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In this study, we explore the impact of an additional dimension, as proposed in Kaluza-Klein’s theory, on
the Casimir effect within the context of Lorentz invariance violation (LIV), which is represented by the
“aether field.” We demonstrate that the Casimir energy is directly influenced by the presence of the fifth
dimension, as well as by the aether parameter. Consequently, the force between the plates is also subject to
variations of these parameters. Furthermore, we examine constraints on both the size of the extra dimension
and the aether field parameter based on experimental data. The LIV parameter can provide insights into
addressing the size-related challenges in Kaluza-Klein’s theory and offers a mean to establish an upper limit
on the size of the extra dimension. This helps to rationalize the difficulties associated with its detection in
current experiments.
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I. INTRODUCTION

The possibility of extra dimensions has gained promi-
nence in current physics models. It is often investigated as a
solution to open problems that the standard model cannot
answer. These problems include quantum gravity since
attempts to quantize gravity imply the existence of extra
dimensions as a condition, the presence of dark matter in
the Universe, which remains poorly understood and unde-
tected, and dark energy, which permeates the majority of
the Universe. In this sense, Theodor Kaluza in 1921 [1] and
Oskar Klein in 1926 [2] proposed a theory (KK theory) that
posits the existence of an extra dimension—a fifth dimen-
sion—in an attempt to find a unified theory for the
fundamental forces of nature, specifically electromagnet-
ism and gravity. This extra dimension is compactified,
small enough to be hidden at macroscopic scales.

Despite the recent attention, there is a problem involving
the length, denoted here by b, of the extra dimension. In
many theories, including the KK theory, the length b is
predicted to be so small that it would make detection
impossible, as it suggests a length near 10−35m (the Planck
scale). At this length, only particles with energy near the
Planck energy scale can access the extra dimension. To
address this problem, Sean Carroll and Heywood Tam,
propose the aether compactification theory as an alternative
way to compactification in the presence of large extra
dimensions without the introduction of branes to control
the influence of a five-dimensional bulk space-time on the
field content in our four-dimensional Universe. Differently
from braneworlds, in this type of compactification, there
are no corrections to the four-dimensional Newtonian
law [3]. However, the possibility of suppressing the
Kaluza-Klein modes makes the mechanism efficient to
guarantee a four-dimensional effective theory describing
the physics of our Universe after the compactification
process.
In contrast to the old aether theories that proposed the

existence of a medium or substance governing the propa-
gation of electromagnetic waves or gravitational force, the
present aether approach consists of a five-dimensional
Lorentz-violation tensor field that interacts only with the
extra compactified dimension. This field is usually called
the “aether field” in the literature [3–8], and this term will
be used throughout the work. Furthermore, the interaction
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caused by the presence of the aether modifies the
dispersion relation of the other fields, as shown in
Ref. [3].
The Lorentz-violating aether fields along extra dimen-

sions affect the conventional Kaluza-Klein compactifica-
tion scheme since their interactions play a fundamental role
in the mass splitting of the KK towers: the mass spacings
between different states are now modified. That is, the large
extra dimensions, even for very high KK modes, could, in
principle, be accessible to a four-dimensional observer.
Several studies with the aether field, both in four dimen-
sions and in extra dimensions, have been developed over
the past few years [4,6,9–14]. The main purpose of the
present study is to investigate the implications, of the
Casimir effect, of the aether field with expectation value
aligned along the extra dimension.
One of the models frequently employed in the literature,

and among the simplest, involves an extra dimension
compactified into a circle of length b [15–17]. The mere
presence of this single extra dimension provides us with
ways to detect it indirectly. One phenomenological mani-
festation of this extra dimension can be observed in the
vacuum energy density, which can be modified in order to
be appreciable at a potentially detectable scale. The method
to detect this energy is through the famous Casimir effect
[18], where it exerts an attractive or repulsive force between
plates due to the finite difference in the vacuum energy
density found through regularization and renormalization
procedures which subtract the infinite energy of the vacuum
oscillations. As it can be measured, the influence of the
extra dimension may either increase or decrease this force
since the Casimir effect is a dimension-dependent phe-
nomenon. To observe this effect, we place parallel plates in
close proximity, with a maximum distance on the order of
micrometres (μm), such that the gauge field satisfies a
boundary condition in the direction of the plates. Any
boundary condition can, in principle, alter the vacuum
frequencies of a quantum field and help us understand how
a system is influenced by it through the Casimir energy.
Therefore, when an additional boundary condition is
imposed in a different dimension of the system, as it is
in our case, the resulting contribution will also influence the
quantum vacuum fluctuations and, as a consequence, the
Casimir (vacuum) energy [19–21].
Following this concept, considering also the existence

of a compactified extra dimension, as explored in the
literature [17,22,23], it will leave a signature in the form of
a contribution to the Casimir energy between the parallel
plates. This signature may provide insights into the
existence of an extra dimension and the nature of its
contribution. Many other applications involving the
Casimir effect and extra dimensions have been developed,
such as in Refs. [15,24], in which the authors investigated
the stabilization of an extra dimension through the Casimir

effect using compactification in the fifth dimension, and in
Refs. [4,10], in which, in addition to studying stability, they
also considered the aether parameter.
Assuming the existence of an extra dimension, our

proposal for the Casimir effect in a Kaluza-Klein scenario
considers the Neumann boundary condition applied on the
plates placed in the z direction. In our model, the extra
dimension is compactified by imposing a quasiperiodic
boundary condition, which is mathematically described by
Aðt; x; y; zÞ ¼ e−2πβiAðt; x; y; z; x5 þ bÞ. This leads us to a
generalized expression dependent on the parameter β,
assuming values in the interval 0 ≤ β < 1. This interval
includes both periodic (β ¼ 0) and antiperiodic (β ¼ 1=2)
boundary conditions.
Additionally, we aim to establish new constraints on the

aether field parameter, which is introduced as a possible
solution to the extra dimension’s length. To test these
constraints, we can utilize experimental data obtained by
Bressi et al. [25], who measured the residual squared
frequency shift Δν2 in the context of the Casimir effect
between parallel surfaces. In this experiment, a silicon
cantilever coated with chromium interacts with a rigid
surface, experiencing shifts in frequency due to the Casimir
force. The experimental range covered distances between
0.5–3.0 μm, providing a high level of precision.
In this work, we introduce the aether approach in

Sec. II A, where we first provide a brief description of
the aether dynamic scenery. Following that, we consider the
incorporation of the aether gauge coupling into the Kaluza-
Klein theory. We consider the introduction of two distinct
boundary conditions: the Neumann boundary condition on
the plates placed in the z dimension and the quasiperiodic
boundary condition in the extra dimension. In Sec. III, we
derive the Casimir energy in terms of the boundary
condition parameters and also explore the influence of
the compactified extra dimension. Section IV provides the
closed expression for the Casimir force and analyzes the
properties and phenomenology resulting from the system
configuration. In Sec. V, we estimate the size of the extra
dimension based on experimental data and place con-
straints on the aether ratio parameter. Finally, in Sec. VI,
we present the conclusions drawn from the results obtained
in this work. For most of this paper, we use natural
units ℏ ¼ c ¼ 1.

II. LORENTZ INVARIANCE VIOLATION
AETHER APPROACH

In this section, we provide a brief description of
the aether field approach in the dynamic context and
when coupled to a gauge field. Specifically, we consider
a five-dimensional flat spacetime with metric signature
ð−;þ;þ;þ;þÞ and coordinates xa ¼ ðxμ; x5Þ, where the
fifth dimension is compactified on a circle of radius R.
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A. Lorentz invariance violation aether dynamics

Specifically, the fifth dimension is accessed through a
spacelike vector ua, referred to as the aether (also known in
the literature as the aether field), and due to this vector, the
Lorentz symmetry is spontaneously broken. Moreover, we
can define a “field strength” tensor

Vab ¼ ∇aub −∇bua: ð1Þ

It should be highlighted that there is no relation between the
above field and the electromagnetic vector potential Aa or
the field strength Fab ¼ ∇aAb −∇bAa. Furthermore, the
dynamic of the vector ua does not respect theUð1Þ group of
gauge transformations. The following action considers a
Maxwell-type kinetic term that is used to fix a constant
norm for the aether field

S¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
−
1

4
VabVab−λðuaua−v2Þþ

X
i

Li

�
: ð2Þ

Note that λ acts as a Lagrangian multiplier, imposing
constraints on the aether field

uaua ¼ v2: ð3Þ

There is a formal similarity between this kind of Lorentz-
violating theory and the relativistic macroscopic theory of
a continuous medium: in both cases, there is introduced a
constant vector, here simply called uα, which plays a
distinguished role. In the latter electrodynamic case, it is
simply the uniform four-dimensional velocity of the
medium. It is timelike, reducing to a unit vector in the
rest frame of the medium. In the present Lorentz-breaking
case, the vector uα is spacelike, as shown in Eq. (3). Any
observable effect critically dependent on this five-vector
would imply serious physical consequences. It is observed
that both in the four- and the five-dimensional cases the
appearance of these constant vectors can be done via
Lagrangian multipliers in the action integral. Readers
who might be interested in covariant electrodynamics of
media may consult, for instance, Refs. [26,27].
The last term in the action, the sum Li, represents

interaction terms coupled to the aether field. These terms
are matter fields which will be commented on later. The
equation of motion for the aether field, ignoring the
interaction terms, is given by

∇aVab þ v−2ubuc∇dVcd ¼ 0: ð4Þ

There is the trivial solution Vab ¼ 0 which solves the
equation of motion for any configuration, and there is a
particular background solution related to the aether field of
the form

ua ¼ ð0; 0; 0; 0; vÞ; ð5Þ

where the fifth component of the vector is the only nonzero
component to preserve Lorentz invariance in a four-dimen-
sional noncompact space. This configuration will be used
for the rest of the work.

B. Aether-gauge field coupling

At this point, we derive the interaction between the aether
and the gauge field by considering the five-dimensional
electromagnetic Lagrangian with an extension of the
lowest-order coupling to the aether background field ua,
given as: [3]

LA ¼ −
1

4
FabFab þ 1

2μ2A
uaubηcdFacFbd; ð6Þ

where ua ¼ ðuν; u5Þ, ν ¼ 0;…; 3, and ηcd is the
Minkowski metric. The five-dimensional field strength
tensor is defined in terms of the potential Aa and remains
with the usual relation Fab ¼ ∂aAb − ∂bAa. Equation (6)
stays invariant under the gauge transformation: δAa ¼
∂
aϕðxÞ. From Eq. (6), we may find the equation of motion
in five dimensions, given by

∂aFab ¼ μ−2A ðucub∂aFca − ucua∂aFcbÞ: ð7Þ
The above equation can be rewritten using the Lorentz
gauge, ∂aAa ¼ 0, and the axial gauge, uaAa ¼ 0; Eq. (7) is
then reduced to

ð∂a∂a þ μ−2A ucua∂a∂cÞAb ¼ 0: ð8Þ

Going to Fourier space, Aν ∝ eikμx
μþik5x5 , and considering

an aether background of the form ua ¼ ð0; 0; 0; 0; vÞ as
justified by Eq. (5), we get as result

kμkμ ¼ −ð1þ α2AÞk25; ð9Þ
where αA ¼ v=μA is a dimensionless parameter.
It is straightforward to note that in the absence of the

extra dimension the dispersion relation (9) leads us to the
energy of a photon in standard electrodynamics. The right-
hand side terms arise from the extra dimension introduced
earlier. However, the first term provides the usual fifth-
dimensional component, which comes solely from the
existence of the extra dimension. The second one provides
a correction term due to a small perturbation in the photon
energy caused by the Lorentz invariance violation (LIV)
term. It is possible for α2A ≪ 1, which is the interpretation
considered and expected.
If we now impose the quasiperiodic boundary condition

Aaðx5Þ ¼ e−2πβiAaðx5 þ bÞ ð10Þ

as well as the Neumann boundary condition

∂zAajz¼0 ¼ 0; ∂zAajz¼a ¼ 0 ð11Þ
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on the plane wave solution of the gauge field, the momenta
in the x5 and z directions will be discretized. Note that the
quasiperiodic boundary condition is characterized by the
phase introduced in terms of one parameter which is limited
in the interval 0 ≤ β < 1. It is a generalization of the well-
known periodic and antiperiodic boundary conditions
represented by β ¼ 0 and β ¼ 1=2, respectively. The extra
dimension, thus, is compactified into a circle S1 of length b,
by the quasiperiodic condition. An illustrative view of this
is shown in Fig. 1.
The presence of the Neumann boundary condition in

the z direction, on the other hand, becomes important
since the Casimir effect can be measured in laboratory
experiments. As a consequence, the effects of the extra
dimension may be detected as modifications in the Casimir
energy. We have also presented an illustration of this
in Fig. 2.
Here, we are working in the R4 × S1 spacetime, where

R4 represents the Minkowski spacetime, and S1 represents
the compactified dimension, in our case, the fifth dimen-
sion. Therefore, its associated dispersion relation submitted
to both boundary conditions can be written as

−kμkμ ¼ k2m þ ð1þ α2AÞk2n; ð12Þ

where km ¼ mπ
a with m ¼ 0; 1; 2;… is related to the

Neumann boundary condition where a is the distance

between the plates, and kn ¼ 2π
b ðnþ βÞ with n ¼

ð0;�1;�2;…Þ is related to the quasiperiodic boundary
condition, with b being the length of the compactification
in the z direction. We should point out that the wave
momentum discretization km ¼ mπ

a has the same form as the
Dirichlet boundary condition, but in that case m ¼ 1; 2;…,
it occurs due to the difference in the modes of the field sin
and cos functions to Dirichlet and Neuman boundary
conditions, respectively. However, both give us the same
physical energy [20]. Consequently, the eigenfrequencies
are written as

ω2
n ¼ k2x þ k2y þ k2m þ ð1þ α2AÞk2n: ð13Þ

The expression above shall be used to calculate the Casimir
energy in the next section.

III. CASIMIR ENERGY

As we have said before, in flat spacetime, the Casimir
energy arises as a consequence of boundary conditions
imposed on the quantum field. As we have imposed on
the system two distinct boundary conditions (12), a finite
Casimir energy contribution can be evaluated. In thisway, the
total vacuum energy is given by the expression [21,22]

E ¼ 1

2

�
L
2π

�
l
Z

dlk
X∞
n¼−∞

�
p
X∞
m¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2m þ ð1þ α2AÞk2n

q
þð−pþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ð1þ α2AÞk2n

q �
; ð14Þ

where in our case k2 ¼ k2x þ k2y, L2 is the area of the plates,
and l ¼ 2. Here, p is the possible polarizations of the
photon (in the case of extra dimension p ¼ 3), and for
n ¼ 0, there is only one polarization possible [21]. The
parameter l is called the dimension regularization. We use
it instead of the dimension number because it allows us to
perform the integral (14) through the relation

Z
fðkÞdnk ¼ 2πn=2

Γðn=2Þ
Z

kn−1fðkÞdk: ð15Þ

Consequently, the integral in Eq. (14) takes the following
form:

FIG. 1. Illustrative view of the compactified extra dimension x5.
FIG. 2. Illustrative view of the Neumann boundary condition
applied on two parallel plates.
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E ¼ 1

2

�
L
2π

�
l 2πl=2

Γðl=2Þ
X
n

Z
dkkl−1

�
p
X
m

½k2 þ k2m þ ð1þ α2AÞk2n�−r þ ð−pþ 1Þ½k2 þ ð1þ α2AÞk2n�−r
�
; ð16Þ

where r ¼ −1=2 is a regularization parameter that allows us to compute the integral above, it is removed by taking the limit
r → −1=2. Hence, the integral may be solved, where we obtain

E ¼
�
L
2π

�
l πl=2Γðr − l=2Þ

2ΓðrÞ
X
n

�
p
X
m

��
mπ

a

�
2

þ ð1þ α2AÞ
�
2π

b
ðnþ βÞ

�
2
�l

2
−r
þð−pþ 1Þ

�
ð1þ α2AÞ

�
2π

b
ðnþ βÞ

�
2
�l

2
−r
�
:

ð17Þ
Now we replace the exponent on the brackets by s ¼ r − l=2, and we get

E ¼
�
2

L

�
2sþ1 πsþ1=2ΓðsÞ

2Γð−1=2Þ
�
π

a

�
−2s X∞

n¼−∞

�
p
X∞
m¼0

�
a2

b̃2
ðnþ βÞ2 þm2

�−s
þ ð−pþ 1Þ

�
a

b̃
ðnþ βÞ

�
−2s

�
; ð18Þ

with

b̃2 ¼ b2

4ð1þ α2AÞ
: ð19Þ

As argued in Ref. [3], the aether parameter αA can be as
large as 1015, and in this sense, it acts as a length reduction
according to Eq. (19).
Note that in Eq (18) there are two sums. We will choose

the sum in m in order to apply the Abel-Plana formula [28]
given by the following expression:

X∞
n¼0

fðnÞ ¼
Z

∞

0

dx fðxÞ þ 1

2
fð0Þ

þ i
Z

∞

0

dx
fðxÞ − fð−ixÞ

e2πx − 1
: ð20Þ

This method shows the divergent contribution that comes
from the Minkowski spacetime and also enables us to
obtain a finite contribution to the Casimir energy. By first
considering the substitution

fðmÞ ¼
�
a2

b̃2
ðnþ βÞ2 þm2

�−s
¼ ½N2 þm2�−s; ð21Þ

from (18) and (20), we obtain

X∞
m¼0

fðmÞ ¼
Z

∞

0

dxðN2 þ x2Þ−s þ N−2s

2

þ 2i1−2s
Z

∞

N
dx

ðx2 − N2Þ−s
e2xπ − 1

: ð22Þ

Now, upon using the relation ðe2x − 1Þ−1 ¼ P∞
n¼1 e

−anx in
the second integral above, we have

Z
∞

N
dx

ðx2 − N2Þ−s
e2xπ − 1

¼
X∞
q¼1

Z
∞

N
dxe−2xπqðx2 − N2Þ−s

¼
X∞
q¼1

�
q
N

�
−1
2
þs
π−1þsK−1

2
þsð2NqπÞΓð1 − sÞ; ð23Þ

where KαðxÞ is the modified Bessel function of the second
kind. Finally, by substituting (23) in Eq. (22), the Casimir
energy takes the form

E¼
�
2

L

�
2sþ1πsþ1=2ΓðsÞ

2Γð−1=2Þ
�
π

a

�
−2s

×
X∞
n¼−∞

�
p
Z

∞

0

dxðN2þx2Þ−sþð−pþ2ÞN
−2s

2

þ2i1−2sπ−1þsΓð1− sÞp
X∞
q¼1

�
q
N

�
−1
2
þs
K−1

2
þsð2NqπÞ

�
:

ð24Þ

Note that the above expression includes a divergent
contribution that comes from the integral term. However,
let us first perform the sum in n to extract a finite
contribution, also present in the integral above. After that,
we can proceed to discard the divergent contribution by
means of the renormalization process. Thus, for the integral
term, we have

Z
∞

0

dx
X∞
n¼−∞

ðN2 þ x2Þ−s

¼
Z

∞

0

dx

�
a

b̃

�
−2s X∞

n¼∞

�
ðnþ βÞ2 þ b̃2

a2
x2
�−s

: ð25Þ
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The sum may be computed by using the expression (A7),
providing

�
a

b̃

�
−2s Z ∞

0

dx
X∞
n¼−∞

�
ðnþ βÞ2 þ b̃2

a2
x2
�−s

¼
�
a

b̃

�
−2s Z ∞

0

dx

�
2b̃−2s

Z
∞

0

dμ

�
μ2

b̃2
þ x2

a2

�−s
ð26Þ

þ sinðπsÞ 4Γð1 − sÞ
π1−s

�
b̃
a
x

�1
2
−s

×
X∞
n¼1

cosð2πnβÞ
n

1
2
−s

K1
2
−s

�
2πnx

b̃
a

��
: ð27Þ

Hence, the integral in μ gives a divergent result and should
be removed [20,21]. The integral in x, on the other hand,
can be evaluated by using the following identity:

Z
∞

0

dx

�
b
a
x

�1
2
−s
K1

2
−s

�
2πn

b
a
x

�

¼ 1

4

�
a
b

�
n−

3
2
−sπ−1þsΓð1 − sÞ: ð28Þ

Consequently, the result of Eq. (25) is given by
�
a

b̃

�
−2s Z ∞

0

dx
X∞
n¼−∞

�
ðnþ βÞ2 þ b̃2

a2
x2
�−s

¼
�
a

b̃

�
1−2s π−1þ2s

ΓðsÞ Γð1 − sÞ
X∞
n¼1

cosð2πnβÞ
n2−2s

; ð29Þ

where we have used Euler’s reflection formula

Γð1 − zÞΓðzÞ ¼ π

sin πz
: ð30Þ

The second sum of Eq. (24) gives an analytical expres-
sion, and it is obtained by following the recurrence relation
(A.4) from Ref. [16]:

X∞
n¼−∞

�
a

b̃

�
−2s

ðnþ βÞ−2s

¼
�
a

b̃

�
−2s

π2s−1=2
Γð1

2
− sÞ

ΓðsÞ 2
X∞
n¼1

cosð2πnβÞ
n1−2s

: ð31Þ

By substituting (29) and (31) in Eq. (24), we finally
arrive at the closed form of the regularized Casimir energy
which is given by

Eregða; βÞ ¼ −
�
2

L

�
2sþ1 πsΓðsÞ

4

�
π

a

�
−2s

��
a

b̃

�
1−2s π−1þ2s

ΓðsÞ Γð1 − sÞp
X∞
n¼1

cosð2πnβÞ
n2−2s

þ ð−pþ 2Þ
�
a

b̃

�
−2s

π2s−1=2
Γð1

2
− sÞ

ΓðsÞ 2
X∞
n¼1

n2s−1 cosð2πnβÞ

þ2i1−2sπ−1þsΓð1 − sÞp
X∞
n¼−∞

X∞
q¼1

�
q
N

�−1
2
þs
K−1

2
þsð2NqπÞ

�
: ð32Þ

By considering s ¼ −3=2, we remove the regularization
parameter imposed on the energy and obtain the following
result for the renormalized Casimir energy:

Erenða; βÞ ¼ −
L2π2

4a3

�
3

16

�
a

πb̃

�
4

p
X∞
n¼1

cosð2πnβÞ
n5

þ −pþ 2

2π4

�
a

b̃

�
3X∞
n¼1

cosð2πnβÞ
n4

þ p
2π2

X∞
n¼−∞

X∞
q¼1

�
N
q

�
2

K2ð2NqπÞ
�
: ð33Þ

It is worth highlighting that, due to the quasiperiodic
parameter β, we do not need to remove the n ¼ 0 term
in the last sum. This term will be analyzed on another
occasion when we consider the limit β → 0. The influence
of the quasiperiodic parameter β can be found in each term

in the brackets. Note that the second term in brackets is not
influenced by a. If β ¼ 0 is taken, the influence of the
quasiperiodic boundary condition vanishes, but this term
remains, which means that this term exists only due to the
presence of the extra dimension.
Alternatively, we can perform the sum in n present in the

first two terms of Eq. (33). This gives

Erenða; βÞ ¼ −
L2

8ab̃2
X
δ¼þ;−

�
p

3

16

�
a

πb̃

�
2

Li5ðe2iπδβÞ

þ ð−pþ 2Þ a

2π2b̃
Li4ðe2iπδβÞ

þ p
X∞
n¼1

X∞
q¼1

�
δnþ β

q

�
2

K2

�
a

b̃
jδnþ βj2qπ

��

− p
L2

8ab̃2
X∞
q¼1

�
β

q

�
2

K2

�
2βqπ

a

b̃

�
; ð34Þ
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where the summation in δ means that the parameter δ
assumes two values, δ ¼ 1;−1. The function LisðzÞ is the
polylogarithm function, and the last term of the above
expression corresponds to the n ¼ 0 term.
Note that, in Eq. (34), the first term in brackets is linear

in a. In Ref. [23], in a similar study, the authors disregard
this term because when the limit a → ∞ is taken it
diverges. However, this term contributes as a constant in
the force, the real quantity to be measured. Since our aim is
to investigate the influence of the boundary condition and
the extra-dimension parameter in the Casimir force, we will
consider this term and analyze how it affects the force.
Thus, this term cannot be ignored in the experiment.
In Fig. 3, we have plotted the Casimir energy (34) per unit

of area of the plates, with respect to the parameters β and αA.
On the left, the plot shows that β may be used to control the
intensity and sign of the vacuum energy. This means that we
can have an attractive, repulsive, or even zero vacuum
energy. Moreover, we can see in the plot that the value β ¼
1=2 presents a symmetry, giving each curve the maximum
positive value for the vacuum energy. The values β ¼ 0, 1,
providing the same negative minimum value for the vacuum
energy for each curve. We can see that the intensity of the
vacuum energy increases as a=b̃ also increases. Note that,
considering a numerical analysis, the energy becomes
positive in the approximated interval 0.25 < β < 0.75,
regardless of the values of a=b̃. On the other hand, the
influence of the parameter αA is shown in the right of Fig. 3,
which reveals that the energy per unit area of the plates is
divergent as αA → ∞. Hence, a nonzero aether parameter
should increase the renormalized Casimir energy density.
However, since there exists in principle an upper limit for the
parameter αA [3], the vacuum energy will never be divergent
in practice. In Fig. 4, we have also plotted theCasimir energy
(34) per unit of area of the plates, with respect to the ratio
a=b̃. It is clear that when this ratio goes to zero the energy
diverges, while when it goes to infinity, the energy goes to a
constant value for each curve.

Now, we will consider the case where β ¼ 0, in which
the quasiperiodic boundary condition is absent, and we
recover the periodic condition. Indeed, the last term of (34)
represented by n ¼ 0 is divergent if we directly substitute
β ¼ 0. However, we can take the limit β → 0 for the
quasiperiodic parameter, which results in a finite contri-
bution as follows:

X∞
q¼1

�
β

q

�
2

K2

�
2βqπ

a

b̃

�
→
β→0X∞

q¼1

b̃2

2a2π2q4
¼ π2b̃2

180a2
: ð35Þ

By making use of the above result in Eq. (34), we find

Erenða; 0Þ ¼ −
L2π2

1440a3

�
pþ ð−pþ 2Þ 2a

3

b̃3
þ p

135a4

2π4b̃4
ζð5Þ

þ p
360a2

π2b̃2
X∞
n¼1

X∞
q¼1

n2

q2
K2

�
2nπq

a

b̃

��
; ð36Þ

FIG. 4. The energy density b̃3Eren=L2, for several values of the
ratio β, in terms of the ratio a=b̃. There is a different notation,
Eren, in this figure, when compared to the previous due to the first
term of the rhs of (34) which diverges as a → ∞. Naturally, it
should be removed to get the correct energy density behavior.

FIG. 3. The energy density a3E=L2, for several values of the ratio a=b̃, in terms of β (left) and a=b, in terms of αA (right). On the right,
we consider β ¼ 0.4.
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which is in accordance with Refs. [23,29], showing the
consistency of the results obtained so far. We can note
that the first term in the rhs of the above expression is
the Casimir energy due to a gauge field subjected to a
Neumann boundary condition in (3þ 1)-dimensional
Minkowski spacetime (p ¼ 2) [20], while the second term
is a correction due to the extra dimension only since it does
not depend on the parameter a. However, this term will not
contribute to the force between the plates, as we shall see in
the next section. The third and fourth terms are corrections

due to both the presence of the plates and the compactified
extra dimension.

IV. CASIMIR FORCE

Althoughwehave obtained an analytical expression for the
vacuum energy, in Eq. (34), our focus is on finding the force
acting on the plates in the z direction. The importance of this
quantity stays from the possibility of analyzing the correction
terms in Eq. (34) by making use of experimental data. Let us
then calculate the Casimir force first. This is given by

Faða; b̃Þ ¼ −
∂Eða; b̃Þ

∂a

¼ −p
L2

128b̃4
X
δ¼þ;−

�
−

3

π2
Li5ðe2iπβδÞ

þ 16
X∞
n¼1

X∞
q¼1

�
3

�
b̃ðδnþ βÞ

aq

�
2

K2

�
a

b̃
2πqjδnþ βj

�
þ 2π

b̃ðδnþ βÞ3
aq

K1

�
a

b̃
2πqjδnþ βj

���

− p
L2

8b̃4
X∞
q¼1

�
3

�
b̃β
aq

�
2

K2

�
a

b̃
2πqβ

�
þ 2π

b̃β3

aq
K1

�
a

b̃
2πqβ

��
: ð37Þ

This force arises directly from the Casimir energy in
Eq. (34). Hence, we may associate this quantity with a
Casimir force that acts due to the insertion of the boundary
conditions in the system. Note that in the rhs the first term
in the above expression refers to the pure contribution of
the compactified extra dimension, since there is no influ-
ence of a. Note also that the last term is due to the
contribution n ¼ 0 from the sum in n.
In Fig. 5, we have plotted the Casimir force in Eq. (37), per

unit area of the plates, in terms of the parameters β (left) and
αA (right).We can see that β has a clear influence on thenature
(attractive, repulsive, or zero) of the force, as well as on its
intensity. Similar behavior can be found in the investigation

conducted, for instance, in Refs. [30,31], reinforcing that the
parameter β can be used to control the nature of the force.We
can also see that the force diverges as αA becomes larger.
Figure 6, on the other hand, shows the behavior of the

Casimir force, per unit area of the plates, in terms of the
ratio a=b̃. The plot shows that for small values of this ratio
the Casimir force negatively increases (up to infinity),
while for large values, the Casimir force goes to a constant
positive value for each curve shown.

A. Specific values

Let us now consider the important cases of the peri-
odic (β ¼ 0) and antiperiodic ðβ ¼ 1=2Þ conditions.

FIG. 5. The force a4Fa=L2, for several values of the ratio a=b̃, in terms of β (left) and a=b in terms of αA (right). On the right, we
consider β ¼ 0.4.
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By starting with the former case, the Casimir force (37) is
written as

Faða; b̃Þ ¼ −p
L2π2

480a4
þ p

3L2

64b̃4π2
ζð5Þ

− p
L2π

2ab̃3
X∞
n¼1

X∞
q¼1

n3

q
K1

�
2πnq

a

b̃

�

− p
3L2

ð2ab̃Þ2
X∞
n¼1

X∞
q¼1

�
n
q

�
2

K2

�
2πnq

a

b̃

�
; ð38Þ

where we have made use of Eq. (35). The above result
agrees with the expression obtained in Ref. [23]. One
should note that, by taking the limit a → ∞, we obtain the
extra-dimension contribution to the Casimir force, that is,

Fað∞; b̃Þ ¼ p
12ζð5ÞL2

π2b4
ð1þ αAÞ2; ð39Þ

which is in agreement with Ref. [20] in the absence of the
aether parameter, i.e., when αA ¼ 0. In the limit a → 0, on
the other hand, the force (35) diverges, as expected.

Following the special considerations, another interesting
value to investigate separately is β ¼ 1=2. This specific
value leads us to the antiperiodic condition case. From
Eq. (38), we obtain

Faða; b̃Þ ¼ −p
45L2

1024b̃4
ζð5Þ− p

L2

32ab̃3
X
δ¼þ;−

X∞
n¼1

X∞
q¼1

�
π

q
ð2δnþ 1Þ3K1

�
a

b̃
πqj2δnþ 1j

�
þ b̃ð2δnþ 1Þ2

3aq2
K2½xπqð2δnþ 1Þ�

�

− p
L2

32ab̃3
X∞
q¼1

�
π

q
K1

�
aπq

b̃

�
þ 3b̃
aq2

K2

�
aπq

b̃

��
: ð40Þ

In this case, the force diverges negatively as a → 0 and, as
is shown in Fig. 6, remains always attractive. Hence, the
presence of an extra-dimension parameter b̃ affects the
force, causing an attractive force between the plates.

V. CONSTRAINT TO THE SIZE
OF THE EXTRA DIMENSION

There are currently many models that attempt to impose
constraints and describe the properties and size of extra
dimensions [32]. However, these models pose significant
challenges for experimental verification due to the sensi-
tivity required to detect extra dimensions of small size. As
mentioned earlier in this work, according to the Kaluza-
Klein theory, the size of the extra dimension would be close
to the Planck scale, making it hard, not to say impossible,
to make direct measurements using the current experimen-
tal apparatus. Here, however, we propose an indirect
method to detect the existence of this extra dimension
and derive accessible constraints on both the size of the
extra dimension and the two new parameters introduced in
our model: the aether ratio αA and the quasiperiodicity
parameter β.

Indeed, the experiments related to the Casimir effect
remain very difficult, even with the development of
technology. The first attempt to prove the Casimir effect
was made by Sparnaay in 1958 [33], but the measure
errors found in the experiments could not confirm the
effect. Later, in 1997, Lamoreux proved the existence of
the Casimir effect [34], which shows this force exper-
imentally with acceptable accuracy. However, there is a
point that we should highlight. The force measured by the
experiments does not identify the origin of the force. A
good point of view of the Casimir force comes from the
Jaffe’s interpretation of this force. In his paper [35], he
shows that the Casimir energy does not come from the
zero-point energy (modifications in the quantum vacuum),
but he computes the Casimir force by using relativistic,
quantum forces between charges and currents. Therefore,
he concludes there is no need to use the zero-point
energy or vacuum fluctuations argument when treating
Casimir force.
Based on Jaffes’s work, the Casimir effect is a function

of the fine structure constant α, and it vanishes as α → 0, as
well as any observable effect in QED. In the experiment
developed by Bressi et al. [25], the authors compare the

FIG. 6. The force a4Fa=L2, for several values of the ratio β, in
terms of the ratio a=b̃.
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experimental data obtained with the result found by
Casimir [18] for the parallel conducting plates

F ¼ −
ℏcπ2

240a4
; ð41Þ

where a is the distance between the plates. According to
Jaffe [35], the above result is an asymptotic form in the
limit α → ∞, where the use of boundary condition forces
this limit. Consequently, the explicit dependence of α
cannot be seen, which leads us to a semiclassical limit.
As a consequence of this independence, the Casimir force
(37) also represents a semiclassical result associated with
vacuum fluctuations of quantized fields. For simplicity, we
consider that the Casimir effect is reduced to a modification
of the spectrum of standing waves of a classical field
between ideally conducting plates, in a way to compare
with the experimental data in the semiclassical approach,
where α → ∞. Hence, the contribution of the fine structure
constant exists, but it does not influence the result.
Although the Casimir effect cannot be reduced to a
modification of the spectrum of standing waves of a
classical field, our aim in this section is not only to
investigate the influence of the boundary condition on
manipulating the result through the variable parameters but

also show the possibility to estimate a constraint to the size
of the extra dimension.
Following the method proposed in Ref. [23], we can

estimate the size of the extra dimension by taking the
derivative of the pressure with respect to the distance
between the plates, denoted as a, as shown in Ref. [36].
That is,

Δν2 ¼ ν2 − ν20 ¼ −
L2

4π2meff

∂P
∂a

¼ −
L2

4π2meff

∂

∂a

�
Faða; b̃Þ

L2

�
;

ð42Þ

where meff is an effective mass related to the properties of
the system and L2 represents the effective area between the
cantilever and the source surfaces where the fluctuation
occurs. Measuring the effective mass is not straightforward,
but as suggested in Ref. [36], the ratio L2=meff can be
estimated using the experimental data. This is approxi-
mately given by L2=meff ≈ 1.746 Hz2 m3 N−1 [36].
Equation (42) leads to the square plates’ oscillating

frequency shift, denoted asΔν2. This is the quantity that the
experimental apparatus can detect. For more details about
the experiment, see Refs. [36,25]. Subsequently, by sub-
stituting the result (37) into Eq. (42), we obtain

Δν2 ¼ −p
ℏcL2

4π2meff

X∞
n¼−∞

X∞
q¼1

ðnþ βÞ2
2a3b̃2q3

��
3þ π2q2ðnþ βÞ2 a

2

b̃2

�
K0

�
2πqjnþ βj a

b̃

�

þ b̃
2πqajnþ βj

�
6þ 5π2q2ðnþ βÞ2 a

2

b̃2

�
K1

�
2πqjnþ βj a

b̃

��
: ð43Þ

Note that we have recovered the constants ðℏ; cÞ at this
point since they are essential for comparing the model
with the experimental. Consequently, by making use of
Eq. (43), it is possible to estimate the size of the extra
dimension. This estimation will also have an impact on the
quasiperiodic parameter as well as the aether parameter.
This is advantageous because the presence of these param-
eters may assist in establishing an acceptable limit for the
length b.
In a scenario where the parameter β is equal to 0, we

obtain the following expression:

Δν2 ¼ −p
ℏcL2

4π2meff

�
π2

120a5

þ
X∞
n¼1

X∞
q¼1

1

a3b2

��
3n2

q2
þ a2π2n4

b̃2

�
K0

�
2aπqn

b̃

�

þ b̃
2π

�
3n
q3

þ 5π2

2

a2

b̃2
n3

q

�
K1

�
2aπqn

b̃

���
: ð44Þ

The above expression matches the result obtained in
Ref. [23], where it is acknowledged that this result is
not suitable for determining the size of the extra dimension.
However, the model studied in Ref. [23] does not consider
the quasiperiodic β or the aether parameter in the calcu-
lation. Therefore, by incorporating the experimental data
from Ref. [25], constraints on αA can be imposed to
determine a compatible length b.
Following Ref. [25], the residual squared frequency shift

obtained by the experiment is given by

Δν2ðaÞ ¼ −
CCas

a5
; ð45Þ

where CCas ¼ ð2.34� 0.34Þ × 10−28 Hz2m5, which is also
experimentally determined [36]. With all the parameters in
hand, we can now incorporate the experimental data from
[25]. This is shown in Fig. 7.
Figure 7 illustrates the influence of the parameters in

comparison to the experimental data. Although the aether
ratio parameter affects the frequency shift when β ¼ 0, it
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does not show any significant enhancement compared to
the case with αA ¼ 0. It is evident that the best result is
achieved when both αA and β are not equal to zero,
yielding an approximate size for the extra dimension,
b ¼ 1.0 × 10−6m, with αA ¼ 104 and β ¼ 0.006. It is clear
that this value for b aligns with the range of the cantilever
experiment [32].
Let us now point out an important detail related to the

role of αA. As mentioned below Eq. (19), the aether
parameter acts as a length reduction which can make the
detection of the size of the extra dimension become more
challenging. However, it still remains crucial to align the
theoretical model with experimental data, as shown in
Fig. 7. The theoretical fit presented in Fig. 7 indicates that it
is not a perfect match within a certain interval. This
discrepancy can be attributed to external factors not
considered in our theoretical model, including finite tem-
perature corrections, finite conductivity of the material used
in the experiment, and other factors detailed in Ref. [25].
The results obtained in this paper represent the first

instance of such findings and serve to extend the results
previously documented in the literature. Additionally, new
constraints have been identified for the size of the extra
dimension within a LIVaether scenario in the context of the
Casimir effect.

VI. CONCLUSION

In this work, we have investigated the influence of the
aether compactification as a means of explaining the size
problem of the fifth dimension in flat spacetime, in
conjunction with the quasiperiodic parameter β. The
potential existence of an extra dimension modifies the
dispersion relation of the standard theory. This extra
dimension has been compactified into length b, and we
have also introduced two parallel plates in the z direction in

order to apply the Neumann boundary condition. In this
sense, both the compactified extra dimension and the
Neumann boundary condition applied on the plates lead
to the Casimir effect.
The modified Casimir energy density has been found in a

closed form, expressing the energy in terms of the quasi-
periodic parameter β, the distance between the plates a, the
length of the extra dimension b, and the aether parameter
αA. We have shown several plots to illustrate the behavior
of the energy under the influence of the quasiperiodic
parameter β, which are shown in Fig. 3 and 4. These plots
reveal the sign of the energy and the values for β where it
vanishes.
The direct proportionality of the energy in terms of the

aether parameter is demonstrated in Fig. 4, showing an
increase in energy as αA → ∞. We have taken the limit
β → 0, where the influence of the quasiperiodic parameter
vanishes. In this limit, the result obtained is consistent with
the literature [23,29], and the well-known result for Casimir
energy from the Neumann boundary condition emerges
[20]. Additionally, pure terms from the extra dimension and
mixed terms among the parameters become apparent. The
energy, when influenced by the quasiperiodic parameter,
oscillates between negative and positive values depending
on the value of β, while for β ¼ 0, the energy remains
entirely negative.
We have found a closed expression for the force acting

on the plates in the z direction in terms of β, a, and b̃
[Eq. (37)]. We have also plotted the force as a function of β
for various values of a=b̃ (Fig. 5), in terms of αA (Fig. 5)
and in terms of a=b̃ (Fig. 6). The intensity of the force is
controlled by the choice of a=b̃, β, and αA, as shown in the
plots. Similar to the energy, αA contributes to the growth of
the force between the plates (Fig. 5). We have also seen that
the force approaches a constant value as a=b̃ → ∞ (Fig. 6).
We have observed that the energy diverges as αA → ∞ in

Fig. 3. However, the aether parameter is limited, so the
energy has an upper limit in terms of αA. Furthermore, in
our investigation of the Casimir force, we have considered
the limits of the force for β → 0, which aligns with the
literature [23], and for β ¼ 1=2, which corresponds to the
antiperiodic boundary condition. In the case of the periodic
boundary condition, as β → 0, we recover the standard
result for the Casimir force influenced by the Neumann
boundary condition, as found in Ref. [20].
Finally, we have tested our model using experimental

data obtained in Ref. [25] to place an upper limit on the size
of the extra dimension b and the aether parameter αA. The
model demonstrates consistency in recovering the result
from the reference work [23] when β → 0, as represented
by Eq. (44). From Eq. (43), we have created Fig. 7, which
provides information about the behavior of the system and
indicates that the only viable result arises from the values
αA; β ≠ 0, yielding a size of b ¼ 1.0 × 10−6m, and for the
aether parameter, we find a value of αA ¼ 104 when

FIG. 7. The residual square frequency shift, Δν2, is shown as a
function of the plate distance, a, for b ¼ 1.0 × 10−6 m, αA ¼ 104,
and β ¼ 0.006. The solid line represents the experimental data
from Ref. [25]. The lines where β ≠ 0 come from Eq. (43), and
the lines with β ¼ 0 represent the behavior of Eq. (44).
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considering β ¼ 0.006. The constraint for the size falls
within the range of the cantilever experiment, confirming
its ability to provide evidence of the existence of a Lorentz
invariance violation scenario and an extra dimension.
In conclusion, the results for the Casimir energy (34), the

Casimir force (37), and the square frequency shift (43) in a
scenario with quasiperiodic boundary condition, together
with an LIV parameter, have been developed for the first
time in this work. This generalizes investigations available
in the literature.
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APPENDIX: SUM OF
P

f ðn+ βÞ
Now, we deduce the recurrence formula to solve the

integral (25). Starting with the Abel-Plana formula as
follows,

X∞
n¼0

fðnþ aÞ ¼
Z

∞

0

fðxÞdxþ fðaÞ
2

− i
Z

∞

0

dx
fðaþ ixÞ − fða − ixÞ

e2ix − 1
; ðA1Þ

the sum can be divided into positive and negative intervals:

X∞
n¼−∞

fðnþ βÞ ¼
X∞
n¼0

fðnþ βÞ þ
X−∞
n¼0

fðnþ βÞ − fðβÞ ¼
X∞
n¼0

fðnþ βÞ þ
X∞
n¼0

fð−nþ βÞ − fðβÞ: ðA2Þ

Applying the sums separately in the Abel-Plana formula (A1), we have

X∞
n¼0

½ðnþ sÞ2 þ μ2�−s ¼
Z

∞

0

dx½x2 þ μ2�−s þ ðβ2 þ μ2Þ−s
2

− i
Z

∞

0

dx
½ðβ þ ixÞ2 þ μ2�−s − ½ðβ − ixÞ2 þ μ2�−s

e2πx − 1
ðA3Þ

and

X∞
n¼0

½ð−nþ βÞ2 þ μ2�−s ¼
X∞
n¼0

½ðnþ ð−βÞÞ2 þ μ2�−s

¼
Z

∞

0

dx½x2 þ μ2�−s þ ½ð−βÞ2 þ μ2�−s
2

− i
Z

∞

0

dx
½ðð−βÞ þ ixÞ2 þ μ2�−s − ½ðð−βÞ − ixÞ2 þ μ2�−s

e2πx − 1

¼
Z

∞

0

dx½x2 þ μ2�−s þ ðβ2 þ μ2Þ−s
2

− i
Z

∞

0

dx
½ð−β þ ixÞ2 þ μ2�−s − ½ð−β − ixÞ2 þ μ2�−s

e2πx − 1
: ðA4Þ

By substituting (A3) and (A4) in Eq. (A2), we get

X∞
n¼−∞

½ðnþβÞ2þμ2�−s¼
Z

∞

0

dx½x2þμ2�−sþðβ2þμ2Þ−n
2

− i
Z

∞

0

dx
½ðβþ ixÞ2þμ2�−s− ½ðβ− ixÞ2þμ2�−s

e2nx−1

þ
Z

∞

0

dx½x2þμ2�−sþðβ2þμ2Þ−s
2

− i
Z

∞

0

dx
½ð−βþ ixÞ2þμ2�−s− ½ð−β− ixÞ2þμ2�−s

e2nx−1
− ðβ2þμ2Þ−s

¼2

Z
∞

0

dx½x2þμ2�−sþði1−2sþð−iÞ1−2sÞ
Z

∞

0

dx
½ðxþ iβÞ2−μ2�−sþ½ðx− iβÞ2−μ2�−s

e2πx−1
: ðA5Þ

The second integral of (A5) may be solved by using the identity

ðey − 1Þ−1 ¼
X∞
j¼1

e−jy: ðA6Þ
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As a consequence, we have

X∞
n¼−∞

½ðnþ βÞ2 þ μ2�−s ¼ 2

Z
∞

0

dx½x2 þ μ2�−s

þ ði1−2s þ ð−iÞ1−2sÞ
X∞
l¼1

Z
∞

0

dxð½ðxþ iβÞ2 − μ2�−s þ ½ðx − iβÞ2 − μ2�−sÞe−2lπx

¼ 2

Z
∞

0

dx½x2 þ μ2�−s

þ ði1−2s þ ð−iÞ1−2sÞ
X∞
l¼1

�Z
∞

0

due−2πlðu−iβÞ½u2 − μ2�−s þ
Z

∞

0

dνe−2πlðνþiβÞ½ν2 − μ2�−s
�
:

The above expression can be reduced to

X∞
n¼−∞

½ðnþ βÞ2 þ μ2�−s ¼ 2

Z
∞

0

dx½x2 þ μ2�−s þ ði1−2s þ ð−iÞ1−2sÞ
X∞
l¼1

2 cosð2πlβÞ
Z

∞

μ
due−2πlu½u2 − μ2�−s

¼ ffiffiffi
π

p
μ1−2s

Γð− 1
2
þ sÞ

ΓðsÞ þ ði1−2s þ ð−iÞ1−2sÞ 2Γð1 − sÞ
π1−s

X∞
l¼1

�
l
μ

�
−1
2
þs

cosð2πlβÞK1
2
−sð2πμlÞ

¼ ffiffiffi
π

p
μ1−2s

Γð− 1
2
þ sÞ

ΓðsÞ þ sinðπsÞ 4Γð1 − sÞ
π1−s

X∞
l¼1

�
l
μ

�
−1
2
þs

cosð2πlβÞK1
2
−sð2πμlÞ: ðA7Þ
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