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In this paper, we consider the convergence properties of the polarization tensor of graphene obtained in
the framework of thermal quantum field theory in three-dimensional spacetime. During the last years, this
problem attracted much attention in connection with the calculation of the Casimir force in graphene systems
and the investigation of the electrical conductivity and reflectance of graphene sheets. There are
contradictory statements in the literature, especially on whether this tensor has an ultraviolet divergence
in three dimensions. Here, we analyze this problem using the well-known method of dimensional
regularization. It is shown that the thermal correction to the polarization tensor is finite at any D, whereas
its zero-temperature part behaves differently for D ¼ 3 and 4. For D ¼ 3, it is obtained by analytic
continuation with no subtracting of infinitely large terms. As for the spacetime ofD ¼ 4, the finite result for
the polarization tensor at zero temperature is found after subtracting the pole term. Our results are in
agreement with previous calculations of the polarization tensor at both zero and nonzero temperature. This
opens the possibility for a wider application of the quantum-field-theoretical approach in investigations of
graphene and other two-dimensional novel materials.
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I. INTRODUCTION

The term polarization tensor has many different meanings
and was used for theoretical descriptions of diverse physical
phenomena. Here, we reconsider the problem of conver-
gence of the vacuum photon polarization tensor of graphene
in quantum electrodynamics (QED) at nonzero temperature
in three-dimensional spacetime. Independently of an
entirely theoretical interest to calculate the polarization
tensor at both zero and nonzero temperature for the case
of D ¼ ð2þ 1Þ dimensions [1–5], this problem attracted
special attention [6–10] in connection with the advent of the
two-dimensional hexagonal structure of carbon atoms called
graphene [11].
At energies below a few eV, the electronic properties of

graphene are well described by a set of massless or very
light quasiparticles with spin 1=2 obeying the Dirac
equation, where the speed of light c is replaced with the

Fermi velocity vF ≈ c=300 [12–15]. (In the following text,
we use the system of units where ℏ ¼ c ¼ 1.) This has
opened an attractive opportunity of describing the reaction
of graphene to an electromagnetic field using the well-
established methods of QED in (2þ 1) dimensions, espe-
cially the concept of the polarization tensor, i.e., restricting
to the one-loop radiative correction in the language of QED.
Taking into account that the properties of graphene strongly
depend on temperature, this may be done in the framework
of thermal quantum field theory.
The polarization tensor derived in (2þ 1)-dimensional

quantum field theory (QFT) [1,2] was first applied for the
theoretical description of the Casimir force between two
graphene sheets in Ref. [16]. In Ref. [17], this tensor was
generalized for the case of nonzero temperature and
calculated at the pure imaginary Matsubara frequencies
taking into account the nonzero mass of quasiparticles and
chemical potential. The obtained results were used to
investigate the Casimir and Casimir-Polder forces in various
configurations [18–29].
The analytic continuation of the polarization tensor of

graphene to the entire plane of complex frequencies,
including the real frequency axis, was performed in
Ref. [30]. These results were generalized for graphene
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sheets possessing a nonzero chemical potential [31]. The
obtained polarization tensor of graphene at nonzero temper-
ature was used in the calculation of the Casimir and
Casimir-Polder forces in graphene systems [32–41] and
the electrical conductivity [42–45] and reflectivity proper-
ties of graphene [30,46–48]. Computations of the Casimir
force in graphene systems using the polarization tensor have
been found to be in excellent agreement with the measure-
ment data of two precision experiments [49–52].
In spite of this progress in the application of thermal QFT

to obtaining the polarization tensor of graphene and
describing its properties on this basis, the more phenom-
enological theoretical approach using the Kubo formula is
often used in the literature for the same purpose (see, e.g.,
Refs. [53–72]). However, there are significant conceptual
differences between the quantum-field-theoretical and Kubo
approaches. For instance, in the framework of the Kubo
approach, dissipation is introduced by means of the phe-
nomenological relaxation parameter treated as the imagi-
nary part of the complex frequency. Alternatively, the QFT
does not use phenomenological parameters and describes
dissipation by means of the imaginary part of the polari-
zation tensor, which arises for the scaled 3-momentum
magnitudes exceeding the energy gap in graphene.
In the spatially local approximation, there is agreement

between the results obtained using different theoretical
approaches [21,30,42–44,46–48]. As for the spatially non-
local case, the quantum-field-theoretical approach predicts
the presence of a double pole at zero frequency in the
transverse dielectric permittivity of graphene [41], which is
not obtainable in the Kubo approach. It was stated [73] that
the presence of a double pole might be connected with an
improper regularization of the polarization tensor obtained
within thermal QFT.
In this regard, it should be noted that there are contra-

dictory statements in the recent literature concerning the
convergence of this tensor. Thus, Ref. [17] found by power
counting that the polarization tensor of graphene diverges
and made it finite by a Pauli-Villars subtraction, whereas
Refs. [27,28,30] concluded that in 2þ 1 dimensions it is
finite because the ultraviolet divergence is not present due to
the gauge invariance. Reference [73] stated that the polari-
zation tensor of graphene obtained by means of the quantum
field theory is divergent and suggests an alternative regu-
larization procedure, which brings it into exact coincidence
with that obtained by means of the Kubo approach.
In view of the above, we feel that it is necessary to

clarify the situation. We demonstrate the calculation of
the polarization tensor of graphene using the methods of
QED at nonzero temperature in detail and in such a way
that the calculation can be followed with a minimum of
knowledge of the field-theoretical methods. Thereby, it
must be underlined that in standard QED at zero temper-
ature the polarization tensor was calculated long ago in
both (3þ 1) dimensions (see, e.g., [74,75]) and (2þ 1)

dimensions [1,2]. For the latter case, the key moments,
gauge invariance, and ultraviolet finiteness were men-
tioned explicitly in Sec. 2 of Ref. [2].
In the present paper, we reconsider the polarization tensor

appearing in the quantum-field-theoretical approach to
graphene at nonzero temperature in detail. We use dimen-
sional regularization. First, we demonstrate how the trans-
versality of the polarization tensor can be seen before the
momentum integration. Next, we demonstrate that this
tensor consists of the zero-temperature part and a thermal
correction to it. An immediate analytic calculation shows
that the thermal correction to the polarization tensor is finite,
so that the ultraviolet divergence, if any, might be contained
only in its zero-temperature part. Then, we use the expo-
nential representation for the propagators and carry out the
momentum integrations. Finally, after carrying out the next-
to-last integration, the transversality also becomes evident in
this representation as well as the ultraviolet properties.
Specifically, by considering the polarization tensor in a

spacetime of complex D dimensions, we demonstrate that
in the case of D ¼ 3 the finite result is obtained using
the regularization by means of analytic continuation from
the case ReD < 2. In so doing, no pole terms need to be
subtracted, i.e., no renormalization is needed. Applying the
same procedure to the polarization tensor in a spacetime of
D ¼ 4 dimensions, we show that to obtain the finite result
it is necessary to subtract the pole term, i.e., regularization
should be followed by the renormalization. Generally
speaking, such behavior in the ultraviolet region is well
known in QFT as a consequence of the combination of
power counting, gauge invariance, and parity. However, an
active discussion for graphene, which exists in two spatial
dimensions but interacts with an electromagnetic field
existing in three-dimensional space, revealed the necessity
to demonstrate this behavior in detail. The performed
analysis confirms the polarization tensor derived in the
literature in the framework of both ordinary and thermal
QFT.
The paper is organized as follows. In Sec. II we consider

a general expression for the polarization tensor of graphene
at nonzero temperature in a spacetime of D dimensions.
Section III is devoted to the zero-temperature part of the
polarization tensor and its analytic properties. In Sec. IV the
convergence properties of the polarization tensor in both
three- and four-dimensional spacetime are considered. In
Sec. V we present our conclusions and a discussion.
Recall that we use the system of units where ℏ ¼ c ¼ 1.

II. REPRESENTATION OF THE POLARIZATION
TENSOR AT NONZERO TEMPERATURE

IN D DIMENSIONS

In the framework of QFT, the one-loop polarization
tensor of graphene was considered in many papers (see,
e.g., Refs. [9,16–18,30,31,35,76]). It is represented by the
simple diagram shown in Fig. 1, where the solid lines
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depict the propagators of fermionic quasiparticles which
move with the Fermi velocity vF and satisfy the Dirac
equation in 2þ 1 dimensions,�

γ0
�
i
∂

∂t
− eA0

�
þ γ̃1

�
i
∂

∂x1
− eA1

�

þ γ̃2
�
i
∂

∂x2
− eA2

�
−mvF2

�
ψðxÞ ¼ 0: ð1Þ

Here, γν are the standard Dirac matrices, γ̃1;2 ¼ vFγ1;2,
Aν ¼ ðA0; A1; A2Þ is the vector potential of the electromag-
netic field, and m is the mass of quasiparticles bearing the
electric charge e.
The important feature of Eq. (1) is that the interaction of

charged quasiparticles with the electromagnetic field is
introduced by the standard substitution

i
∂

∂xν
⟶ i

∂

∂xν
− eAν; ð2Þ

where, for a graphene sheet in the plane x3 ¼ 0, it holds
that xν ¼ ðt; x1; x2; 0Þ, ν ¼ 0; 1; 2; 3. Note that Eq. (2)
contains the speed of light in the factor e=c. (We recall
that here c ¼ 1.) This reflects the fact that the electromag-
netic field, although it interacts with the quasiparticles
confined in a graphene plane, exists in the 3þ 1-dimen-
sional bulk. As a consequence, in the Dirac model of
graphene, the electric charge in the system of units with
ℏ ¼ c ¼ 1 is not dimensional (as it holds in the strictly
2þ 1-dimensional electrodynamics [1]) but rather dimen-
sionless and results in the standard fine-structure con-
stant α ¼ e2 ≈ 1=137.
The calculation of the diagram shown in Fig. 1 includes

an integration over the internal momentum q ¼ ðq0; qÞ and
taking the trace of γ matrices (see Refs. [17,30] for details).
Keeping in mind that we are looking for the polarization
tensor of graphene at any temperature T, within the
Matsubara formalism, an integration over q0 should be
replaced with a summation over the pure imaginary
fermionic Matsubara frequencies,

q0n ≡ iqDn ¼ 2πikBT

�
nþ 1

2

�
; ð3Þ

where n ¼ 0;�1;�2;… and kB is the Boltzmann constant.
In so doing, the zero component of the external photon
wave vector k ¼ ðk0; kÞ is equal to the pure imaginary
bosonic Matsubara frequencies,

k0n ≡ ikDl ¼ 2πikBTl: ð4Þ

Although here and below we deal with graphene, which
is a two-dimensional sheet of carbon atoms, in the
following we use the D-dimensional vectors ðq0; qÞ ¼
ðq0; q1;…; qD−1Þ and ðk0; kÞ ¼ ðk0; k1;…; kD−1Þ, where
the dimension of the spatial part is D − 1, and respective
integration measures. The metric tensor is defined as gμν ¼
diagð1;−1;−1;…;−1Þ and the product of two vectors is
qk ¼ qνkν ¼ q0k0 − qk. The trace of the metric tensor is
gνν ¼ D. The point is that, in general, the polarization
tensor is ultraviolet divergent, like most radiative correc-
tions in QFT. For instance, simple power counting
shows a divergence also in (2þ 1) dimensions. For this
reason, a regularization is necessary. By introducing the
D-dimensional spacetime, we take the dimensional regu-
larization, which amounts to formally taking a complex
dimension D (see, e.g., Sec. 11.2 in [77]). This allows to
find the analytic properties of the polarization tensor as a
function of D.
Note that for graphene the Dirac cones are located at the

two points at the corners of the Brillouin zone [13]. Then,
after taking the trace over the gamma matrices, the resulting
polarization tensor in the momentum representation is
given by [30]

ΠμνðikDl; k; TÞ ¼ −
32πα

v2F
kBT

×
X∞
n¼−∞

Z
dD−1q
ð2πÞD−1

ZμνðikDl; k; iqDn; qÞ
RðikDl; k; iqDn; qÞ

;

ð5Þ

where

ZμνðikDl; k; iqDn; qÞ ¼ ημμ0η
ν
ν0Z̃

μ0ν0 ðikDl; k; iqDn; qÞ ð6Þ

and ηνμ ¼ diagð1; vF; vF;…; vFÞ.
The quantities Z̃μ0ν0 and R are

Z̃μ0ν0 ðikDl; k; iqDn; qÞ ¼ qμ
0 ðq − k̃Þν0 þ ðq − k̃Þμ0qν0

þ gμ
0ν0 ½−qðq − k̃Þ þm2�;

RðikDl; k; iqDn; qÞ ¼ ðq2 −m2 þ i0Þ
× ½ðq − k̃Þ2 −m2 þ i0�; ð7Þ

where the infinitely small additions i0 originate from
the fermion propagators, the scaled momentum is

FIG. 1. Feynman diagram representing the one-loop polariza-
tion tensor of graphene.
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k̃ ¼ ðk0; vFkÞ, q0 ¼ q0n ¼ iqDn, and k̃0 ¼ k0l ¼ ikDl in
accordance with Eqs. (3) and (4). For instance,

Z̃00ðikDl; k; iqDn; qÞ ¼ −qDnðqDn − kDlÞ
þ qðq − k̃Þ þm2;

Z̃11ðikDl; k; iqDn; qÞ ¼ 2q1ðq1 − k̃1Þ − qDnðqDn − kDlÞ
− qðq − k̃Þ −m2; ð8Þ

etc., and

RðikDl;k; iqDn;qÞ ¼ ½q2Dn þΓ2ðqÞ− i0�
× ½ðqDn − kDlÞ2 þ Γ̃2ðq;kÞ− i0�; ð9Þ

where

Γ2ðqÞ ¼ q2 þm2; Γ̃2ðq; kÞ ¼ ðq − k̃Þ2 þm2: ð10Þ

It is common knowledge that electrodynamics is a gauge-
invariant theory. This means that the Fourier-transformed
vacuum current

JνðkÞ ¼ ΠμνAμðkÞ ð11Þ

should be invariant under the gauge transformation

δAμðkÞ ¼ ÃμðkÞ − AμðkÞ ¼ ikμχðkÞ; ð12Þ

where χðkÞ is an arbitrary function [78]. As a consequence,

δJνðkÞ ¼ ikμΠμνχðkÞ ¼ 0: ð13Þ

Thus, for the polarization tensor, the gauge invariance is
realized in the form of a transversality condition,

kμΠμν ¼ 0: ð14Þ

It is easily seen that the polarization tensor of graphene
(5) satisfies this condition like that in full QED. Really,
using Eqs. (6) and (7), by a simple rewriting, one obtains

kμZμν ¼ vF½2qνk̃q− qνk̃2 − k̃νq2 þm2k̃ν�
¼ vFfðq2 −m2Þðq− k̃Þν − ½ðq− k̃Þ2 −m2�qνg; ð15Þ

where k̃ν ¼ ηνβk
β.

Then, from Eqs. (5) and (15) we find

kμΠμν ¼ −
32πα

vF
kBT

X∞
n¼−∞

Z
dD−1q
ð2πÞD−1

×

� ðq − k̃Þν
ðq − k̃Þ2 −m2

−
qν

q2 −m2

�
: ð16Þ

Note that q0 ¼ q0n ¼ iqDn, given by Eq. (3).

The integral in Eq. (16) converges under the condition
ReD < 2. Using this condition, the seemingly divergent
integral/sum is regularized, allowing the shift of variables
q → Qþ k̃, where

Q ¼ q − k̃;

Q0 ¼ q0 − k̃0 ¼ q0 − k0 ¼ iðqDn − kDlÞ; ð17Þ

and qDn; kDl are defined in Eqs. (3) and (4). As a result, the
integrand itself vanishes, i.e., the polarization tensor (5)
satisfies the transversality condition (14) even before
carrying out the momentum integration.
Now we represent the polarization tensor (5) as the part

that is independent of temperature, and the thermal cor-
rection to it. For this purpose, the right-hand side of Eq. (5)
is rewritten as

kBT
X∞
n¼−∞

fðikDl; k; iqDnÞ; ð18Þ

where

fðikDl;k; iqDnÞ ¼ −
32πα

v2F

Z
dD−1q
ð2πÞD−1

ZμνðikDl;k; iqDn;qÞ
RðikDl;k; iqDn;qÞ

:

ð19Þ

(Below we omit the already specified repeated arguments.)
Using the Cauchy residual theorem, the sum (18) can be

represented in the form

kBT
X∞
n¼−∞

fðiqDnÞ ¼ −
Z
γ1∪γ2

dqD
2π

fðiqDÞ
ei

qD
kBT þ 1

; ð20Þ

where the integration contour in the complex qD plane
shown in Fig. 2 consists of the paths γ1 and γ2. The validity
of Eq. (20) becomes evident when taking into account that
the poles of the expression under the integral are at the
points qDn ¼ 2πkBTðnþ 1=2Þ (shown as dots in Fig. 2)
and calculating the sum of the residues at these poles.
Substituting Eq. (20) into Eq. (5) and interchanging the

order of integrations, one obtains

ΠμνðikDl; k; TÞ ¼
32πα

v2F

Z
dD−1q
ð2πÞD−1

×

�Z
γ1

dqD
2π

1

ei
qD
kBT þ 1

Zμν

R

þ
Z
γ2

dqD
2π

1

ei
qD
kBT þ 1

Zμν

R

�
: ð21Þ

Here, the integrand in the second term is decreasing in the
lower half-plane. To make the integrand in the first term
decreasing in the upper half-plane, in the integral along γ1,
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we use the identity

1

ei
qD
kBT þ 1

¼ 1 −
1

e−i
qD
kBT þ 1

: ð22Þ

Substituting it into Eq. (21), we bring the polarization
tensor to the form

ΠμνðikDl; k; TÞ ¼ Πμν
0 ðikDl; kÞ þ ΔTΠμνðikDl; k; TÞ; ð23Þ

where

Πμν
0 ðikDl; kÞ ¼ −

32πα

v2F

Z
∞

−∞

dqD
2π

Z
dD−1q
ð2πÞD−1

Zμν

R
ð24Þ

and

ΔTΠμνðikDl; k; TÞ ¼ −
32πα

v2F

Z
dD−1q
ð2πÞD−1

×

�Z
γ1

dqD
2π

1

e−i
qD
kBT þ 1

Zμν

R

−
Z
γ2

dqD
2π

1

ei
qD
kBT þ 1

Zμν

R

�
: ð25Þ

Note that the minus sign in front of (24) appeared because
the direction of the path γ1 is against the real axis in the
complex plane qD.
The first term on the right-hand side of Eq. (23) given by

Eq. (24) has the meaning of the polarization tensor at zero
temperature (until the moment it is calculated at the bosonic
Matsubara frequencies). As for the second term given by
Eq. (25), it explicitly depends on T and has the meaning of
the thermal correction.
We begin with calculating the thermal correction. This

can be done by closing the integration paths γ1 and γ2 with
the help of semicircles of infinitely large radii in the upper
and lower half-planes, respectively, and applying again
the Cauchy residue theorem. In the upper half-plane, there
are two poles of the function Zμν=R at the roots of R.
These are qD ¼ iΓðqÞ and qD ¼ iΓ̃ðqÞ þ kDl, where Γ and
Γ̃ are defined in Eq. (10). In the lower half-plane, the
poles of the function Zμν=R are at qD ¼ −iΓðqÞ and
qD ¼ −iΓ̃ðqÞ þ kDl. All of these poles are shown in
Fig. 2 as crosses.
Calculating the residues at all four poles and taking into

account that the integrals along both semicircles vanish, we
rewrite the thermal correction (25) as

ΔTΠμνðikDl;k; TÞ ¼
16πα

v2F

Z
dD−1q
ð2πÞD−1

×
X
λ¼�1

(
ZμνðqD ¼ iλΓÞ

Γðe Γ
kBT þ 1Þ½ðiλΓ− kDlÞ2 þ Γ̃2�

þ ZμνðqD ¼ iλΓ̃þ kDlÞ
Γ̃ðe Γ̃

kBT þ 1Þ½ðiλΓ̃þ kDlÞ2 þΓ2�

)
:

ð26Þ

When obtaining this equation, it was used that
exp½−iλkDl=ðkBTÞ� ¼ 1 due to Eq. (4).

Equation (26) can be further simplified because the integrand is symmetric under the substitution q → k̃ − q. Making this
substitution and the replacement λ → −λ in the second term of this equation, one obtains

ΔTΠμνðikDl; k; TÞ ¼
16πα

v2F

Z
dD−1q
ð2πÞD−1

1

Γðe Γ
kBT þ 1Þ

×
X
λ¼�1

ZμνðqD ¼ iλΓ; qÞ þ ZμνðqD ¼ kDl − iλΓ; k̃ − qÞ
ðkDl − iλΓÞ2 þ Γ̃2

: ð27Þ

FIG. 2. Complex qD plane containing the integration paths γ1
and γ2. The dots indicate the poles at the fermionic Matsubara
frequencies. The four additional poles are shown as crosses (see
the text for further discussion).
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Taking into account that Γ ∼ jqj when jqj → ∞, it is seen
that the integral in Eq. (27) converges exponentially fast for
any D. Note that Eq. (27) is easily generalized for the case
of graphene with a nonzero chemical potential μ. This is
done by making the replacement [79]

1

e
Γ

kBT þ 1
⟶

1

2

�
1

e
Γþμ
kBT þ 1

þ 1

e
Γ−μ
kBT þ 1

�
: ð28Þ

Thus, the problem of convergence of the polarization tensor
reduces to the question of whether its zero-temperature
part (24) converges.
Note that the thermal correction in the form of Eq. (27)

admits an immediate analytic continuation to the real
frequency axis by putting ikDl ¼ k0 ¼ ω. (Compare with
similar results obtained for the temperature Green func-
tions in Refs. [80,81] and with Ref. [9].) In a similar
way, the polarization tensor at zero temperature along the
real frequency axis is obtained from Eq. (24) by putting
ikDl ¼ k0 ¼ ω and qD ¼ −iq0. With this substitution, it
takes the form

Πμν
0 ðkÞ ¼ i

32πα

v2F

Z
dDq
ð2πÞD

Zμνðk; qÞ
Rðk; qÞ ; ð29Þ

where k ¼ ðk0; kÞ, q ¼ ðq0; qÞ, and dDq ¼ dq0dq.
According to Eqs. (6) and (7), Zμν ∼ q2 and R ∼ q4 in the

limit q2 → ∞. These simple power-counting arguments
show that the integral (29) may contain ultraviolet diver-
gences of the order of qD−2, i.e., they diverge linearly and
quadratically in three- and four-dimensional spacetime,
respectively. Below we show how these expectations are
modified by the gauge invariance of the polarization tensor.

III. ZERO-TEMPERATURE PART AND ITS
ANALYTIC EXPRESSION IN D DIMENSIONS

In this section, we calculate the zero-temperature polari-
zation tensor (29) in the case of D-dimensional spacetime.
For this purpose, we use the following representation for
the propagators entering Eq. (29) [75]:

1

q2 −m2 þ i0
¼ 1

i

Z
∞

0

dseisðq2−m2þi0Þ;

1

ðq − k̃Þ2 −m2 þ i0
¼ 1

i

Z
∞

0

dteit½ðq−k̃Þ2−m2þi0�: ð30Þ

For the momenta qν
0
entering Z̃μ0ν0 in Eq. (7), we use

qν
0 ¼ 1

i
∂

∂ξν0
eiq

γξγ jξ¼0: ð31Þ

This substitution is made for all q entering the function
Z̃μ0ν0 , i.e.,

Z̃μ0ν0 ðk; qÞ ¼ Z̃μ0ν0
�
k;
1

i
∂

∂ξν0

�
eiq

γξγ jξ¼0: ð32Þ

Substituting Eqs. (6) and (30) into Eq. (29) with account
of the definition of R in Eq. (7) and using Eq. (32), the
polarization tensor at zero temperature is presented as

Πμν
0 ðkÞ ¼ 32πα

iv2F
ημμ0η

ν
ν0

Z
dDq
ð2πÞD

Z
∞

0

ds

×
Z

∞

0

dtZ̃μ0ν0
�
k;
1

i
∂

∂ξν0

�
eiMjξ¼0; ð33Þ

where the quantity M is defined as

M ¼ sðq2 −m2 þ i0Þ
þ t½ðq − k̃Þ2 −m2 þ i0� þ iqξ: ð34Þ

This expression for M can be identically rewritten in the
form

M ¼ ðsþ tÞ
�
qþ ξ − 2tk̃

2ðsþ tÞ2
�
2

−
ξ2

4ðsþ tÞ þ
t

sþ t
k̃ξþH;

ð35Þ

where

H ¼ st
sþ t

k̃2 − ðsþ tÞm2 þ i0: ð36Þ

It is seen that only the first term in the expression (35) for
M depends on q. Then, the integration with respect to q in
Eq. (33) can be easily performed. For this purpose, we use
the well-known formulas [75]

Z
∞

−∞

dq0
2π

eiðsþtÞq2
0 ¼ ei

π
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πðsþ tÞp ;

Z
∞

−∞

dqj
2π

e−iðsþtÞq2j ¼ e−i
π
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πðsþ tÞp ; ð37Þ

where sþ t > 0 and j ¼ 1; 2;…; D − 1.
Combining the necessary number of expressions in

Eq. (37), for the D-dimensional spacetime one obtains

Z
dDq
ð2πÞD eiðsþtÞq2 ¼ ei

π
4
ð2−DÞ

½4πðsþ tÞ�D2 : ð38Þ

By applying Eq. (38) with a necessary shift of the
integration variable q in Eqs. (33) and (35), one obtains

Πμν
0 ðkÞ ¼ 32πα

iv2F
ei

π
4
ð2−DÞημμ0η

ν
ν0

Z
∞

0

ds
Z

∞

0

dt

½4πðsþ tÞ�D=2

× Z̃μ0ν0
1 eiH; ð39Þ
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where

Z̃μ0ν0
1 ¼ Z̃μ0ν0

�
k̃;
1

i
∂

∂ξν0

�
exp

�
i

4ðsþ tÞð4tk̃ξ−ξ2Þ
�����

ξ¼0

: ð40Þ

The functional form of the quantity Z̃μ0ν0 is presented
in the first line of Eq. (7). It is seen that, in order to calculate
the quantity (40), one should find how the operators
obtained from qμ

0
, qμ

0
qν

0
, and q2 by the replacement of

qμ
0
with −i∂=∂ξμ0 act on the exponent in Eq. (40). As an

example,

1

i
∂

∂ξμ0
exp

�
i

4ðsþ tÞ ð4tk̃ξ − ξ2Þ
�

¼ 2tk̃μ
0 − ξμ

0

2ðsþ tÞ exp

�
i

4ðsþ tÞ ð4tk̃ξ − ξ2Þ
�
: ð41Þ

By putting here ξ ¼ 0, one finds

1

i
∂

∂ξμ0
exp

�
i

4ðsþ tÞ ð4tk̃ξ − ξ2Þ
�����

ξ¼0

¼ t
sþ t

k̃μ
0
: ð42Þ

In a similar way, by calculating the remaining derivatives
and putting ξ ¼ 0 in the obtained results, we arrive at

1

i
∂

∂ξμ0
1

i
∂

∂ξν0
exp

�
i

4ðsþ tÞ ð4tk̃ξ − ξ2Þ
�����

ξ¼0

¼ −
gμ

0ν0

2iðsþ tÞ þ
t2

ðsþ tÞ2 k̃
μ0 k̃ν

0
;

1

i
∂

∂ξμ
0
1

i
∂

∂ξμ0
exp

�
i

4ðsþ tÞ ð4tk̃ξ − ξ2Þ
�����

ξ¼0

¼ −
D

2iðsþ tÞ þ
t2

ðsþ tÞ2 k̃
2; ð43Þ

where we accounted for gμνgμν ¼ D.
Using Eqs. (7), (42), and (43), we bring Eq. (40) to the

form

Z̃μ0ν0
1 ¼ gμ

0ν0 D − 2

2iðsþ tÞ −
ts

ðsþ tÞ2 ð2k̃
μ0 k̃ν

0 − gμ
0ν0 k̃2Þ

þ gμ
0ν0m2: ð44Þ

It is convenient to rewrite the polarization tensor (39) in
terms of new integration variables ρ and λ defined as

s ¼ ρλ; t ¼ ð1 − ρÞλ; ð45Þ

so that

ρ ¼ s
sþ t

; λ ¼ sþ t; ð46Þ

where ρ is the so-called Feynman parameter (frequently
denoted by x).
It is easily seen that

Z
∞

0

ds
Z

∞

0

dtgðs;tÞ¼
Z

1

0

dρ
Z

∞

0

λdλgðρλ;ð1−ρÞλÞ; ð47Þ

where the factor λ in Eq. (47) comes from the Jacobian.
In terms of the variables (45), the quantities Z̃μ0ν0

1 from
Eq. (44) and H from Eq. (36) take the form

Z̃μ0ν0
1 ¼ gμ

0ν0 D − 2

2iλ
− 2ρð1 − ρÞk̃μ0 k̃ν0

þ gμ
0ν0 ½ρð1 − ρÞk̃2 þm2�;

H ¼ λ½ρð1 − ρÞk̃2 −m2 þ i0�≡ λH1ðρÞ: ð48Þ

Then, the polarization tensor (39) is given by

Πμν
0 ðkÞ ¼ 32πα

iv2F
ei

π
4
ð2−DÞημμ0η

ν
ν0

Z
1

0

dρ
Z

∞

0

dλ

ð4πÞD=2

× λ1−
D
2 Z̃μ0ν0

1 eiλH1ðρÞ; ð49Þ

where Z̃μ0ν0
1 and H1 are defined in Eq. (48). Note that the

limit of large momenta corresponds to small λ.
The integral over λ in Eq. (49) can be calculated using

the formula [82]

Z
∞

0

dλeiλH1ðρÞλw−1 ¼ ½−iH1ðρÞ�−wΓðwÞ; ð50Þ

where ΓðwÞ is the gamma function. Note that the integral on
the left-hand side of Eq. (50) is equal to the gamma function
only under the conditions Reð−iH1Þ > 0 and Rew > 0.
The first of these is satisfied due to the presence of i0 in
Eq. (48). Below we apply Eq. (50) for the spacetime
with ReD < 2, where Rew > 0. The results for the cases
ReD > 2 are obtained by standard analytic continuation.
(See the next section for the differences between the cases
D ¼ 3 or D ¼ 4.)
Using Eq. (50) in Eq. (49), one finds

Z
∞

0

dλ

ð4πÞD=2 λ
1−D

2 Z̃μ0ν0
1 eiλH1ðρÞ

¼ gμ
0ν0 D − 2

2ið4πÞD=2 Γ
�
1 −

D
2

�
½−iH1ðρÞ�D2−1

þ 1

ð4πÞD=2 f−2ρð1 − ρÞk̃μ0 k̃ν0 þ gμ
0ν0 ½ρð1 − ρÞk̃2

þm2�gΓ
�
2 −

D
2

�
½−iH1ðρÞ�D2−2: ð51Þ
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Using the property

ΓðzÞ ¼ Γðzþ 1Þ
z

; ð52Þ

the integral (51) can be rewritten in a simpler form,

Z
∞

0

dλ

ð4πÞD=2 λ
1−D

2 Z̃μ0ν0
1 eiλH1ðρÞ

¼ 2

ð4πÞD=2 ρð1 − ρÞðgμ0ν0 k̃2 − k̃μ
0
k̃ν

0 Þ

× Γ
�
2 −

D
2

�
½−iH1ðρÞ�D2−2: ð53Þ

Inserting Eq. (53) into Eq. (49), we arrive at

Πμν
0 ðkÞ ¼ 64πα

iv2F
ei

π
4
ð2−DÞ ημμ0η

ν
ν0

ð4πÞD=2 Γ
�
2 −

D
2

�

× ðgμ0ν0 k̃2 − k̃μ
0
k̃ν

0 Þ
Z

1

0

dρρð1 − ρÞ½−iH1ðρÞ�D2−2:

ð54Þ

From the tensor structure of Eq. (54) it becomes evident
that for Πμν

0 the transversality condition (14) is satisfied, as
it must be for both the zero-temperature part of the
polarization tensor and the thermal correction to it.
The analytic continuations of Eq. (54) to the cases of

D ¼ 4 and D ¼ 3 are considered in the next section.

IV. THREE- AND FOUR-DIMENSIONAL
SPACETIMES

We begin with the case of four-dimensional spacetime
D ¼ 4. Keeping in mind the necessity of regularization, let
us put D ¼ 4 − 2ε, where ε vanishes when D goes to 4. In
this case Eq. (54) takes the form

Πμν
0;εðkÞ ¼ −

4α

πv2F
ημμ0η

ν
ν0ΓðεÞðgμ

0ν0 k̃2 − k̃μ
0
k̃ν

0 Þ

×
Z

1

0

dρρð1 − ρÞH−ε
1 ðρÞ: ð55Þ

In fact, the gamma function on the right-hand side of
Eq. (55) can be analytically continued to the entire
plane of complex ε with the exception of the poles at
ε ¼ 0;−1;−2;… This allows to perform the dimensional
regularization of the polarization tensor (55) and sub-
sequent renormalization by subtracting the pole contribu-
tion in the form of 1=ε.
To do so, we expand the gamma function according

to [82]

ΓðεÞ ¼ 1

ε
− γ þOðεÞ; ð56Þ

where γ is the Euler constant. The factor H−ε
1 is

represented as

H−ε
1 ¼ exp

�
ln

�
H1ðρÞ
C

�−ε�
¼1−ε ln

H1ðρÞ
C

þOðε2Þ; ð57Þ

where C is an arbitrary constant with the dimension of H1.
Substituting Eqs. (56) and (57) into Eq. (55), one obtains

Πμν
0;εðkÞ ¼ −

4α

πv2F
ημμ0η

ν
ν0 ðgμ

0ν0 k̃2 − k̃μ
0
k̃ν

0 Þ

×
Z

1

0

dρρð1 − ρÞ
�
1

ε
− ln

H1ðρÞ
C0

�
; ð58Þ

where C0 ¼ Ce−γ.
It is convenient to rewrite this result in the form

Πμν
0;D→4ðkÞ ¼ ημμ0η

ν
ν0 ðgμ

0ν0 k̃2 − k̃μ
0
k̃ν

0 ÞΠ4ðk2Þ; ð59Þ

where

Π4ðk2Þ ¼
4α

πv2F

Z
1

0

dρρð1 − ρÞ
�

2

D − 4
þ ln

H1ðρÞ
C0

�
; ð60Þ

and, in accordance with Eq. (48),

H1ðρÞ ¼ ρð1 − ρÞk̃2 −m2 þ i0: ð61Þ

The renormalization in quantum electrodynamics with
D ¼ 4 consists in discarding the pole term in Eq. (60),
which corresponds to the logarithmic ultraviolet diver-
gence. This divergence is by two powers less than it follows
from a simple power counting for D ¼ 4 discussed at the
end of Sec. II. The decrease in the divergence power is the
result of the transversality (gauge invariance) of the
polarization tensor ensured by the tensor structure of
Eq. (59). By imposing the normalization condition
Πren

4 ðk2 ¼ 0Þ ¼ 0 (which is justified by the general theory
of renormalization in QED), one can fix the arbitrary
constant C0 ¼ −m2 and arrive at

Πren
4 ðk2Þ ¼ 4α

πv2F

Z
1

0

dρρð1− ρÞ ln
�
1− ρð1− ρÞ k̃

2

m2

�
: ð62Þ

This is the well-known result of standard QED [75] if we
put vF ¼ 1 and consider one Dirac point in place of two as
for graphene.
Now we pass to the case D ¼ 3, i.e., to the polarization

tensor of graphene at zero temperature. In this case,
Eq. (54) takes the form
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Πμν
0;D¼3ðkÞ ¼ −

8αffiffiffi
π

p
v2F

ημμ0η
ν
ν0Γ

�
1

2

�
ðgμ0ν0 k̃2 − k̃μ

0
k̃ν

0 Þ

×
Z

1

0

dρ
ρð1 − ρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−H1ðρÞ

p : ð63Þ

This equation, similar to Eq. (55), is obtained by the
analytic continuation of Eq. (54). However, as opposed to
Eq. (55), it is finite and does not contain the pole terms.
Thus, no subtraction of infinities is needed to obtain the
final physical result, i.e., the polarization tensor of gra-
phene behaves like that in the truly three-dimensional
QED, which is the super-renormalizable theory (as men-
tioned in particular in [2]), unlike the standard theory in
four dimensions which is “only” renormalizable.
Using the same representation as in Eq. (59),

Πμν
0;D¼3ðkÞ ¼ ημμ0η

ν
ν0 ðgμ

0ν0 k̃2 − k̃μ
0
k̃ν

0 ÞΠ3ðk2Þ; ð64Þ

one obtains from Eq. (63)

Π3ðk2Þ ¼ −
8α

v2F

Z
1

0

dρ
ρð1 − ρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 − ρð1 − ρÞk̃2
q : ð65Þ

The last integral is easily calculated [82]. Thus,

Π3ðk2Þ ¼ −
4α

v2Fk̃
2

�
−mþ 4m2 þ k̃2

4

×
Z

1

0

dρ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 − ρð1 − ρÞk̃2
q �

: ð66Þ

Using the most convenient expressions for this integral in
different regions of parameters, for k̃2 < 0 we obtain

Π3ðk2Þ ¼
2α

v2Fk̃
2

�
2m −

4m2 þ k̃2ffiffiffiffiffiffiffiffi
−k̃2

p arctan

ffiffiffiffiffiffiffiffi
−k̃2

p

2m

�
: ð67Þ

Under the conditions k̃2 > 0, 2m >
ffiffiffiffiffi
k̃2

p
, we have

Π3ðk2Þ ¼
2α

v2Fk̃
2

�
2m −

4m2 þ k̃2ffiffiffiffiffi
k̃2

p arctanh

ffiffiffiffiffi
k̃2

p

2m

�
: ð68Þ

Finally, under the conditions k̃2 > 0, 2m <
ffiffiffiffiffi
k̃2

p
, one

obtains

Π3ðk2Þ ¼
2α

v2Fk̃
2

�
2m −

4m2 þ k̃2ffiffiffiffiffi
k̃2

p
�
arctanh

2mffiffiffiffiffi
k̃2

p þ i
π

2

��
:

ð69Þ

Note that there is a threshold at
ffiffiffiffiffi
k̃2

p
¼ 2m.

The two convenient independent quantities characteriz-
ing the polarization tensor are Π00 and trΠμν ¼ gμνΠμν.
Using Eq. (64), these are given by

Π00
0;D¼3ðkÞ ¼ −v2Fk2Π3ðk2Þ;

trΠμν
0;D¼3ðkÞ ¼ v2Fðk2 þ k̃2ÞΠ3ðk2Þ; ð70Þ

where Π3ðk2Þ is defined in Eqs. (67)–(69) for different
regions of the involved parameters. From Eq. (64) it is seen
that if the mass-shell equation k20 − k2 ¼ 0 is satisfied, it
holds that Πμνðk0 ¼ 0Þ ¼ 0.
Equations (64) and (67)–(70) coincide with the results

of Refs. [16,30,35] for the polarization tensor of graphene
at zero temperature. It should also be mentioned that
equivalent results [26] were found in the literature by the
method of correlation functions in the random-phase
approximation [83–86]. The obtained results are unique
and neither Π00

0 nor trΠμν
0 can be modified in any way.

As to the thermal correction to the polarization tensor
ΔTΠμν, in Sec. II it was shown that it is finite for any D
and uniquely defined. Because of this, it is not the
subject of regularization, which refers to only the zero-
temperature case.
We emphasize that Eqs. (64) and (67)–(69) for the

polarization tensor of graphene at zero temperature, where
the Fermi velocity vF is put equal to unity, are in agreement
with the well-known results of Refs. [1,2] obtained long
ago in the framework of standard (2þ 1)-dimensional
QED. (The extra factor of 2 is explained by the presence
of two Dirac points for graphene.)

V. CONCLUSIONS AND DISCUSSION

In this paper, we have analyzed the problem of the
convergence of the polarization tensor of graphene in the
framework of the Dirac model. This is an interesting
example regarding the application of methods of low-
dimensional thermal QFT to a material of great practical
importance. Although in the framework of QFT the
polarization tensor of graphene is described by a simple
one-loop diagram, which was calculated long ago, there
are contradictory statements in the literature (mentioned in
Sec. I) concerning its convergence, the necessity of its
regularization, and the validity of the obtained results.
Taking into account that the quantum-field-theoretical
approach to the polarization tensor of graphene suggests
the most direct and fundamental way of investigating the
electrical conductivity and reflectance of graphene, as well
as the Casimir effect in graphene systems, it seems
necessary to clarify all of the raised points.
For this purpose, we have performed a detailed calcu-

lation of the polarization tensor of graphene and analyzed
its analytic properties as a function of the number of
spacetime dimensions. We emphasize that this tensor
consists of the zero-temperature part plus the thermal
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correction. In so doing, the thermal correction is repre-
sented as an integral that converges in the spacetime of any
dimensionality. Thus, the question of regularization is
irrelevant to the thermal correction and may be raised only
with respect to the zero-temperature part of the polarization
tensor.
For experts in QFT, the calculation of the polarization

tensor in the framework of (2þ 1)-dimensional QED is a
rather simple exercise. Because of this, in the classical
papers [1,2] the results of this calculation were presented
without derivation. In Refs. [16,30,35], again with no
detailed derivation, these results were modified for the
case of graphene by taking into account the presence of two
fundamental velocities.
As discussed in Sec. I, some of the theoretical predic-

tions made using the quantum-field-theoretical polarization
tensor (and especially its trace) are in disagreement with
those found with the polarization tensor derived using the
Kubo formula. To bring both tensors into agreement, an
alternative regularization procedure was suggested [73] by
imposing an artificial additional condition irrelevant to the
rigorous formalism of quantum field theory.
Our detailed analysis of the convergence of the polari-

zation tensor in D ¼ ð2þ 1Þ-dimensional spacetime shows
that, although it is formally represented by a divergent
integral, its finite value is obtained by analytic continuation.
In so doing, one need not to discard any pole terms, which
do not appear in the case D ¼ 3, i.e., the renormalization is
not needed. Just this was meant in Refs. [27,28,30], which
stated that for D ¼ 3 the ultraviolet divergences do not
appear. After putting the Fermi velocity equal to the speed
of light, our results for the zero-temperature polarization
tensor are found to be in agreement with the well-known
results of Refs. [1,2]. If the two fundamental velocities are
present, our results coincide with those given for graphene
in Refs. [16,30,35].
We recall that the situation is different in the case of

standard QED with D ¼ 3þ 1. In this case, the zero-
temperature polarization tensor is also obtained by analytic
continuation. However, to obtain the finite result, it is
necessary to discard the pole term that arises for D ¼ 4.
This pole corresponds to the ultraviolet divergence deleted
by means of the renormalization procedure, which must be
performed after a regularization. Therefore, there is a

principal difference between the character of the divergen-
ces of the polarization tensor for the three- and four-
dimensional spacetimes. However, in both cases the final
results, obtained by analytic continuation from the case of
lower dimensionality and (for D ¼ 4 only) by discarding
the pole term and using the normalization condition, are
unique and not subject to any modification.
It is also necessary to stress that the presence of a double

pole at zero frequency in the transverse dielectric permit-
tivity of graphene proven [41] by using the polarization
tensor plays a decisive role in reaching an agreement
between theory and measurements of the Casimir force
in graphene systems [49–52]. It is well known that for
metallic test bodies the theoretical predictions are in agree-
ment with the results of numerous precise experiments on
measuring the Casimir force only if the response of metals
to the low-frequency electromagnetic field is described by
the dissipationless plasma model possessing a double pole
at zero frequency [87,88]. This problem was considered as a
failure of the dissipative Drude model, possessing a single
pole at zero frequency, in the region of transverse electric
evanescent waves [89]. Thus, the prediction of a double pole
in the transverse dielectric permittivity of graphene in the
framework of quantum field theory, as opposed to the Kubo
formula, is in favor of the former.
To conclude, the analysis performed in this paper opens

opportunities for the wider use of quantum-field-theoretical
methods in the investigation of the properties of graphene
and other novel materials.
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