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The computation of the amplitude, α, of asymptotic standing wave tails of weakly delocalized, stationary
solutions in a fifth-order Korteweg–de Vries equation is revisited. Assuming the coefficient of the fifth
order derivative term, ϵ2 ≪ 1, a new derivation of the “beyond all orders in ϵ” amplitude, α, is presented.
It is shown by asymptotic matching techniques, extended to higher orders in ϵ, that the value of α can
be obtained from the asymmetry at the center of the unique solution exponentially decaying in one
direction. This observation, complemented by some fundamental results of Hammersley and Mazzarino
[Proc. R. Soc. A 424, 19 (1989)], not only sheds new light on the computation of α but also greatly
facilitates its numerical determination to a remarkable precision for so small values of ϵ, which are beyond
the capabilities of standard numerical methods.
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I. INTRODUCTION

As it has been observed in numerous systems, spatially
localized, “soliton”-type excitations become “weakly”
delocalized, by developing asymptotic “shelves” or oscil-
lating tails under the influence of certain, physically
important perturbations [1–3]. An approximate picture of
a weakly delocalized soliton would consist of a well defined
core and of a small amplitude wave. Interestingly, slowly
radiating lumps in various field theories, referred to as
pulsons/oscillons [4,5] belong to a related class of problems.
Even if oscillons are not solitons, they do have numerous
physical applications, as many of them exhibit remarkable
stability properties and extremely long lifetimes [6–8].
Slowly radiating oscillons have a well-defined core, con-
taining most of their energy, together with small amplitude
outgoing waves. The simple idea to approximate slowly
radiating oscillons through an assumed adiabatic evolution
of appropriate stationary configurations, called “quasi-
breathers”—weakly delocalized lumps with asymptotic
standing wave tails [9,10] has proved to be quite fruitful.
Quasibreathers are time periodic, and can be thought of as
oscillons made stationary by incoming radiation from
infinity. Determination of the amplitude of the quasibreather
wave tails is necessary to deduce the radiation rate of time-
dependent oscillons. It is rather nontrivial to compute, either

numerically or perturbatively, the amplitude of quasi-
breather standing wave tails, since they are exponentially
suppressed, hence beyond all orders in perturbation theory.
For some recent reviews on oscillons and quasibreathers see,
e.g., [11–13].
As brilliantly shown in the pioneering works of [14–16]

the fate of spatially localized solutions in a large class of
singularly perturbed equations is conveniently analyzed
using methods referred to as “beyond all orders” asymp-
totics. A number of techniques have been developed,
starting with asymptotic matching in the complex plane
[14,15], to obtain an exponentially suppressed, but crucial
effect of the perturbation.
The Korteweg–de Vries (KdV) equation modified by a

fifth order derivative term (fKdV) has been derived in
various physical contexts [17–20]. When the fifth order
derivative term can be treated as a small perturbation, the
fKdV equation admits weakly delocalized solitons with
asymptotic wave tails. The amplitude of the asymptotic
wave tails are typically “beyond all orders” and it has been
computed by several methods [16,21–24]. In a recent paper
[25] we have computed higher order perturbative correc-
tions to the leading “beyond all orders” amplitude of the
asymptotic wave tails, significantly extending previous
result of [21]. In a remarkable, although somewhat lesser
knownwork,Hammersley andMazzarino [26], have actually
produced exact, spatially localized solutions of the fKdV
equation. The localized solutions found in Ref. [26], are
given in terms of convergent power series, computable to
arbitrary precision. Solutions of Ref. [26] are smooth onRþ
with a well-localized core, decreasing monotonically with
exponential decay for x → ∞. They are, however, regular
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only on the half-line,Rþ, and cannot be smoothly continued
to regular (decaying or even bounded) solutions to thewhole
real line, R. This latter fact also follows from the results of
Refs. [27,28], where the absence of nontrivial, globally
regular decaying solutions of the fKdV equation has
been shown.
The main aim of this paper is to connect two, a priori

quite distinct classes of solutions of the fKdVequation: the
decaying and localized solutions of Ref. [26] defined on
Rþ, on the one hand, with weakly delocalized, globally
regular (and even) ones defined on R, which are asymp-
totically periodic, on the other hand.
To be more precise, we relate the amplitude of asymp-

totic wave tails of globally regular solutions of Eq. (5) to
the “asymmetry” of the localized solution’s core. This
asymmetry is defined as the value of the third derivative of
the decaying solution on Rþ at the point where its first
derivative vanishes. From our point of view, one of the main
results of Ref. [26] is the obtention of the exact value of the
asymmetry as a function of ϵ.
In fact we can connect these two different solution

families only for sufficiently small values of the coefficient
of the fifth order term, ϵ2 ≪ 1. Even if the validity of the
discovered relation is limited for small values of ϵ, it still
seems to us not only being of interest in its own right but
also rather useful in practice, as it makes possible the
computation of the amplitude of standing waves tails for
arbitrarily small values of ϵ. This provides a fundamentally
new way for the verification of perturbative results for such
small values of ϵ that have been numerically inaccessible
up to now. It is very much easier to compute numerically
the asymmetry of the localized solution to high precision,
rather than the amplitude of the wave tail of the weakly
delocalized one. Our correspondence starts to noticeably
lose both in precision and in applicability for values ϵ2 ≳ 1

8
.

For such “large” values of the fifth order (linear) dispersion
term, the fKdV approximation loses, however, its physical
applicability due to other non-negligible hydrodynamical
corrections, e.g., nonlinear dispersion terms.
Clearly it is of great interest to establish analogous

results in other, more complicated and/or higher dimen-
sional cases, in particular for quasibreathers. Perturbative
results for small amplitude quasibreathers in various
dimensions have been found to be in reasonably good
qualitative agreement with numerical simulations [29–31].
Those results are, however, very far from the precision
attained by the techniques based on asymmetry-type
computations. A major problem for perturbative computa-
tions of quasibreather tails is to go beyond the leading order
term. Another difficulty is to carry out numerical simu-
lations for sufficiently small values of the perturbative
parameter in order to compare the results with the pertur-
bative ones. A suitable generalization of the method
presented in this paper is expected be quite a useful first
step in that direction.

The plan of the paper is the following: In Sec. II the
transformation of the fifth order KdV equation to the form
used in Ref. [26] is elucidated, and some of its relevant
solutions are briefly discussed. Next, in Sec. III the
remarkable construction of the exact (asymmetric) solution
of Ref. [26] is reviewed in some detail. In Sec. IV the actual
computational method of the exact value of the asymmetry
(valid for any value of ϵ > 0) is described in detail. The
asymmetry, also computed by a spectral numerical code is
shown to agree to the exact results to many significant
digits. In Sec. V the perturbative construction of weakly
delocalized solutions for ϵ ≪ 1, based on Ref. [25], is
recapitulated. The perturbative results are exhibited up to
order ϵ12. An improved spectral numerical method for the
computation of the standing wave tails is also presented.
Section VI contains a new derivation of the amplitude of the
standing wave tails of the weakly delocalized solutions for
ϵ ≪ 1. The perturbative results are shown to be in excellent
agreement with very high precision numerical calculations.
Finally Sec. VII contains our conclusions.

II. STATIONARY FORM OF FIFTH
ORDER KDV EQUATION

The fKdV equation is often written as [16,19,25]

u;t þ ϵ2u;XXXXX þ u;XXX þ 6uu;X ¼ 0; u ¼ uðt; XÞ; ð1Þ

where ϵ > 0 is a (small) parameter, u;t respectively, u;X
denote derivatives with respect to t resp. X. Considering
stationary, unidirectional traveling waves of speed c > 0,
we can pass to the comoving frame, x ¼ X − ct, and then
solutions of Eq. (1) depending only on x, u ¼ uðxÞ, satisfy
the following ordinary differential equation (ODE):

ϵ2u;5 þ u;3 þ ð6u − cÞu;1 ¼ 0; where u;n ¼
dnu
dxn

: ð2Þ

Equation (2) can be integrated once, yielding a fourth order
ODE, discussed in detail in a number of papers, see, e.g.,
Refs. [19,25,26]:

ϵ2u;4 þ u;2 þ 3u2 − cu ¼ M: ð3Þ

By a constant shift of u in Eq. (3) one can always
transform the inhomogenous term, M, to zero, while
c → �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 12M

p
, so from now on we assume M ¼ 0,

ϵ2u;4 þ u;2 þ 3u2 − cu ¼ 0: ð4Þ

For a discussion of the physical significance of M, and
some related subtleties, see, e.g., Refs. [21,25]. Next, by the
following scaling transformations of Eq. (4); x → x̃=s1,
u → s2y, with s21 ¼ c, s2 ¼ c

3
, one can transform it to the

form used in Ref. [26]:
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ϵ̃y;4 þ y;2 þ y2 − y ¼ 0; y;n ¼ y;nðx̃Þ ¼
dny
dx̃n

; ð5Þ

where

ϵ̃ ¼ cϵ2; y ¼ 3

c
u; x̃ ¼ xc

1
2: ð6Þ

We note that from the relation uðxÞ ¼ c
3
yðxc1

2Þ, the third
derivatives, from which the asymmetry at the origin can be
deduced, are related as

y;3ðx̃Þ ¼ 3c−
5
2u;3ðx̃c−1

2Þ: ð7Þ

The celebrated (single) soliton solution of the KdV equa-
tion [ϵ̃ ¼ 0 in Eq. (5)], corresponding to a traveling wave is
given as

ys ¼
3

2
sech2ðx̃=2Þ: ð8Þ

Clearly the stationary (single) soliton, ys, is well localized
in space; i.e., ys → 0 exponentially for x̃ → �∞ and it has
a characteristic core, where most of its mass (energy) is
concentrated. Also, importantly ysðx̃Þ is an even function
of x̃.
As already mentioned, the influence of (singular) per-

turbation on localized solutions often results in the appear-
ance of “shelves” or “weak delocalization.” It has been
amply discussed in the literature [27,28,32], that the sta-
tionary fKdV equation in the comoving frame, Eq. (5) for
ϵ̃ > 0, does not admit nontrivial bounded solutions on the
real line, R, with decaying boundary conditions for
x̃ → �∞. Bounded solutions on R, for sufficiently small
values of ϵ̃ > 0, tend to asymptotically periodic functions
(oscillating tails) for x̃ → �∞, [15,16,19–21,23,24].
On the other hand, Hammersley and Mazzarino [26],

have explicitly constructed smooth solutions, yðx̃Þ, of
Eq. (5) for any ϵ̃ > 0 satisfying one-sided decay conditions,
say for x̃ → ∞. The solution of Ref. [26] is unique for ϵ̃
fixed, it decreases monotonically for x̃ > 0 with a maxi-
mum at the origin, x̃ ¼ 0, defined by the vanishing of the
first derivative, y;1ð0Þ ¼ 0. Importantly these solutions
are not even functions of x̃, in that y;3ð0Þ ≠ 0. As already
noted above, in view of the nonexistence theorems of
Refs. [27,28], regular solutions decaying for x̃ → ∞ of
Eq. (5) on Rþ cannot be continued to globally regular ones
on R. We remark here that, according to our numerical
experiments asymmetric solutions of Eq. (4), decaying on
Rþ run generically into a moving pole-type singularity on
R−. Figure 1 depicts some numerically calculated sym-
metric and asymmetric solutions of Eq. (4).
The results of Ref. [26] make it possible to obtain a

simple, quantitative measure of asymmetry, defined by the
value of y;3ð0Þ, of regular, decaying solutions as a function
of ϵ̃ > 0. In the following we shall connect the value of

y;3ð0Þ of decaying solutions on Rþ to the amplitude of the
asymptotic wave tails of bounded, globally regular solu-
tions of Eq. (5) which are even functions on R.

III. CONSTRUCTION OF ASYMPTOTICALLY
DECAYING, ASYMMETRIC SOLUTIONS

In this section we outline the main steps of the ingenious
construction of Hammersley and Mazzarino [26], for
further details, the reader should consult the original paper.
Statement of the problem: find regular, monotonically

decreasing solutions on Rþ of Eq. (5), subject to the
boundary conditions

y;1ð0Þ¼ 0; lim
x̃→∞

yðx̃Þ¼ 0; and y;1ðx̃Þ< 0 ∀ x̃ > 0: ð9Þ

According to Ref. [26] existence and uniqueness of
solutions with bounded derivatives, y;nðx̃Þ, for all n ≥ 1,
satisfying (9), follows from adopting the arguments given
in Ref. [33]. Equation (5) admits a familiar first integral:

ϵ̃

�
y;1y;3 −

1

2
y2;2

�
þ 1

2
y2;1 ¼

1

2
y2 −

1

3
y3; ð10Þ

where the constant of integration has been chosen to be
zero, since by assumption y and its derivatives tend to zero
for x̃ → ∞. Because Eq. (10) is an autonomous third order
ODE, one can reduce it to a second order ODE by con-
sidering y;n to be a function of y. As yðx̃Þ is a monoton-
ically decreasing function for x̃ ≥ 0 by assumption, both its
inverse function, x̃ðyÞ, and y;1ðyÞ are well defined on the

FIG. 1. The black curve shows the minimal tail symmetric
solution um of Eq. (4) for the parameter values ϵ ¼ 2−1.5, c ¼ 1.
For the same values of ðϵ; cÞ, the red curve corresponds to the
asymmetric solution, u−, decaying to zero for x > 0, and running
into a singularity on R−. The singularity moves farther from the
center as ϵ decreases, as illustrated by the green and the blue
curves. Since the tail-amplitude decreases very fast with decreas-
ing ϵ, the symmetric solutions are not plotted for the smaller ϵ
values.
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interval ð0; yð0ÞÞ. We introduce a new independent vari-
able, z ∝ y as

y ¼ Yz; Y ¼ yð0Þ: ð11Þ
The new variable, z, varies in the interval z∈ ð0; 1Þ,
because x̃ → ∞ corresponds to z → 0. This tacitly presup-
poses Y ¼ yð0Þ > 0, which has been shown to hold for all
ϵ̃ > 0 in Ref. [26]. Introducing a new unknown, fðzÞ, as

y;1 ¼ −Yf1
2; ð12Þ

one finds

y;2 ¼
1

2
Yf;1; y;3 ¼ −

1

2
Yf

1
2f;2; f;n ¼

dnf
dzn

; ð13Þ

so that Eq. (10) is transformed to the second order ODE:

ϵ̃

�
ff;2 −

1

4
f2;1

�
þ f ¼ z2 −

2

3
Yz3: ð14Þ

The solution, fðzÞ, is conveniently represented by the
power series:

fðzÞ ¼ λ2z2
�
1 −

X∞
n¼1

cnzn
�
; ð15Þ

where the coefficients, cn, are unrelated to the speed,
denoted by c in the previous section, and λ is the (unique)
positive root of the quartic

ϵ̃λ4 þ λ2 − 1 ¼ 0; λ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ϵ̃

p
− 1

2ϵ̃
: ð16Þ

Choosing the positive root of Eq. (16) ensures that for
x̃ → ∞ the decay condition, yðx̃Þ ∼ e−λx̃, holds. From
Eq. (14) one obtains the following recurrence relations
for the coefficients cn:

c1 ¼
2

3
Y=ð1þ 4η−1Þ; qncn ¼

1

2

Xn−1
r¼1

pnrcrcn−r; n ≥ 2;

ð17Þ

where

qn ¼
ðnþ 1Þ2 þ η

ðnþ 1Þ2 þ 1
; pnr ¼ 1 −

5

2

rðn − rÞ
ðnþ 1Þ2 þ 1

;

η ¼ 1

ϵ̃λ4
: ð18Þ

We also note that η ¼ ηðϵ̃Þ can be expressed in terms of ϵ̃ as

ηðϵ̃Þ ¼ 1þ 1

2
ϵ̃−1ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ϵ̃
p Þ: ð19Þ

In order to satisfy the boundary condition y;1ð0Þ ¼ 0, the
series (15) should converge for z → 1 and fð1Þ ¼ 0. That
these conditions can be satisfied is not at all obvious. It has
been shown in Ref. [26] that for any ϵ̃ > 0 it is possible to
find a c1 > 0 such that

X∞
n¼1

cn ¼ 1: ð20Þ

The proof of the validity of Eq. (20) is a crucial point of
Ref. [26]. If c1 > 0, then from Eqs. (17) and (18) one
obtains that all other cn > 0. Then from Eq. (20) it follows
that 0 < cn < 1 for all n ≥ 1, which in turn implies that
fðzÞ is an analytic function of z for jzj < 1, and fð1Þ ¼ 0. It
is also shown in Ref. [26] that the radius of convergence of
the series (15) is exactly 1. Also fðzÞ > 0 for z∈ ð0; 1Þ, and
the boundary conditions (9) are satisfied, indeed. Moreover
Y satisfies the inequality 3

2
< Y < 3

2
ð1þ 4η−1Þ, which

ensures nontriviality and boundedness of the solutions
for all ϵ̃ > 0. Clearly, once c1 has been found, the decaying
solution in Rþ, yðx̃Þ, is completely determined, albeit
implicitly.
It remains to compute the asymmetry y;3ð0Þ. The

difficulty of this last step is due to the nonanalyticity of
fðzÞ, which has a branch point at z ¼ 1. We recall that the
derivatives of y at x̃ ¼ 0, denoted by

Yn ¼ y;nð0Þ; ð21Þ

are all finite for n ≥ 1. Therefore from Eq. (13) one finds
for the limit z → 1

Y2 ¼
1

2
Yf;1ð1Þ ¼ −

1

2
λ2Y

X∞
n¼1

ncn; Y3 ¼ −
1

2
Ylim
z→1

f
1
2f;2:

ð22Þ

Since Y2 is finite and Y > 0, from Eq. (22) one sees that for
z → 1, fðzÞ ∼ ðz − 1Þf;1ð1Þ, from where one can deduce

f;2 ∼ −Y3

�
−
1

2
YY2

�
−1
2ð1 − zÞ−1

2; for z → 1; ð23Þ

implying also that unless Y3 ¼ 0, the sum,P∞
n¼1ðnþ 2Þðnþ 1Þcnzn, diverges for z → 1, necessitat-

ing more refined methods to express the asymmetry, Y3, in
terms of the coefficients cn. In Ref. [26] a positive lower
bound is established for Y3:

Y3 ≥ 2−15ϵ̃−
3
4η

7
4 expð−πϵ̃−1

2Þ; ð24Þ

which result captures, remarkably, both the correct ϵ̃ → 0

limiting behavior of Y3, Y3 ∼ ϵ̃−
5
2 expð−πϵ̃−1

2Þ, and its large,
ϵ̃ → ∞ limit, Y3 ∼ ϵ̃−

3
4.
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Using the analyticity of fðzÞ inside the unit disk in the
complex z plane, Hammersley and Mazzarino find that Y3

is given as

Y3 ¼ λ2
�
−
1

2
πYY2

�1
2

L; L ¼ lim
n→∞

n
5
2cn; ð25Þ

where

Y2 ¼ −λ2Y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ð4þ ηÞ − η

p
; and Y ¼ 3

2
c1ð1þ 4η−1Þ:

ð26Þ

We note here a slight disagreement between Eq. (25) and
Eq. (4.10) of Ref. [26], due to a missing factor of 1=2
from Eq. (4.10).
We would like to point out that the result of Eq. (25) can

also be deduced from what is often referred to as transfer
theorems in analytical combinatorics [34]. Such transfer
theorems relate the asymptotic behavior of the coefficients,
cn, for n → ∞ of a generating function, analytic inside the
unit disk, to its singularities at jzj ¼ 1. In our case we have
f;2ðzÞ ∼ ð1 − zÞ−1

2 for z → 1, and a simple application of
the transfer theorem of Ref. [34] yields immediately the
asymptotic behavior of the coefficients, cn,

lim
n→∞

cn ∼ n−
5
2; ð27Þ

and then one easily reproduces Eq. (25).
In summary, all regular, asymptotically decaying sol-

utions on Rþ of Eq. (14) are given by Eq. (15), in terms of
convergent series, where all the coefficients, cn, for n ≥ 2
are determined, once for some fixed value of ϵ̃, c1 has been
found. The value of c1 is determined by the somewhat
implicit equation Eq. (20), where all terms cn, for n ≥ 2 are
to be expressed in terms of c1. Moreover Eq. (20) contains
unbounded powers of the unknown, c1, therefore it is
something of a challenge to obtain precise enough values of
c1. In addition, the actual computation of the asymmetry,
y3ð0Þ ¼ Y3, also necessitates the determination of the
quantity L which is not that straightforward. The difficulty
to obtain reliable numerical estimates for the value of L is
due to the slow convergence of its determining sequence,
(25), for large values of n. The smaller ϵ̃ is, the slower is the
convergence.

IV. COMPUTATIONAL ISSUES

In this section we outline our computational procedures
to determine solutions of Eq. (14) in terms of cn, which
differ somewhat from those employed in Ref. [26]. Instead
of using some approximation scheme to solve Eq. (20) for
c1, we obtain approximations to it from the large n
asymptotic behavior of the coefficients, cn, themselves.
This might sound paradoxical at first, since it is precisely

the unknown c1 which determines all the cn for n ≥ 2. An
important point is to exploit the homogeneity of the
recurrence relation, Eq. (17) for the coefficients cn:

c1 → c1ðsÞ ≔ sc1; cn → cnðsÞ ≔ sncn; ð28Þ

which permits one to choose c1ðsÞ ¼ s and view Eq. (20)
as an equation for s. We display as an illustration, the first
three nontrivial coefficients cnðsÞ:

c2ðsÞ ¼
15s2

4ðηþ 9Þ ; c3ðsÞ ¼
45s3

ðηþ 9Þðηþ 16Þ ;

c4ðsÞ ¼
315ð6ηþ 59Þs4

2ðηþ 9Þ2ðηþ 16Þðηþ 25Þ : ð29Þ

As shown in Ref. [26], the sequence of the unique positive
roots, sN , N ¼ 1; 2… of the correspondingly truncated
polynomial equations

XN
n¼1

cnðsÞ ¼ 1; ð30Þ

satisfy

1 ¼ s1 > s2 > s3 > … > sN > … >
1

2
; ð31Þ

therefore the decreasing sequence fsNgN¼1;2… converges
clearly to a positive limit, s∞ ≥ 1=2. Furthermore, an
important result established in Ref. [26] is that the
coefficients defined by limN→∞ cnðsNÞ ¼ cnðs∞Þ ≔ cn
do satisfy Eq. (20). To compute approximate values of
s∞ for a given ηðϵ̃Þ, Reference [26] used the obvious
approximation, i.e., to solve numerically Eq. (30) for
sN > 0 with N large enough and use sN ≈ s∞.
In the present work we have employed a different

method to obtain approximations for s∞ to rather high
precision. Instead of solving Eq. (30) numerically with N
sufficiently large for sN ≈ s∞, we solve (numerically)
the recurrence relation Eq. (17) for the quantities
cnðs ¼ 1Þ ¼ cnð1Þ, starting with c1ð1Þ ¼ 1. Computing
then the ratio rn ¼ cnð1Þ=cnþ1ð1Þ for n sufficiently large,
we obtain an approximation for s∞, i.e., rn ≈ s∞. The
reason that the ratio, rn, can serve as an approximant for
s∞ follows directly from Eqs. (25)–(27) describing the
asymptotic behavior of cn ¼ cnðs∞Þ:

cn → Ln−
5
2

�
1þO

�
1

n

��
; n → ∞; ð32Þ

recalling that cn ¼ cnð1Þsn∞, it immediately follows that,
for n → ∞,
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cn
cnþ1

¼ cnð1Þ
cnþ1ð1Þs∞

→ 1þO
�
1

n

�
;

i:e:; rn → s∞

�
1þO

�
1

n

��
: ð33Þ

The speed of convergence of rn is considerably slowed
down by a series of finite n corrections of the type
Oð1=nmÞ, m ¼ 1; 2;…. A closer inspection of the asymp-
totic, n → ∞, behavior of cn, together with the application
of transfer theorems, reveals that all finite n corrections to
the ratio rn decay as integer powers of 1=n. Therefore this
is a textbook case to increase the rate of convergence of
the sequence frng considerably, by making use of higher
order Richardson extrapolation. Let us recall a compact
form of the mth order Richardson extrapolation used in our
case [35]:

RmðrnÞ ¼
Xm
k¼0

rnþk
ð−1Þmþkðnþ kÞm

k!ðm − kÞ! : ð34Þ

For example, for ϵ̃ ¼ 1=8, in standard double precision
(∼16 decimal digits), one obtains already eight decimal
digits correctly of s∞ ¼ 0.772875581…, from not more
than 27 coefficients, cnð1Þ, by m ¼ seventh order
Richardson extrapolation. We note that in Ref. [26] 4000
terms and a first order Richardson extrapolation has been
used to obtain six decimal digits of c1 and of the asym-
metry, Y3, for this value of ϵ̃. As ϵ̃ decreases, the number of
necessary coefficients, cnðsÞ, increases. For the values,
2−25 ≤ ϵ̃ ≤ 2−10, considered in Ref. [26], to obtain six
significant decimal digits for the asymmetry, 20000 of the
coefficients cnðsÞ, has been computed using quadruple
precision, combined with a first order Richardson extrapo-
lation. As it should be clear, the order of Richardson
extrapolations is strongly limited by the available numerical
precision of rn, since the number of subtractions induced
by the alternating signs in Eq. (34) increases with the order
of the extrapolation. Therefore, it is necessary to increase
the numerical precision beyond that of the standard one,
using suitable software (in this paper ARB [36,37] and
Wolfram Mathematica), permitting to use relatively high
order (∼20–30) Richardson extrapolations. For the smallest
values of 2−30 ≤ ϵ̃ ≤ 2−25 considered in this paper, we have
found that performing the computations with the arbitrary
precision software ARB to 48 decimal digits, from not more
than 200 cn and Richardson extrapolations of order
m ≤ 30, the value of the asymmetry is obtained already
to six significant decimal digits. To increase the number of
significant digits of the asymmetry to 12 it has been found
sufficient to increase the number of decimal digits in ARB

to 60.
The optimal order of the Richardson extrapolation can be

found by searching for the minimal value of the difference
ΔRm;n ¼ RmðrnÞ − Rm−1ðrnÞ, choosing some fixed starting

term rn and increasing the extrapolation order one by one
from m ¼ 0. We note that the most time consuming task is
the computation of the coefficients, cnð1Þ, for large values
(n ≳ 1000) of n, while computing the Richardson extrapo-
lants, RmðrnÞ, goes very fast. Usually, it is a more efficient
strategy to increase the order of the Richardson extrapo-
lation together with the number of computational digits,
instead of significantly increasing the number of computed
coefficients, cnð1Þ, which permits to decrease the order of
Richardson extrapolations. According to our experience, in
most cases, the difference ΔRm;n provides a reasonable
error estimate for the result.
The calculation of the limit, L, in Eq. (25) is also greatly

improved by the use of Richardson extrapolation due to the
same, 1=nm type, corrections encountered when approxi-
mating the value of s∞. As pointed out in Ref. [26], for
values of ϵ̃≲ 0.01, it is necessary to further accelerate the
convergence of the sequence fn5=2cng, to avoid the
computation of an exceedingly large number of terms.
The transformation, cn ⇒ vn, put forward in Ref. [26]

vn ¼ n
5
2cnq0q1…qn; Q ≔

Y∞
n¼0

qn ¼
sinhðπ ffiffiffi

η
p Þffiffiffi

η
p

sinhðπÞ ; ð35Þ

where qn is defined in Eq. (18), yields an alternative
expression for L:

L ¼ 1

Q
lim
n→∞

vn: ð36Þ

This approach has also been used in this paper, together
with sufficiently high-order Richardson extrapolations.
We now summarize the algorithm used for the calcu-

lation of the asymmetry. We choose some ϵ̃ value and carry
out all calculations to a given number of digits precision.
High precision floating point number calculations can be
performed either by some algebraic manipulation software
(Mathematica, Maple, SageMath, etc.) or by using free open
source packages in C language (CLN [38], ARB [36]).
Starting from c1ð1Þ ¼ 1 we compute the cnð1Þ up to some
order n ¼ N from the recurrence relation (17). The neces-
sary computational time can be halved exploiting the
symmetry r → n − r of pnr. Then Richardson extrapolation
is used on rn ¼ cnð1Þ=cnþ1ð1Þ to approximate the value of
s∞ from Eq. (33). The second derivative at the center, Y2, is
found from Eq. (26). The value of L is approximated by
Richardson extrapolation of the series vn, defined in
Eq. (35). Finally, the asymmetry, Y3, can be obtained from
Eq. (25). Applying the above method we have reproduced
all the six digits of the results in Table 1 of Ref. [26]. For
example, choosing ϵ̃ ¼ 2−12 and computing the coefficients
cnð1Þ up to n ¼ 200 with 56 decimal digits precision, for
the computation of Y3 the optimal order Richardson
extrapolation turns out to be 15. This way the asymmetry,
Y3 ≈ 9.20154645 × 10−77 is obtained up to 19 decimal
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digits of precision. The computational methods presented
in this paper allow for the determination of c1 and Y3 up to
1000 (or even more) decimal digits of precision.
As Supplemental Material [39] a Mathematica note-

book and an equivalent C language file that uses the ARB

library [36] are provided, to carry out computations of c1
and Y3 to high precision for a wide range of ϵ̃.
The asymptotically decaying asymmetric solution of

Eq. (5) can also be calculated directly by using a high
precision spectral numerical method. The semi-infinite
interval 0 ≤ x̃ ≤ ∞ can be transformed into the x̂∈ ½−1; 1�
region by introducing the new independent variable

x̂ ¼ x̃ − ξ

x̃þ ξ
; ð37Þ

where ξ > 0 is a constant representing a length scale. The
monotonically decreasing yðx̂Þ function remains smooth
under this transformation, and can be searched for by
usual Chebyshev polynomial expansion. It is sufficient to
impose the vanishing of dy=dx̂ at x̂ ¼ −1 corresponding
to the center, no further boundary conditions are necessary.
The reason for this is that the compactification method
excludes both oscillatory and unbounded solutions. This
phenomenon is referred to as “behavioral boundary con-
ditions” in Ref. [40]. This compactification approach would
not work for the calculation of the symmetric solution
because of the infinitely many oscillations in the tail region.
For ϵ̃≲ 2−8 the central third derivative that we intend to
calculate becomes so small that a very large number of
collocation points and more than 16 decimal digits precision
becomes necessary. Since in the present paper the numerical
construction of the decaying solution is just for consistency
checking, we do not go here into more details. The method
we applied is very similar to the one described in our previous
paper [25]. The obtained results for y;3ð0Þ agree to many
decimal digits with the computationallymuch less expensive
Hammersley-Mazzarino method described earlier. For illus-
tration we note that our highest resolution numerical com-
putations used 2200 collocation points with 540 decimal
digits of precision (applying the ARB library [36]). The
running times took about seven hours on a desktop computer,
providing an absolute error fory;3ð0Þ as tiny as10−397, whose
magnitude becomes comparable to the value of the asym-
metry for ϵ̃ ≈ 2−17. This type of spectral numerical calcu-
lations would be too slow and memory hungry for ϵ̃≲ 2−17,
when the third derivative becomes smaller than this error
value. The numerical evaluation of the exact solution does
not necessitate significant computational resources, and it is
applicable for any value of ϵ̃. We expect that the asymmetry
computations based on perturbative expansions and spectral
numerical methods will remain applicable for more compli-
cated analogous problems, such as the radiation of scalar
field oscillons, where it is unlikely that analogous results to
that of Hammersley and Mazzarino could be found.

V. GLOBALLY REGULAR, NONDECAYING
SYMMETRIC SOLUTIONS

In the preceding sections, following Ref. [26], we
have presented the exact solution of Eq. (5) decaying
exponentially for x̃ → ∞ and being smooth on Rþ. As
already mentioned, in view of the results of Refs. [27,28]
this solution cannot be smoothly extended to the whole real
line, R, with decaying boundary conditions for x̃ → −∞.
Our numerical experiments indicate that solutions decaying
for x̃ → ∞, become unbounded when continued for neg-
ative values of x̃ as ∼ − 840ϵ̃=ðx̃þ x0Þ4, where x0 is deter-
mined by the value of ϵ̃, cf. Fig. 1.
As already mentioned, the existence of globally regular

solutions of Eq. (4) on R, asymptoting some periodic
function for x → �∞ has been established for sufficiently
small values of ϵ, [19]. In Refs. [22,41] the existence
of a one-parameter family of globally regular solutions of
Eq. (4) for sufficiently small values of ϵ > 0, has been
proven. Assuming that for jxj → ∞ the solutions are well
approximated by those of the linearized version of Eq. (4),
one can seek them in the form ∼eikx=ϵ. One finds that k
satisfies

k4 − k2− ϵ2c|{z}
ϵ̃

¼ 0; with real roots k2 ¼ 1

2
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4ϵ̃
p Þ:

ð38Þ

In the following k shall denote the positive root of Eq. (38).
The real roots in Eq. (38) determine the standing wave tail
of the symmetric (even with respect to reflections x → −x)
solution. This tail can be written as ∼α sinðkjxj=ϵ − δÞ,
where α > 0, δ are constants, k=ϵ > 0 is the wave number.
The tail amplitude, α, turns out to be exponentially small in
ϵ, and δ corresponds to the asymptotic phase. Physically, a
particular member of this family is singled out, namely the
one where the amplitude of the tail is minimal, α ¼ αm for
some value of δ ¼ δm. Both αm and δm are functions of the
parameter ϵ.
The two imaginary roots of Eq. (38) correspond to an

exponentially growing and a decaying mode, which we
write following [21], as ∼e�2γx with γ > 0. The real and
imaginary roots of Eq. (38) are related as

4ðϵγÞ2 þ 1 ¼ k2: ð39Þ

The wave speed, c, can be expressed as

c ¼ 4γ2ð1þ 4γ2ϵ2Þ ¼ 4γ2k2: ð40Þ

Following previous numerical works [42,43], in Ref. [25]
a multiple precision pseudospectral numerical code has
been developed to construct globally regular solutions of
Eq. (4), aimed to obtain the ϵ dependence of the minimal
tail amplitude, αm, to high precision. The numerically

NEW DERIVATION OF THE AMPLITUDE OF ASYMPTOTIC … PHYS. REV. D 109, 125011 (2024)

125011-7



constructed (symmetric) solutions of Eq. (4) have been
found to be in excellent agreement with the analytical ones,
obtained by perturbation theory in ϵ and by asymptotic
matching.
We now briefly recapitulate the perturbative construction

of weakly delocalized solutions of Eq. (4) assuming
0 < ϵ ≪ 1, for details see Ref. [25]. We also follow closely
the notations of Ref. [25]. We recall that weakly delocalized
solitons have a well-defined, fast decaying core with an
exponentially suppressed asymptotic standing wave tail.
The core part, uc, is obtained by expanding the solution, u,
of Eq. (4) in a power series in ϵ around the KdV soliton, i.e.,
writing

uðNÞ
c ¼

XN
n¼0

unϵ2n; u0 ¼ 2γ2sech2ðγxÞ; ð41Þ

where N determines the order of the approximation to uc.
In Refs. [21,25], the wave speed, c (40), has been
considered as a function of ϵ, while γ has been assumed
to be an ϵ independent constant. Note that in the present
paper another choice, c ¼ 1, has been made for all
numerical computations. According to Ref. [25] un can
be expressed as

un ¼ γ2nþ2
Xnþ1

j¼1

un;jsech2jðγxÞ; ð42Þ

where un;j are (rational) numbers. The localized, core part
of the solution, uc, is defined as the (formal) expansion (41)
for N → ∞, it is to be understood as an asymptotic series
in ϵ. This approximation has an optimal order, Nϵ deter-
mined by ϵ, which for small enough values of ϵ behaves
as Nϵ ∼ 1.56=ðϵ ffiffiffi

c
p Þ.

In Ref. [25] we have used a spectral numerical method to
find solutions of Eq. (4) that are symmetric with respect
to x ¼ 0. For smaller ϵ parameters this procedure can be
made significantly more efficient by first calculating the

optimally truncated approximation uðNϵÞ
c , which is correct

up to Oðϵ2Nϵþ2Þ terms, and then numerically solving the

equation for the difference v ¼ u − uðNϵÞ
c ,

ϵ2v;4 þ v;2 þ 3v2 − cvþ 6uðNϵÞ
c v ¼ Rϵ; ð43Þ

Rϵ ¼ −ϵ2uðNϵÞ
c;4 − uðNϵÞ

c;2 − 3ðuðNϵÞ
c Þ2 þ cuðNϵÞ

c : ð44Þ

The approximation uðNϵÞ
c and its residual Rϵ can be

calculated very quickly to many digits of precision using

the algorithm presented in [25]. The function uðNϵÞ
c decays

exponentially as x → ∞. The residual Rϵ is very small for

small ϵ, since uðNϵÞ
c is an ideal approximation to the real

solution. The function Rϵ has about Nϵ oscillations with
exponentially decreasing amplitude, then the exponential
decrease continues monotonically. The same spectral
numerical method can be applied as earlier in [25] to solve
the differential equation (43) in a finite interval with
matching to the linearized tail at the outer boundary.
The current approach is more efficient, because the
function v remains as small as the oscillating tail even
in the core region (see Fig. 2 of [25]). However, because of
the numerous oscillations in v, it is still necessary to use
large number of collocation points and extended precision
(more than 16 decimal digits) computations. Our C lan-
guage code uses the ARB library for arbitrary-precision
ball arithmetic [36]. The obtained numerical results for
the minimal tail amplitude are presented in Table I. The
result for a given ϵ contains an error of order α2m, since we
match to a linearized tail solution at the outer boundary.
For ϵ ≥ 2−3 only the reliable digits are presented, while for
smaller ϵ we give only the first 12 decimal digits of the
results. In order to get more precise amplitudes for ϵ ≥ 2−3

we would need to match to higher amplitude nonlinear
spatially periodic solutions, which is beyond the scope of
the present paper. In the last column of Table I we list the
central third derivative of the asymmetric right decaying

TABLE I. Numerically calculated values of the minimal tail amplitude αm, the corresponding phase δm, and the
order of optimal truncation Nϵ for the case c ¼ 1. The last column gives the central third derivative of the
asymmetric solution u−.

ϵ αm δm Nϵ u−;3ð0Þ
2−1 4.8 × 10−2 1.2 1 7.10760589389 × 10−1

2−2 1.53 × 10−3 0.749 4 8.11499816225 × 10−2

2−3 3.2525301 × 10−8 0.37253582 11 1.62487857959 × 10−5

2−4 1.94383743304 × 10−18 0.187147747984 23 7.92099610003 × 10−15

2−5 1.27243717968 × 10−39 0.0937046561766 49 4.16436578363 × 10−35

2−6 1.17039547447 × 10−82 0.0468692914439 99 3.06718215011 × 10−77

2−7 2.29646599329 × 10−169 0.0234367851656 199 4.81567051778 × 10−163

2−8 2.12961253593 × 10−343 0.0117186606062 400 3.57282878973 × 10−336

2−9 4.49453680829 × 10−692 0.00585936382454 802 6.03243642172 × 10−684
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solution, u−;3ð0Þ, calculated by the analytical methods in
Sec. IV. The relation between αm and u−;3ð0Þ will be the
subject of the next section.
The delocalized, standing wave tail part of the symmetric

solution has been constructed in the Wentzel–Kramers–
Brillouin (WKB) approximation, see, e.g., Ref. [35], in the
following way: We look for approximate solutions of
Eq. (4) as u ¼ uc þ uw neglecting the nonlinear term.
Then uw is readily found to obey the equation:

ϵ2uw;4 þ uw;2 þ 6ucuw − cuw ¼ 0; uw;n ¼
dnuw
dxn

: ð45Þ

Solutions of Eq. (45) tending to α sinðkjxj=ϵ − δÞ for
jxj → ∞, are expected to provide OðαÞ approximations
to those of Eq. (4). In practice one also has to chose some
finite order approximation in ϵ for uc, but since uw is
beyond all orders in ϵ this does not cause any order-mixing
problems. In Ref. [25] high order WKB approximations of
the solution of Eq. (45), uWKB

w , have been obtained, which
can be formally written as

uWKB
w ¼ β exp

�X∞
n¼1

A2nϵ
2n

�
sin

�
kx
ϵ
− δw − δðxÞ

�
; ð46Þ

where β, δw are real constants, while the phase function,
δðxÞ, is written as

δðxÞ ¼
X∞
n¼0

Ã2nþ1ϵ
2nþ1: ð47Þ

The phase function, δðxÞ, is to be distinguished from the
asymptotic phase, denoted as δ previously and in [25]. The
expansion terms, Ãk, have been determined to rather high
∼100 order using algebraic manipulation codes. The even
index (amplitude) coefficients, A2n, are even functions in x,
they tend to zero exponentially fast for x → �∞, e.g., the
first one is given as A2 ¼ 15γ2sech2ðγxÞ. The odd index
(phase) functions, Ã2nþ1 are odd in x, they tend to constants

for x → �∞. For example the first one is given as
Ã1 ¼ 6γ tanhðγxÞ. The asymptotic behavior of the phase
function, δðxÞ, has been written in [25] as

lim
x→∞

δðxÞ ¼ δm ¼
X∞
n¼0

δ̃2nþ1ϵ
2nþ1; e:g:; δ̃1 ¼ 6γ: ð48Þ

The determination of the amplitude of the approximate
WKB solution, β, amounts to solving the notoriously
difficult connection problem. Following the pioneering
works of [14,15], the connection problem has been solved
by an asymptotic matching procedure in the complex plane
to leading order in ϵ in Ref. [16]. This work has been
extended in Refs. [21,22] where it has been pointed out that
there are more general solutions depending on a phase
parameter corresponding to δw. As argued in [25], the
amplitude, α, of the asymptotic tail of globally regular
(symmetric) solutions of (4) with asymptotic phase δ are
not generally minimal, their amplitude being determined
as α ¼ αm= cosðδ − δmÞ þOðα2mÞ.
Within the framework of the perturbative asymptotic

matching there is a unique, minimal tail amplitude solution,
umðxÞ, with α ¼ αmðϵÞ corresponding to δw ¼ 0, which has
the asymptotic phase δ ¼ δm. The result up to Oðϵ6Þ for
the minimal amplitude wavetail has been presented in
Ref. [25]. We would like to point out, that we have
considerably extended the result in [25] by working out
αm to higher orders in ϵ. The presentation of the details is
beyond the scope of this paper, but we show some of the
obtained results. The order 2N approximation to the
minimal amplitude αm can be given as

αðNÞ
m ¼ K

ϵ2
e−

πk
2γϵ

�
1 −

XN
n¼1

ξnðγϵÞ2n
�
;

K ≈ 19.96894735876096 · π; ð49Þ

where the wave number is k ¼ ð1þ 4γ2ϵ2Þ1=2. The first six
coefficients, ξn, are given as

ξ1 ¼ 5; ξ2 ≈ 6.54406819358; ξ3 ≈ 474.413839489;

ξ4 ≈ 4233.41235937; ξ5 ≈ 111053.952710; ξ6 ≈ 1782156.51421:

For convenience we give the expansion of k ¼ kðϵÞ up to Oðϵ2NÞ:

exp

�
−

kπ
2γϵ

�
¼ exp

�
−

π

2γϵ

��
1 − πγϵþ π2

2
γ2ϵ2 −

�
π2

6
− 1

�
πγ3ϵ3 þ…

�
: ð50Þ

Using (50) it is straightforward to obtain the fully expan-
ded result for αðNÞ

m . To avoid unnecessarily long expres-
sions, in the following we keep k in the exponential term
of Eq. (49).

The coefficientsK and ξn can be obtained to hundreds of
decimal digits of precision relatively easily, using the
methods presented in [25], and applying Richardson
extrapolation. The high precision results are useful for
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consistency checking when comparing them with the
numerical results in Table I, and also with the analytical
results in the following sections. It is to be emphasized that

beside higher order ϵ2M, (M > N þ 1) corrections to αðNÞ
m in

Eq. (49), there are also other corrections of the type
expf−mπk=ð2γϵÞg, with m > 1 integer, which are, how-
ever, exponentially suppressed with respect to m ¼ 1. In
Fig. 2 we plot the relative difference of the numerical

results αm and perturbative results for αðNÞ
m up to order

N ¼ 6 for the values of ϵ in Table I. From Fig. 2 it is
apparent that for “large” values of ϵ > 2−2 the expansion

results for αðNÞ
m are not particularly meaningful. On the

other hand, the numerical results obtained from our spectral
code become less and less reliable for ϵ < 2−7, since in
those cases we cannot have enough collocation points to
describe well the large number of oscillations in u. An
important conclusion one can draw from Fig. 2 is that the

error of the Nth order approximation, αðNÞ
m , decreases as

ϵ2Nþ2, moreover, its relative error is well estimated by the
next order term, ξNþ1ðγϵÞ2Nþ2. It is quite interesting, that
the calculated coefficients, ξn, do not seem to increase
factorially with n, which is generally expected to occur for
asymptotic series. The points depicted on Fig. 2 are
consistent with convergent behavior for the depicted ϵ
range. It is tempting to conjecture that the sum in (49) is
convergent for ϵ≲ 1=2, but the clarification of this would
clearly require further analysis.

VI. RELATING ASYMMETRIC AND SYMMETRIC
(EVEN) SOLUTIONS

We shall now relate two important type of solutions
of Eq. (4) discussed in Secs. III and V (see Fig. 1).
According to Ref. [26] the “asymmetric,” decaying solution
of Sec. III, u−, has been proven to be unique. The minimal
tail amplitude solution, um, approximated in Sec. V, is also

expected to be unique among the globally regular, “sym-
metric” ones, (unfortunately we are not aware of a formal
uniqueness proof). For sufficiently small values of ϵ, the
amplitude of the asymptotic tail of um is many orders of
magnitude smaller than that of its core. Therefore the
heuristic description of um as the linear superposition of a
fast decaying core and of a small amplitude standing wave
tail is expected to be a very good approximation.
Consider the difference Δ ¼ um − u−, which tends

exponentially fast for x ≫ 1=ϵ to the tail part of um. Our
numerical simulations clearly show that Δ is of order αm
for all x∈Rþ, i.e., also in the core region. Since both um
and u− satisfy Eq. (4) it is easily seen that Δ satisfies
Eq. (45) with uw replaced by Δ, when omitting the
quadratic term. Therefore we approximate Δ by a suitable
solution of (45), and write the minimal tail solution as

um ≈ u− þ uWKB
w − x0uc;1; for β ¼ αm; δw ¼ 0; ð51Þ

where x0 is a constant to be determined. The term uc;1 is the
translational zero mode of the (formal) solution, uc, of
Eq. (4) hence also that of Eq. (45). The necessity to include
the translational mode, uc;1, in Eq. (51) can be understood
from the fact that the approximation of the minimal
amplitude tail, uWKB

w is an odd function with respect to
the origin, while um is even and u− has been defined to
obey the boundary condition, u−;1ð0Þ ¼ 0. An alternative
viewpoint for Eq. (51) is that one can cancel the tail of um
by subtracting a linear perturbation approximated by uWKB

w
and then obtain a shifted version of the asymmetric solution
u−, so that its maximum is at x ¼ x0,

umðxÞ ≈ u−ðx − x0Þ þ uWKB
w ðxÞ: ð52Þ

In Fig. 3 we plot the difference of the symmetric solution
um and asymmetric solution u− for the parameter choice
ϵ ¼ 2−3, c ¼ 1.
Taking derivatives of the approximation (51) at x ¼ 0

one obtains the following relations:

umð0Þ ¼ u−ð0Þ; ð53Þ
uWKB
w;1 ð0Þ − x0uc;2ð0Þ ¼ 0; ð54Þ
um;2ð0Þ ¼ u−;2ð0Þ; ð55Þ

u−;3ð0Þ þ uWKB
w;3 ð0Þ − x0uc;4ð0Þ ¼ 0; ð56Þ

using that uWKB
w ð0Þ ¼ uWKB

w;2 ð0Þ ¼ 0 for δw ¼ 0 and
uc;1ð0Þ ¼ uc;3ð0Þ ¼ 0. Equations (53)–(56) are expected
to be valid up to arbitrary orders in ϵ and to first order
in OðαmÞ.
As detailed in [25] the OðαmÞ WKB approximant,

uWKB
w ðxÞ has been computed to rather high (Oðϵ100Þ) orders

in ϵ. Using then these results together with those of the core
expansion, Eq. (42), from (54) one finds for the parameter
x0 to Oðϵ10Þ

2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9

1

10–5

10–10

10–15

10–20

10–25

N=0

N=1

N=2

N=3

N=4

N=5

N=6

FIG. 2. Relative difference ΔαðNÞ
m ¼ jðαm − αðNÞ

m Þ=αmj of the
numerical results and the Nth order expansion results as a
function of ϵ.
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x0 ¼ −
αm
4γ4ϵ

�
1 − 9ðγϵÞ2 − 113ðγϵÞ4 − 4987ðγϵÞ6 − 663031

2
ðγϵÞ8 −Oðϵ10Þ

�
: ð57Þ

Using (56) one may obtain the asymmetry in terms of αm

u−;3ð0Þ ¼
αm
ϵ3

�
1 − 5ðγϵÞ2 − 286ðγϵÞ4 − 10422ðγϵÞ6 − 1227721

2
ðγϵÞ8 −Oðϵ10Þ

�
: ð58Þ

Inverting Eq. (58) in the limit ϵ → 0, we find that αm is
approximated to Oðϵ2Nþ2Þ in terms of the asymmetry as

αðNÞ
WKB ¼ u−;3ð0Þϵ3

�
1þ

XN
n¼1

anðγϵÞ2n
�
; ð59Þ

where an are positive rational numbers. The first four
coefficients are

a1 ¼ 5; a2 ¼ 311; a3 ¼ 13407; a4 ¼
1643903

2
: ð60Þ

As further Supplemental Material to this paper we attach a
Mathematica notebook file [39], which can be used to

obtain the above results for x0, u−;3ð0Þ and αðNÞ
WKB. The code

can be used to calculate higher order generalizations up to
order Oðϵ100Þ.
Before quantitatively comparing our results, (58), (59),

with available numerical computations a few remarks
are in order. As it should be clear from the previous part
of this paper, the relations between the asymmetry and the
amplitude of the wave tail deduced above, have been
obtained in a perturbative framework, valid only for
ϵ ≪ 1. Furthermore, the wave tail is obtained from a

linearized approximation of Eq. (4), i.e., from Eq. (45),
in form of a WKB asymptotic expansion in ϵ. Therefore
one expects that, for a given value of ϵ ≪ 1, Eqs. (58) and
(59) can be used up to an ϵ-dependent, “optimal” order of
the WKB expansion.
As we have seen at the end of Sec. IV, for each specific

choice of ϵ the central third derivative u−;3ð0Þ can be
calculated relatively easily and quickly up to hundreds of
digits of precision. Hence it is a natural choice to use (59) to
approximate the minimal tail amplitude αm. The summa-
tion in the equation represents an asymptotic expansion,
which has an optimal order of truncation. For the choice
ϵ ¼ 2−3 in Fig. 4 we plot the relative difference

ΔαðNÞ
WKB ¼ jðαm − αðNÞ

WKBÞ=αmj ð61Þ

of the numerically calculated αm and the approximation

αðNÞ
WKB as a function of the number of terms N. Since

the numerical value is much more precise in this case,

ΔαðNÞ
WKB represents the error of the Nth order approximation

αðNÞ
WKB. For all the ϵ values that we tested we have found that

the best value of N in αðNÞ
WKB agrees with Nϵ or Nϵ − 1,

FIG. 4. The red points show the relative difference ΔαðNÞ
WKB for

the parameter choice ϵ ¼ 2−3, c ¼ 1. The blue points give the
relative contribution of the next term in (59), aNþ1ðγϵÞ2Nþ2,
which can be used to estimate the error of the approximation.
Both take the smallest value for N ¼ 10, which is just one less
than the optimal truncation order for the core expansion, Nϵ ¼ 11
given in Table I.

FIG. 3. The blue curve shows the difference um − u− for
ϵ ¼ 2−3 and c ¼ 1. The green curve, −x0uc;1, is a translational
mode of the linearized equation (45), with x0¼−1.03371×10−6.
The difference of these two yields the red curve, uWKB

w ≈
um − u− þ x0uc;1 ≈ umðxÞ − u−ðx − x0Þ, where the equalities
hold up to error of 4 × 10−13 for the selected ϵ value.
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where Nϵ is the optimal truncation order for the core
expansion, listed in Table I. Since in the small ϵ limit
Nϵ ∼ 1.56=ðϵ ffiffiffi

c
p Þ, the error of the optimal order approxi-

mation by (59) decreases exponentially with decreasing ϵ.

In Fig. 5 we show how the relative difference ΔαðNÞ
WKB

decreases for several values of ϵ.
The above results clearly show that for small ϵ para-

meter values, compared to the spectral numerical code, it is
more precise and efficient to use u−;3ð0Þ and the WKB
method to calculate the tail amplitude αm of the sym-
metric solution. The central derivative of the asymmetric

solution u−;3ð0Þ can be relatively easily calculated by the
Hammersley-Mazzarino method presented in Sec. IV. for
any ϵ that is larger than 2−15. In Table II we list the values of
αm and u−;3ð0Þ for smaller ϵ values than in Table I. In these
cases αm has been calculated from u−;3ð0Þ using appro-
priately many terms in (59). In Table II we give “only” 12
decimal digits, but we have calculated these results to
several hundred digits.

It is instructive to compare the tail amplitude, αðNϵÞ
WKB,

calculated by the optimal order WKB method to the ϵ

expansion results of αðNÞ
m in Eq. (49). In Fig. 6 we depict the

relative difference ΔαðNÞ
ϵ ¼ jðαðNϵÞ

WKB − αðNÞ
m Þ=αðNϵÞ

WKBj for a
large range of ϵ. The compact formula of the Oðϵ12Þ result
for αðNÞ

m given by Eq. (49) is simple to evaluate. The WKB
expansion is known to much higher orders ð≳Oðϵ200Þ),
implying it being much more precise. The WKB result is,
however, prohibitively complicated to be displayed to such

high orders. We note that, for ϵ < 2−4, αð6Þm yields more than
16 significant decimal digits, which is good enough for
most cases.
The ϵ expansion result (49) for the symmetric solution

can also be used together with the WKB transformation
(58) to calculate the central third derivative of the asym-
metric solution. Since the coefficients ξn are known
numerically, we give only numerical coefficients here,

u−;3ð0Þ ¼
K
ϵ5

e−
πk
2γϵ½1 − 10ðγϵÞ2 − 267.544068194ðγϵÞ4 − 9433.69349852ðγϵÞ6

− 561740.239659ðγϵÞ8 − 45224879.2541ðγϵÞ10 − 4611707502.31ðγϵÞ12 −…�; ð62Þ

whereK ≈ 19.96894735876096 · π. It is now easy to obtain the ϵ̃ expansion of the asymmetry, Y3 ¼ y;3ð0Þ, to leading order
in αm using Eqs. (7), (38), (39) alternatively (40):

Y3 ¼
3K
ϵ̃5=2

e−
πk2ffiffĩ

ϵ
p
�
1 −

5

2
ϵ̃ − 14.2215042621ϵ̃2 − 118.958452390ϵ̃3

− 1823.20094973ϵ̃4 − 36515.2419905ϵ̃5 − 932270.777827ϵ̃6 −…

�
. ð63Þ

FIG. 5. For different values of ϵ we show how the relative

difference ΔαðNÞ
WKB changes as we increase the order of the

approximation N. To make the plot more transparent we drop
those points which give worse approximation than the lower
order ones. For ϵ ¼ 2−2; 2−3; 2−4; 2−5 we stop at the optimal
WKB truncation, N ¼ 4, 10, 22, 48, respectively. For ϵ < 2−5 our
best spectral numerical values for αm are less precise than the

higher order αðNÞ
WKB values, hence the points saturate at the

numerical error. The relative error of the optimally truncated
result approaches αm, shown by the black points, consistently
with the expectation that the error of both the numerical and
WKB tail amplitude is of order α2m.

TABLE II. For the ϵ values in this table the central asymmetry
u−;3ð0Þ of the solution u− is used to calculate the minimal tail
amplitude αm of the symmetric solution.

ϵ αm u−;3ð0Þ
2−10 4.95890409131 × 10−1390 5.32457637656 × 10−1381

2−11 1.50219375669 × 10−2786 1.29037422688 × 10−2776

2−12 3.43832141771 × 10−5580 2.36279631071 × 10−5569

2−13 4.49808545327 × 10−11168 2.47284858324 × 10−11156

2−14 1.92344734444 × 10−22344 8.45941084312 × 10−22332

2−15 8.79023705549 × 10−44698 3.09278970949 × 10−44684
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In Eq. (63) k2 in the exponential has not been expanded in ϵ̃
to avoid the appearance of half integer powers of ϵ̃, since

e−
πk2ffiffĩ

ϵ
p ¼ e−

πffiffĩ
ϵ

p
�
1− πϵ̃1=2 þ π2

2
ϵ̃−

π

6
ðπ2 − 6Þϵ̃3=2 þ…

�
: ð64Þ

At this point we should like to point out, that the leading
order term for ϵ̃ → 0 of the asymmetry, is in complete
agreement with a previous result of Byatt-Smith in
Ref. [44]. In Ref. [44] it has been used to provide yet
another proof of the nonexistence of a globally regular
decaying solution on R.
The perturbative results in Eqs. (62) and (63) are

given in terms of asymptotic series; e.g., for ϵ̃ ¼ 2−4 the
optimal truncation corresponds to keeping the first four
terms in (63), up to order ϵ̃3. This way one obtains
y;3ð0Þ ¼ 0.243033, which is correct to four significant
digits, the result up to seven significant digits being

Y3 ¼ 0.243445. For ϵ̃ ≤ 2−8 the seven terms in (63) give
at least six significant digits, hence we obtain the values of
Y3 listed in the first 16 lines of Table 1. of Ref. [26]. For
ϵ̃ ≤ 2−20 the leading order approximation is already accu-
rate to six decimal digits. The method presented in Sec. IV
can be used for the calculation of the third derivative for
essentially any ϵ̃ up to hundreds of digits of precision.
However, for ϵ̃ ≤ 2−6 it is much easier to use the simple
expression in Eq. (63) to obtain a suitably precise value.

VII. CONCLUSIONS

In the limit ϵ → 0, a connection has been established
between the amplitude of the minimal wave tail of weakly
delocalized solitons of the fKdV equation and the asym-
metry of (smooth) solutions on Rþ tending to zero for
x → ∞, constructed in Ref. [26]. The asymmetry of the
decaying solutions of Ref. [26] is an exact, albeit somewhat
implicit result. We have simplified a bit the numerical
calculation of the asymmetry, and on a small laptop
computer it is easily computed to many significant digits,
as it can be verified from our Supplemental Material [39].
On the basis of our high order perturbative results for the
tail amplitude, a small ϵ expansion of the asymmetry has
been derived and verified numerically. Our results make the
computation of the tail amplitudes possible for arbitrarily
small values of ϵ to extremely high precision. Exploiting
this correspondence in combination with high order per-
turbative calculations and precise numerical methods, we
have been able to compute for such small values as
ϵ ≤ 2−15, in which case the amplitude of the minimal wave
tail is ∼10−44698. Somewhat surprisingly our method works
quite well up to as “large” values of ϵ as 2−3=2 ≈ 0.353553.
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