
Gravitational waves generated by null cosmic strings

D. V. Fursaev ,1 E. A. Davydov ,1,2 I. G. Pirozhenko ,1,2 and V. A. Tainov 1,2

1Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
141980 Dubna, Moscow Region, Russia

2Dubna State University, 19 Universitetskaya St., 141982 Dubna, Moscow Region, Russia

(Received 26 April 2024; accepted 24 May 2024; published 21 June 2024)

We show that null cosmic strings disturb gravitational fields of massive bodies and create outgoing
gravitational waves (GW). We find perturbations of the metric caused by a straight null string and a
pointlike massive source as solutions to linearized Einstein equations on a flat space-time and derive an
analytic approximation for their asymptotic at future null infinity. A space-time created by the source and
the string is shown to have an asymptotically polyhomogeneous form. We calculate GW flux in such space-
times and demonstrate that the averaged intensity of the radiation is maximal in the direction of the string
motion. Opportunities to detect null string generated gravity waves are briefly discussed.
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I. INTRODUCTION

Experimental evidences of the stochastic gravitational
background are the subject of active studies by the
Advanced LIGO and Virgo Collaborations [1], as well as
by radio telescope collaborations, such asNANOgrav [2] and
others. This background, which is formed by gravitational
waves produced at different epochs from different sources,
may carry important information about cosmic strings. For
example, the cusps of tensile cosmic strings [3] which can
appear as a result of the Kibble mechanism [4] are known to
emit strong beams of high-frequency gravitationalwaves [5].
In this work, we study a scenario when gravitational

waves are generated by another type of cosmic strings,
which are null or tensionless strings. The null strings are
one-dimensional objects whose points move along trajec-
tories of light rays, orthogonally to strings [6,7]. As a result,
the null strings exhibit optical properties: they behave as
one-dimensional null geodesic congruences [8], may
develop caustics [9], etc.
The null cosmic strings, like the tensile cosmic strings

[3,4], are hypothetical astrophysical objects which might
have been produced in the very early Universe, at the
Planckian epoch [10–13]. Possible astrophysical and cos-
mological effects of null cosmic strings, such as deviations
of light rays in the gravitational field of strings, scattering
of strings by massive sources, etc., are similar to those of
the tensile strings [9,14,15].
As has been recently shown [16,17], null cosmic strings

disturb fields of sources with electric charges or magnetic
moments and produce electromagnetic waves. In this work,
we demonstrate an analogous effect in gravity: perturba-
tions of gravitational fields of massive sources caused by
null cosmic strings are radiated away in a form of
gravitational waves.

Gravitational field of a straight null cosmic string in a
locally flat space-time can be described in terms of
holonomies around the string world sheet [14,18]. The
holonomy group is the parabolic subgroup of the Lorentz
group, (or so called null rotations) with the group parameter
determined by the string energy per unit length. The string
world sheet S belongs to a null hypersurfaceHwhich is the
string event horizon. Null rotations, which leave invariant
S, induce Carroll transformations of H.
Another way to describe the null string space-time is to

consider it as a shockwave geometry. Such geometries can
be viewed as a result of a “cut and paste” procedure [19],
when two copies of a space-time are glued along the shock
wave front with a planar supertranslation [20] of one copy.
In case of the strings, the shock wave front is the event
horizon H while the supertranslations are elements of the
Carroll group [21,22].
We follow [14,16,17] and consider metric perturbations

caused by the string as solutions to a characteristic problem
[23], when the linearized Einstein equations are solved for
initial data on H. The equations are taken on a flat space-
time. The initial data are determined by a variation of the
gravitational field of the source on H generated by the
Carroll transformation.
A technique to study electromagnetic perturbations

caused by straight strings has been elaborated in [16,17].
In the present paper, we apply it to the gravitational
perturbations near the future null infinity. The asymptotic
of angular components of the metric at large distances r
from the source are shown to have the form

hABðr;U;ΩÞ≃ rðCABðU;ΩÞþ C̃ABðΩÞ lnðr=ϱÞÞþOðlnrÞ;
ð1:1Þ
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whereU is a retarded time,Ω are spherical coordinates, and
ϱ is a dimensional parameter related to the approximation.
Symmetric traceless tensors CAB, C̃AB are set in the tangent
space of a unit sphere S2, and CAB depends on two
polarizations of the gravity wave. Equation (1.1) holds if
r is large enough with respect to U and with respect to an
impact parameter between the string and the source.
The logarithmic term in (1.1) appears since standard

radiation conditions are violated in the presence of null
strings. Due to this term, the resulting geometry, sourced
by the string and a pointlike mass, belongs to a class of the
so called polyhomogeneous space-times [24]. The key
property of this class is in nonanalytical behavior at con-
formal null infinities and in the corresponding modification
of the peeling properties of the curvature invariants [25].
It has been realized in the last decades, however, that the
polyhomogeneous space-times are important to adopt
realistic radiation conditions in general relativity, see,
e.g., [26,27].
We show that (1.1) and the Einstein equations imply a

finite total emitted energy of gravity waves,

E ¼ 1

8πG

Z
∞

−∞
dU

Z
dΩ NABNAB; ð1:2Þ

where NAB is an analogue of the Bondi news tensor,
NAB ¼ 1

2
∂UCAB, and A, B are risen with the help of the

metric on S2. The logarithmic terms in (1.1) do not
contribute to E. In this work, we analytically calculate
NAB and an angular distribution of the averaged intensity of
the radiation.
The paper is organized as follows. Formulation of the

problem based on the method developed in [14,16] is
presented in Sec. II. A short review of null symmetries
which allow one to describe holonomy of the null string
space-time, as well as the discussion of the related Carroll
symmetries of the string event horizon, are given in Sec. II
A. The characteristic problem for perturbations generated
by a null string is formulated in Secs. II B and II C. A null
string moving in a locally flat space-time does not produce
a shock wave. In Sec. II D, we show that this statement is
true (at least in the leading order in perturbations) when the
string moves near gravitating sources. After necessary
preliminaries in Sec. III A, the perturbations caused by a
straight string and a pointlike source without spin are
described in Sec. III B. Their mathematical aspects and
interpretation as outgoing gravity waves are discussed in
Sec. IV. As is mentioned above, the perturbations have a
logarithmic nonanalyticity near the future null infinity and
belong to a class of asymptotically polyhomogeneous
space-times, see Sec. IVA. Properties of the dynamical
part of metric perturbations, which allow one to identify
them with spherical gravity waves, are discussed in Sec. IV
B. In Section IV C, we go beyond linearized approximation
to define the stress-energy pseudotensor of the gravitational

field. We show that the total radiated energy is finite. An
averaged (over the total observation time) intensity of the
radiation is considered in Sec. IV D. Like in the case of the
string generated electromagnetic radiation [16], the maxi-
mum of the intensity of gravity waves is near the line which
starts from the source and goes toward the direction of the
string motion. Since null strings are not straight even in
weak gravitational fields we describe, in Sec. IV E, under
which conditions our results for straight strings are robust.
We then calculate, in Section IV F, the average luminosity
to compare it with luminosities of astrophysical objects and
to show that effects related to spin (rotation) of the source
are suppressed. Perspectives to detect string generated
gravity waves, including gravity waves from clumps of
dark matter, are discussed in Sec. IVG. We finish with a
short summary in Sec. V. Some parts of our computations,
which are lengthy and tedious, are left for Appendix A. In
Appendix B, we demonstrate that the averaged trU compo-
nent of the stress-energy pseudotensor is invariant under
coordinate transformations which preserve the leading
asymptotic of the metric at null infinities.

II. FORMULATION OF THE PROBLEM

A. Strings, shock waves, and Carroll transformations

In this section, we give necessary definitions by follow-
ing notations of [17]. Consider a straight cosmic string
which is stretched along the z-axis and moves along the
x-axis. The space-time is locally Minkowski, R1;3, with the
metric

ds2 ¼ −dvduþ dy2 þ dz2; ð2:1Þ

where v ¼ tþ x, u ¼ t − x. The equations of the string
world sheet S are u ¼ y ¼ 0. The null rotations xμ ¼
Mμ

νðλÞx̄ν or

u ¼ ū; v ¼ v̄þ 2λȳþ λ2ū; y ¼ ȳþ λū; z ¼ z̄;

ð2:2Þ

where λ is some real parameter, leave invariant (2.1), and
make a subgroup of the Lorentz group. Transformations of
quantities with lower indices are

Vu ¼ V̄u − λV̄y þ λ2V̄v; Vv ¼ V̄v;

Vy ¼ V̄y − 2λV̄v; Vz ¼ V̄z; ð2:3Þ

or Vμ ¼ Mμ
νðλÞV̄ν, where Mμ

ν ¼ ημμ0η
νν0Mμ0

ν0 .
One can show [14,18] that a parallel transport of a vector

V along a closed contour around the string with energy E
results in the null rotation V 0 ¼ MðωÞV, where parameterω
is defined as

ω≡ 8πGE: ð2:4Þ
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The world sheet is a fixed point set of (2.2). To avoid
confusion, let us emphasize that (2.1) is not the metric of
the string space-time (as compared to (2.11), see below).
We use (2.1) only to set the stage for further analysis.
The null hypersurface u ¼ 0 is the event horizon of the

stringH. We enumerate coordinates v, y, z onH by indices
a; b;… Coordinate transformations (2.2) at u ¼ 0 (with
λ ¼ ω) induce the change of coordinates on H,

xa ¼ Ca
bx̄b or x ¼ x̄þ 2ωyq; qa ¼ δav; ð2:5Þ

where x≡ fv; y; zg. Matrix Ca
b can be defined as

Ca
b ¼ Ma

bðωÞ: ð2:6Þ

Transformations (2.5), (2.6) make the Carroll group
[21,22]. A review of Carroll transformations and their
applications can be found in [28,29]. The components of
one-forms θ ¼ θadxa and vector fields V ¼ Va

∂a on H, in
a coordinate basis, change as

θaðxÞ ¼ Ca
bθ̄bðx̄Þ; VaðxÞ ¼ Ca

bV̄bðx̄Þ; ð2:7Þ

where Ca
b ¼ Ma

b. Since Mb
u ¼ 0, the matrix Ca

b is
inverse of Ca

c. It should be noted, however, that indices
a, b cannot be risen or lowered since the metric of H is
degenerate.
By following the method suggested in [14], one can

construct a string space-time, which is locally flat but has
the required holonomy on S. One starts with R1;3 which is
decomposed onto two parts: u < 0 and u > 0. Trajectories
of particles and light rays at u < 0 and u > 0 can be called
ingoing and outgoing trajectories, respectively. To describe
outgoing trajectories, one introduces two types of coor-
dinate charts: R and L charts, with cuts on the horizon
either on the left (u ¼ 0, y < 0) or on the right (u ¼ 0,
y > 0). The initial data on the string horizon are related to
the ingoing data by the Carroll transformations (2.5). For
brevity, the right (u ¼ 0, y > 0) and the left (u ¼ 0, y < 0)
parts of H are denoted as Hþ and H−.
For the R charts the cut is along H−. If xμ and x̄μ are,

respectively, the coordinates above and below the horizon,
the transition conditions on H in the R charts look as

xajHþ ¼ x̄a; ð2:8Þ

xajH−
¼ Ca

bx̄b: ð2:9Þ

Analogously, three components of four-velocities of par-
ticles and light rays (with the lower indices) change on H−
as ua ¼ Ca

būb.
Coordinate transformations (2.9) are reduced to a linear

supertranslation of the single coordinate

v ¼ v̄þ 2ωy; y < 0: ð2:10Þ

As a result of the Lorenz invariance of the theory, the
descriptions based on R or L charts are equivalent. Without
loss of the generality, from now on, we work with the R
charts. In this case, all field variables experience Carroll
transformations on H−, and one needs to solve field
equations in the domain u > 0 with the initial data changed
on H−.
The gravitational field of a null string can be also

described by the metric

ds2 ¼ −dvdu − ωjyjδðuÞdu2 þ dy2 þ dz2; ð2:11Þ

where ω is defined by (2.4). This string space-time is
locally flat, except the world sheet, where the uu compo-
nent of the Ricci tensor has a delta-function singularity. The
delta function in (2.11) reflects the fact that the standard
coordinate chart is not smooth at H. Geometry (2.11) is a
particular case of gravitational shockwave backgrounds,

ds2 ¼ −dvduþ fðyÞδðuÞdu2 þ
X
i

dy2i ; i ¼ 1;…n:

ð2:12Þ
The hypersurface u ¼ 0 is the shock wave front. Shock
waves (2.12) are exact solutions of the Einstein equations
sourced by a stress-energy tensor localized at u ¼ 0 and
having the only nonvanishing uu component.
Penrose [19] viewed (2.11) as two copies of Minkowski

space-times glued along the hypersurface u ¼ 0 with the
shift of the v coordinate of the upper copy (u > 0) to
v − fðyÞ. This prescription is equivalent to approach
discussed above. Consider a coordinate chart with the
cut along the entire surface H and choose the Penrose
coordinate transformations,

v ¼ v̄þ ωjyj; u ¼ 0: ð2:13Þ

By comparing (2.13) with (2.10), one can see that coor-
dinates on H− are Carroll rotated by the “angle” ω=2 and
by −ω=2 onHþ. That is, the relative transformation onH�
is the rotation by “angle” ω, as it should be.
Penrose transformations for shock waves are called

“planar supertranslations”. This should not be confused
with supertranslations of the BMS group. In the case of null
strings, (2.13) belongs to the Lorentz subgroup of the
BMS group.
Instead of the approach we use in the present paper, one

may try to study perturbations caused by a massive source
by using (2.11) as a background metric of the string
space-time. This method would meet serious technical
challenges because of the delta-function singularities. A
mathematically rigorous approach would be to introduce a
regularization and show that a final result is finite and

GRAVITATIONAL WAVES GENERATED BY NULL COSMIC … PHYS. REV. D 109, 125009 (2024)

125009-3



regularization independent when the regularization is
removed. This seems to be a more complicated task.

B. Characteristic problem

Consider a space-timeMin whose metric is a solution to
linearized Einstein equations in the absence of the string,

ginμν ≃ ημν þ ĥμν: ð2:14Þ

Here, ĥμν is a first correction to the flat metric ημν due to the
presence of a point mass. We use (2.14) to describe the
metric below the string horizon.
A null cosmic string causes a perturbation hμν so that the

new metric above the string horizon (in the future of H)
takes the form

goutμν ¼ ginμν þ hμν: ð2:15Þ

We denote the corresponding manifold by Mout. In the
linearized approximation,

goutμν ≃ ημν þ hð1Þμν ; hð1Þμν ¼ ĥμν þ hμν: ð2:16Þ

If the trajectory of a point mass is not affected by the string
(in a suitable coordinate chart, see below), then outside the
string world sheet gout and gin are solutions of linearized
Einstein equations with the same source. Thus, problems

for ĥμν at u < 0 and for hð1Þμν at u < 0 can be written as

−□
�
ĥμν −

1

2
ημνĥ

�
¼ κTμν; ∂

μ

�
ĥμν −

1

2
ημνĥ

�
¼ 0;

ð2:17Þ

−□
�
hð1Þμν −

1

2
ημνhð1Þ

�
¼ κTμν; ∂

μ

�
hð1Þμν −

1

2
ημνhð1Þ

�
¼ 0;

ð2:18Þ

with □ ¼ −4∂u∂v þ ∂
2
y þ ∂

2
z . Here, ĥ ¼ ημνhμν,

hð1Þ ¼ ημνhð1Þμν , κ ¼ 16πG. The stress-energy tensor Tμν

has a delta-function-like form with a support on the
trajectory of the source. Here and in what follows, we
use the harmonic gauge since it is Lorentz invariant.

If we use decomposition hð1Þμν ¼ ĥμν þ hμν and
Eq. (2.17), the string caused perturbations hμν satisfy the
homogeneous linearized equations,

□hμν ¼ 0; ∂
μ

�
hμν −

1

2
ημνh

�
¼ 0; ð2:19Þ

To fix the solution of (2.19), one needs initial data on H.
In coordinates (2.1), the string world sheet S in the

leading approximation is taken in the previous form, as

u ¼ y ¼ 0, and equation of H as u ¼ 0. It should be noted
that u ¼ 0 is not null for the perturbed metrics unless
ĥuu ¼ huu ¼ 0. Although even weak perturbations may
cause drastic deformations of the string trajectory (for
example, they may create caustics) [9], we ignore them in
our approximation. Further comments on the role of
deformations of the string are given in Sec. IV E.
A new geometry sourced by the point mass and the string

is obtained by soldering along H the part of Min, which is
in the past of H, and Mout, which is in the future of H. As
has been discussed in Sec. II A, the soldering must be
accompanied by the Carroll transformation of gin. That is,
in the R chart, the condition looks as

goutab ðu ¼ 0;xÞ ¼ ginabðu ¼ 0;xÞ; y > 0; ð2:20Þ

goutab ðu ¼ 0;xÞ ¼ Ca
cCb

dgincdðu ¼ 0; x̄Þ; y < 0; ð2:21Þ

x ¼ fv; y; zg; x̄ ¼ x − 2ωyq; qa ¼ δav; ð2:22Þ

where Ca
c are the inverse Carroll matrix (2.6). By taking

into account (2.15) and the fact that Carroll transformations
are isometries of H, these conditions imply the following
initial data for string inspired perturbations:

habðu ¼ 0;xÞ ¼ 0; y > 0; ð2:23Þ

habðu¼ 0;xÞ ¼Ca
cCb

dĥcdðx̄Þ− ĥabðxÞ; y < 0; ð2:24Þ

where ĥabðxÞ are the values of ĥabðxÞ on H. At small ω
conditions, (2.24) are reduced to the Lie derivative,
habðu ¼ 0;xÞ ≃ ωLχ ĥabðxÞ, generated by the vector
field χa ¼ −2yqa.
If one prefers to work in the L chart, the metric of Mout

should be changed to

g̃outμν ðxÞ ¼ Mμ
λð−ωÞMν

ρð−ωÞgoutλρ ðxÞ:

In this chart, the soldering conditions on H are dual to
(2.20), (2.21). Now, components with indices a, b are
continuous on H− but undergo Carroll transformations
on Hþ.
In this work, we consider a pointlike source with mass

M. We assume that the source is at rest at a point with
coordinates xo ¼ zo ¼ 0; yo ¼ a > 0. Since the string
trajectory is x ¼ t, a is an impact parameter between the
string and the source. We take

ĥ00 ¼ rgϕ; ĥij ¼ rgδijϕ; ĥ0i ¼ 0; ð2:25Þ

where i, j, k correspond x, y, z, rg ¼ MG, and

ϕðx; y; zÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy − aÞ2 þ z2

p : ð2:26Þ
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One can check that (2.25) satisfy (2.17) and derive explicit
form of Tμν. In Sec. IV F, we also discuss effects when
(2.25) include components related to the spin of the source.

C. Auxiliary problem

For further purposes, it is convenient to introduce
components

h̄μν ¼ hμν −
1

2
ημνh; ð2:27Þ

□h̄μν ¼ 0; ∂
μh̄μν ¼ 0: ð2:28Þ

Accordingly, we redefine perturbation caused by the mass

ˆ̄hμν ¼ ĥμν −
1

2
ημνĥ;

ˆ̄h00 ¼ 2rgϕ;
ˆ̄hij ¼ ˆ̄h0i ¼ 0;

ð2:29Þ

where indices i, j, k correspond to x, y, z. Consider the
following auxiliary characteristic problem:

□h̄ab ¼ 0; ð2:30Þ

h̄abðu ¼ 0;xÞ ¼ 0; y > 0; ð2:31Þ

h̄abðu ¼ 0;xÞ ¼ Ca
cCb

d ˆ̄hcdðx̄Þ − ˆ̄habðxÞ y < 0: ð2:32Þ

If solutions of (2.30)–(2.32) are known, the rest compo-
nents of h̄uμ can be obtained from the gauge condi-
tions ∂μh̄μν ¼ 0.
Since□ ¼ −4∂u∂v þ :…, the derivatives of fields over u

at u ¼ 0 are not independent, and the initial data include
only values of fields. Thus, we come to the characteristic
problem for six components h̄ab. In the harmonic gauge
there are four residual coordinate transformations generated
by a vector field χμ provided that □χμ ¼ 0. Thus, the
characteristic initial value problem depends on two physi-
cal degrees of freedom.
Let us show that the solution h̄μν of the auxiliary problem

results, with the help of (2.27), in the solution hμν of our
problem with conditions (2.23), (2.24). To do this, we note
that the solution of the auxiliary problem can be written as

h̄μνðxÞ ¼ Mμ
λðωÞMν

ρðωÞΦλρðx̄Þ −ΦμνðxÞ; ð2:33Þ

where x̄ are defined by (2.2), and

□Φμν ¼ 0; ∂
μΦμν ¼ 0; ð2:34Þ

Φabðu ¼ 0;xÞ ¼ 0; y > 0; ð2:35Þ

Φabðu ¼ 0;xÞ ¼ ˆ̄habðxÞ; y < 0: ð2:36Þ

The proof of (2.33) follows from the Lorentz invariance of
(2.34) and relation between null rotations Mμ

νðωÞ and the
Carroll transformations Ca

b.
The values of Φuμ on H− can be found from the gauge

conditions and Eq. (2.34),

Φuað0; v; y; zÞ ¼
1

2

Z
v

−∞

�
∂iΦiað0; v0; y; zÞ

−
1

2

Z
v0

−∞
∂
2
iΦvað0; v00; y; zÞdv00

�
dv0;

ð2:37Þ

Φuuð0; v; y; zÞ ¼
1

2

Z
v

−∞
ð∂iΦiuð0; v0; y; zÞ

− 2∂uΦvuð0; v0; y; zÞÞdv0; ð2:38Þ

where i ¼ y, z. The right-hand side of (2.38) is determined
by (2.37). Integrals in (2.37), (2.38) converge at v → −∞
for y < 0. On the basis of (2.36), one concludes that

Φuμðu ¼ 0;xÞ ¼ 0; y > 0;

Φuμðu ¼ 0;xÞ ¼ ˆ̄huμðxÞ; y < 0: ð2:39Þ

Another way to get Φuμ on H− is to note that the gauge

conditions and equations for perturbations ˆ̄hμν near H−
coincide with those for Φμν. That is, (2.36) imply (2.39).
Now, by using Eqs. (2.27), (2.33), (2.36), and (2.39), we

prove that our solution does obey the required conditions
(2.23), (2.24). This means that instead of solving the
problem formulated in Sec. II B it is enough to deal with
more simple problems (2.28)–(2.32) or (2.34)–(2.36).

D. Shock wave geometry without a shock wave

Soldering space-times along null hypersurfaces is an
interesting technique in general relativity which has been
studied in a number of publications to describe null
shells and, in particular, shock wave geometries. The
soldering results in jumps of the components of the
Riemann tensor on the null hypersurface. The jumps
determine the Barrabes-Israel stress-energy tensor of the
surface layer [30], which yields the surface energy density
and the pressure of shock waves. In fact, two given space-
times can be soldered along a null surface by infinitely
many physically different ways [31].
In this section, we show that our conditions (2.29) do not

result in jumps of the Riemann tensor, and therefore, no
shock waves appear whose wave front carry any energy. We
follow [32] where the jumps of the curvature have been
defined in terms of the transverse curvature tensor

Cab ¼ eμaeνbnμ;ν; ð2:40Þ
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where ea are vectors tangent to the null hypersurface,
ev ¼ l and n are lightlike, and ðn · lÞ ¼ −1, ðn · eiÞ ¼ 0,
see details in [32]. The Barrabes-Israel stress-energy tensor
is nontrivial if ½Cab�≡ Cinab − Coutab ≠ 0. As is easy to see, the
surface stress-energy tensor in the considered case is (up to
unimportant normalization)

½Cab� ¼ hab;u − hau;b − hbu;a: ð2:41Þ

It is convenient to use the R chart (L chart) to show
that ½Cab� ¼ 0 on Hþ (H−). In the R chart, it is enough to
show that

h̄ab;uðu ¼ 0;xÞ ¼ h̄au;bðu ¼ 0;xÞ ¼ h̄uv;uðu ¼ 0;xÞ ¼ 0;

y > 0: ð2:42Þ

Conditions h̄ab;u ¼ 0 follow from □h̄ab ¼ 0. Given this
and gauge equations ∂

μh̄μa ¼ 0, one concludes that
∂vh̄ua ¼ 0. If we require that hua vanishes at jvj → ∞,
then h̄ua ¼ 0 on Hþ. It follows then from □h̄ua ¼ 0 that
h̄ua;u ¼ 0. Thus, ½Cab� ¼ 0 on Hþ. Analogous arguments
can be used in the L chart to show that ½Cab� ¼ 0 on H−.

III. PERTURBATIONS

A. Preliminaries

As has been explained in Sec. II C, perturbations caused
by the string can be found from solutions to characteristic
problem (2.30)–(2.32). We show that the perturbations
have a form of outgoing gravitational waves with asymp-
totic (1.1). To describe this asymptotic behavior, it is
convenient to go from (2.1) to retarded time coordinates,

ds2 ¼ −dU2 − 2dUdrþ r2dΩ2; ð3:1Þ

where U ¼ t − r and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. We denote

coordinates θ;φ on the unit sphere by xA, dΩ2 ¼
γABdxAdxB ¼ sin2θdφ2 þ dθ2. Our results are expressed
in terms of a unit vector n⃗ with components
nx ¼ x=r; ny ¼ y=r; nz ¼ z=r. If ⃗l is a unit vector along
the velocity of the string, p⃗ is another unit vector along
the string axis (li ¼ δix, pi ¼ δiz), then nx ¼ ðn⃗ · ⃗lÞ,
nz ¼ ðn⃗ · p⃗Þ. We use coordinates (3.1) above the string
horizon, u > 0. In this region, U > −rð1 − nxÞ. The region
includes the domainU > 0. At r → ∞, no restrictions onU
appear.
The maximum of the luminosity is close to the moment

U ¼ 0. Positions of null surfaces U ¼ 0, u ¼ 0, the string
world sheet, and the trajectory of the point mass are shown
on Fig. 1.
As we see, solutions to problem (2.30)–(2.32) can be

generated by a solution of the following scalar problem:

□Φωðu;xÞ ¼ 0; Φωð0;xÞ ¼ θð−yÞ fωðxÞ; ð3:2Þ

fωðxÞ≡ fðx̄Þ; fðxÞ≡ ϕðv=2; y; zÞ: ð3:3Þ

Here, x̄ is defined in (2.22) and ϕðx; y; zÞ in (2.26). The
solution has a useful integral representation found in [16],

ΦωðxÞ ¼ −C
Z
S2
dΩ0ℜ

�
Φ̃ωðΩ0Þ

x ·mðΩ0Þ þ iaεðΩ0Þ
�
;

Φ̃ωðΩ0Þ≡ cosφ0

gðΩ0;ωÞ ; ð3:4Þ

where C ¼ 1=ð8π3Þ. The integration goes over a unit
sphere S2, with coordinates Ω0 ¼ ðθ0;φ0Þ, dΩ0 ¼
sin θ0dθdφ0. Other notations are

mu ¼ 1 − sin2θ0cos2φ0; mv ¼ sin2θ0cos2φ0;

my ¼ sin 2θ0 cosφ0; mz ¼ sin2θ0 sin 2φ0;

gðΩ0;ωÞ ¼ eiθ
0 þ ω sin θ0 cosφ0; εðΩ0Þ ¼ 2sin2θ0 cosφ0:

ð3:5Þ

One can check that vector field mμ is null, m2 ¼ 0, which
guarantees that □Φω ¼ 0.

B. Exact form of perturbations and asymptotics

Boundary components of the metric of the source, which
determine conditions (2.32), are

FIG. 1. The world sheet of the string S, the string horizon
H ¼ Hþ ∪ H−, and a trajectory of pointlike mass (the dashed
line) that crosses Hþ. At late times, gravity waves generated by
the string and the mass propagate along null cones U ¼ C.
Shown is the cone U ¼ 0 which is tangent to H and has the apex
approximately at a point where the trajectory of the source
crosses the horizon.
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ĥvvðxÞ ¼
rg
2
fðxÞ; ĥviðxÞ ¼ ĥijðxÞ ¼ 0; i; j ¼ y; z;

ð3:6Þ

h̄vvðu ¼ 0;xÞ ¼ rg
2
θð−yÞðfωðxÞ − fðxÞÞ;

h̄yyjH−
¼ 2rgθð−yÞω2fωðxÞ;

h̄vyjH−
¼ −ωrgθð−yÞfωðxÞ; h̄zajH−

¼ 0; ð3:7Þ

where fðxÞ; fωðxÞ are defined in (3.3). Equations (3.7) can
be obtained with the help of (2.3).
Solution h̄abðxÞ to (2.30)–(2.32) can be expressed by

using (3.2) as

h̄vvðxÞ ¼
rg
2
ðΦωðxÞ −ΦðxÞÞ; h̄yyðxÞ ¼ 2rgω2ΦωðxÞ;

h̄vyðxÞ ¼ −ωrgΦωðxÞ; h̄zaðxÞ ¼ 0; ð3:8Þ

where ΦðxÞ ¼ Φω¼0ðxÞ. With gauge conditions and
Eq. (3.8), one can construct other components h̄μν. As a
result, the string generated perturbations at u > 0 can be
represented in the following integral form:

hμνðxÞ ¼ −C
Z
S2
dΩ0ℜ

�
βμνðΩ0Þ

x ·mðΩ0Þ þ iaεðΩ0Þ
�
; ð3:9Þ

βμν ¼ β̄μν −
1

2
ημνβ̄; ð3:10Þ

β̄vv ¼
rg
2
ðΦ̃ω − Φ̃Þ; β̄vy ¼ −rgωΦ̃ω; ð3:11Þ

β̄yy ¼ 2rgω2Φ̃ω; β̄za ¼ 0: ð3:12Þ

The gauge conditions are reduced to

mμβ̄μν ¼ 0; ð3:13Þ

and allow one to find

β̄ua ¼
1

2mv
β̄abmb; β̄uu ¼

1

4m2
v
β̄abmamb: ð3:14Þ

Equations (3.13) fix the components up to transformations
βμν → βμν þ aμmν þ aνmμ, where aμmμ ¼ 0. This freedom
corresponds to some coordinate transformations which
do not change (1.1) and the total radiated energy (1.2).
The arbitrariness is eliminated, if βab are required to be
unchanged.
The subsequent analysis is based on arguments analo-

gous to those of [17] for electromagnetic pulses caused by
null strings. In coordinates U; r; xA, the denominator in
(3.9) can be written as

xμmμ þ iaε ¼ U þ rðm⃗ · n⃗þ 1Þ þ iaε;

where n⃗ ¼ x⃗=r, xi ¼ x; y; z, is the unit vector defined
above. We are interested in an asymptotic of (3.9) at large
r. The integration in (3.9) can be decomposed into two
regions: a domain, where the factor ðm⃗ · n⃗Þ þ 1 is small,
that is, m⃗ is almost −n⃗, and the rest part of S2. Let us
introduce a dimensionless parameter Λ such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ a2

p

r
≪ Λ2 ≪ 1: ð3:15Þ

We define the first region as ðm⃗ · n⃗Þ þ 1 ≤ Λ2, and the
second region as ðm⃗ · n⃗Þ þ 1 > Λ2 After some algebra, one
gets the following estimate (for components in the
Minkowski coordinates) for the first region:

h1;μνðr;U;ΩÞ ≃ NðΩÞ
r

ℜ

�
β̃μν ln

�
U þ iaε̄þ rΛ2

U þ iaε̄

��
;

ð3:16Þ

β̃μν ¼ βμνjm⃗¼−n⃗; ε̄ ¼ εjm⃗¼−n⃗; ð3:17Þ

NðΩÞ ¼ 1

4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1 − nx

s
: ð3:18Þ

The leading large r approximation in the second region can
be easily computed,

h2;μνðr;U;ΩÞ ≃ b2;μνðΩ;ΛÞ
r

;

b2;μνðΩ;ΛÞ ¼ −C
Z
S2Λ

dΩ0ℜ
�

βμνðΩ0Þ
n⃗ · m⃗ðΩ0Þ þ 1

�
: ð3:19Þ

Here, S2Λ is a part of S2 with the restriction ðm⃗ · n⃗Þ þ
1 > Λ2. As a result of (3.16), (3.19), the solution at large r
is a sum of a static, hs;μν, and a time-dependent or
dynamical, hd;μν, parts,

hH;μνðr;U;ΩÞ ≃ h1;μν þ h2;μν ¼ hs;μν þ hd;μν; ð3:20Þ

hs;μνðr;U;ΩÞ ≃ bμνðΩ;ΛÞ
r

;

bμνðΩ;ΛÞ ¼ NðΩÞℜ β̃μνðΩÞ lnðr=ϱÞ þ b2;μνðΩ;ΛÞ;
ð3:21Þ

hd;μνðr; U;ΩÞ ≃HμνðU;ΩÞ
r

;

HμνðU;ΩÞ ¼ NðΩÞℜ
�
β̃μν ln

�
U þ iaε̄

a

��
; ð3:22Þ

where ϱ ¼ a=Λ2. It is the dynamical part which contributes
to the energy flux.
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Although contribution from the massive source and the
created dynamical perturbation enter (3.20) on an equal
footing, one should keep in mind that field of the source is
proportional to the mass m while the dynamical perturba-
tion is proportional to ωm. Since ω is extremely small, the
perturbations caused by the string are many orders of
magnitude smaller than gravitational field of the mass.

IV. CALCULATING THE FLUX
OF GRAVITY WAVES

A. Polyhomogeneous space-times

According to Eqs. (2.14) and (2.15), the metric of space-
time sourced by the mass and the straight null string in the
linear approximation has the form (2.16). It has been shown
in the previous section that perturbations at the future null
infinity have the following asymptotics (in Minkowsky
coordinates):

hð1Þμν ðr; U;ΩÞ ≃ r−1ðHð1Þ
μν ðU;ΩÞ þ lnðr=ϱÞH̃ð1Þ

μν ðΩÞÞ
þOðr−2 ln rÞ; ð4:1Þ

Hð1Þ
μν ðU;ΩÞ ¼ HμνðU;ΩÞ þ ĤμνðΩÞ: ð4:2Þ

Here, Hμν is defined in (3.22), and Ĥμν is a static
contribution of the gravitational field of the source deter-
mined by (2.25). The gauge conditions in (2.19) impose
constraints on the amplitudes. According to Eqs. (3.21),

(3.22), HμνðU;ΩÞ and H̃ð1Þ
μν ðΩÞ depend on the complex

tensor β̃μνðΩÞ defined in (3.17). Equations (3.13) and (3.17)
imply the constraints related with the gauge conditions,

m̄μ

�
β̃μν −

1

2
ημνβ̃

�
¼ 0; ð4:3Þ

where m̄ is a past-directed null vector with components
m̄0 ¼ −1; m⃗ ¼ −n⃗. This vector is nothing but a null normal
of the light cone U ¼ 0, see Fig. 1. That is, mμ ∼ δUμ . In
coordinates (3.1), consequences of (3.21), (3.22), and (4.3)
are

Hrν −
1

2
ηrνH ¼ 0; H̃ð1Þ

rν −
1

2
ηrνH̃ð1Þ ¼ 0; ð4:4Þ

Hrr ¼ HrA ¼ γABHAB ¼ 0; H̃ð1Þ
rr ¼ H̃ð1Þ

rA ¼ γABH̃ð1Þ
AB ¼ 0;

ð4:5Þ

where γAB is the metric on a unit two-sphere.
Asymptotic (4.1), however, is not “standard” due to

the presence of the logarithmic terms with amplitude

H̃ð1Þ
μν ðΩÞ. Such space-times are called asymptotically poly-

homogeneous space-times [24]. Their key property is in
nonanalytical behavior at conformal null infinities, see,

e.g., [33–40]. The logarithmic terms result in the corre-
sponding modification of the peeling properties of the
curvature invariants [25].
To see this, we can follow a standard method and

calculate Newman-Penrose curvature scalars,

Ψ0 ¼ Cμνρσlμmνlρmσ; Ψ1 ¼ Cμνρσlμnνlρmσ; ð4:6Þ

Ψ2 ¼ Cμνρσlμmνm̄ρnσ; Ψ3 ¼ Cμνρσlμnνm̄ρnσ;

Ψ4 ¼ Cμνρσnμm̄νnρm̄σ ð4:7Þ

constructed out of the Weyl tensor Cμνλρ. A null tetrade is
defined in coordinates (3.1) as

l ¼ 1ffiffiffi
2

p ∂r; n ¼ 1ffiffiffi
2

p ð2∂U − ∂rÞ;

m ¼ 1ffiffiffi
2

p
r

�
∂θ þ

i
sin θ

∂ϕ

�
; m̄ ¼ m� ð4:8Þ

such that l2 ¼ n2 ¼ m2 ¼ 0, ðl · nÞ ¼ −1, ðm · m̄Þ ¼ 1.
“Standard” asymptotic properties imply thatΨn ∼ rn−5 at

large r. However, in the considered case, one finds in the
linear approximation that

Ψ0 ∼
ψ0

r3
; Ψ1 ∼

ψ1

r3
ln r; Ψ2 ∼

ψ2

r3
ln r;

Ψ3 ∼
ψ3

r3
ln r; Ψ4 ∼

ψ4

r
; ð4:9Þ

ψ0 ¼ ξAξBH̃ð1Þ
AB; ψ1 ¼ ξA∂AH̃

ð1Þ
Ur;

ψ2 ¼ ð2H̃ð1Þ
Ur þ 2ðH̃ð1Þ

Ur − H̃ð1Þ
UUÞ þ 2ðξ̄AξB − ξAξ̄BÞ∂AH̃ð1Þ

UB;

ψ3 ¼ ξ̄Að2∂AH̃ð1Þ
UU − ∂AH̃

ð1Þ
UrÞ; ψ4 ¼ ξ̄Aξ̄B∂2UCAB;

ð4:10Þ

where ξ ¼ rm and ðA is the covariant derivative on S2, and
CABðU;ΩÞ≡HABðU;ΩÞ. The same formula for ψ0 can be
found in [33]. Asymptotics of Ψ0, Ψ1, Ψ2 also correspond
to results of [41].
The logarithmic terms in (4.1) result in static tidal forces.

For instance, a test massive particle, which is at rest at a
distance rwith respect to the considered source, acquires an
additional constant coordinate acceleration with compo-
nents δwr ∼ r−2 ln rH̃UU, δwA ∼ r−3 ln rðH̃UUÞ;A. Hence, a
distance L between two nearby test particles changes after a
time T by δL ∼ Lr−3ωrgT2 ln r.

B. Metric perturbations as gravity waves

Our interest is in the dynamical (time-dependent) part
hd;μνðr; U;ΩÞ ≃ r−1HμνðU;ΩÞ of metric perturbations in
(4.1). Gauge conditions in (2.19) are invariant under
residual coordinate transformations,
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δxμ ¼ ζμðxÞ; □ζμ ¼ 0: ð4:11Þ

These transformations can be used to impose further

restrictions on Hð1Þ
μν . We assume the following asymptotic

form, in the Minkowsky coordinates:

ζμðxÞ ∼ r−1ðσμðU;ΩÞ þ σ̃μðU;ΩÞ ln rÞ þOðr−2 ln rÞ:
ð4:12Þ

One can show that equations □ζμ ¼ 0 imply only that
∂Uσ̃μ ¼ 0, and subleading terms in (4.12) are determined
by σμ and σ̃μ. Calculations also show that (4.11) generate

transformations of the metric perturbations ðh0Þð1Þμν ¼ hð1Þμν þ
∇μζν þ∇νζμ so that asymptotic form of ðh0Þð1Þμν coincides
with (4.1) where the components of the dynamical part now
look as

H0
rμ ¼ Hrμ; H0

AB ¼ HAB; ð4:13Þ

H0
UU ¼ Hð1Þ

UU þ 2∂UσU; H0
Ur ¼ HUr þ ∂Uσr;

H0
UA ¼ Hð1Þ

UA þ ∂UσA: ð4:14Þ

Therefore, the residual transformations can be used to
impose additional conditions on the dynamical part

HUμ ¼ 0: ð4:15Þ

By taking into account (4.5), one can readily conclude that
the only nonvanishing components are spherical compo-
nents, CABðU;ΩÞ, which appear in (1.1). In the Minkowsky
coordinates t; xi, the nonzero components of the dynamical
part of perurbation (4.1) can be written as

hd;ijðr;U;ΩÞ ≃ r−1HijðU;ΩÞ; Hij ¼ yA;iy
B
;jCAB;

ð4:16Þ

Hijδ
ij ¼ 0; xiHij ¼ 0; ð4:17Þ

where yA ¼ ðθ;φÞ. Time components of the perturbation
vanish as a result of (4.15). The dynamical perturbations are
spatially traceless and orthogonal to the direction of motion
set by vector xi.
Thus, traceless tensors Hij or CAB can be interpreted as

amplitudes of outgoing gravitational waves. Constraints
(4.17) leave two independent degrees of freedom which can
be related to two polarizations. By doing decomposition of

Hð1Þ
ij over the spherical harmonics along the lines of [42],

one gets a multipole expansion of the gravitational radi-
ation, including a quadrupole term.
A coordinate invariant nature of this conclusion can be

seen if we use the Bel decomposition and calculate
asymptotic of the electrogravitic (or tidal) tensor

Eμν ¼ Rμλνρuλou
ρ
o; ð4:18Þ

where uo is a four-velocity vector of a distant observer. We
assume this observer is at rest. By taking into account that
in the considered case the Riemann and Weyl tensors
coincide, one finds the following expressions for invariants
constructed out of Eμν with the help of tetrades ep, defined
in (4.8),

Ell ¼ Enn ¼ −Eln ¼ Emm̄ ¼ Ψ2 þ Ψ�
2; ð4:19Þ

Emm ¼ Ψ0 þ Ψ�
4; −Elm ¼ Enm ¼ Ψ1 −Ψ�

3; ð4:20Þ

where Epq ¼ Eμνe
μ
peνq. According to (4.9), (4.10), at future

null infinity

Emm ∼ Ψ�
4 ∼

ξAξB∂2UCAB

r
; ð4:21Þ

while other nonvanishing components of Epq decay faster
than 1=r. Thus, the strain tensor CAB of the gravity wave
determines the leading asymptotic of the electrogravitic
tensor. This also determines the leading term,

EμνEμν ∼
2

r2
∂
2
UCAB∂

2
UC

AB þOðr−4Þ; ð4:22Þ

in the so called superenergy scalar.

C. Going beyond the linearized approximation

We analyze now the energy carried away by gravity
waves in case of this sort of polyhomogeneous space-times.
By following the standard approach [43–45], to this aim,
one needs to go beyond the linearized approximation and
write

goutμν ≃ ημν þ hð1Þμν þ hð2Þμν ; ð4:23Þ

instead of (2.16). Second order correction hð2Þμν is deter-
mined by the Einstein equations

Gμν ¼
1

2
κTμν; ð4:24Þ

where Tμν is the stress-energy tensor of the source which
first appeared in (2.17). By taking into account the

linearized equations for hð1Þμν , one gets from (4.24)

Gð1Þ
μν ðhð2ÞÞ ¼ −Gð2Þ

μν ðhð1ÞÞ≡ 1

2
κtμν; ð4:25Þ

whereGðkÞ is a term in decomposition of the Einstein tensor
Gμν over the flat metric which contains kth power of hð1Þ.
The quantity tμν is the pseudotensor of the gravitational
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field. It is divergence free, ∂μtμν ¼ 0, since ∂μGð1Þ
μν ¼ 0. The

energy flow is determined by trU.
We proceed with computations in the harmonic gauge,

∂
μh̄ð1Þμν ¼ ∂

μh̄ð2Þμν ¼ 0. Then, the left and right sides of (4.25)
are

ðGð1ÞÞrUðhð2ÞÞ ¼ −
1

2
□ðhð2ÞÞrU

¼ −
1

2

�
∂
2
r − 2∂U∂r −

2

r
ð∂U − ∂rÞ

þ 1

r2
ððAðA − 2Þ

�
ðhð2ÞÞrU þ 1

r3
ðAhð2ÞUA;

ð4:26Þ

− ðGð2ÞÞrUðhð1ÞÞ ¼
1

4
ð∂Uðhð1ÞÞAB∂Uðhð1ÞÞAB

− ∂
2
Uððhð1ÞÞABðhð1ÞÞABÞÞ: ð4:27Þ

We now suppose that hð2Þ has asymptotic behavior

hð2Þμν ðr; U;ΩÞ ≃ r−1ðHð2Þ
μν ðU;ΩÞ þ lnðr=ϱÞH̃ð2Þ

μν ðU;ΩÞ
þ ln2ðr=ϱÞQ̃ð2Þ

μν ðU;ΩÞÞ þOðr−2ln2rÞ:
ð4:28Þ

The differences between (4.1) and asymptotic (4.28) are the
following: (i) we admit possibility of higher order powers
of the logarithms [33–38], and (ii) we do not require that
amplitudes H̃ð2Þ, Q̃ð2Þ are static. Also note that conditions
(4.4), (4.5) are not to be applicable to Hð2Þ, H̃ð2Þ, Q̃ð2Þ. One
can show that the harmonic gauge conditions imply only
time independence of some components,

∂UH
ð2Þ
rμ ¼ ∂UH̃

ð2Þ
rμ ¼ ∂UQ̃

ð2Þ
rμ ¼ 0; μ ¼ r; A; ð4:29Þ

∂UðγABHð2Þ
ABÞ ¼ ∂UðγABH̃ð2Þ

ABÞ ¼ ∂UðγABQ̃ð2Þ
ABÞ ¼ 0: ð4:30Þ

Substitution of (4.1) in (4.27) and (4.28) in (4.26) yields

ðGð1ÞÞrUðhð2ÞÞ ≃
1

r2
∂UðH̃ð2ÞÞrU þ 2

r2
∂UðQ̃ð2ÞÞrU

lnðr=ϱÞ þOðr−3 ln2rÞ; ð4:31Þ

trU ≃
2

κr2
ðNABNAB − ∂UðCABNABÞ− ∂UðH̃ð1Þ

ABN
ABÞ lnðr=ϱÞÞ

þOðr−3ln2rÞ; ð4:32Þ
where NAB ≡ 1

2
∂UCAB and indices A, B are now risen with

the metric on unit S2. From Eq. (4.25), one comes to
relations between first order and second order perturbations
in (4.23),

∂UðH̃ð2ÞÞrU ¼ −NABNAB þ ∂UðCABNABÞ; ð4:33Þ

2∂UðQ̃ð2ÞÞrU ¼ ∂UðH̃ð1Þ
ABN

ABÞ: ð4:34Þ

Equation (4.34) justifies inclusion of the ln2 r term in
(4.28). It is interesting to note that in the harmonic gauge

only the logarithmic terms in hð2Þμν are responsible for the
flux of gravity waves.

D. Intensity of the gravitational radiation

The stress-energy pseudotensor tμν depends on the chosen
gauge, and it does not describe any localized energy. The
physical meaning can be attributed to the global energy
obtained by integrating t00 over a spacelike hypersurface.
This integrated quantity should be invariant under coor-
dinate transformations which preserve the leading asymp-
totic of the metric, see, e.g., [45]. We demonstrate this
property in Appendix B for trU component.
Consider the integrated energy in a ball r ≤ R of a

sufficiently large radius R. The change of the energy with
time is given by the energy flux through the spherical
boundary,

WðU;RÞ ¼
Z
r¼R

dΩ r2 trUðr; U;ΩÞ: ð4:35Þ

This quantity is certainly not finite in the limitR → ∞ due to
the presence of the logarithmic term in the rhs of (4.32). To
understand whether this divergence is physically relevant,
one needs to calculate the energy

EðU2; U1; RÞ ¼
Z

U2

U1

dU WðU;RÞ; ð4:36Þ

emitted over a period of time U2 −U1 ≡ ΔU (U2 > 0,
U1 < 0) much larger than a typical wavelength of the system.
Since the impact parameter a can be interpreted as a “size” of
the system (the string and the mass), which determines a
durationof thegravitational pulse andan effectivewavelength
of the emitted radiation, one needs ΔU ≫ a.
When integrating trU overU, contributions of the last two

terms in the rhs of (4.32) are suppressed at jUj ≫ a as a
result of the following asymptotics:

CABNAB ∼U−1 lnðjUj=aÞ;
H̃ð1Þ

ABN
AB lnðr=ϱÞ ∼U−1 lnðr=ϱÞ: ð4:37Þ

Let us remind that our approximation is obtained under
assumption (3.15) which implies that jUj ≪ R. If one puts
Ui ¼ ciR, where ci are some constants, jcij ≪ 1, c2 > 0,
c1 < 0, and takes into account (4.37), the total radiated
energy E defined below does not depend on the logarithmic
terms at large R and takes the form

E ¼ lim
R→∞

Eðc2R; c1R;RÞ ¼
2

κ

Z
∞

−∞
dU

Z
dΩNABNAB:

ð4:38Þ
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We conclude that the logarithmic divergence in the flux
disappears when averaging the radiated energy on time
intervals much larger than the impact parameter a. So the
divergence is irrelevant.
In a similar way, we define an averaged intensity of the

flux as

IðΩÞ≡ 1

a
lim
R→∞

Z
c2R

c1R
dU R2trUðR;U;ΩÞ

¼ 2

aκ

Z
∞

−∞
dUNABNAB: ð4:39Þ

The relation between the averaged intensity and the total
emitted energy is

E ¼ a
Z

dΩ IðΩÞ: ð4:40Þ

Straightforward but tedious computations presented in
Appendix A yield

IðΩÞ ¼ πNðΩÞ2
4κε̄ðΩÞ

�
αðΩÞ þ γðΩÞ

a2ε̄2ðΩÞ
�
; ð4:41Þ

where N is defined in (3.18), ε̄ in (A5), and α, γ in
(A13), (A15).
Angular distribution of the logarithm of the intensity is

shown on Fig. 2. The picture looks similar to the case of
electromagnetic radiation generated by a straight null string
and an electric of magnetic-dipole pointlike source. The
intensity is concentrated near the line which goes through
the source parallel to the velocity of the string and in the
direction of the string motion.
Let us emphasize that we present IðΩÞ just to give a

qualitative picture of the angle distribution of the gravita-
tional radiation. We do not discuss in the present work more
physically interesting characteristics, such as, for example,
response of gravitational detectors to string generated
gravitational waves.

E. Deformation of the string and displacement
of the source

The results obtained for metric perturbations imply that
the position of the source is fixed, and the string is straight.
In reality, the source and each point of the string move
along their geodesics in a weak gravitational field. Changes
in the position of the source and in the form of the string
may affect the analysis given above. To estimate possible
corrections, we assume that each small section of the string
contributes independently to the metric perturbation [7].
Let a0 þ δa be an impact parameter of a given section,

where a0 is an impact parameter of the section for straight
string and initial position of the source. An addition, δa
appears due to the deformation of the string and the
displacement of the source. If δa=a0 is small for each
segment of the string, then correction to the perturbation of
the metric should be suppressed by factor Oðmaxðδa=a0ÞÞ
as compared to the main effect.
The interaction of the string with the source takes an

infinite time, so δa even in the weak gravitational field of
the source can be infinitely large. However, the flux of
gravitational radiation, determined by NABNAB, describes
the gravitational burst at moments U ∼OðaÞ. Since δa
during this time are expected to be of order rg (see explicit
calculations in [9]), the relative correction for the contri-
bution of the each section of the string, and, accordingly, of
the entire string, is suppressed by factor Oðrg=aÞ. This
effect is small enough to be neglected.
As for the displacement of the source under the action of

the gravity wave, the acceleration of the source can be
estimated as ωrg=a2. During a time interval ΔU ¼ OðaÞ,
the source may be moved at a distance not larger than
OðωrgÞ. This displacement is extremely small and does not
affect our results as well.

F. Averaged luminosity and spin effects

Let us estimate now the averaged luminosity of the flux,
which can be crudely defined as

Ė≡ E
a
∼ C

ω2

a2
r2g
G
; ð4:42Þ

where C is a numerical coefficient, C < Oð10−2Þ, and
rg ¼ 2MG is the gravitational radius of the source. For
tensile cosmic strings with tension μ, the CMB spectrum
yields the constraint Gμ ≤ 10−7, see [46–48], while the
stochastic gravitational wave background gives a stronger
limit, Gμ ≤ 10−12, see [1].
Since we are dealing with gravitational radiation, the

parameter ω0 ¼ 1 × 10−12 can be used as some reference
value, and (4.42) can be rewritten as

Ė ∼ C

�
ω

ω0

�
2
�
rg
a

�
2

× 1036
erg
s
: ð4:43Þ

FIG. 2. Angular distribution of the logarithm of the averaged
intensity of the generated gravitational radiation. The intensity
is concentrated in the direction of the string motion, on the
axis y ¼ z ¼ 0.
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Thus, a null string and a massive source with impact
parameter a ¼ 10rg and ω ∼ ω0 have the luminosity of
the order 1034 erg per second, which is comparable
with gravity wave luminosity of such systems as the
double pulsar PSR B1913þ 16. Yet such luminosity
is extremely smaller than the peak luminosity of gravita-
tional radiation produced by binary black hole mergers
(about 1056 erg per second).
If the source has a spin Jj, there will be nontrivial

components in Eq. (2.25),

ĥ0i ¼ 4G εijkJj∂kϕ; ð4:44Þ

where i, j, k correspond x, y, z. These components yield
additional contributions to string generated gravity waves.
As a result one expects two additions to (4.43): one is
due to the radiated energy EmJ proportional to mass m of
the source and spin J, and another, EJ, is of the second
order in J. By taking into account that spin factors may
appear in the dimensionless combination GJ=a2, it is
easy to come to the following estimates:

ĖmJ ∼ Ė

�
a
rg

��
GJ
a2

�
; ð4:45Þ

ĖJ ∼ Ė

�
a
rg

�
2
�
GJ
a2

�
2

: ð4:46Þ

Suppose the source is a Kerr black hole. In this case, one
can introduce the black hole parameter abh ¼ J=M, such
that the black hole is extremal if abh ¼ MG. Relations
(4.45), (4.46) can be transformed as follows:

ĖmJ ∼ Ė

�
abh
a

�
; ð4:47Þ

ĖJ ∼ Ė

�
abh
a

�
2

: ð4:48Þ

Thus, contributions to the luminosity from the spin
are suppressed by factors of abh=a < rg=a, as com-
pared to the luminosity due to the mass of the source.
One can neglect spin effects in crude estimates of the
luminosity.

G. Detection of string generated gravity waves

As it follows from Eqs. (3.20)–(3.22), the amplitude of
a gravitational wave outgoing from the string and a
source has the order of magnitude h ∼ ωrg=r. Earth-based
gravitational antenna have the sensitivity to gravity waves
with wavelengths in the interval 50–500 km and ampli-
tude ∼10−21. Thus, the impact parameter a of our system
has to be of the same order, and the most suitable
sources to produce gravity waves from moving null

strings are stellar mass black holes with rg ∼ 1 km.
For ω ¼ Oð10−12Þ and a black hole located in a nearby
galaxy, say, in the Andromeda Galaxy (M31), with the
distance to the Earth about r ∼ 1 Mpc ∼ 1019 km, the
amplitude of the gravity wave would be ∼10−31, too
small to be detected. Gravity waves can be also observed
by possible space-based interferometers. For supermas-
sive black holes, the waves generated by null strings have
much larger amplitudes, but they are still very small to be
observed. Therefore, direct registration of signals pro-
duced by null cosmic strings from massive sources is a
challenging task.
If they exist, the null cosmic strings, when moving

through the matter distributed over the Universe, produce
numerous gravity waves of different wavelengths at differ-
ent epochs. All these waves contribute to a stochastic
gravitational wave background (SGWB). Detection of
SGWB and understanding its sources is one of the
important purposes of gravitational wave experiments,
see [49] for a review.
In addition to compact massive sources, such as black

holes and neutron stars, the Universe may contain clumps
of cold dark matter (DM). Within existing models [50,51],
small clumps can have masses up to thousands of solar
masses and sizes up to few parsecs, with a diverse
density profiles, from a density of the order of M⊙pc−3

to a density in the core comparable to the neutron star
density. Detection of such small clumps by microlensing
is difficult, so the possibilities of detecting gravitational
wave signals from clumps are being actively explored, both
using detectors such as LISA, LIGO [52], and by using
pulsar timings [50].
Gravitational responses of detectors or pulsars when a

clump of DM passes nearby, as well as GW effects caused
by clump fragmentation can be significant [53]. The above
analysis of string generated gravity waves from point
sources can be generalized to the case of GW from compact
or fairly sparse clumps of DM. Since such waves should
contribute to SGWB, their effects may provide another
theoretical possibility for detecting the dark matter.
Below, we estimate gravitational effects from a string

and a DM clump of mass M which is uniformly dis-
tributed over a spatial domain with a characteristic size L.
As earlier, we assume that the string is straight. By using
(3.22) and assuming that r ≫ L, one gets for the news
tensor,

NAB ≃ NðΩÞℜ
�
β̃ABðΩÞ

Z
aþL

a

ρ dy
UðyÞ þ iyε̄

�
: ð4:49Þ

Here, integration goes over a section of the clump by the
plane of constant x and z, ρ ∼M=L is a mass density of
this section, and a now is a least impact parameter
between points of the clump and the string. It follows
from (4.49) that the parameter rg=a, which determines
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the amplitude of the news tensor for a pointlike mass,
should be replaced with the ratio GM=L, if the clump is
sufficiently homogeneous and it does not cross the string.
This means that for the case of the clump our estimate
(4.42) should be replaced with

Ė≡ E
L
∼ C

�
ω

ω0

�
2
�
rg
L

�
2

× 1036
erg
s
: ð4:50Þ

For M ∼ 103M⊙, L ∼ 1 pc, ω ∼ ω0, one has
Ė ∼ 1015 erg per second. Since the effective frequency of
the radiation with such parameters is in the nanohertz range,
its detection is possible by using pulsar timings.

V. CONCLUDING REMARKS

The aim of this work was twofold. First, we were going
to check if the description of field effects in null-string
space-times [16] can be extended to weak gravitational
fields. Second, we were looking for gravitational effects
which could provide potential observational signatures of
null cosmic strings.
To our knowledge, our result is the first solution in the

linearized approximation for the space-time geometry
sourced by a point mass and a null string. The solution
is not stationary and asymptotically nontrivial. Since it
belongs to a class of polyhomogeneous space-times,
calculating the flux of outgoing gravity waves requires
some care. As has been shown, nonanalytic terms in the
flux can be eliminated by averaging over a sufficiently large
period of time.
One difficulty, which appears when dealing with

polyhomogeneous space-times, is that the Bondi analysis
of the gravitational radiation based on the mass aspect,
see, e.g., [54], cannot be applied here straightforwardly. It
should be emphasized that coordinates xμ ¼ ðU; r;ΩÞ we
use here and the Bondi-Sachs coordinates are different
and should not be confused. We work in the harmonic
gauge, while the Bondi-Sachs coordinates are determined
by the conditions grr ¼ grA ¼ 0 and det gAB ¼ r4sin2θ.
These conditions hold only for hð1Þ up to Oðr−2Þ terms,
see (4.5), and they are violated for higher order pertur-
bations starting with hð2Þ. It would be interesting to
identify the mass aspect function for the considered
geometry.
The luminosity generated by null strings in the

form of gravitational radiation is much higher than
the luminosity generated in the form of electromagnetic
(EM) radiation. For example, according to (4.43),
for the string energy parameter ω ∼ 105ω0, the
GW luminosity of a null string and a pulsar is
1046 erg per second against 1028 erg per second of the
EM luminosity of the same system, see [17]. Thus,
we expect that the generated gravitational radiation
can be important source of data to identify possible

signatures of null cosmic strings. We are going to
proceed with a more careful analysis of contribution
from null strings to SGWB, by analogy with contribu-
tion from tensile cosmic strings.
As we have mentioned in Sec. IV F, spin effects

related to the rotation of the source can be neglected in
the averaged luminosity. In the case of EM radiation
generated by a null string near a magnetic-dipole source,
the intensity depends on orientation of the magnetic
moment of the source [17]. Thus, one may expect that
intensity of gravity waves may be sensitive to mutual
orientation of the spin of the source and velocity of the
string. It would be interesting to study these effects in a
separate work.
Our arguments in Sec. IV E to demonstrate that the

obtained results are robust have been based on the
assumption that each segment of the string contributes
independently to the flux. There is one effect which
cannot be described in terms of individual contributions
of string sections. This happens when a null string forms a
caustic behind the source at a distance a2=2rg, see [9].
Since a large amount of energy is concentrated in a
domain around the caustic, it may create its own gravity
waves. If this effect does exist, its properties are expected
to be quite different from gravity waves we consider in
this work.
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APPENDIX A: COMPUTATIONS

Here, we give some details of how explicit form of
asymptotic (4.1) looks like. One starts with Eq. (3.9), where
tensor βμν has the following components:

βuu ¼
rg
2

��
mu þ ωmy

mv

�
2

Φ̃ω −
�
mu

mv

�
2

Φ̃
�
;

βuv ¼
rg
2
ω2Φ̃ω;

βuy ¼ rgω
mu þ ωmy

mv
Φ̃ω;

βvv ¼
rg
2
ðΦ̃ω − Φ̃Þ;

βvy ¼ −rgωΦ̃ω;

βyy ¼ rg

�
−
ðmu þ ωmy − ω2mvÞ

mv
Φ̃ω þmu

mv
Φ̃
�
;

βzz ¼ rg

�
−
ðmu þ ωmy þ ω2mvÞ

mv
Φ̃ω þmu

mv
Φ̃
�
;

βuz ¼ βvz ¼ βyz ¼ 0: ðA1Þ
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Amplitude Hð1Þ
μν is determined from Eq. (3.22) as

Hð1Þ
μν ðU;ΩÞ ¼ NðΩÞℜ

�
β̃μν ln

�
U þ iaε̄

a

��
: ðA2Þ

As has been explained in Sec. III B, tensor structures β̃μν
are values of βμν when null vector mμ is a normal vector
to the null cone U ¼ 0, see (3.17). A straightforward
computation yields

β̃uu ¼
rg
2

��
1þnx− 2ωny

1−nx

�
2

ϕ̃ω−
�
1þnx
1−nx

�
2

ϕ̃

�
;

β̃uv ¼
rg
2
ω2ϕ̃ω;

β̃uy ¼ rgω
1þnx− 2ωny

1−nx
ϕ̃ω;

β̃vv ¼
rg
2
ðϕ̃ω− ϕ̃Þ;

β̃vy ¼−rgωϕ̃ω;

β̃yy ¼ rg

�
−
ð1þnx− 2ωny−ω2ð1−nxÞÞ

1−nx
ϕ̃ωþ

1þnx
1−nx

ϕ̃

�
;

β̃zz ¼ rg

�
−
ð1þnx− 2ωnyþω2ð1−nxÞÞ

1−nx
ϕ̃ωþ

1þnx
1−nx

ϕ̃

�
;

β̃uz ¼ β̃vz ¼ β̃yz ¼ 0; ðA3Þ

where ϕ̃ ¼ ϕ̃ω¼0 and

ϕ̃ω ¼
ffiffiffi
2

p ð1 − nxÞ3=2
ε̄ð−ny þ ωð1 − nxÞ þ iε̄Þ ; ðA4Þ

ε̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − nxÞ − n2y

q
: ðA5Þ

If the energy of the string is small, ω ≪ 1,

β̃uu ≃ −rgω
1þ nx

2
ffiffiffi
2

p ð1 − nxÞ3=2

×

�
1

ε̄
ðn2x − 1þ n2yðnx − 3ÞÞ þ inyðnx − 3Þ

�
þOðω2Þ;

β̃uv ≃ 0þOðω2Þ;

β̃uy ≃ −rgω
1þ nxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − nxÞ

p �
ny
ε̄
þ i

�
þOðω2Þ;

β̃vv ≃ rgω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nx

2

r �
ε̄2 − n2y
4ε̄

− i
ny
2

�
þOðω2Þ;

β̃vy ≃ rgω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nx

2

r �
ny
ε̄
þ i

�
þOðω2Þ;

β̃yy ≃ −rgω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nx

2

r �
1

ε̄
ðn2y þ nx þ 1Þ þ iny

�
þOðω2Þ;

β̃zz ≃ −rgω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nx

2

r �
1

ε̄
ðn2y þ nx þ 1Þ þ iny

�
þOðω2Þ;

β̃uz ¼ β̃vz ¼ β̃yz ¼ 0: ðA6Þ

The averaged intensity of the radiation is

IðΩÞ ¼ 2

aκ

Z
∞

−∞
dU fGðU;ΩÞ; ðA7Þ

fGðU;ΩÞ≡ NABNAB; NAB ¼ 1

2
∂UCAB: ðA8Þ

After some algebra, by using gauge conditions (4.3),
one finds a useful expression in terms of components of

Nμν ¼ 1
2
∂UH

ð1Þ
μν in the Minkowski coordinates,

fGðU;ΩÞ ¼ A1N2
vvþA2N2

vyþA3N2
yyþA4N2

zz

þA5NvvNvyþA6NvvNyyþA7NvvNzz

þA8NvyNyyþA9NvyNzzþA10NyyNzz; ðA9Þ

A1 ¼ ð1 − n2xÞ2; A6 ¼
1

2
ð4n2y − ð3 − nxÞð1 − nxÞð1þ nxÞ2Þ;

A2 ¼
8n2z þ n2yð1 − nxÞ4

ð1 − nxÞ2
; A7 ¼

1

2
ðð1 − nxÞ3ð1þ nxÞ − 4n2yÞ;

A3 ¼
8n2zð3 − nxÞ þ ð1 − nxÞ5

16ð1 − nxÞ
; A8 ¼

ny
2ð1 − nxÞ2

ð4n2zð3 − nxÞ þ ð1 − nxÞ5Þ;

A4 ¼
8n2yð3 − nxÞ þ ð1 − nxÞ5

16ð1 − nxÞ
; A9 ¼

nyðnx − 3Þ
2ð1 − nxÞ2

ð4n2z þ ð1 − nxÞ3ð1þ nxÞÞ;

A5 ¼ 2nyð1 − nxÞð1 − n2xÞ; A10 ¼
1

8
ðnx − 3Þð1þ nxÞð1 − nxÞ2: ðA10Þ
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To proceed, we decompose

β̃μν ¼ aμν þ i bμν; ðA11Þ

and find the following final expression:

fGðU;ΩÞ ¼ a2NðΩÞ2
4ðU2 þ a2ε̄2Þ2 ðαU

2 þ βU þ γÞ; ðA12Þ

α ¼ A1a2vv þ A2a2vy þ A3a2yy þ A4a2zz þ A5avvavy

þ A6avvayy þ A7avvazz þ A8avyayy þ A9avyazz

þ A10ayyazz; ðA13Þ

β ¼ aε̄ð2A1avvbvv þ 2A2avybvy þ 2A3ayybyy þ 2A4azzbzz

þ A5ðavybvv þ avvbvyÞ þ A6ðayybvv þ avvbyyÞ
þ A7ðazzbvv þ avvbzzÞ þ A8ðayybvy þ avybyyÞ
þ A9ðazzbvy þ avybzzÞ þ A10ðazzbyy þ ayybzzÞÞ;

ðA14Þ

γ ¼ a2ε̄2ðA1b2vv þ A2b2vy þ A3b2yy þ A4b2zz þ A5bvvbvy

þ A6bvvbyy þ A7bvvbzz þ A8bvybyy þ A9bvybzz

þ A10byybzzÞ; ðA15Þ

where

avv ¼
rg
2
ðaω−a0Þ;

avy ¼−rgωaω;

ayy ¼ rg

�
−
ð1þnx− 2ωny−ω2ð1−nxÞÞ

1−nx
aωþ

1þnx
1−nx

a0

�
;

azz ¼ rg

�
−
ð1þnx− 2ωnyþω2ð1−nxÞÞ

1−nx
aωþ

1þnx
1−nx

a0

�
;

ðA16Þ

bvv ¼
rg
2
ðbω−b0Þ;

bvy ¼−rgωbω;

byy ¼ rg

�
−
ð1þnx− 2ωny−ω2ð1−nxÞÞ

1−nx
bωþ

1þnx
1−nx

b0

�
;

bzz ¼ rg

�
−
ð1þnx− 2ωnyþω2ð1−nxÞÞ

1−nx
bωþ

1þnx
1−nx

b0

�
;

ðA17Þ

aω ¼ ℜ ϕ̃ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − nxÞ

p ð−ny þ ωð1 − nxÞÞ
ε̄ð2ð1 − ωnyÞ þ ω2ð1 − nxÞÞ

; ðA18Þ

bω ¼ ℑ ϕ̃ω ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − nxÞ

p
ð2ð1 − ωnyÞ þ ω2ð1 − nxÞÞ

; ðA19Þ

and also a0 ¼ aω¼0, b0 ¼ bω¼0.

APPENDIX B: COORDINATE INVARIANCE
OF THE AVERAGED PSEUDOTENSOR

Here, we demonstrate that the averaged trU component of
the pseudotensor (and, therefore, the averaged intensity of
the GW flux) is invariant under general coordinate trans-
formations which preserve asymptotic (4.1) but may violate
gauge conditions (4.5). Thus, the presence of logarithmic
terms does not affect this important property.
The coordinate transformations are generated by a vector

field ξμ. We suppose that the large r asymptotic of the
components of this vector in Minkowski coordinates is

ξμ ¼ αμðΩÞ þ α̃μðΩÞ lnðr=ϱÞ þ r−1ðσμðU;ΩÞ
þ σ̃μðU;ΩÞ lnðr=ϱÞÞ þOðr−2 ln rÞ: ðB1Þ

Vectors αμ, α̃μ, σμ, σ̃μ are fairly arbitrary. We only require
that components σμ, σ̃μ are restricted at U → �∞. After
this transformation, (4.1) can be written as follows:

hð1Þ
0

μν ¼ r−1ðHð1Þ
μν ðU;ΩÞ þ ΞμνðU;ΩÞ

þ ðH̃ð1Þ
μν ðΩÞ þ Ξ̃μνðU;ΩÞÞ lnðr=ϱÞÞ þOðr−2 ln rÞ;

ðB2Þ

ΞUU ¼ 2∂UσU; Ξ̃UU ¼ 2∂Uσ̃U;

ΞUr ¼ ∂Uσr þ α̃U; Ξ̃Ur ¼ ∂Uσ̃r;

ΞUA ¼ ∂AαU þ ∂UσA; Ξ̃UA ¼ ∂Aα̃U þ ∂Uσ̃A;

Ξrr ¼ 2α̃r; Ξ̃rr ¼ 0;

ΞrA ¼ ∂Aαr − αA þ α̃A; Ξ̃rA ¼ ∂Aα̃r − α̃A;

ΞAB ¼ 2ððAαBÞ þ 2γABðαr − αUÞ;
Ξ̃AB ¼ 2ððAα̃BÞ þ 2γABðα̃r − α̃UÞ: ðB3Þ

A straightforward computation shows that the trU compo-
nent for (B2) is determined by the expression

r2ðGð2ÞÞrUðhð1Þ0 Þ ¼ NABNAB − 2∂U

�
NAB

�
1

2
CAB þ ðAαB

þ γABðαr − αUÞ
��

þ 2∂UðNAB½C̃AB

þ ðAα̃B þ γABðα̃r − α̃UÞ�Þ lnðr=ϱÞ
þOðr−1ln2rÞ: ðB4Þ

Our averaging procedure implies integration over a
sufficiently large time interval. As is easy to see from
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estimates (4.37), terms ∂UðNAB½…�Þ in the right-hand side
of (B4) do not contribute at U → �∞. Therefore, the
averaged trU and the flux do not depend on the chosen
gauge condition.
If we restrict the class of coordinate transformations by

requiring that they preserve the gauge conditions (4.5),
which implies that

Ξrr ¼ Ξ̃rr ¼ ΞrA ¼ Ξ̃rA ¼ ΞABγ
AB ¼ Ξ̃ABγ

AB ¼ 0; ðB5Þ

it fixes arbitrary functions αμ, α̃μ, as

α̃μ ¼ 0; αA ¼ ∂Aαr; αU ¼
�
1

2
ðAðA þ 1

�
αr:

ðB6Þ

Like in the case of the BMS group, the whole transformation
is determined by a single function αrðΩÞ ¼ −αUðΩÞ, related
to the supertranslation U → U − αUðΩÞ.
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