ δab;

εAaðlÞ ¼ εAað−lÞ ¼ εAaðlÞ�: ð3:13Þ

Expanding the gauge field and current in this basis, we find

ÂAðlÞ ¼ nALðlÞ þ εaAðlÞÂaðlÞ;

JAðlÞ ¼
�

lA

n · l
−

l2nA
ðn · lÞ2

�
JnðlÞ þ εaAðlÞJaðlÞ; ð3:14Þ

where the coefficients are fixed by imposing the gauge
condition (3.8) and current conservation lAJAðlÞ ¼ 0.
Substituting this result into (3.12), we obtain

LðlÞ ¼ e
JnðlÞ
ðn · lÞ2 ; l2ÂaðlÞ ¼ −eJaðlÞ: ð3:15Þ

The second equation above solves to

ÂaðlÞ ¼ 2πOrad
a ðlÞδðl2Þ − eJaðlÞ

l2
; ð3:16Þ

where the first termOrad
a ðlÞ is the homogeneous (radiative)

solution, and the second term is the Coulombic solution.
We would now like to substitute this result into (3.10) to
determine the gauge field in position space. However, to
evaluate this Fourier integral, the pole at l2 ¼ 0 in the
second term of (3.16) has to be regulated by an iϵ
prescription. Depending on how this is done, the corre-
sponding radiative solution is incoming or outgoing. More
precisely, we have

ÂaðlÞ ¼ 2πO�
a ðlÞδðl2Þ − eJaðlÞ

−ðl0 ∓ iϵÞ2 þ j l!j2
; ð3:17Þ

where, as before, the � superscript corresponds to the
outgoing (þ) and incoming (−) radiative modes, respec-

tively. Furthermore, depending on the sign of l0 ¼ �j l!j,
the operator O�

a ðlÞ reduces to a creation or an annihilation
operator in the quantum theory, and we have the identi-
fication

13Notice that (3.7) assumes that the scattering takes place at a
single point XA ¼ 0. This is of course not true for a generic
scattering process, but since we are only interested in the leading
soft (IR) behavior of the current, the actual details of the
scattering process are not relevant, and (3.7) is a reasonable
approximation.

14Notice that Au ¼ nAAA, so the axial null gauge (3.8) is the
same as imposing Au ¼ 0, which was previously called temporal
gauge in [18,19].
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O�
a ðj l!j; l!Þ ¼ O�

a ð l!Þ; O�
a ð−j l!j;− l

!Þ ¼ O�
a ð l!Þ†:
ð3:18Þ

Finally, we remark that using the identity

1

x� iϵ
¼ P

�
1

x

�
∓ iπδðxÞ; ð3:19Þ

where P is the Cauchy principal value, a useful conse-
quence of (3.17) is

�
JaðlÞ −

i
e
Θðl0ÞðOþ

a ðlÞ −O−
a ðlÞÞ

�
δðl2Þ ¼ 0; ð3:20Þ

where Θ is the sign function.

B. On-shell action

Having constructed the solutions, we now turn to the on-
shell action. First, using the decomposition (3.9), the action
(3.3) can be recast into the form

S½A� ¼
Z
M

�
−

1

2e2
F̂ ∧⋆ F̂þ ð−1ÞdÂ ∧⋆ J

�

−
1

e2

Z
Iþ
−

θ ⋆ F̂−
1

e2

Z
I−
þ
θ ⋆ F̂

þ 1

e2

Z
Σþ

Â ∧⋆ F̂−
1

e2

Z
Σ−
Â ∧⋆ F̂þ ð−1Þd

Z
i0
θ ⋆ J

−
1

e2

Z
Σþ

θðd ⋆ F̂− ð−1Þde2 ⋆ JÞ

þ 1

e2

Z
Σ−
θðd ⋆ F̂− ð−1Þde2 ⋆ JÞ: ð3:21Þ

The terms in the last line are proportional to the equations of
motion (3.5) and therefore vanish on-shell. Furthermore, all
the terms in the second line vanish on-shell as well. To see
why, first note that there is no charge flux through i0, so the
last term in the second line vanishes. Second, using (2.3), the
first two terms in the second line can be written as15

1

e2

Z
Σ�

Â ∧⋆ F̂ ¼ −
1

e2

Z
R
du

Z
Sd
ddx lim

r→�∞
jrjdÂa∂uÂ

a:

ð3:22Þ

Following [19], we now decompose the gauge field into
radiative and Colulombic modes, so that

Âμ ¼ ÂR�
μ þ ÂC�

μ ; ð3:23Þ

where the radiative piece (R) is the homogeneous solution to
Maxwell’s equations, and the Coulombic piece (C) is the
inhomogeneous solution. The� superscript indicates
whether we are taking an advanced Green’s function (þ)
or retarded Green’s function (−). The falloff conditions for
these pieces obey [19]

ÂR�
r ¼ Oðjrj−d

2
−1Þ þOðjrj−dÞ; ÂC�

r ¼ Oðjrj−dÞ;
ÂR�
a ¼ Oðjrj−d

2
þ1Þ þOðjrj−dþ1Þ; ÂC�

r ¼ Oðjrj−dþ1Þ:
ð3:24Þ

Given these falloff conditions, it is clear from the integrand in
(3.22) that only the radiative part of the gauge field
contributes to the integral, as the Coulombic modes fall
off too quickly as jrj → ∞. It follows we have

1

e2

Z
Σ�

Â ∧⋆ F̂ ¼ −
1

e2

Z
R
du

Z
Sd
ddxÂ�

a ∂uÂ
�a; ð3:25Þ

where

Â�
a ðu; xÞ ¼ lim

r→�∞
jrjd2−1Â�

a ðu; r; xÞ: ð3:26Þ

As Â�
a only involves the radiative modes, it admits a mode

expansion, which is given on-shell in [19] to be

Â�
a ðu; xÞ ¼ � e

2ð2πÞd2þ1

Z
∞

0

dωω
d
2
−1

× ½O�
a ðωq̂ðxÞÞe−iωu

2
∓iπd

4 þ c:c:�: ð3:27Þ

Substituting this into (3.25), we obtain

1

e2

Z
Σ�
Â∧⋆ F̂

¼−
i

8ð2πÞdþ2

Z
R
du

Z
Sd
ddx

Z
∞

0

dωdω0ωd
2
−1ω0d

2

× ½O�
a ðωq̂ðxÞÞe−iωu

2
∓iπd

4 þc:c:�½O�aðω0q̂ðxÞÞe−iω0u
2
∓iπd

4 −c:c:�

¼ i
8ð2πÞdþ2

Z
Sd
ddx

Z
∞

0

dωdω0ωd
2
−1ω0d

2

×
Z
R
du½O�

a ðωq̂ðxÞÞO�aðω0q̂ðxÞÞ†e−iðω−ω0Þu
2 −c:c:�

¼0: ð3:28Þ

This proves the claim that all the terms in the second line of
(3.21) vanish.
Thus, we see that on-shell, the only terms that survive in

(3.21) are those in the first line, i.e.,

15We remark that although (3.22) only includes the contribu-
tion from I�, we are allowed to drop the contribution from i�.
This is because in the absence of massive particles, the gauge
field vanishes on i�, while in the presence of massive particles,
the gauge field only receives a Coulombic contribution on i� (see
Appendix B), which falls off too quickly to contribute to (3.22).
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S½A�jon-shell ¼
Z
M

�
−

1

2e2
F̂ ∧⋆ F̂ þ ð−1ÞdÂ ∧⋆ J

�

−
1

e2

Z
Iþ
−

θ ⋆ F̂ −
1

e2

Z
I−
þ
θ ⋆ F̂: ð3:29Þ

In the rest of this subsection, we will demonstrate that with
a suitable contour deformation, the bulk integral in (3.29) in
the soft and on-shell limit becomes [see Eq. (3.40)]

Z
M

�
−

1

2e2
F̂ ∧⋆ F̂ þ ð−1ÞdÂ ∧⋆ J

�

⟶
softþon-shell

iα
Z
Sd

ddx
ð2πÞd ðNaðxÞÞ2; ð3:30Þ

and the boundary integrals in (3.29) in the on-shell limit
becomes [see Eq. (3.51)]16

−
1

e2

Z
Iþ
−

θ ⋆ F̂ −
1

e2

Z
I−
þ
θ ⋆ F̂

⟶
on-shell 1

2c1;1

Z
Sd
ddxC̃aðxÞðNaðxÞ − J aðxÞÞ: ð3:31Þ

where CaðxÞ was defined in (2.24). Substituting (3.30) and
(3.31) into (3.29), we see that the soft limit of the on-shell
action (with a suitable contour deformation) is given by

S½A�jsoftþon-shell ¼ iα
Z
Sd

ddx
ð2πÞd ðNaðxÞÞ2

þ 1

2c1;1

Z
Sd
ddxC̃aðxÞðNaðxÞ − J aðxÞÞ:

ð3:32Þ

Comparing with the soft effective action (2.33), we see that

S½A�jsoftþon-shell ¼ iSeff ½ϕ; θ�: ð3:33Þ

This is the main result of our paper, and it proves our claim
that the soft limit of on-shell degrees of freedom localized
on the celestial sphere, i.e., the soft limit of edge modes, are
precisely the soft and Goldstone modes parametrizing the
low-energy Hilbert space of the gauge theory. To under-
stand the factor of i, note that from (2.23), the path integral
involves e−Seff ½ϕ;θ�. On the other hand, if we had chosen
instead to insert the on-shell action into the path integral, it
would involve eiS½A�jon-shell , implying (3.33) is indeed correct.
In the next two subsubsections, we will derive both (3.30)
and (3.31), which were necessary to prove the main
result (3.33).

1. Bulk term

We start with the first term in (3.29), which in momen-
tum space can be written as

Sbulk½Â� ¼
Z
M

ddþ2l
ð2πÞdþ2

�
−
1

2
ðl2ÂðlÞ · Âð−lÞ

− jl · ÂðlÞj2Þ − eÂðlÞ · Jð−lÞ
�
: ð3:34Þ

To render the Lorentzian path integral finite, we need to
deform the contour of integration over l. A simple way to
do this is to replace l2 → l2 − iϵ above. Applying this
deformation and then evaluating the action on-shell by
utilizing the solutions constructed in Sec. III A, we find

Sbulk½Â�jon-shell ¼
e2

2

Z
M

ddþ2l
ð2πÞdþ2

1

l2 − iϵ

×

�
jJaðlÞj2 −

l2

ðn · lÞ2 jJnðlÞj
2

�
: ð3:35Þ

Next, using the identity (3.19) and (3.20), we can rewrite
the action as

Sbulk½Â�jon-shell ¼
Z
M

ddþ2l
ð2πÞdþ2

�
iπ
2
δðl2ÞjOþ

a ðlÞ −O−
a ðlÞj2

þ e2

2

�
PðjJaðlÞj2Þ

l2
−
jJnðlÞj2
ðn · lÞ2

��
: ð3:36Þ

For the soft effective action, we only keep the first term
above, as this is the term that is responsible for the real part
of the IR divergence Γ.17 Extracting the soft contribution
here, we find

Sbulk½Â�jon-shellþsoft

¼ iπ
2

Z
Λ

μ

ddþ2l
ð2πÞdþ2

δðl2ÞjOþ
a ðlÞ −O−

a ðlÞj2: ð3:37Þ

Using (2.5), this can be rewritten as

Sbulk½Â�jon-shellþsoft ¼
i
8π

Z
Λ

μ
dωωd−1

Z
Sd

ddx
ð2πÞd jO

þ
a ðωq̂ðxÞÞ

−O−
a ðωq̂ðxÞÞj2: ð3:38Þ

We now recall that μ and Λ are much smaller than any other
scale in the problem, so using (2.12), we can write

16Only the soft modes are nonvanishing on I�∓, so we do not
need to take a soft limit.

17The imaginary part of Γ is related to the second term of
(3.36), and as mentioned previously was ignored in [24]. Since
our goal in this paper is to reproduce the results of [24], we will
ignore the second term in (3.36) for now, and hope to return to it
in future work.

ON-SHELL DERIVATION OF THE SOFT EFFECTIVE ACTION … PHYS. REV. D 109, 125016 (2024)

125016-9



O�
a ðωq̂ðxÞÞ →

e
ω
N�

a ðxÞ; ð3:39Þ

which implies

Sbulk½Â�jon-shellþsoft ¼ iα
Z
Sd

ddx
ð2πÞd ðNaðxÞÞ2; ð3:40Þ

where Na is defined in (2.11) and α in (2.18). This proves
our claim (3.30).

2. Boundary terms

We now turn to the boundary terms in (3.29), which are

Sbdy½Â; θ� ¼ −
1

e2

Z
Iþ
−

θ ⋆ F̂ −
1

e2

Z
I−
þ
θ ⋆ F̂: ð3:41Þ

Using (2.3), we can write the terms in coordinate
notation as

1

e2

Z
I�∓

θ⋆ F̂¼ 2

e2

Z
Sd
ddxθðxÞ

�
lim

u→∓∞
lim

r→�∞
jrjdF̂urðu;r;xÞ

�
;

ð3:42Þ
where we have used the matching condition on the gauge
field θjIþ

−
¼ θjI−

þ
(see Footnote 10). To evaluate (3.42)

explicitly, we decompose the field strength into radiative
and Coulombic parts, so that

F̂urðu; r; xÞ ¼ F̂R�
ur ðu; r; xÞ þ F̂C�

ur ðu; r; xÞ: ð3:43Þ

From [19], we have for Abelian gauge theories the on-shell
identity

�
lim

u→∓∞
lim

r→�∞
jrjdFR�

ur ðu; r; xÞ
�
¼ � e2

4c1;1
∂
aÑ�

a ðxÞ: ð3:44Þ

Furthermore, Maxwell’s equations imply [46]

2∂u

�
lim

r→�∞
jrjdF̂C�

ur ðu; r; xÞ
�
¼ e2J�u ðu; xÞ;

J�u ðu; xÞ≡ lim
r→�∞

jrjdJuðu; r; xÞ: ð3:45Þ

Integrating this differential equation in u, we obtain�
lim

u→∓∞
lim

r→�∞
jrjdF̂C�

ur ðu; r; xÞ
�

¼ ∓ e2

2

Z
R
du J�u ðu; xÞ þ

�
lim

u→�∞
lim

r→�∞
jrjdF̂C�

ur ðu; r; xÞ
�
:

ð3:46Þ
In the absence of massive particles (the contribution from
massive particles is discussed in Appendix B), the second
term above vanishes from the falloff condition (3.24).
Assuming this and substituting (3.44) and (3.46) into
(3.42), we get

1

e2

Z
I�∓

θ ⋆ F̂ ¼ � 1

2c1;1

Z
Sd
ddxθðxÞ∂aÑ�

a ðxÞ

∓
Z
Sd
ddxθðxÞ

Z
R
du J�u ðu; xÞ

¼ ∓ 1

2c1;1

Z
Sd
ddxC̃aðxÞN�

a ðxÞ

∓
Z
Sd
ddxθðxÞ

Z
R
du J�u ðu; xÞ; ð3:47Þ

where in the second equality we integrated by parts in the
first term and then used the shadow identity (2.32).
Substituting this into (3.41), it follows that

Sbdy½Â; θ� ¼
1

2c1;1

Z
Sd
ddxC̃aðxÞNaðxÞ

þ
Z
Sd
ddxθðxÞ

Z
R
duðJþu ðu; xÞ − J−u ðu; xÞÞ;

ð3:48Þ
where we used the definition (2.11). To further simplify this
expression, we use the following identity, which we prove
in Appendix A,

Z
R
duðJþu ðu; xÞ − J−u ðu; xÞÞ ¼

1

2c1;1
∂
aJ̃ aðxÞ; ð3:49Þ

where

J aðxÞ≡ i
2

�
lim
ω→0þ

þ lim
ω→0−

�
ωεAaðxÞ

Z
M
ddþ2Xeiωq̂ðxÞ·XJAðXÞ;

ð3:50Þ
and importantly reduces precisely to our earlier definition
of J a in (2.14) when the spacetime current JAðXÞ is the
point-particle current (3.7). Using (3.49), we can rewrite
(3.48) as

Sbdy½Â; θ� ¼
1

2c1;1

Z
Sd
ddxC̃aðxÞðNaðxÞ − J aðxÞÞ; ð3:51Þ

which proves (3.31).

IV. SUMMARY

We have in this paper shown that the soft effective action
(1.3) can be derived from a general action for an Abelian
gauge theory (1.4), taken on-shell in the soft limit, and this
result is summarized in (1.5). Importantly, our analysis fixes
the type of boundary conditions necessary to derive the soft
effective action. In particular, the soft modes are not the
entanglement edge modes studied by Donnelly and Wall in
[33,34], which analyzed edgemodes ofMaxwell theory with
magnetic conductor boundary conditions imposed. Rather,
they are the edge modes for gauge theory with Neumann
boundary conditions at timelike and null infinity and
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Dirichlet boundary conditions at spatial infinity. It would be
very interesting to explore the entanglement properties of soft
modes by viewing them as entanglement edge modes and
following, in spirit, the analysis of Donnelly and Wall. We
will leave such explorations for future work.
Furthermore, now that the connection between soft modes

and edge modes has been established in Abelian gauge
theories, there are natural extensions of our analysis to both
non-Abelian gauge theories and gravity. By beginning with
the action in non-Abelian gauge theory or gravity with
suitable boundary terms added to impose Neumann boun-
dary condition on Σ�, we can derive the on-shell action. By
then taking the soft limit, it would be interesting to confirm
that we get precisely the soft effective action for non-Abelian
gauge theory and gravity given in [24,27].
Indeed, it would be most interesting to study the IR

sector of gravity, which is expected to have similar behavior
as the IR sector of Abelian gauge theories at leading order
in small energies. In particular, we would like to determine
what are the appropriate GHY boundary terms to add to the
Einstein-Hilbert action such that in the soft and on-shell
limit it becomes the gravitational soft effective action. This
should allow us to appropriately identify soft modes with
entanglement edge modes in gravity and gain insight into
the modular Hamiltonian. The modular Hamiltonian has
been an object of study in connection to quantum fluctua-
tions in spacetime subregions [36,47,48], and we expect
this will open the possibility of utilizing soft or edge modes
to study subregion spacetime fluctuations. These, and many
other exciting connections between soft modes and entan-
glement, are current avenues under exploration.
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APPENDIX A: RELATING CURRENT
TO ITS SHADOW

In this appendix, we will prove the identity (3.49). Given
a conserved current JAðXÞ, we want to compute the soft
limit of its Fourier transform, which we defined symmet-
rically to be [see Eq. (3.50)]

J aðxÞ≡ i
2

�
lim
ω→0þ

þ lim
ω→0−

�
ωεAaðxÞ

Z
M
ddþ2Xeiωq̂ðxÞ·XJAðXÞ:

ðA1Þ

We now compute using flat null coordinates

Z
M

ddþ2Xeiωq̂ðxÞ·XJAðXÞ ¼
1

jωjdþ1

Z
R
du

Z
R
dr

×
Z
Sd
ddy

jrjd
2

e−
iω
2
u−i

2
rΘðωÞðx−yÞ2

× JA

�
u;

r
jωj ; y

�
; ðA2Þ

where we recall Θ is the sign function. Denoting

J�A ðu; yÞ ¼ lim
r→�∞

jrjdJAðu; r; yÞ; ðA3Þ

we have

J aðxÞ ¼
i
2

�
lim
ω→0þ

þ lim
ω→0−

�
∂aq̂AðxÞΘðωÞ

Z
0

−∞
dr

Z
R
du

×
Z
Sd
ddy

1

2
e−

iω
2
u−i

2
rΘðωÞðx−yÞ2J−Aðu; yÞ

þ i
2

�
lim
ω→0þ

þ lim
ω→0−

�
∂aq̂AðxÞΘðωÞ

Z
∞

0

dr
Z
R
du

×
Z
Sd
ddy

1

2
e−

iω
2
u−i

2
rΘðωÞðx−yÞ2JþA ðu; yÞ; ðA4Þ

where we used (A3) and the fact the ω → 0� limit for JA
corresponds to the large r limit. We can now perform the r
integral directly, where we have to regulate using the iϵ
prescription:

Z
0

−∞
dr e−

i
2
rΘðωÞ½ðx−yÞ2þiΘðωÞϵ� ¼ e−

i
2
rΘðωÞ½ðx−yÞ2þiΘðωÞϵ�

− i
2
ΘðωÞ½ðx − yÞ2 þ iΘðωÞϵ�

����
r¼0

r¼−∞
¼ 2iΘðωÞ

ðx − yÞ2 þ iΘðωÞϵZ
∞

0

dr e−
i
2
rΘðωÞ½ðx−yÞ2−iΘðωÞϵ� ¼ e−

i
2
rΘðωÞ½ðx−yÞ2−iΘðωÞϵ�

− i
2
ΘðωÞ½ðx − yÞ2 − iΘðωÞϵ�

����
r¼∞

r¼0

¼ −
2iΘðωÞ

ðx − yÞ2 − iΘðωÞϵ : ðA5Þ

It follows
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J aðxÞ ¼
1

2
ð lim
ω→0þ

þ lim
ω→0−

Þ∂aq̂AðxÞ
Z
R
du

Z
Sd
ddy

�
JþA ðu; yÞ

ðx − yÞ2 − iΘðωÞϵ −
J−Aðu; yÞ

ðx − yÞ2 þ iΘðωÞϵ
�

¼ ∂aq̂AðxÞ
Z
R
du

Z
Sd
ddyP

�
1

ðx − yÞ2
�
ðJþA ðu; yÞ − J−Aðu; yÞÞ; ðA6Þ

where in the last equality, we used the definition of the principal value

P
�

1

ðx − yÞ2
�
≡ 1

2

�
1

ðx − yÞ2 þ iϵ
þ 1

ðx − yÞ2 − iϵ

�
: ðA7Þ

Now, recalling the on-shell momentum parametrization via flat null coordinates given in (2.6) with m ¼ 0, we evaluate

∂aq̂AðxÞJ�A ðu; yÞ ¼ xaðJ�0 ðu; yÞ − J�dþ1ðu; yÞÞ þ J�Xaðu; yÞ; ðA8Þ

where J�Xaðu; yÞ labels the a-component of J�A in Cartesian coordinates; we use this notation to distinguish it from the a-
component of J�A in flat null coordinates, which we denote as usual by J�a . To rewrite the right-hand-side of (A8) in terms of
flat null components Jμðu; yÞ, we perform the coordinate change

Juðu; r; yÞ ¼
1

2
ðJ0ðu; r; yÞ − Jdþ1ðu; r; yÞÞ Jaðu; r; yÞ ¼ ryaðJ0ðu; r; yÞ − Jdþ1ðu; r; yÞÞ þ rJXaðu; r; yÞ: ðA9Þ

It immediately follows that

JXaðu; r; yÞ ¼ 1

r
Jaðu; r; yÞ − 2yaJuðu; r; yÞ: ðA10Þ

Multiplying both sides of the above equations by jrjd and
taking r → �∞, we have

J�u ðu; yÞ ¼
1

2
ðJ�0 ðu; yÞ − J�dþ1ðu; yÞÞ;

J�Xaðu; yÞ ¼ �J�a ðu; yÞ − 2yaJ�u ðu; yÞ; ðA11Þ

where we defined

J�a ðu; yÞ ¼ lim
r→�∞

jrjd−1J�a ðu; r; yÞ: ðA12Þ

Substituting (A11) into (A8), we obtain

∂aq̂AðxÞJ�A ðu; yÞ ¼ 2ðxa − yaÞJ�u ðu; yÞ � J�a ðu; yÞ: ðA13Þ

Substituting this into (A6), we obtain

J aðxÞ ¼ 2

Z
Sd
ddy

xa − ya
ðx − yÞ2

Z
R
duðJþu ðu; yÞ − J−u ðu; yÞÞ

þ
Z
Sd
ddy

1

ðx − yÞ2
Z
R
duðJþa ðu; yÞ þ J−a ðu; yÞÞ;

ðA14Þ

where we have implicitly dropped the principal value
notation P for simplicity.
We now want to take the shadow transform of (A14) and

then take the divergence. Observing the fact J aðxÞ has
scaling dimension 1, we compute

∂
afJ aðxÞ ¼ 2∂ax

Z
Sd
ddz

Iabðx − zÞ
½ðx − zÞ2�d−1

Z
Sd
ddy

xa − ya
ðz − yÞ2

Z
R
duðJþu ðu; yÞ − J−u ðu; yÞÞ

þ ∂
a
x

Z
Sd
ddz

Iabðx − zÞ
½ðx − zÞ2�d−1

Z
Sd
ddy

1

ðz − yÞ2
Z
R
duðJþa ðu; yÞ þ J−a ðu; yÞÞ: ðA15Þ

Let us first focus on the second line. We compute

∂
a
x

Z
Sd
ddz

Iabðx − zÞ
½ðx − zÞ2�d−1

Z
Sd
ddy

1

ðz − yÞ2
Z
R
duðJþa ðu; yÞ þ J−a ðu; yÞÞ

¼
Z
Sd
ddz

IabðzÞ
ðz2Þd−1

Z
Sd
ddy

1

ðz − yÞ2
Z
R
du∂aðJþa ðu; yþ xÞ þ J−a ðu; yþ xÞÞ; ðA16Þ
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where we set z → zþ x and y → yþ x in the integral and then pulled in the derivative ∂ax . By current conservation, we have
∂
aJ�a ðu; xÞ ¼ 0.18 Therefore, only the term involving J�u on the right-hand side of (A15) survives, and we have

∂
afJ aðxÞ ¼ 2∂ax

Z
Sd
ddz

Iabðx − zÞ
½ðx − zÞ2�d−1

Z
Sd
ddy

xa − ya
ðz − yÞ2

Z
R
duðJþu ðu; yÞ − J−u ðu; yÞÞ

¼
Z
Sd
ddz

IabðzÞ
ðz2Þd−1

Z
Sd
ddy

Z
R
du ∂ax∂bz ln½ðzþ x − yÞ2�ðJþu ðu; yÞ − J−u ðu; yÞÞ: ðA17Þ

Using the fact

∂
a
∂
b lnðx2Þ ¼ 2IabðxÞ

x2
; ðA18Þ

we can further simplify (A17) to obtain

Z
R
duðJþu ðu; xÞ − J−u ðu; xÞÞ ¼

1

2c1;1
∂
afJ aðxÞ; ðA19Þ

which is precisely (3.49).

APPENDIX B: MASSIVE PARTICLES

In Sec. III B 2, we proved that the identity (3.51) holds in
the absence of massive particles. To be precise, we ignored
the second term in (3.46). In this appendix, we show that
including that term allows us to account for massive particles
in the soft effective action. First, we use the fact that in the far
future, the only source for the gauge field is the Liénard-

Wiechert field strength generated by the massive particles
(generalized to arbitrary dimensions), so that given a set of
massive particles with momentapA

k andUð1Þ chargeQk, the
field strength is19

F̂C
ABðXÞ ¼

X
kmassive

e2md
kQk

Ωd
θðηkX0Þ pkAXB−pkBXA

½ðpk ·XÞ2þm2
kX

2�12ðdþ1Þ ;

ðB1Þ

where Ωd ¼ 2πðdþ1Þ=2
Γððdþ1Þ=2Þ is the volume of the unit Sd, θ the

Heaviside function, ηk is positive (negative) for outgoing
(incoming) particles, and the sum is only over massive
particles. The superscript C indicates that this is the
Coulombic solution (recall that there is no radiation for
the gauge field through i�). Using (2.6) and moving to flat
null coordinates, we find

F̂C
urðu; r; xÞ ¼

e2

2

X
kmassive

2dmd
kQk

Ωd

θ½ηkðrð1þ x2Þ þ uÞ�
h
uωk − rωk

�
ðx − xkÞ2 þ m2

k

ω2
k

�i
n
ω2
k

h
uþ r

�
ðx − xkÞ2 þ m2

k
ω2
k

�i
2
− 4urm2

k

o1
2
ðdþ1Þ : ðB2Þ

Using this, as well as the Legendre duplication formula

ΓðzÞΓ
�
zþ 1

2

�
¼ 21−2z

ffiffiffi
π

p
Γð2zÞ; ðB3Þ

the second term in (3.46) evaluates to

lim
u→�∞

lim
r→�∞

jrjdF̂C
urðu; r; xÞ ¼ −

e2

2

X
kmassive
ηk¼�

QkKdðzk; xk; xÞ; zk ≡ mk

jωkj
; ðB4Þ

where KΔ is the bulk-to-boundary propagator (2.29). Substituting this result into (3.42), we find that the contribution of
massive particles to the boundary action (3.41) is

18This can be proved by taking the large r limit of ∂AJAðXÞ ¼ 0 and using the fact that Jrðu; xÞ ¼ Oðjrj−d−2Þ [17].
19We determined this by covariantizing the four-dimensional Liénard-Wiechert field strength (for instance, see Chap. 14 of [49]) and

then generalizing to all dimensions. The prefactor is fixed by requiring that Maxwell’s equations are satisfied for the point-particle
current (3.7) (away from X0 ¼ 0).
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Sbdy½Â; θ�jmassive ¼
Z
Sd
ddxθðxÞ

X
kmassive

QkKdðzk; xk; xÞ ¼ −
1

2c1;1

Z
Sd
ddxC̃aðxÞJ massive

a ðxÞ; ðB5Þ

where J massive
a is the soft factor involving only massive particles, and in the last equality we have used the properties (2.31)

and (2.32). Adding this to (3.51), we reproduce exactly the massive contribution to (3.31).
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