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We explore the necessary conditions for 1-form symmetries to emerge in the long-distance limit when
they are explicitly broken at short distances. A minimal requirement is that there exist operators which
become topological at long distances and that these operators have nontrivial correlation functions. These
criteria are obeyed when the would-be emergent symmetry is spontaneously broken, or is involved in ’t
Hooft anomalies. On the other hand, confinement, i.e. a phase with unbroken 1-form symmetry, is nearly
incompatible with the emergence of 1-form symmetries. We comment on some implications of our results
for QCD as well as the idea of Higgs-confinement continuity.
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I. INTRODUCTION

The global symmetries we encounter in nature are
generally explicitly broken at short distances, but they
often emerge in long-distance QFT descriptions. In recent
years, it has become appreciated that relativistic QFTs can
have generalized global symmetries [1], such as higher-
form symmetries that act on nonlocal operators like lines
and surfaces. For example, 1-form symmetries can act on
Wilson loops in gauge theories, and have led to a helpful
new perspective on color confinement, among many other
results [2,3]. In this paper we explore how 1-form sym-
metries can emerge in long-distance limits even when they
are explicitly broken at short distances.
Standard “0-form” symmetries act on local operators and

can be explicitly broken by adding an appropriate charged
local operator to a Lagrangian density. The fate of the
symmetry at long distances is then determined by the
scaling dimension of the perturbing operator. It is difficult
(though not impossible, see Ref. [4]) to use similar
renormalization-group-style ideas to study the long-dis-
tance fate of explicitly broken 1-form symmetries, because
the charged objects are line operators. In practice, explicit
breaking of one-form symmetries in gauge theories arises
due to couplings to dynamical charged matter fields [1].

Then there are two basic ways a 1-form symmetry can
emerge. First, it can appear upon taking a limit in the space
of QFTs. If we consider a sequence of field theories where
the mass m of the symmetry-breaking fields increases with
all other physical parameters held fixed, then a 1-form
symmetry must certainly emerge in the limit m → ∞.
Second, a 1-form symmetry might emerge in a fixed
QFT (in this context, with fixed m) in the long-distance
limit. How and when this happens is more subtle, and such
“infrared-emergent 1-form symmetries” will be our main
focus in this paper.
Below we will state a condition that must be satisfied for

a QFT to have a nontrivial emergent 1-form symmetry in
the long-distance limit. We then analyze how this condition
is satisfied (or not) in some simple examples. Along the
way we will make contact with other discussions of
emergent and approximate 1-form symmetries in the recent
literature [4–10] and discuss the role of ’t Hooft anomalies
in the emergence of 1-form symmetries. We also explain
why there is no emergent 1-form symmetry in QCD even
when all of the quarks have large finite masses, and
implications for Higgs-confinement continuity with funda-
mental matter.

II. EXACT 1-FORM SYMMETRY

A modern definition of exact symmetries in relativistic
QFTs is via the existence of topological operators along
with data on how they act in correlation functions [1].
These operators can be thought of as charges which
generate the symmetry. We focus on invertible 1-form
symmetries in relativistic QFTs in d-dimensional Euclidean
spacetime. The associated topological operators UαðMd−2Þ
live on codimension-2 manifolds Md−2 and are labeled by
an element α of the symmetry group G. Their correlation
functions have a purely topological dependence on Md−2,
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and they satisfy fusion rules given by group composition in
G. The charged operators are line operators WRðCÞ where
C is a closed loop and R contains information about the
charge of the operator.1 For example, in Uð1Þ Maxwell
theory with a 1-form gauge field a ¼ aμdxμ, there is aUð1Þ
1-form “electric” symmetry generated by Gukov-Witten
operators which prescribe the holonomy of a on infini-
tesimal circles C linking Md−2 to be eiα. In this simple
example one can also give the less abstract definition

UαðMd−2Þ ∼ e
iα
R
Md−2

⋆j
; ð1Þ

where j ¼ − i
g2 da is the electric 2-form conserved current,

d is the exterior derivative,⋆ is the Hodge star operator, and
g is the gauge coupling.
The charged objects are electric Wilson loops

WnðCÞ ¼ exp ðin HC aÞ, and
hUαðMd−2ÞWnðCÞi
hUαðMd−2ÞihWnðCÞi

¼ einαLinkðMd−2;CÞ: ð2Þ

As with any exact grouplike symmetry, invertible 1-form
symmetries lead to selection rules on finite-volume correla-
tion functions [1]. In the infinite-volume limit they can be
spontaneously broken, which is signaled by a perimeter-law
behavior for Wilson loops, and is interpreted as deconfine-
ment of test charges. For example in 4D QED hW1ðCÞi →
e−μPðCÞwhenC is large,PðCÞ is the perimeter ofC andμ is an
energy scale that depends on the choice of renormalization
scheme. One can choose a counterterm localized on C to set
μ ¼ 0, and then hW1ðCÞi ≠ 0 for large Wilson loops. If
instead hW1ðCÞi goes to zero faster than a perimeter law for
largeC, then limjCj→∞hW1ðCÞi ¼ 0 regardless of the choice
of scheme, and the symmetry is not spontaneously broken.
This signals charge confinement.

III. EMERGENT 1-FORM SYMMETRY

If a QFT contains dynamical minimal-charge matter
fields, then there are no topological codimension-2 oper-
ators that satisfy Eq. (2), and hence no exact 1-form
symmetry. The absence of such operators can be estab-
lished from the existence of nontrivial open Wilson lines.
The issue is that different ways of “shrinking” a symmetry
generator in the presence of an open Wilson line give
manifestly different results, which at the same time must be
identical if the generator is topological [12].
Heuristically, an infrared-emergent 1-form symmetry

should be associated with the existence of operators
UαðΣd−2Þ which are only topological in the long distance

limit. Then the existence of open Wilson lines is not an
issue, since the UαðΣd−2Þ operators only behave topologi-
cally when they are large, and cannot be freely shrunk on
open lines.
We define an infrared-emergent 1-form symmetry as
(ES) Existence of a set of operatorsUαðΣd−2Þ defined on
codimension-2 manifolds Σd−2 with correlation func-
tions that are topological and nontrivial in the long-
distance limit.

This differs from the definition of an exact 1-form
symmetry in three ways: it involves a long-distance limit,
it does not explicitly refer to the action of UαðΣd−2Þ on line
operators, and it does not assume that Σd−2 is closed. The
nature of the correlation functions of Uα that remain
nontrivial in the long-distance limit can be quite subtle,
and they do not always involve genuine line operators [13]
or Uα operators defined on closed manifolds.
In what follows we explore the emergence of 1-form

symmetries in a number of simple examples, which are all
variants of 3D scalar QED. Specifically, we consider parity-
invariant Uð1Þ gauge theory with or without magnetic
monopoles coupled to matter fields with various charges.
We will see that whether our definition of emergent 1-form
symmetry (ES) is satisfied can depend on the realization of
the symmetry when we consider a limit in the space of
theories where it becomes exact, and whether the symmetry
is involved in ’t Hooft anomalies in that limit.

IV. CONFINEMENT VERSUS EMERGENCE

Consider scalar QED with a charge-1 scalar field ϕ with
mass m,

S ¼
Z
M3

�
1

2g2
ðdaÞ2 þ jdϕ − iaϕj2 þ…

�
; ð3Þ

with a short-distance definition that allows finite-action
magnetic monopole-instantons with unit charge to contrib-
ute to the path integral. The model has Gukov-Witten
operatorsUαðΓÞ whose correlators depend on the geometry
of Γ at finite m, but become topological in the limit
m → ∞, where they generate an exact Uð1Þ 1-form global
symmetry. Monopole-instantons generate a mass gap, and
when m → ∞ the theory is confining: large Wilson loops
have area-law falloff with a string tension σ [14], so the
1-form symmetry is not spontaneously broken in this limit.
If m2 is finite and m2 ≫ g4, then it is natural to integrate

out ϕ to describe physics at distances large compared to
1=m, leading to the long-distance effective action

Seff ¼
Z
M3

�
1

2g2
ðdaÞ2 þ c4

m5
da4 þ � � �

�
; ð4Þ

where c4 ∼Oð1Þ and � � � represents higher-order terms
containing higher powers of da and its derivative. Note
that a Chern-Simons term cannot appear given parity

1Some ð3þ 1ÞD systems have more exotic topological surface
operators that only act on other surface operators, not line
operators, see, e.g., [11]. Our goal here is to understand more
conventional 1-form symmetries that act on line operators.
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invariance, and thus all terms which can appear in Seff are
invariant under shifts of a by a closed 1-form λ. One might
therefore think that there is a robust infared-emergent
1-form symmetry when m2 is finite and m2 ≫ g4. This
turns out not to be true.
The key point is that the effective action in Eq. (4) is not

actually “effective” for all long-distance observables. While
it is effective for calculating correlation functions of widely
separated local operators, it fails to correctly describe the
correlation functions of large Wilson loops. In particular,
consider hWðCÞi, hUαðΓÞi, and hUαðΓÞWðCÞi. The path
integral over ϕ produces a formal sum over all possible
insertions of “dynamical”minimal-charge Wilson loops, so
that schematically

hUαðΓÞi ∼
X
C0

e−μPðC0ÞhUαðΓÞWðC0Þi0 þ � � � ð5aÞ

hWðCÞi ∼
X
C0

e−μPðC0ÞhWðCÞWðC0Þi0 þ � � � ð5bÞ

hUαðΓÞWðCÞi ∼
X
C0

e−μPðC0ÞhUαðΓÞWðCÞWðC0Þi0 þ � � � ;

ð5cÞ

where h·i0 denotes a (connected) correlator evaluated in the
pure gauge theory, μ is some appropriate mass scale (such
as the mass of ϕ), and � � � represents terms with multiple
dynamical Wilson loops. The above representation of
expectation values arises naturally in the large mass
(hopping) expansion on the lattice [15], or in the worldline
formalism in the continuum [16–20].
We start by considering the one-point function of the

Gukov-Witten operator in Eq. (5a). The fact that large
dynamical Wilson loops WðC0Þ come with a suppression
factor e−μPðC0Þ implies that for large Γ the sum in Eq. (5a) is
dominated by small loops C0 ∼ 0. Summing over Wilson
loop insertions on small curves C0 that link Γ (illustrated on
the right-hand side of Fig. 1) generates perimeter-law
behavior for the Gukov-Witten operators

hUαðΓÞi ∼ e−μαPðΓÞ; ð6Þ

where μα is a nonuniversal mass scale that depends on α as
well as, e.g., the mass of the charged particle. But we can
set μα to zero by a counterterm localized on Γ, producing
operators which are topological for large Γ so long as
m2 ≳ g4. This is consistent with a naive analysis based on
the effective field theory Eq. (4).
We now consider Eqs. (5b) and (5c). Since hWðCÞi0 has

confining behavior, there is a competition between the
perimeter suppression e−μPðC0Þ of dynamical Wilson loops
WðC0Þ and the more severe (in this case area-law) sup-
pression of the probe Wilson loop WðCÞ in the pure gauge
theory. As a result, for large contours C, large dynamical

Wilson loops are favored rather than suppressed, and
hWðCÞi is dominated by fluctuations around the “screening
loop” C0 ¼ C̄ running opposite to C. This is illustrated in
the left-hand side of Fig. 1. Such contributions go to zero
with the perimeter of C rather than its area. This is simply
the standard physics of screening, which is not captured in
the local effective field theory of Eq. (4). The same
conclusion holds for the correlator of the Wilson loop
and Gukov-Witten operator in Eq. (5c). Again, the dom-
inant contribution involves a screening loop, and as a result
the Gukov-Witten operator measures zero charge.
To summarize, the fact that large Wilson loops are

screened implies that their charge cannot be detected at
long distances. Instead,

hUαðΓÞWðCÞi
hUαðΓÞihWðCÞi ¼ 1 ð7Þ

for well-separated curves Γ, C which tend to infinity.
Effectively, confinement in the limit m → ∞ [meaning that
hWðCÞi → 0 faster than a perimeter law in that limit]
implies that when m is finite all Wilson loops flow to the
identity line operator at long distances, leaving nothing for
the wouldbe emergent 1-form symmetry to act on. As a
result the correlation functions of UαðΓÞ are trivial—all
charges are screened. Therefore our ES definition is not
satisfied, and there is no emergent 1-form symmetry at
finite positivem2. Finally, if −m2 ≳ g4, screening loops due
to ϕ proliferate. Then there is no approximation in which
we can neglect the matter field, and so there is also no
emergent 1-form symmetry for −m2 ≳ g4. So there is no
reason to expect an emergent 1-form symmetry for any
finite m2 in this model.
We conclude that confinement is almost entirely incom-

patible with the emergence of 1-form symmetries. For
example, there is no infrared-emergent 1-form symmetry in
4D QCD with fundamental quarks of any finite mass mq,
no matter how large mq is compared to the strong scale.

FIG. 1. Left: in a confining theory coupled to heavy matter, the
expectation value of a large Wilson loop WðCÞ (black curve) is
dominated by contributions that include a large screening
“matter” Wilson loop (purple curve) arising from integrating
out a charged matter field. Right: the expectation value of UαðΓÞ
(blue curve) is dominated by the contributions of small Wilson
loops (purple curve) arising from integrating out the charged
matter field.
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V. DECONFINEMENT AND EMERGENCE

We now discuss what happens when an exact 1-form
symmetry is spontaneously broken, and then also explicitly
broken by the addition of heavy charged matter fields. To
this end, we couple 3D Uð1Þ gauge theory to a charge N
scalar χ,

S ¼
Z
M3

�
1

2g2
ðdaÞ2 þ jdχ − iNaχj2 þ…

�
; ð8Þ

and assume χ is the only electrically charged field. This
theory has an exact ZN 1-form symmetry generated by
Gukov-Witten operators UkðΓÞ, defined to have holono-
mies e

2πik
N on infinitesimal contours linking Γ. We condense

χ, Higgsing the gauge group to ZN . In this phase large
Wilson loops have a perimeter-law scaling, and the 1-form
symmetry is spontaneously broken.
We now put in a unit-charge scalar ϕ with mass m to

explicitly break the 1-form symmetry. Whenm2 ≳ g4 the 1-
form symmetry emerges in the long-distance limit with m
held fixed. To see this we examine the behavior of the
correlation functions in Eq. (5) resulting from formally
summing over ϕ configurations, with h·i0 now interpreted
as correlation functions of the theory without ϕ. The
analysis of hUαðΓÞi goes through as before, but the
perimeter-law scaling of hWðCÞi0 now implies that small
matter loops (as opposed to screening loops with C0 ∼ C̄)
dominate hUαðΓÞWðCÞ � � �i when C is very large, and

hUkðΓÞWðCÞi
hUkðΓÞihWðCÞi ¼ e

2πik
N LinkðΓ;CÞ ð9Þ

for very large and well-separated loops C, Γ. Therefore we
have a set of operators UαðΓÞ which have nontrivial
topological correlation functions in the long-distance limit,
our definition (ES) is satisfied, and there is an infrared
emergent ZN 1-form symmetry so long as χ is condensed
and ϕ is not.
This analysis resonates with recent discussions of emer-

gent 1-form symmetries in Refs. [4,6–9], which assumed
(explicitly or implicitly) that they were working in the
spontaneously broken situation discussed in this section.
In fact, there is a standard way to understand the above result
without invoking the modern language of higher-form
symmetries. The charge-N Abelian Higgs model flows to
a ZN gauge theory at long distances, described in the
continuum by a BF action SBF ¼ iN

2π

R
M3

b ∧ da where b
is a (emergent)Uð1Þ 1-form gauge field, see, e.g., Ref. [21].
This is a topological field theory with 2N ground states
on a large spatial torus, and it has long been known (see
Refs. [22–24]) that these ground states remain degenerate
(and the long-distanceBF description remains valid) after the
addition of unit-charge matter so long as it does not
“condense.” From the more modern perspective, BF theory

can be thought of as an effective field theory for a sponta-
neously broken ZN 1-form symmetry [1].

VI. ’T HOOFT ANOMALY AND CHARGED
OPERATORS

We now explore the interplay between ’t Hooft anoma-
lies and emergent 1-form symmetries. We again start with
Uð1Þ gauge theory in 3D, S ¼ R

M3

1
2g2 ðdaÞ2, but this time

we do not allow dynamical magnetic monopole-instantons
in the UV completion. This gives rise to a 0-form

“magnetic” symmetry Uð1Þð0Þm associated with the con-

served current jð1Þm ¼ 1
2π⋆da. This symmetry is generated

by topological surface operators VβðΣÞ which act on
pointlike charge k monopole operators eikσ where σ is

the 2π-periodic scalar field dual to a. As before, theUð1Þð1Þe

electric symmetry is generated by topological line operators
UαðΓÞ which act on charge q Wilson lines WqðCÞ.
The Uð1Þð0Þm and Uð1Þð1Þe symmetries have a mixed

’t Hooft anomaly, see, e.g., [1]. This can be detected by
turning on 1-form and 2-form Uð1Þ background gauge
fields Am and Be, with 0-form and 1-form background
gauge transformations Am → Am þ dΛm, Be → Be þ dΛe,
a → aþ Λe, so that

S½A;B� ¼
Z
M3

�
1

2g2
ðda − BeÞ2 þ

i
2π

Am ∧ da

−
i
2π

bCTAm ∧ Be þ � � �
�
; ð10Þ

where � � � stands for other background-field counterterms in
addition to the Am ∧ Be term. While it may seem from
Eq. (10) one can preserve background gauge invariance for

Uð1Þð0Þm by setting bCT ¼ 0 (or do the same for Uð1Þð1Þe by
setting bCT ¼ 1), the situation is more subtle and is detailed
in the Appendix. In any case there is no choice of
counterterms which can enforce background gauge invari-
ance for both Am and Be simultaneously, indicating an ’t
Hooft anomaly.
The ’t Hooft anomaly implies the following correlation

functions:

hV2πqðDÞUβðΓÞi
hV2πqðDÞihUβðΓÞi

¼ eiqβð1−bCTÞLinkð∂D;ΓÞ; ð11aÞ

hVαðΣÞU2πkðLÞi
hVαðΣÞihU2πkðLÞi

¼ eikαbCTLinkðΣ;∂LÞ; ð11bÞ

where q; k∈Z, and D and Σ are (respectively) open and
closed surfaces, while L and Γ are open and closed lines,
which are sketched in Fig. 2. We note that an open surface
operator can be modified by attaching an arbitrary line
operator to its boundary, with similar remarks holding for
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open line operators. Our choice in Eq. (11) is such that
together, the bulk and boundary of the operators V2πqðDÞ,
U2πkðLÞ are topological.
Absent the anomaly, V2πqðDÞ would be a trivial surface

operator that contributes only contact terms to correlation
functions which can all be trivialized by a choice of local
counterterms. But if we take bCT ¼ 0, Eq. (11a) tells us that
the boundary of V2πqðDÞ acts like a charge q topological
Wilson line. By comparison, the genuine Wilson lines
WqðCÞ, which are not attached to surfaces, are not
topological in this model—they are (logarithmically) con-
fined. Similar remarks hold for Eq. (11b), which says that
the endpoints of U2πkðLÞ behave like a pair of charge �k
monopole operators (when bCT ¼ 1), with only a topo-
logical dependence on L. In summary, Eq. (11) tells us that
in a given scheme the ’t Hooft anomaly adds V2πqðDÞ or
U2πkðLÞ to the list of distinct operators charged under

Uð1Þð0Þm and Uð1Þð1Þe , which would otherwise have only
included WqðCÞ and eikσ . The scheme-independent state-
ment is that at least one of the correlators in Eq. (11) is
nontrivial. Equivalently, the following correlator is non-
trivial in any scheme:

hV2πqðDÞUβðΓÞVαðΣÞU2πkðLÞi
hV2πqðDÞihUβðΓÞihVαðΣÞihU2πkðLÞi

¼ eikαbCTLinkðΣ;∂LÞeiqβð1−bCTÞLinkð∂D;ΓÞ ≠ 1: ð12Þ

The quick way to see why Eq. (11) is true is to consider
the effects of singular background gauge transformations.
An insertion of V2πqðDÞ is equivalent to turning on the
background Am ¼ 2πqδð1ÞðDÞ, which can be removed by a
singular gauge transformation ΛA which winds by −2πq
around ∂D. Similarly, an insertion of UβðΓÞ with Γ
contractible is equivalent to taking Be ¼ βδð2ÞðΓÞ, which
can be removed by the background gauge transformation
by ΛB ¼ −βδð1ÞðSÞ, where ∂S ¼ Γ. Doing these trans-
formations in S½A; B�, we obtain

δS½A;B� ¼ i2πqβð1 − bCTÞ
2π

Z
M3

δð1ÞðDÞ ∧ δð2ÞðΓÞ

¼ iqβð1 − bCTÞLinkð∂D;ΓÞ; ð13Þ

reproducing Eq. (11a). A very similar computation gives
Eq. (11b). We also derive this result in the Appendix using
the language of coordinate patches, cochains, and transition
functions for readers who are nervous about manipulations
of singular gauge transformations. This analysis shows the
precise sense in which the ’t Hooft anomaly remains
nontrivial even in locally flat background fields, which
is not obvious from its naive form in Eq. (10).
There is a well-known argument that an ’t Hooft anomaly

implies that the ground state cannot be trivially gapped. If it
were trivially gapped, then one could simultaneously gauge

both Uð1Þð0Þm and Uð1Þð1Þe in the (empty) long-distance
Effective Field Theory (EFT), which would be inconsistent
with the ’t Hooft anomaly. The same constraint on the
ground state structure follows from Eq. (12). If the ground
state onM3 ¼ R3 were trivially gapped, then all correlation
functions must either go to zero or unity in the long-
distance limit.2 But Eq. (12) is nontrivial for any contract-
ible Γ and Σ, no matter how large, so the ground state onR3

cannot be trivially gapped.

VII. ’T HOOFT ANOMALY AND EMERGENCE

Now we reintroduce our charge-1 scalar ϕ with mass m,

S¼
Z
M3

�
1

2g2
ðdaÞ2þjdϕ− iaϕj2þm2jϕj2þ…

�
; ð14Þ

so that Uð1Þð1Þe is explicitly broken for any finite m2.
However, in contrast to the analysis after Eq. (3), we
continue to assume that there are no dynamical monopole-

instantons, so that Uð1Þð0Þm is preserved. The explicit

breaking of Uð1Þð1Þe means that the ’t Hooft anomaly seems
to be gone, as it no longer makes sense to consider
(background) gauging both symmetries. However, is there
a range of microscopic parameters for which this QFT has
an emergent 1-form symmetry in the long-distance limit?.
This question was considered from the particle-vortex

dual perspective [25–27] in Ref. [5]. The authors of Ref. [5]
argued that the ’t Hooft anomaly of the Nambu-Goldstone
effective field theory for a ð2þ 1ÞD superfluid, which is
dual to our Seff from Eq. (4), implies the existence of a
robust gapless mode. Here we are posing the question with
regard to our definition (ES), which requires us to analyze
the correlation functions of wouldbe topological operators.

FIG. 2. The ’t Hooft anomaly of 3D pure Uð1Þ gauge theory

with a Uð1Þð0Þm ×Uð1Þð1Þe symmetry implies that certain unusual
correlation functions of the symmetry generators are nontrivial.
These correlation functions involve operator intersections (de-
noted by squares in the figure) and are sensitive to the choice of
counterterms. But it is not possible to fully trivialize the expect-
ation value of the combination of operators given in Eq. (12),
which is illustrated in this figure.

2This may require adjusting the coefficients of local counter-
terms. The more precise statement is that the long-distance limit
of any correlation function in the trivially gapped theory reduces
to a pure contact term which can be removed by an appropriate
choice of scheme.
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Whenm2 is sufficiently positive, the discussion following
Eq. (5) implies that we can construct approximately topo-
logical operators UβðΓÞ and U2πkðLÞ, with Γ (respectively,
L) a closed (respectively, open) line.However, hWqðCÞi → 0

faster than a perimeter law when m2 → ∞, soWqðCÞ flows
to the trivial operator for largeC for any finitem. So onemay
worry that the wouldbe 1-form symmetry generators UβðΓÞ
have nothing to act on in the long-distance limit.
However, the situation is more interesting. Since Uð1Þð0Þm

is not explicitly broken, V2πqðDÞ and VβðΣÞ are topological
surface operators. We can now consider Eq. (10) with Be
replaced by a 2-form background field B, which can no
longer be interpreted as a background gauge field, since

Uð1Þð1Þe is explicitly broken. Nevertheless, setting B ¼
βδð2ÞðΓÞ has the effect of inserting a nontopological
Gukov-Witten operator UβðΓÞ. For large Γ, however,
UβðΓÞ is approximately topological. If bCT ≠ 1, then
V2πqðDÞ has nontrivial approximately topological correla-
tion functions with UβðΓÞ when Γ is large. Crucially, the
fact that V2πqðDÞ is exactly topological for any m2 means
that it is not screened by charged matter loops. If bCT ¼ 1,
then the approximately topological operator U2πkðLÞ has
nontrivial correlation functions with the exactly topological
operator VβðΣÞ. Therefore Eq. (11) remains nontrivial in
the long-distance limit for sufficiently positive fixed m2.
If m2 is not sufficiently positive, then matter Wilson

loops proliferate, and UβðΓÞ, UβðLÞ flow to either the zero
or identity operators at long distances depending on the
choice of counterterms.
We thus see that our definition (ES) is satisfied when m2

is sufficiently positive, so that the theory described by

Eq. (14) has a Uð1Þð1Þe emergent 1-form symmetry, despite

the fact that the Uð1Þð1Þe symmetry is not spontaneously
broken in the limit m → ∞, where test charges are
(logarithmically) confined.

VIII. CONSEQUENCES

One interesting consequence of the emergent Uð1Þð1Þe

symmetry of 3D massive scalar QED with a Uð1Þð0Þm

magnetic symmetry involves its ground state structure.

While naively the explicit breaking of the Uð1Þð1Þe kills the
mixed ’t Hooft anomaly, the anomaly manages to maintain
its grip on the ground state structure thanks to Eq. (11) and
the discussion in the preceding section. The nontriviality of
Eq. (11) at long distances means that when m is finite (but
sufficiently positive) the ground state must remain non-
trivial. This is in accordance with Ref. [5], which argues
that the gapless mode in this regime is a direct consequence
of an emergent ’t Hooft anomaly. On the other hand ifm2 is
sufficiently negative, Eq. (11) trivializes. As a result, the
ground state can be (and is) trivially gapped, as can be

verified by a standard semiclassical calculation, see Fig. 3
for an illustration.
If we had preserved the Uð1Þð1Þe symmetry but explicitly

broken Uð1Þð0Þm by adding unit-charge monopole operators
to the action, we would have landed on Eq. (3), a QFTwith
area-law-like “confinement” (in the same loose sense that
QCD with finite mass quarks is confining) and a trivially
gapped ground state. This is another illustration of the
robustness [4,6–9,22–24,28,29] of 1-form symmetries
compared to 0-form symmetries. Even when 1-form
symmetries are explicitly broken, they can enforce inter-
esting constraints on the low-energy physics, in contrast to
0-form symmetries.
Another interesting byproduct of the discussion above has

to do with Higgs-confinement continuity, namely the
common lore that the Higgs and confining regimes of gauge
theories with fundamental-representation Higgs fields
should be smoothly connected. Higgs-confinement continu-
ity was proven in some latticemodels in Refs. [30,31], where
a key assumption was the absence of any global symmetries
under which the Higgs field is charged. The heuristic
argument is that in such a situation the Higgs and confining
regimes are smoothly connected because there are no order
parameters that could distinguish them. The model we have
discussed above in Eq. (14) provides an immediate and
nontrivial counterexample to the popular interpretation of the
results of [30,31] as implying Higgs-confinement continuity
even outside the context of the specific models analyzed in
those references.
The model in Eq. (14) has a unit-charge Higgs field ϕ

and a Uð1Þð0Þm global symmetry under which the Higgs field
is neutral. The Higgs and confining phases are separated by

at least one phase transition where the realization ofUð1Þð0Þm

changes, and our results imply that the “confining” phase
can be defined as the phase with an emergent 1-form
symmetry, which is separated by at least one phase
boundary from the “deconfined” Higgs phase. What makes
this counterexample to the standard lore nontrivial is that
the Higgs field ϕ is not charged under any global symmetry,
yet its “condensation” controls the emergent mixed

FIG. 3. A sketch of the minimal phase diagram of 3D scalar
QED, which has Higgs and confining phases which are separated
by at least one phase boundary where the realization of the

Uð1Þð0Þm symmetry changes and the expectation values of monop-
ole operators eiσ are nonanalytic. The confining phase is

characterized by an emergent Uð1Þð1Þe symmetry.
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anomaly and subsequent breaking of Uð1Þð0Þm . Other pos-
sible nontrivial counterexamples to Higgs-confinement
continuity in some systems with global symmetries were
recently discussed in, e.g., Refs. [32,33].

IX. CONCLUSIONS

We have put forth necessary conditions for the emer-
gence of 1-form symmetries at long distances. The key
requirement is that the long-distance correlation functions
of operators be topological and nontrivial. By this criterion,
a 1-form symmetry that is not spontaneously broken nor
involved in ’t Hooft anomalies cannot emerge at long
distances when broken explicitly by finite-mass charged
matter. Our definition agrees with the usual lore that the
implications of spontaneously broken higher-form sym-
metries are robust against explicit breaking. Moreover, the
implications of a higher-form symmetry can remain robust
against explicit breaking even when the symmetry is not
spontaneously broken when the symmetry is involved in an
’t Hooft anomaly.
While for simplicity we focused on 1-form symmetries

in 3D, our definition can in principle be applied to higher-
form symmetries in any dimension. It would be particularly
interesting to analyze a wider class of ’t Hooft anomalies
that arise in situations where the higher-form symmetries
are not spontaneously broken. For instance, 4D SUðNÞ
N ¼ 1 super-Yang-Mills (YM) theory has a ZN 1-form
symmetry and aZN 0-form chiral symmetry with a mixed ’t
Hooft anomaly [1,34]. If we add a massive fundamental-
representation fermion, do we expect an emergent 1-form
symmetry at long distances? The arguments in Secs. VI and
VIII can be applied to the linelike intersections of Gukov-
Witten surface operators with codimension-1 operators
generating the chiral symmetry—while ordinary Wilson
lines are confined in N ¼ 1 SYM, these nongenuine lines
will be approximately topological at long distances and
contribute to nontrivial correlation functions.
It may also be worthwhile to explore the connection of

our emergence criterion with the phenomenon of symmetry
fractionalization, see, e.g., Refs. [35–42], where the
charged particles breaking the 1-form symmetry transform
in projective representations of a 0-form global symmetry.
Finally, throughout this paper, we focused on the inter-

play of the large-mass limit, in which the symmetry-
breaking matter field contributions are clearly suppressed,
and the large-distance limit, where it is less obvious that
symmetry breaking effects are suppressed. We should
mention that SUðNÞ QCD has another limit where matter
field contributions are clearly suppressed, namely the large
N limit where the ’t Hooft coupling, number of flavors Nf

and mass parameters are fixed as N → ∞. Does a 1-form
symmetry emerge in the large N limit? We recently studied
this question together with M. Neuzil in Ref. [10]. It is well
known that screening of large Wilson loops is 1=N

suppressed so long as the large N limit is taken before
the large-loop limit, so the specific failure mechanism for
the emergence of a 1-form symmetry discussed in the
present paper does not apply. However, a 1-form symmetry
fails to emerge anyway, because theUαðΓÞ operators do not
become topological when N → ∞. Their expectation
values take the form of Eq. (6) with μα ∼ N, so that
hUαðΓÞi ¼ 0 at large N. It remains an interesting open
question whether there is some notion of an “emergent
symmetry” which would explain the Wilson loop selection
rules of large N QCD.
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APPENDIX: Uð1Þð0Þ × Uð1Þð1Þ
’T HOOFT ANOMALY

We give a more precise characterization of the anomaly
described in the main text. This allows us to identify
operators with nontrivial correlation functions that would
not be obvious in a naive continuum approach.
We follow the formalism of Ref. [43], see also [44],

where we describe gauge fields in terms of patches,
transition functions, and cocycle conditions. We choose
an open cover fUIg of the spacetime manifold. Then we
pick an associated partition of the manifold into three-
dimensional closed regions fσIg with σI ⊂ UI , such that
σIJ ¼ σI ∩ σJ ⊂ UI ∩ UJ are two-dimensional and con-
tained in double overlaps, σIJK ¼ σI ∩ σJ ∩ σK ⊂ UI ∩
UJ ∩ UK are one-dimensional and contained in triple
overlaps, and σIJKL ¼ σI ∩ σJ ∩ σK ∩ σL ⊂ UI ∩ UJ ∩
UK ∩ UL are points contained in quadruple overlaps.
The dynamical Uð1Þ gauge field is described by a

collection of fields ðað1ÞI ; að0ÞIJ ; a
ð−1Þ
IJK Þ. The starting point is

an R-valued 1-form gauge field on each patch að1ÞI . In the
language of Ref. [43] this is a 1-form-valued 0 cochain. We
use a shorthand notation δ to take differentials of fields on
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various overlaps: for instance ðδað1ÞÞIJ ¼ að1ÞJ − að1ÞI . On

double overlaps have ðδað1ÞÞIJ ¼ dað0ÞIJ where að0ÞIJ ∈R is a
real-valued, 0-form transition function. Since að0Þ has two
“patch” indices it is a 1 cochain (with values in 0-forms). It

satisfies ðδað0ÞÞIJK ¼ að0ÞJK − að0ÞIK þ að0ÞIJ ¼ 2πað−1ÞIJK with

að−1ÞIJK ∈Z is a constant integer defined on triple-overlaps
(an integer 2 cochain). The δ operation (which is the
coboundary operator) squares to 0 (δ2 ¼ 0 and commutes
with d, so that, e.g., under an ordinary gauge transformation
ðδað1ÞÞIJ → ðδað1ÞÞIJ þ ðδdλð0ÞÞIJ ¼ ðδað1ÞÞIJ þ dðδλð0ÞÞIJ.
To summarize, the set of relations is

ðδað1ÞÞIJ ¼ dað0ÞIJ ; ðA1aÞ

ðδað0ÞÞIJK ¼ 2πað−1ÞIJK ; ðA1bÞ

ðδað−1ÞÞIJKL ¼ 0; ðA1cÞ

where in the last equation we are looking at quadruple
overlaps, and the “cocycle condition” δað−1Þ ¼ 0 means
there are nomagneticmonopoles. The full gauge redundancy
is

að1ÞI → að1ÞI þ dλð0ÞI ; ðA2aÞ

að0ÞIJ → að0ÞIJ þ ðδλð0ÞÞIJ þ 2πmð−1Þ
IJ ; ðA2bÞ

að−1ÞIJK → að−1ÞIJK þ ðδmð−1ÞÞIJK; ðA2cÞ

where the function λð0ÞI and constants mð−1Þ
IJ ∈Z represent

small and large gauge transformations, respectively.
We take the same set of data for the background 1-form

Uð1Þ gauge field, ðAð1Þ
I ; Að0Þ

IJ ; A
ð−1Þ
IJK Þ, where Að1Þ is a 1-form,

Að0Þ is a 0-form, Að−1Þ is a constant integer, and Λð0Þ
I and

Mð−1Þ
IJ will denote the small and large background gauge

transformations. In this formalism, a symmetry operator

supported on a surface is described by Að1Þ
I ¼ 0 everywhere

and Að0Þ
IJ constant on a set of double overlaps, so that the

corresponding set of σIJs constitute the surfaces on which
the defect is supported. The surface may have a boundary

as long as δAð0Þ a multiple of 2π, with Að−1Þ
IJK activated on the

boundary. The well-known statement that a generic Uð1Þ
background gauge field cannot be expressed in terms of a
network of symmetry defects is reflected in the fact that it is

possible to activate a nonzero 1-form Að1Þ
I on each patch.

Up to signs, the precise version of i
2π

R
A ∧ da is

“
i
2π

Z
A ∧ da”

¼ i
2π

X
I

Z
σI

Að1Þ
I ∧ dað1ÞI

þ i
2π

X
I<J

Z
σIJ

Að0Þ
IJ ∧ dað1ÞJ −

i
2π

X
I<J<K

Að−1Þ
IJK

Z
σIJK

að1ÞK

− i
X

I<J<K<L

Að−1Þ
IJK að0ÞKLjσIJKL : ðA3Þ

It is invariant under gauge transformations of all fields and

is well defined. What happens if we turn on Að−1Þ
IJK ¼ q on

some triple overlap? First, we see that this inserts a Wilson
line, and the cocycle condition on Að−1Þ implies that this

line must be closed. Second, the relations between Að−1Þ
IJK

and neighboring Að0Þ
IJ implies that we must also turn on

Að0Þ
IJ ¼ 2πq on some neighboring double overlap, which

inserts a field-strength surface operator involving dað1Þ on
that overlap. This gives a rigorous definition of the operator
V2πqðDÞ in Eq. (11) the main text.
The 2-form gauge field is described by ðBð2Þ

I ;

Bð1Þ
IJ ; B

ð0Þ
IJK; B

ð−1Þ
IJKLÞ. Here Bð2Þ is a real 2-form on each

patch, Bð1Þ is a real 1-form on double overlaps, Bð0Þ is a
real 0-form on triple overlaps, and Bð−1Þ is a constant
integer on quadruple overlaps. They are related via

ðδBð2ÞÞIJ ¼ dBð1Þ
IJ ; ðA4aÞ

ðδBð1ÞÞIJK ¼ dBð0Þ
IJK; ðA4bÞ

ðδBð0ÞÞIJKL ¼ 2πBð−1Þ
IJKL: ðA4cÞ

Under gauge transformations we have

Bð2Þ
I → Bð2Þ

I þ dΠð1Þ
I ; ðA5aÞ

Bð1Þ
IJ → Bð1Þ

IJ þ ðδΠð1ÞÞIJ þ dΠð0Þ
IJ ; ðA5bÞ

Bð0Þ
IJK → Bð0Þ

IJK þ ðδΠ0ÞIJK þ 2πLð−1Þ
IJK ; ðA5cÞ

Bð−1Þ
IJKL → Bð−1Þ

IJKL þ ðδLð−1ÞÞIJKL; ðA5dÞ

where Πð1Þ
I is a real 1-form, Π0

IJ is a real 0-form, Lð−1Þ
IJK is a

constant integer. Again, a generic 2-form Uð1Þ gauge field
cannot be associated with a network of symmetry defects,
but if Bð2Þ ¼ 0, Bð1Þ ¼ 0 we can think of Bð0Þ activated on a
set of triple overlaps as inserting a codimension-2 sym-
metry defect on lines (corresponding to a set of σIJKs).
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The dynamical gauge field að1Þ shifts under background
1-form gauge transformations. Accordingly, in the presence
of the background field for the 1-form symmetry the
relations Eq. (A1) are modified to

ðδað1ÞÞIJ ¼ dað0ÞIJ þ Bð1Þ
IJ ; ðA6aÞ

ðδað0ÞÞIJK ¼ 2πað−1ÞIJK − Bð0Þ
IJK; ðA6bÞ

ðδað−1ÞÞIJKL ¼ Bð−1Þ
IJKL: ðA6cÞ

These relations are invariant under the background gauge
transformations

að1ÞI → að1ÞI þ Πð1Þ
I ; ðA7aÞ

að0ÞIJ → að0ÞIJ − Πð0Þ
IJ ; ðA7bÞ

að−1ÞIJK → að−1ÞIJK þ Lð−1Þ
IJK : ðA7cÞ

The anomalous shift of Eq. (A3) under 1-form back-
ground gauge transformations is then

i
2π

X
I

Z
σI

Að1Þ
I ∧ dΠð1Þ

I þ i
2π

X
I<J

Z
σIJ

Að0Þ
IJ ∧ dΠð1Þ

J

−
i
2π

X
I<J<K

Að−1Þ
IJK

Z
σIJK

Πð1Þ
K þ i

X
I<J<K<L

Að−1Þ
IJK Πð0Þ

KL

���
σIJKL

;

ðA8Þ

As we mentioned above, if we insert V2πqðDÞ by taking

Að0Þ
IJ ¼ 2πq on a set of double-overlaps tiling D, then we

must also have Að−1Þ
IJK ¼ �q on the set of triple overlaps

containing the boundary of D. We now insert UβðΓÞ by

setting Bð0Þ
IJK equal to a constant β on the triple overlaps

tiling the closed loop Γ, which we assume pierces D.
Removing this curve with an appropriate 1-form gauge
transformation with Πð0Þ ¼ β, we pick up a phase eiβq from
the last term above. This reproduces Eq. (11a) in the main
text, except that we have not yet discussed the counterterm
dependence.
We also have anomalous shifts of Eq. (A3) involving 0-

form gauge transformations of A coming from the modified
cocycle condition Eq. (A7c),

−
i
2π

X
I<J

Z
σIJ

Λð0Þ
I ∧ dBð1Þ

IJ − i
X

I<J<K

Mð−1Þ
IJ

Z
σIJK

Bð1Þ
JK

þ i
X

I<J<K<L

Mð−1Þ
IJ Bð0Þ

JKL

���
σIJKL

: ðA9Þ

We can now contemplate adding various counterterms
involving B. In particular if we add

“
−i
2π

Z
A ∧ B”

¼ −
i
2π

X
I

Z
σI

Að1Þ
I ∧ Bð2Þ

I

−
i
2π

X
I<J

Z
σIJ

Að0Þ
IJ ∧ Bð2Þ

J −
i
2π

X
I<J<K<L

Að0Þ
IJ B

ð0Þ
JKL

���
σIJKL

;

ðA10Þ

then we can cancel all the terms in Eq. (A9) and the first
two terms in Eq. (A8). This is equivalent to setting bCT ¼ 1
in Eq. (10). We then have

“
i
2π

Z
A ∧ ðda − BÞ”

¼ i
2π

X
I

Z
σI

Að1Þ
I ∧ ðdað1Þ − Bð2ÞÞI

þ i
2π

X
I<J

Z
σIJ

Að0Þ
IJ ∧ ðdað1Þ − Bð2ÞÞJ

−
i
2π

X
I<J<K

Að−1Þ
IJK

Z
σIJK

að1ÞK − i
X

I<J<K<L

Að−1Þ
IJK að0ÞKL

���
σIJKL

−
i
2π

X
I<J<K<L

Að0Þ
IJ B

ð0Þ
JKL

���
σIJKL

: ðA11Þ

The anomalous shift of Eq. (A11) is

Sanomaly;bCT¼1

¼ −i
X
I<J

Mð−1Þ
IJ

Z
σIJ

Bð2Þ
J −

i
2π

X
I<J<K

Að−1Þ
IJK

Z
σIJK

Πð1Þ
K

þ i
X

I<J<K<L

Að−1Þ
IJK Πð0Þ

KL

���
σIJKL

−
i
2π

X
I<J<K<L

Að0Þ
IJ ðδΠð0Þ þ 2πLð−1ÞÞJKL

���
σIJKL

− i
X

I<J<K<L

Mð−1Þ
IJ ðδΠð0ÞÞJKL

���
σIJKL

−
i
2π

X
I<J<K<L

ðδΛð0ÞÞIJBð0Þ
JKL

���
σIJKL

: ðA12Þ

Now if we consider the same configuration from before

with Að0Þ
IJ ¼ 2πq, Að−1Þ

IJK ¼ q, the two terms above in the
second and third line cancel and hV2πqðDÞUβðΓÞi has no
nontrivial phases.
However, we can consider a configuration where Bð0Þ

IJK ¼
2πk on a set of triple overlaps containing an open line L,

with Bð−1Þ
IJKL ¼ �k at the quadruple overlaps containing

the endpoints of L. This represents the insertion of an
open generator of the 2π1-form transformation U2πkðLÞ
(which would be trivial absent an anomaly). If we also
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insert a 0-form generator VαðΣÞ on a closed surface Σ
enclosing the endpoint, with Að0Þ

IJ ¼ α for some constant α
on an appropriate set of double-overlaps containing Σ, then
the gauge transformation Að0Þ

IJ → Að0Þ
IJ þ ðδΛð0ÞÞIJ used to

unlink the surface Σ from the endpoint of the 1-form
generator U2πkðLÞ will yield the phase eiαk from the last
term in Eq. (A12). This reproduces Eq. (11b) for the
behavior of hVαðΣÞU2πkðLÞi.
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