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We provide the leading near conformal corrections on a cylinder to the scaling dimension of the lowest-
lying fixed isospin charge Q operators defined at the lower boundary of the quantum chromodynamics

conformal window, Δ̃Q ¼ Δ̃�
Q þ ðmσ

4πνÞ2Q
Δ
3B1 þ ðmπðθÞ

4πν Þ4Q
2
3
ð1−γÞB2 þOðm4

σ ; m8
π; m2

σm4
πÞ: Here, Δ̃Q=r is the

classical ground state energy of the theory on R × S3r at fixed isospin charge while Δ̃�
Q is the scaling

dimension at the leading order in the large charge expansion. In the conformal limit mσ ¼ mπ ¼ 0, the
state-operator correspondence implies Δ̃Q ¼ Δ̃�

Q. The near-conformal corrections are expressed in powers
of the dilaton and pion masses in units of the chiral symmetry breaking scale 4πν with the θ-angle
dependence encoded directly in the pion mass. The characteristic Q-scaling is dictated by the quark mass
operator anomalous dimension γ and the one characterizing the dilaton potentialΔ. The coefficients Bi with
i ¼ 1; 2 depend on the geometry of the cylinder and properties of the nearby conformal field theory.

DOI: 10.1103/PhysRevD.109.125015

I. INTRODUCTION

Unveiling near conformal properties of quantum
chromodynamics (QCD) has attracted much interest over
the past several decades. This exploration was spurred by
the seminal work of Banks and Zaks [1] who discovered the
existence of a perturbative infrared (IR) fixed point in
massless QCD for a number of flavors Nf just below the
loss of asymptotic freedom. As one decreasesNf relative to
the fixed number of colors Nc, one expects below a critical
number of flavors Nc

f the theory to undergo a quantum
phase transition. That this transition is bound to occur is
clear from the fact that, for the observed number of light
flavors, the theory breaks chiral symmetry dynamically
generating a nonperturbative scale even in the absence of
explicit light quark masses. The window in the flavor-color
space where the theory displays IR conformality is termed

conformal window, and the determination of its boundaries
constitutes an active area of research [2–16].
Several key questions are related to the dynamics near

the lower boundary of the conformal window. These range
from a precise determination of its lower edge to the
characterization of the quantum phase transition. One
exciting possibility concerning the transition is to lose
conformality à la Berezinskii-Kosterlitz-Thouless (BKT)
[17–19]. The latter occurs in two dimensions and was
envisioned for four dimensions in [20–23]. An alternative
scenario considers the quantum transition to be a jumping
one [24]. The first possibility leads to infrared nonconfor-
mal physics displaying premonitory signs of near con-
formality that can be observed in the power-law scaling of
certain phenomenologically relevant operators [25–27].
This dynamics is also known as walking dynamics since
the underlying gauge coupling has a region in the renorm-
alization group flow, where the coupling is almost constant
and therefore it walks rather than displaying a running
behavior. Such a walking behavior has recently been shown
to mathematically describe the endemic state of pandemics
[28] via the epidemic renormalization group approach [29].
This methodology was also used to successfully predict the
second wave COVID-19 pandemic in Europe [30] provid-
ing policymakers crucial epidemiological information. In
terms of the spectrum of the theory, in the confining and
chiral symmetry broken phase occurring below but near the
lower end of the conformal window, besides the ordinary
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Goldstones, it has long been argued [31–34] that another
precursor of a smooth quantum phase transition is the
occurrence of a dilaton in the theory. Its description at the
effective Lagrangian level goes back to the work of
Coleman [35] and for walking dynamics has been consid-
ered in [4,34,36–38]. Recent investigations via effective
approaches in different dynamical regimes have appeared
in [39–51]. An explicit calculable example has been
discussed in [52], where it was possible to demonstrate
the emergence of a dilaton in a near conformal field theory
(CFT) alongside a precise study of all the relevant scales
emerging once conformality is lost. A complementary
analysis of the mass-induced confinement for gauge-
fermion theories near the lower edge of the conformal
window was performed in [53]. One can also use first
principle lattice simulations to disentangle the dilaton
properties. However, this is a difficult task since its
quantum numbers are the ones of the vacuum, and there-
fore, it is subject to large numerical noise. Nevertheless,
there have been attempts to fit effective approaches to
lattice data (see, e.g., [44,54–62]).
Complementary ways to isolate the dilaton properties

and more generally, to learn about the near conformal
dynamics of QCD are therefore vital to corner the proper-
ties of the flavor-driven quantum phase transition. As we
shall see, fixed charge sectors offer novel opportunities to
investigate near conformal dynamics, providing precious
information on the sectors responsible for breaking con-
formality. We start by recalling that central quantities in any
CFTare scaling dimensions of local operators. By the state-
operator correspondence [63], these are the energies of the
corresponding states on a nontrivial gravitational back-
ground. For example, the scaling dimension of the lowest-
lying operator of charge Q, denoted with Δ�

Q, is mapped
into the ground state energy EQ on the cylinder via the
relation,

Δ�
Q ¼ rEQ; ð1Þ

with r the radius of the cylinder. In the large charge limit,
we can compute scaling dimensions of fixed charge
operators by means of semiclassical computations
[64–76]. Intriguingly, the large charge framework allows
us to perform analytical calculations in strongly coupled
quantum field theories, and its predictions have been tested
via numerical Monte Carlo simulations in [65,77–80]. In
this work, we follow [49,50,66] and extend this relation to
near conformal field theories by introducing the quantity,

ΔQ ≡ rEQ ¼ Δ�
Q þ near CFT terms: ð2Þ

The near CFT terms depend on the way the CFT is
deformed. In the case at hand, we have two sources of
conformal breaking: one stemming from an explicit quark
mass term and the other from the occurrence of an operator

of dimension Δ inducing a dilaton potential. Therefore, in
this work, we extend the chiral Lagrangian to include a
dilaton sector and use the large charge expansion frame-
work to compute ΔQ, arriving at our central result,

Δ̃Q ¼ Δ̃�
Q þ

�
mσ

4πν

�
2

Q
Δ
3B1 þ

�
mπðθÞ
4πν

�
4

Q
2
3
ð1−γÞB2

þOðm4
σ; m8

π; m2
σm4

πÞ; ð3Þ

where Δ̃Q=r is the classical ground state energy while Δ̃�
Q is

the leading order contribution to Δ�
Q in the large charge

expansion. The near-conformal corrections are expressed in
powers of the dilaton and pion masses given in units of the
chiral symmetry breaking scale 4πν. The θ-angle depend-
ence is explicitly encoded in the pion mass. The novel
scalings in the charge of the near conformal corrections are
expressed in terms of the quark mass operator anomalous
dimension γ and the one characterizing the dilaton potential
Δ. The coefficients Bi with i ¼ 1; 2 depend on the geometry
of the cylinder and the properties of the nearby CFT. The
above result for Δ̃Q in (3) is obtained as the large charge limit
of the general expression given in (41) at the leading order in
the semiclassical expansion. The next-to-leading order, to be
computed in the future, requires the knowledge of the
spectrum of fluctuations that we have also determined here.
Additionally, we have also provided the phase diagram of
QCDat nonzero isospin chemical potential in the presence of
the CP-violating topological term.
The paper is organized as follows. In Sec. II, we introduce

the QCD chiral Lagrangian for generic Nf, including the
θ-angle and isospin chemical potential μ. The μ − θ phase
diagram is presented in Sec. III. The dilaton potential and
setup for the large charge expansion are discussed in Sec. IV.
Section V is devoted to the determination of Δ̃Q, while in
Sec. VI, we first discuss the patterns of symmetry breaking
and then compute the spectrumof fluctuations. SectionVII is
dedicated to the universal contributions in the conformal
limit. We offer our conclusions in Sec. VIII.

II. CHIRAL LAGRANGIAN AT FINITE ISOSPIN
AND θ-ANGLE: NOTATION AND CONVENTIONS

The low-energy dynamics of QCD at finite generalized
isospin density is described by the chiral Lagrangian below,

L ¼ ν2Trf∂μΣ∂μΣ†g þm2
πν

2TrfMΣþM†Σ†g
þ 2iμν2TrfI∂0ΣΣ† − IΣ†

∂0Σg
þ 2μ2ν2TrfII − Σ†IΣIg; ð4Þ

where we use the Lorentzian signature. Here, ν is half the
pion decay constant, μ is the (generalized) isospin chemical
potential, and
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Σ ¼ eiφ=ν; φ ¼ ΠaTa þ Sffiffiffiffiffiffi
Nf

p ; ð5Þ

with Ta the SUðNfÞ generators normalized as
TrfTaTbg ¼ δab. The mass matrix and the charge gener-
ator read

M ¼ 1Nf
; I ¼ 1

2

� 1Nf=2 0

0 −1Nf=2

�
; ð6Þ

where we assumed degenerate Goldstone bosons of mass
mπ . The matrix I generalizes the concept of isospin in the
multiflavor theory, with the two flavor case being the
conventional QCD isospin. In this work, we will focus on
the dynamics of the theory at finite charge density, with the
charge defined via the generator I with μ being the
associated chemical potential. The relevant power counting
is p2 ∼mq ∼ μ2 with mq the quark mass. Since m2

π ∼mq,
this implies that parametrically, we have mπ ∼ μ.
Finally, as fully detailed in [81,82], the CP-violating

topological sector is included through the θ-angle term,

ΔLθ ¼ −aν2
�
θ −

i
2
TrflogΣ − logΣ†g

�
2

; ð7Þ

where a is the topological susceptibility of the underlying
Yang-Mills theory. Note that the introduction of the above
term is well-justified only in the large number of colors
limit. However, in discussing the phase diagram of the
theory in the next section, we will work at the leading order
in an expansion in m2

π=a. Since this is equivalent to
incorporating the θ-angle directly in the mass term (as
done in, e.g., [83–85]) the corresponding analysis does not
rely on the large Nc limit. On the other hand, when
studying the dispersion relation of the eta prime mode in
Sec. VI, the use of the large Nc limit is implied.

III. PHASE DIAGRAM IN THE μ− θ PLANE

In the absence of the θ-angle, the ground state of our
theory generalizes the Nf ¼ 2 case examined in detail in
[86] and takes the following form:

Σc ¼ 1Nf
cosφþ iΣI sinφ; ð8Þ

with

ΣI ¼
�

0 1Nf=2

1Nf=2 0

�
cos ηþ i

�
0 −1Nf=2

1Nf=2 0

�
sin η:

ð9Þ

As shown in [87], the minimization of the potential results
from the competition of two terms in the right-hand side of
Eq. (8), which individually minimize, respectively, the

mass and isospin terms in the potential. Their contribution
is weighted by the angle φ, which is determined by the
equations of motion (EOMs). Moreover, it can be shown
that the isospin term in the potential is minimized when ΣI
satisfies IΣI ¼ −ΣII. To take into account the effect of the
θ-angle on the vacuum state, we introduce the Witten
variables αi [81] and arrive at our ansatz for the ground
state,

Σ0 ¼ UðαiÞΣc; with UðαiÞ ¼ diagfe−iα1 ;…; e−iαNf g:
ð10Þ

It is useful to define the following quantities:

θ̄ ¼ θ −
XNf

i

αi; X ¼
XNf

i¼1

cos αi; ð11Þ

in terms of which the Lagrangian of the theory evaluated on
the ground state ansatz reads

L½Σ0� ¼ 2m2
πν

2X cosφþ Nfμ
2ν2sin2φ − aν2θ̄2: ð12Þ

The angle φ and the Witten variables αi are determined by
the EOM as

sinφ

�
Nf cosφ −

m2
πX
μ2

�
¼ 0; ð13Þ

m2
π sin αi cosφ ¼ aθ̄; i ¼ 1;…; Nf; ð14Þ

while the angle η does not appear in the equation of motion,
meaning that there is a residual unbroken Uð1Þ isospin
vector symmetry. However, choosing a specific value of η
amounts to the further spontaneous breaking of this leftover
Uð1Þ. The first EOM has two solutions, namely, φ ¼ 0 and

cosφ ¼ m2
πX

Nfμ
2. When the latter is realized, the theory is in a

superfluid phase characterized by pion condensation. The
energy density of the system in the two phases reads

EðθÞ ¼ −2m2
πν

2X þ aν2θ̄2 normal phase ðφ ¼ 0Þ

EðθÞ ¼ −
m4

πν
2

Nfμ
2
X2 − Nfν

2μ2 þ aν2θ̄2

superfluid phase

�
cosφ ¼ m2

πX
Nfμ

2

�
: ð15Þ

We first observe that when a ≫ m2
π the θ-dependence

results in an effective pion mass m2
πðθÞ ¼ m2

πX=Nf. The
EOMs and the expression for the vacuum energy of the
system are very similar to the ones found in [88] for two-
color QCD with finite baryon density. At θ ¼ 0, the normal
to superfluid phase transition occurs at a critical value of the
chemical potential μc ¼ mπ . Since the θ-vacuummay differ
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in the two phases, to study the superfluid transition at
nonvanishing values of θ, we first need to determine the
θ-dependence. We then solve Eq. (14) by expanding in
powers ofm2

π=a that we take to be small. Specifically, at the
leading order in m2

π=a, we have

αi ¼
�
π − αðθÞ; i ¼ 1;…; n

αðθÞ; i ¼ nþ 1;…; Nf;
ð16Þ

where

αðθÞ ¼ θ þ ð2k − nÞπ
ðNf − 2nÞ ; k ¼ 0;…; Nf − 2n − 1;

n ¼ 0;…;

�
Nf − 1

2

�
: ð17Þ

The parameters n and k label the various solutions to the
EOMs. The interval of values for k is constrained because
at fixed n the solutions are periodic in k of period Nf − 2n.
In the normal phase, the energy is minimized when X is
maximized. As has been shown in [88], the solution
minimizing the energy has n ¼ 0 and the following values
of αðθÞ∶

αðθÞ ¼
( θ

Nf
; θ∈ ½0; π�

θ−2π
Nf

; θ∈ ½π; 2π�; ð18Þ

which correspond, respectively, to k ¼ 0 and k ¼ Nf − 1.
The physics at θ ¼ π deserves further discussion. In fact,

the Lagrangian possesses CP symmetry when θ ¼ π but
the latter is spontaneously broken by the vacuum leading to
the well-known Dashen’s phenomenon [89]. In fact, at
θ ¼ π, the two solutions for αðθÞ in Eq. (18) have the same
energy leading to degenerate vacua connected by a CP
transformation. In Fig. 1, we visualize the ground state

energy as a function of θ for the template case Nf ¼ 2 as
well as a plot of the CP order parameter hFF̃i associated
with the pseudoscalar glueball condensate.
We now move to the θ-dependence in the superfluid

phase. The EOM becomes

m4
π

Nfμ
2
X sin αi ¼ aθ̄; i ¼ 1;…; Nf; ð19Þ

and admits the same solution (17) at the leading order in the

natural expansion parameter m4
π

aμ2. The crucial difference with

respect to the normal phase is that the energy now depends
quadratically instead of linearly on X. The situation is
analogous to the case of two-color QCD at finite baryon
charge investigated in detail in [88] for even Nf. As has
been found there, the ground state solution is the same as
the normal phase being given by Eq. (18). Accordingly, for
Nf > 2, at the crossing point θ ¼ π spontaneous breaking
of CP occurs. On the other hand, for Nf ¼ 2, the two
solutions αðθÞ ¼ θ

Nf
and αðθÞ ¼ θ−2π

Nf
have degenerate

energy for all values of θ. As a consequence, the physics
is analytic at θ ¼ π and Dashen’s phenomenon does not
occur [88,90]. The θ-vacuum in the superfluid phase in the
two flavor case is illustrated in Fig. 2.
Note that the pair of completely degenerate solutions

remains such to all orders in m4
π

aμ2. In fact, given the EOM
(19) for a certain αðθÞ,

m4
π

2aμ2
sinð2αðθÞÞ ¼ θ − 2αðθÞ; ð20Þ

we have the same EOM for αðθÞ þ π, upon shifting the
θ-angle as θ → θ þ 2π. However, this shift leaves the
physics unaltered. Finally, we investigate the critical value
of the isospin chemical potential where the superfluid phase

(a) (b)

FIG. 1. θ-dependence of the normalized ground state energy and CP order parameter hFF̃i as a function of θ for Nf ¼ 2 in the normal
phase. Here, Xi ¼ 2 cos ðθ=2Þ and Xii ¼ 2 cos ðθ=2 − πÞ refers to the two solutions for αðθÞ in Eq. (18). (a) θ-dependence of the energy
in the normal phase for Nf ¼ 2. (b) CP order parameter for Nf ¼ 2.
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transition occurs. For m2
π ≪ a, the latter occurs at a critical

value of the chemical potential given by

μc ¼ mπðθÞ ¼ mπ

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� cos θ

Nf

����
s

þO
�
m2

π

a

�#
; ð21Þ

which is of particular interest when Nf ¼ 2 at θ ¼ π. In
fact, μc is almost zero since the effective pion massm2

πðθÞ ∼
m2

πjcosðθ=2Þj identically vanishes. Concretely, at θ ∼ π, we
have

μc ∼mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π

a
þ jϕj

2

r
; ϕ≡ θ − π: ð22Þ

On the other hand, a vanishing pion mass at the effective
Lagrangian level raises an apparent paradox since it would
imply no explicit breaking of chiral symmetry. However,
there is no chiral symmetry restoration in the fundamental
QCD Lagrangian at θ ¼ π. The apparent paradox is solved
by pointing out that the global flavor symmetry is still
broken when including higher-order mass terms in the
effective Lagrangian as explained in detail in [84,85].

IV. DILATON AUGMENTED CHIRAL
LAGRANGIAN AND THE LARGE CHARGE

EXPANSION

In this section, following [66], we consider the dynamics
near the lower edge of the conformal window to determine
the ground state energy of charged states on a nontrivial
background that can be associated with scaling dimensions
of QCD operators carrying (generalized) isospin charge.
The first step is to upgrade the chiral Lagrangian to a
conformally invariant theory via the introduction of a scalar
degree of freedom σ, the dilaton, which under dilations
x ↦ eλx transforms as

σ ↦ σ −
λ

f
: ð23Þ

Scale invariance can then be enforced at the effective action
level by coupling σ to each operator Ok of dimension k
appearing in the Lagrangian as [35,91]

Ok ↦ eðk−4ÞσfOk: ð24Þ

The resulting theory features nonlinearly realized scale
invariance with f and σ being the length scale and the
Goldstone boson associated with the spontaneous breaking
of conformal symmetry, respectively.
Explicit breaking of the latter can be taken into account

introducing a potential term for σ. The construction
of the dilaton potential and the related power counting
has been discussed multiple times in the literature
[39,42,44,47,48,58,91]. Several works [39,47,48,91] con-
sidered the breaking of conformality as the result of per-
turbing a CFT with a relevant operator O with conformal
dimension Δ, i.e.,

LCFT → LCFT þ λOO; ð25Þ

with λO the corresponding coupling. The generated potential
can be written as a power series depending on an infinite
number of coefficients as follows:

VðσÞ ¼ f−4e−4σf
X∞
n¼0

cne−nðΔ−4Þfσ; ð26Þ

where cn ∼ λnO [39,91,92]. When λO ≪ 1, the explicit
conformal breaking is small, and one can approximate the
potential as

VðσÞ ¼ m2
σe−4fσ

4ð4 − ΔÞf2 −
m2

σe−Δfσ

Δð4 − ΔÞf2 þOðλ2OÞ; ð27Þ

(a) (b)

FIG. 2. θ-dependence of the normalized ground state energy and CP order parameter hFF̃i as a function of θ for Nf ¼ 2 in the
superfluid phase. Here, X2

i ¼ 4 cos2 ðθ=2Þ and X2
ii ¼ 4 cos2 ðθ=2 − πÞ refers to the two solutions for αðθÞ in Eq. (18) while μ is measured

in units of mπ . (a) θ-dependence of the energy in the superfluid phase for Nf ¼ 2. (b) CP order parameter for Nf ¼ 2.
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which is obtained by retaining only the first two terms in
Eq. (26). Then the coefficients c0 and c1 are fixed requiring
σ0 ≡ hσi ¼ 0 and defining the dilaton mass as m2

σ≡
∂
2VðσÞ
∂σ2

jσ¼hσi. Concretely, we have

c1
c0

¼ −
4

Δ
; with c0 ¼

f2m2
σ

4ð4 − ΔÞ : ð28Þ

The potential (27) has been considered in various recent
studies of QCD-like theories in the near conformal regime
[39,46–48,50,57,93] as well as in the description of dense
skyrmion matter [51,94,95]. In the EFT spirit, the nature of
the perturbing operator and its scaling dimension Δ is left
unspecified.1 However, the relation (28) breaks the assumed
scaling cn ∼ λnO of the coefficients of Eq. (26).Moreover, in a
renormalizable theory like QCD, the breaking of confor-
mality is expected to stem from the running of the coupling
which in turn strongly constrains the form of the potential. In
light of these observations, the potential (27) should be seen
as a model for the conformal breaking. Another case where
the explicit breaking of scale symmetry is small occurs when
the perturbing operatorO is nearlymarginal. In this case, it is
possible to expand Eq. (26) in powers of ðΔ − 4Þ obtaining

VΔO→4ðσÞ ¼ −
m2

σe−4fσ

16f2
ð1þ 4fσÞ þOððΔ − 4Þ2Þ: ð29Þ

The above potential has also been constructed in a series
of recent papers [42,44,58–61], which make use of

the Veneziano limit and assume the following power
counting:

p2 ∼mq ∼ ðNf − Nc
fÞ=Nc ∼ 1=Nc: ð30Þ

Furthermore, the authors of [42,44,58–61] argued that
Eq. (29) is the only consistent potential for QCD-like
theories. However, since Eq. (29) can be formally seen as
a subcase (the Δ → 4 limit) of Eq. (27), in what follows, we
will assume the generic form of the dilaton potential Eq. (27)
in order to keep our analysis as general as possible.
Finally, the mass term operator has dimension y ¼ 3 − γ,

with γ being the anomalous dimension of the chiral
condensate.
Our second step is to employ the large charge expansion

framework [64,67,74] to determine the scaling dimension
Δ�

Q of the lowest-lying operator with chargeQ. To this end,
we exploit the approximate Weyl invariance of the near
conformal theory to map the latter onto the cylinderR × S3r.
We denote the volume, the radius, and the Ricci scalar of S3r
as V, r, and R ¼ 6

r2, respectively. The advantage is that we
can now consider the state-operator correspondence, which
links Δ�

Q to the ground state energy EQ at fixed Q of the
theory on the cylinder as

Δ�
Q ¼ rEQ; EQ ¼ μQ − L: ð31Þ

The dilaton-pion effective Lagrangian on R × S3r reads

Lσ ¼ ν2Trf∂μΣ∂μΣ†ge−2σf þm2
πν

2TrfMΣþM†Σ†ge−yσf þ 2μ2ν2TrfII − Σ†IΣIge−2σf

þ 2iμν2TrfI∂0ΣΣ† − IΣ†
∂0Σge−2σf − aν2

�
θ −

i
2
TrflogΣ − logΣ†g

�
2

e−4σf − Λ4
0e

−4σf

þ 1

2

�
∂μσ∂

μσ −
R
6f2

�
e−2σf − VðσÞ; ð32Þ

where for later convenience, we included the bare cosmo-
logical constant Λ0. In the conformal limit, mπ ¼ mσ ¼ 0,
Δ�

Q can then be computed via a semiclassical expansion in
the double scaling limit,

Λ0f → 0; Q → ∞; QðΛ0fÞ4 ¼ fixed: ð33Þ

This can be seen by considering the expectation value of the
evolution operator U ¼ e−HT in an arbitrary state jQi with
charge Q,

hUiQ ≡ hQje−HT jQi ⟶
T→∞

N e−EQT ¼ N e−
Δ�
Q
r T; ð34Þ

with H the Hamiltonian, T the time interval, and N an
unimportant normalization factor. Then one can rescale the
fields as Σ → νfΣ and e−fσ →

ffiffiffiffi
Q

p
e−fσ to exhibit Q as a

new counting parameter in the path integral expression for
hUiQ. Accordingly, the scaling dimension of the lowest-
lying operator assumes the following form:

rEQ ¼ ΔQ ¼
X
j¼−1

1

Qj ΔjðQðΛ0fÞ4Þ: ð35Þ

The leading orderΔ−1 corresponds to Δ̃Q and is given by
the classical ground state energy on R × S3r , whereas the

1See [48] for a discussion of the power counting associated
with the dilaton potential Eq. (27).
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next-to-leading order Δ0 is determined by the fluctuations
around the classical trajectory. We refer the reader inter-
ested in the details of the approach to [69,70,74]. In the next
section, we will determine the classical ground state energy
Δ̃Q=r. Since in the near conformal regime the state-
operator correspondence is only approximate, Δ̃Q will be
equal to Δ̃�

Q plus corrections that disappear as the pion and
dilaton masses vanish. As we shall see, deviations from
conformality will be encoded in a set of contributions that
depend on the spacetime geometry due to the lack of Weyl
invariance.

V. LARGE CHARGE EXPANSION:
LEADING ORDER

As anticipated in the previous section, the state-operator
correspondence enables us to deduce the scaling dimension
for the lowest-lying operator with (generalized) isospin
charge Q. This is achieved by determining the energy
associated with the vacuum structure inducing the super-
fluid phase transition. We therefore evaluate the Lagrangian
(32) on the ansatz (10), obtaining

Lσ½Σ0; σ0� ¼ −e−4fσ0Λ4
0 − Vðσ0Þ −

Re−2fσ0

12f2

þ 2m2
πν

2X cosφe−fσ0y

þ Nfμ
2ν2e−2fσ0 sin2 φ − aν2e−4fσ0 θ̄2; ð36Þ

where σ0 denotes the classical dilaton solution. It is worth
noticing that, replacing mπ →

ffiffiffi
2

p
mπ and μ →

ffiffiffi
2

p
μ, the

resulting expression is identical to that found for two-color
QCD at finite baryon density, as explored in [50].
Nevertheless, we further extend the results obtained in

the previous work [50] by being able to solve for generic
dilaton potentials (27) and mass deformations rather than
concentrating on specific values of Δ and y.
The classical ground state energy is computed by solving

the following EOMs:

sinφðNfμ
2e−2fσ0 cosφ −m2

πXe−fσ0yÞ ¼ 0; ð37Þ

ae−4fσ0 θ̄ −m2
π sin αi cosφe−fσ0y ¼ 0; i ¼ 1;…; Nf;

ð38Þ

Re−2fσ0

6f
þ4afν2e−4fσ0 θ̄2þ4fΛ4

0e
−4fσ0 −

∂VðσÞ
∂σ

����
σ¼σ0

þ−2fNfμ
2ν2e−2fσ0sin2φ−2fym2

πν
2Xcosφe−fσ0y ¼ 0;

ð39Þ

2Nfμν
2e−2fσ0sin2 φ ¼ Q

V
; ð40Þ

where the last equation defines the isospin charge density.
To determine the classical ground state energy on the
cylinder, we need to solve the above EOMs in the variables
φ, αi, σ0, and μ and plug the solution into Eq. (36). However,
since the EOMs are transcendental equations it is not
straightforward to find their exact solutions. We, therefore,
overcome this issue by solving the EOMs perturbatively in
positive powers of the parameters m2

σ and m2
π . Specifically,

we expand thevariables asx¼ x0 þ x1m2
σ þ x2m2

π þ x3m4
σ þ

x4m4
π þ x5m2

σm2
π þOðm6

σ;m6
π;m4

σm2
π;m2

σm4
πÞ where x ¼

fμ;φ; σ0; αig and determine the coefficients of the expansion
by solving the EOMs order by order. The result reads

Δ̃Q ¼ π2

8f2
ð6NfðfνμrÞ2 þ 1Þ

�
2NfðfνμrÞ2 − 1

f2Λ4

�
þm2

σ
π221−Δr4−Δ

ðΔ − 4ÞΔf2
�
2NfðfνμrÞ2 − 1

f2Λ4

�Δ=2

−m4
πNfcos2ðαðθÞÞ22γ−3

�
πνrγþ1

μr

�
2
�
2NfðfνμrÞ2 − 1

f2Λ4

�
2−γ

þOðm4
σ; m8

π; m2
σm4

πÞ; ð41Þ

where μ is related to Q as

μr ¼
ð6π4ν2NfÞ1=3 þ

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81f6Λ8Q2 − 6π4ν2Nf

q
þ 9f3Λ4Q



2=3

fð6πν2NfÞ2=3
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81f6Λ8Q2 − 6π4ν2Nf

q
þ 9f3Λ4Q



1=3 : ð42Þ

The first term in (41) represents the scaling dimension in
the conformal limit mπ ¼ mσ ¼ 0, which depends only on
the dimensionless combination μr (42). The latter is
determined by the value of the charge Q via Eq. (42)

and, therefore, the first term in Eq. (41) is insensitive to the
spacetime geometry. Noticeably, the leading correction in
the pion mass is of order m4

π, and its dependence on the
geometry is tied to the anomalous dimension of the chiral
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condensate through the universal factor r2ðγþ1Þ. Remarkably,
the whole θ-dependence is encoded in the factor cos2 ðαðθÞÞ
with αðθÞ given in Eq. (18). The first term in the dilaton
potential (27) redefines the cosmological constant as

Λ4 ≡ Λ4
0 þ

m2
σ

4f2ð4 − ΔÞ : ð43Þ

The contribution stemming from the second term in the
dilaton potential (27) has been expanded in powers of mσ
with the leading order quadratic in the dilaton mass. The
latter exhibits a universal dependence on the radius of the
sphere via the factor r4−Δ. It is interesting to further expand
our results (41) in the large charge limit QðΛ0fÞ4 ≫ 1,
where we can make contact with the universal predictions of
the large charge effective field theory (EFT) [64,67].Wehave

Δ̃Q ¼ Δ̃�
Q þ

�
mσ

4πν

�
2

Q
Δ
3B1 þ

�
mπ

4πν

�
4

cos2 ðαðθÞÞQ2
3
ð1−γÞB2 þOðm4

σ; m8
π; m2

σm4
πÞ; ð44Þ

where B1 and B2 read

B1 ¼
c2=329−2Δ3

Δ
2
−1ðπνrÞ4−Δðc4=3NfÞ 1−Δ

2

ðΔ − 4ÞΔ
�
1 −

Δc2=3
4c4=3

Q−2=3 þOðQ−4=3Þ
�
; ð45Þ

B2 ¼ −34−γ24γ−3π2γþ2cγ−44=3N
γ−1
f ðνrÞ2ðγþ1Þ

�
1þ ðγ − 4Þc2=3

2c4=3
Q−2=3 þOðQ−4=3Þ

�
; ð46Þ

while

Δ̃�
Q ¼ c4=3Q4=3 þ c2=3Q2=3 þOðQ0Þ ð47Þ

is the scaling dimension in the conformal limit at the leading
order in the double scaling limit (33), which depends only on
the dimensionless coefficients defined below

c4=3¼
3

8

�
2Λ2

πNfν
2

�
2=3

; c2=3¼
1

4f2

�
2π2

Nfν
2Λ4

�
1=3

: ð48Þ

The conformal dimension Δ̃�
Q exhibits the general structure

predicted by the large charge EFT. The nonconformal
corrections feature a characteristic Q-scaling, which has
been made manifest in Eq. (44) and depends on the
parameters γ and Δ encoding the explicit breaking of scale
invariance.

VI. SYMMETRY BREAKING PATTERN
AND SPECTRUM OF FLUCTUATIONS

We now move to determine first the symmetry breaking
pattern and then the spectrum of the theory. Fixing the
generalized isospin charge results in

SUðNfÞL × SUðNfÞR ×Uð1ÞV ⇝
N2

f−1
SUðNfÞV ×Uð1ÞV

⟶ SU

�
Nf

2

�
u
× SU

�
Nf

2

�
d
× Uð1ÞI ×Uð1ÞV

⇝

N2
f
4 SU

�
Nf

2

�
ud

× Uð1ÞV; ð49Þ

where ⇝ and ⟶ denote, respectively, spontaneous and
explicit breaking. The first stage is the usual chiral symmetry
breaking with the Adler-Bell-Jackiw anomaly already taken
into account in the breaking of the axial symmetry. The
further explicit breaking is owed to the introduction of the
isospin charge while the last spontaneous breaking is
associated with pion condensation and the superfluid phase
transition. In the absence of the dilaton, the spectrum
of light modes is composed of N2

f=4 massless Goldstone
bosons with speed vG ¼ 1 that parameterize the coset

G=H¼SUðNf=2Þu×SUðNf=2Þd×Uð1ÞI×Uð1ÞV
SUðNf=2Þud×Uð1ÞV . These modes arrange

themselves in the adjoint representation of the stability group
SUðNf=2ÞudV ×Uð1ÞV plus a singlet, which we denote as
π3 since it is associated with the spontaneous breaking of
Uð1ÞI i.e. to the third Pauli matrix in the Nf ¼ 2 case. In
addition, a pseudo-Goldstone mode stems from the would-
be spontaneous breaking of Uð1ÞA, which we call the S
(singlet) mode and it is related to the η0-meson [96]. As
mentioned above, the Uð1ÞA symmetry is quantum mechan-
ically anomalous, and therefore, the latter mode acquires a
mass proportional to the scale of the anomaly

ffiffiffi
a

p
.

In what follows, we shall focus on the spectrum of
Goldstone bosons since they control the large charge
dynamics. Specifically, we are interested in analyzing
how the spectrum of light modes changes when (near)
conformal dynamics is realized through the dilaton dress-
ing. Precisely, conformal invariance dictates the existence
of a massless mode with speed vG ¼ 1ffiffiffiffiffiffi

d−1
p ¼ 1ffiffi

3
p [64,97].

As we shall see, the latter arises from the mixing between
the singlet π3 with the dilaton that acts as its “radial mode”
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and changes its speed from vG ¼ 1 to vG ¼ 1ffiffi
3

p . We

consider the hierarchy of scales mπ; mσ ≪ μ ≪ 4πν, which
ensures the validity of chiral perturbation theory and
assumes small deviation from conformality. To determine
the fluctuations’ spectrum, we expand around the vacuum
solution as

Σ ¼ e
2iffiffiffiffi
Nf

p S1Nf eiΩΣ0e−iΩ
†
; ð50Þ

where Σ0 is the classical solution (8) while the fluctuations
are organized in the matrix Ω as

Ω ¼
�
π 0

0 −πT

�
: ð51Þ

Here, π ¼ Pdim G=H
a¼0 πata where the sum runs over all the

generators of the coset G=H that we normalized as
Trftatbg ¼ δab

2
. After some manipulations, we obtain

Trf∂μΣ∂μΣ†g ¼ 4sin2 φ∂μπa∂μπa þ 4∂μS∂μS; ð52Þ

TrfI∂0ΣΣ† − IΣ†
∂0Σg ¼ 4iTrfI∂0νgsin2 φ

¼ 2i
ffiffiffiffiffiffi
Nf

p
∂0π

3sin2 φ; ð53Þ

TrfMΣþM†Σ†g

¼ 2 cosφ

�
X cos

�
2ffiffiffiffiffiffi
Nf

p S

�
þ Z sin

�
2ffiffiffiffiffiffi
Nf

p S

��
; ð54Þ

TrflogΣ − logΣ†g ¼ 4i
ffiffiffiffiffiffi
Nf

p
S − 2i

XNf

i

αi; ð55Þ

where we defined Z≡PNf

i¼1 sin αi. Finally, we expand
the dilaton field around its background solution as
σ → σ0 þ σ̂ðt;xÞ. It is easy to show that the πa modes
corresponding to the Goldstone modes transforming
according to the adjoint representation of SUðNf=2Þ have
trivial dispersion relations ω ¼ k. On the other hand, the
Goldstone boson, which is a singlet of SUðNf=2Þ, mixes
with the dilaton and the S. The corresponding dispersion
relations are obtained by solving detD−1 ¼ 0, where the
inverse propagator D−1 is given by

D−1¼

0
BBB@

ω2−k2 iωμf
ffiffiffiffiffiffi
Nf

p
0

−iωμf
ffiffiffiffiffiffi
Nf

p
ω2−k2
8ν2sin2φ−M2

σ
1
2
Iσ̂s

0 1
2
Iσ̂s ω2−k2

sin2φ −M2
s

1
CCCA; ð56Þ

with

Iσ̂S ¼
fμ2

ffiffiffiffiffiffi
Nf

p ð4aμ2θN2
fe

−2fσ0γ −m4
πXZð3 − γÞÞ

ðμ4N2
fe

2fσ0ð1−γÞ −m4
πX2Þ ; ð57Þ

M2
σ ¼

μ2Nf

8ν2

�
Δμ2Nfm2

σe−fðΔ−2Þσ

ðΔ − 4Þðμ4N2
f −m4

πX2e2ðγ−1ÞfσÞ

þ 2f2ð2μ2Nfðμ2ν2Nfe2fσ − 4ðaν2θ̄2 þ Λ4ÞÞ þ ððγ − 6Þγ þ 7Þν2m4
πX2e2γfσÞ

m4
πX2e2γfσ − μ4N2

fe
2fσ

��
; ð58Þ

M2
S ¼

aμ4N3
f þ μ2m4

πX2e2γfσ0

μ4N2
fe

2fσ0 −m4
πX2e2γfσ0

: ð59Þ

We pause to note that Eq. (58) is consistent with the Witten-Veneziano relation [98,99]. In fact, in the mπ → 0 limit, M2
S

reduces to

lim
σ0→0;mπ→0

ð59Þ ⇒ M2
S ¼ aNf: ð60Þ

The remaining dispersion relations are obtained by solving the equation detðD−1Þ ¼ 0. The results describe two gapped
modes ω1;2 with mass,

M2
1;2 ¼ −

1

2
sin2 φ

h
M2

S þ 8ν2f2μ2Nf þ 8ν2M2
σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

S − 8ν2ðf2μ2Nf þM2
σÞÞ2 þ 8ν2I2σ̂S

q i
; ð61Þ
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and a massless mode ω3 with speed given by

v23 ¼
I2σ̂s − 4M2

σM2
S

I2σ̂s − 4M2
SðM2

σ þ f2Nfμ
2Þ : ð62Þ

In parallel with the previous section, we determine the dispersion relations considering corrections in both m2
σ and m2

π .
According to this expansion, we obtain

ω2
i ¼ ω2�

i þ
�
Nfμ

2ν2

2Λ4

�Δ−2
2

m2
σD1ðω2�

i ;ΔÞ þ
�
Nfμ

2ν2

2Λ4

�−γ−3
m4

πcos2ðαðθÞÞD2ðω2�
i ; γÞ

þOðm4
σ; m8

π; m2
σm4

πÞ; for i ¼ 1; 2; 3: ð63Þ

The coefficients D1 and D2 read

D1ðω2�
i ;ΔÞ ¼ 1

12ðΔ − 4Þf2ðμ2ν2NfðaNfð6f2μ2ν2Nf þ k2 − ω2�
i Þ þ 8f2Λ4ð2k2 − 3ω2�

i ÞÞ þ 3Λ4ðk2 − ω2�
i Þ2Þ

× ½aNfð2f2μ2ν2Nfðð3Δ − 10Þk2 − 3ðΔ − 2Þω2�
i Þ − ðk2 − ω2�

i Þ2Þ
þ4f2Λ4ðk2 − ω2�

i Þðð3Δ − 8Þk2 − 3Δω2�
i Þ�; ð64Þ

D2ðω2�
i ; γÞ ¼ μ4ν8Λ−4ðγþ4ÞðμνÞ2γNγþ4

f

96ðμ2ν2NfðaNfðk2 − ω2�
i Þ þ 8f2Λ4ð2k2 − 3ω2�

i ÞÞ þ 6af2μ4ν4N3
f þ 3Λ4ðk2 − ω2�

i Þ2Þ

×
�
−2ðγð3γ − 10Þ − 5Þf2Λ4γμ2−2γðk2 − ω2�

i Þðν2NfÞ1−γðaμ2ν2N2
f þ 2Λ4ðk2 − ω2�

i ÞÞ

þ3ðk2 − ω2�
i Þ2

�
μ2ν2Nf

Λ4

�−γ
ðaμ2ν2N2

f þ 2Λ4ðk2 − ω2�
i ÞÞ − 16ðγ − 1Þf2ω2�

i Λ4γμ2−2γðν2NfÞ1−γ

×ðaμ2ν2N2
f þ 2Λ4ðk2 − ω2�

i ÞÞ þ Λ4γðμνÞ−2γN−γ
f ð4f2μ2ν2Nfðk2 − 3ω2�

i Þ þ ðk2 − ω2�
i Þ2Þ

× ð6Λ4ðk2 þ μ2 − ω2�
i Þ − aðγ − 7Þμ2ν2N2

fÞ
�
; ð65Þ

while the dispersion relations in the conformal limit mπ ¼ mσ ¼ 0 have the following simple form:

ω2�
1 ¼ k2 þ 6f2μ2ν2Nf þ 2fμν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nfð9f2μ2ν2Nf þ 2k2Þ

q
; ð66Þ

ω2�
2 ¼ k2 þ aμ2ν2N2

f

2Λ4
; ð67Þ

ω2�
3 ¼ k2 þ 6f2μ2ν2Nf − 2fμν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nfð9f2μ2ν2Nf þ 2k2Þ

q
; ð68Þ

where we can recognize the expected mode with a square mass of order a stemming from the axial anomaly as well as a
gapped mode with mass 12Nff2μ2ν2 and a Goldstone boson with speed v23 ¼ 1

3
, as dictated by scale invariance. We

conclude the section by providing explicit expression for M2
1;2 and v23,

v23 ¼
1

3
þm2

σ

�
Nfμ

2ν2

2Λ4

�Δ=2 Λ4

9f2N2
fμ

4ν4
−m4

πcos2 ðαðθÞÞ
�
Nfμ

2ν2

2Λ4

�−γ−3 μ4ν8N2
f

144Λ16
ðγ − 3Þðγþ 1Þ þOðm4

σ;m8
π;m2

σm4
πÞ; ð69Þ
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M2
1 ¼ 12Nff2μ2ν2 þm2

σ

�
Nfμ

2ν2

2Λ4

�Δ=2 Δ
Δ − 4

�
2Λ4

Nfμ
2ν2

�

−m4
πcos2 ðαðθÞÞ

�
Nfμ

2ν2

2Λ4

�−γ−3 f2μ6ν10N3
f

8Λ16
ðγ2 − 6γ þ 7Þ þOðm4

σ; m8
π; m2

σm4
πÞ; ð70Þ

M2
2 ¼

aμ2ν2N2
f

2Λ4
−m2

σ

�
Nfμ

2ν2

2Λ4

�Δ=2 a
6ðΔ − 4Þf2μ2ν2

−m4
π cos2ðαðθÞÞ

�
Nfμ

2ν2

2Λ4

�−γ−3 μ6ν8N2
f

96Λ20
ðaðγ − 4Þν2N2

f − 6Λ4Þ þOðm4
σ; m8

π; m2
σm4

πÞ: ð71Þ

VII. CASIMIR ENERGYCONTRIBUTION TOΔQ IN
THE CONFORMAL LIMIT

As discussed in Sec. IV, in the conformal limit mπ ¼
mσ ¼ 0, our results (44) correspond to the leading con-
tribution to the conformal dimension Δ�

Q of the lowest-
lying charge Q operator in the double scaling limit (33).
However, as has been first shown in [64], ΔQ can also be
computed in the strongly coupled regime by constructing
an EFT for the relativistic Goldstone modes stemming from
the spontaneous symmetry breaking induced by fixing
the charge. In d ¼ 4 dimensions, the large charge EFT
predicts [64,75]

Δ�
Q ¼ k4=3Q4=3 þ k2=3Q2=3 þ k0 logQþOðQ0Þ; ð72Þ

where the coefficients k4=3 and k2=3 are related to the
Wilson coefficients of the EFT and cannot, therefore, be
computed within the EFT approach. The calculated
coefficients c4=3 and c2=3 given in Eq. (48) can be seen
as the leading contribution to k4=3 and k2=3 in a perturba-
tive expansion of the latter around ðΛ0fÞ4 ¼ 0 [74]. On
the other hand, the coefficient k0 is a purely quantum
contribution related to the Casimir energy of the relativistic
Goldstone bosons.2 Importantly, its value is universal being
entirely determined by symmetry and the number of
spacetime dimensions. In particular, it can be computed
exactly from the knowledge of the low-energy spectrum.
In fact, consider the low-energy action for a Goldstone
mode χ,

SG ¼
Z
M

dt dx

�
1

2
ð∂tχÞ2 þ

v2G
2
ð∇χÞ2

�
: ð73Þ

The corresponding Casimir energy is given by

ECasimir ¼
1

2
Trflogð−∂2t − v2G∇2Þg

¼ 1

4π

Z
∞

−∞
dω

X
p

logðω2 þ v2GE
2ðpÞÞ

¼ vG
2

X
p

EðpÞ: ð74Þ

Here, E2ðpÞ denotes the eigenvalues of the Laplacian
operator on S3. The above contribution scales as Q0 and
exhibits a pole for d → 4 in dimensional regularization. The
latter is related to a logQ term with a universal coefficient
− vG

48
stemming from the renormalization of the vacuum

energy [75]. Hence, we simply need to sum the contribu-
tions of the various Goldstone bosons in order to calculate
k0. The symmetry breaking pattern in the chiral limit reads

SUðNfÞL × SUðNfÞR ×Uð1ÞV × Uð1ÞA
→ SU

�
Nf

2

�
uL

× SU

�
Nf

2

�
dL

× SU

�
Nf

2

�
uR

× SU

�
Nf

2

�
dR

×Uð1ÞI ×Uð1ÞV

⇝
3
4
N2

f−2
SU

�
Nf

2

�
ud

× Uð1ÞV: ð75Þ

The resulting 3
4
N2

f − 2 Goldstone bosons have speed

vG ¼ 1 except the π3 mode which has vG ¼ 1ffiffi
3

p . We

therefore obtain

k0 ¼ −
1

48

�
1ffiffiffi
3

p þ 3

4
N2

f − 3

�
: ð76Þ

VIII. CONCLUSIONS

We uncovered near conformal properties of finite isospin
density QCD on a nontrivial gravitational background.
Specifically, we determined the classical ground state

2The value of k0 can also be obtained by computing the next-
to-leading order Δ0 of the expansion (35).
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energy Δ̃Q=r with r the radius of R × S3r via the semi-
classical large charge expansion. In the conformal limit,
this energy maps, via state-operator correspondence, into
the scaling dimension Δ̃�

Q of the lowest-lying operator of
fixed isospin charge Q.
One of our main results given in (3) is the determination

of the leading near conformal corrections to Δ̃�
Q at the lower

boundary of the QCD conformal window. We showed that
the characteristic Q-scalings due to the near conformal
corrections are induced by the quark mass operator anoma-
lous dimension γ as well as the conformal dimension Δ of
the operator responsible for dynamically deforming QCD
away from the conformal window. Our results and meth-
odology work as a template to obtain similar results for
QCD-like theories, such as two-color QCD at nonzero
baryon density.

Additionally, we determined the pattern of symmetry
breaking, the associated physical spectrum, and their
dispersion relations. These latter results will also help to
determine the next-to-leading order large charge contribu-
tions. Last but not least, we discussed the μ − θ QCD phase
diagram.
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Oliveira, and Joao Penedones, Numerical tests of the large
charge expansion, J. High Energy Phys. 05 (2024) 161.

[81] Edward Witten, Large N chiral dynamics, Ann. Phys. (N.Y.)
128, 363 (1980).

[82] P. Di Vecchia and G. Veneziano, Chiral dynamics in the
large n limit, Nucl. Phys. B171, 253 (1980).

[83] Davide Gaiotto, Zohar Komargodski, and Nathan Seiberg,
Time-reversal breaking in QCD4, walls, and dualities in
2þ 1 dimensions, J. High Energy Phys. 01 (2018) 110.

[84] Andrei V. Smilga, QCD at theta similar to pi, Phys. Rev. D
59, 114021 (1999).

[85] Michel H. G. Tytgat, QCD at theta similar to pi reexamined:
Domain walls and spontaneous CP violation, Phys. Rev. D
61, 114009 (2000).

[86] D. T. Son and Misha A. Stephanov, QCD at finite isospin
density, Phys. Rev. Lett. 86, 592 (2001).

[87] D. T. Son and Misha A. Stephanov, QCD at finite isospin
density: From pion to quark—antiquark condensation,
Phys. At. Nucl. 64, 834 (2001).

[88] Jahmall Bersini, Alessandra D’Alise, Francesco Sannino,
and Matías Torres, The θ-angle and axion physics of two-
color QCD at fixed baryon charge, J. High Energy Phys. 11
(2022) 080.

[89] Roger F. Dashen, Some features of chiral symmetry break-
ing, Phys. Rev. D 3, 1879 (1971).

[90] Max A. Metlitski and Ariel R. Zhitnitsky, Theta-parameter
in 2 color QCD at finite baryon and isospin density, Nucl.
Phys. B731, 309 (2005).

[91] Walter D. Goldberger, Benjamin Grinstein, and Witold
Skiba, Distinguishing the Higgs boson from the dilaton
at the Large Hadron Collider, Phys. Rev. Lett. 100, 111802
(2008).

[92] R. Rattazzi and A. Zaffaroni, Comments on the holographic
picture of the Randall-Sundrum model, J. High Energy
Phys. 04 (2001) 021.

[93] Thomas Appelquist, James Ingoldby, and Maurizio Piai,
Dilaton EFT framework for lattice data, J. High Energy
Phys. 07 (2017) 035.

[94] Yan-Ling Li, Yong-Liang Ma, and Mannque Rho, Chiral-
scale effective theory including a dilatonic meson, Phys.
Rev. D 95, 114011 (2017).

[95] Yong-Liang Ma and Mannque Rho, Topology change,
emergent symmetries and compact star matter, AAPPS
Bull. 31, 16 (2021).

[96] Paolo Di Vecchia and Francesco Sannino, The physics of the
θ-angle for composite extensions of the standard model,
Eur. Phys. J. Plus 129, 262 (2014).

[97] D. T. Son, Low-energy quantum effective action for rela-
tivistic superfluids, arXiv:hep-ph/0204199.

[98] Edward Witten, Current algebra theorems for the U(1)
Goldstone boson, Nucl. Phys. B156, 269 (1979).

[99] G. Veneziano, U(1) without instantons, Nucl. Phys. B159,
213 (1979).

BERSINI, D’ALISE, GAMBARDELLA, and SANNINO PHYS. REV. D 109, 125015 (2024)

125015-14

https://doi.org/10.1103/PhysRevD.101.065018
https://doi.org/10.1103/PhysRevD.101.065018
https://doi.org/10.1016/j.physrep.2021.08.001
https://arXiv.org/abs/2311.14793
https://arXiv.org/abs/2311.14793
https://doi.org/10.1103/PhysRevD.102.045011
https://doi.org/10.1103/PhysRevD.102.045011
https://doi.org/10.1007/JHEP10(2022)183
https://doi.org/10.1007/JHEP10(2022)183
https://doi.org/10.1103/PhysRevLett.130.021602
https://doi.org/10.1007/JHEP02(2024)168
https://doi.org/10.1007/JHEP02(2024)168
https://doi.org/10.1007/JHEP06(2017)011
https://doi.org/10.1007/JHEP11(2019)110
https://doi.org/10.1007/JHEP11(2019)110
https://doi.org/10.1016/j.physletb.2020.136014
https://doi.org/10.1007/JHEP10(2019)201
https://doi.org/10.1007/JHEP10(2019)201
https://doi.org/10.1103/PhysRevLett.123.051603
https://doi.org/10.1103/PhysRevD.105.L031507
https://arXiv.org/abs/2203.00059
https://doi.org/10.1007/JHEP05(2024)161
https://doi.org/10.1016/0003-4916(80)90325-5
https://doi.org/10.1016/0003-4916(80)90325-5
https://doi.org/10.1016/0550-3213(80)90370-3
https://doi.org/10.1007/JHEP01(2018)110
https://doi.org/10.1103/PhysRevD.59.114021
https://doi.org/10.1103/PhysRevD.59.114021
https://doi.org/10.1103/PhysRevD.61.114009
https://doi.org/10.1103/PhysRevD.61.114009
https://doi.org/10.1103/PhysRevLett.86.592
https://doi.org/10.1134/1.1378872
https://doi.org/10.1007/JHEP11(2022)080
https://doi.org/10.1007/JHEP11(2022)080
https://doi.org/10.1103/PhysRevD.3.1879
https://doi.org/10.1016/j.nuclphysb.2005.09.027
https://doi.org/10.1016/j.nuclphysb.2005.09.027
https://doi.org/10.1103/PhysRevLett.100.111802
https://doi.org/10.1103/PhysRevLett.100.111802
https://doi.org/10.1088/1126-6708/2001/04/021
https://doi.org/10.1088/1126-6708/2001/04/021
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1103/PhysRevD.95.114011
https://doi.org/10.1103/PhysRevD.95.114011
https://doi.org/10.1007/s43673-021-00016-1
https://doi.org/10.1007/s43673-021-00016-1
https://doi.org/10.1140/epjp/i2014-14262-4
https://arXiv.org/abs/hep-ph/0204199
https://doi.org/10.1016/0550-3213(79)90031-2
https://doi.org/10.1016/0550-3213(79)90332-8
https://doi.org/10.1016/0550-3213(79)90332-8

