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We discuss the field independent additive constant in Wilson actions carefully within the exact
renormalization group formalism. The additive constant does not affect the correlation functions of fields
normalized by the partition function, and for that reason it is often ignored. But it is an essential part of the
partition function, and in the limit where the UV cutoff goes to zero, the constant gives a renormalized
vacuum energy density. We discuss some concrete examples: the massless and massive Gaussian theory for
a single component scalar field and a Dirac fermion and the linear sigma model in the large N limit.

DOI: 10.1103/PhysRevD.109.125007

I. INTRODUCTION

The Wilsonian renormalization group allows one to
compute correlation functions by performing piecemeal
functional integration: rather than integrating over all
degrees of freedom at once, one lowers the momentum
cutoff gradually. This procedure allows one to implement
several approximation schemes, which can even be of
nonperturbative nature. If one were able to make the
calculation exactly, one would recover the correlation
functions of the original microscopic model. This holds
true also for the partition function.

A particularly powerful implementation of these ideas has
been developed by Wilson [1], who put forward an exact
differential equation for the action functional associated with
the degrees of freedom that have not been integrated out yet.
Since then, several exact renormalization group (ERG)
equations have been derived and studied [2—6].

In this paper we focus on the Wilson action and study
carefully how one can derive the partition function or
equivalently the vacuum energy density from it. For the
partition function to be preserved, the ERG must take the
form of a continuity equation, i.e., the change of
the exponentiated Wilson action under the change of the
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momentum cutoff A must be a total differential with respect
to the fluctuating field:

_Ady Sl — /de% [(...)esmﬂ} (1)

Despite its being conceptually clear from the very begin-
ning [1,2,7], in practice almost all of the works employing
the Wilson action neglect the vacuum energy density and
the relevant terms in the associated ERG equation.

In the present work several aspects of the vacuum energy
density are studied and discussed in detail. In particular,
following Wilson [1], we impose that an ERG equation
have a diffusion-inspired form mentioned above. In so
doing we shall introduce two cutoff functions. We highlight
the role of different variables and their relation to the limit
A — 0 as well as their relation to other functionals, such as
the associated effective average action. Furthermore, we
relate equivalent Wilson actions, i.e., Wilson actions con-
structed via different cutoff functions whose partition
functions and correlation functions are identical [8], by
means of a functional integral formula.

The paper is organized as follows. In Sec. II we introduce
our formalism for the case of a scalar field theory and discuss
the introduction of different variables and the relation
between equivalent Wilson actions. In Sec. III we generalize
our discussion to include fermions. In Sec. IV we relate the
Wilson action to the generating functional of connected
correlation functions and to the effective average action. We
show how the vacuum energy density appears in each of these
functionals. In Secs. Vand VI we consider two examples: the
Gaussian theory for scalars and fermions and the large N
limit of the O(N) linear sigma model. We summarize our
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findings in Sec. VII. Some technical discussions are relegated
to Appendixes A and B.

Throughout the paper we work on D-dimensional
Euclidean space, and employ the following shorthand
notations:

I

II. REAL SCALAR THEORY

We introduce an ultraviolet momentum cutoff A in terms
of a cutoff function R, (p) that has the following properties:

(1) It is a decreasing but positive function of p?.

(2) It is an increasing function of A.

(3) It can be written as

8(p) = 2m)Ps®P)(p).  (2)

RA(P) = A*R(p/N), (3)

where
R(0) =1, (4a)
XETWR(x) =0. (4b)

RA(p) gives a degree of functional integration over the
fluctuating fields of momentum p. The smaller it is, the
amount of remaining integration is smaller. Since R, (p) is
a decreasing function of p, the fluctuating fields of higher
momenta are integrated more than those of lower momenta.

We start with a Wilson action S,[¢] whose modified
correlation functions [8]

Kb(p1) - d(pa))

_ 1 [k(p/A) &

H I/A< <2/p p? 5¢(p)6¢(—p)>
< b(p1)-- -¢<pn>>s (5)

are independent of the cutoff A. The two cutoff functions
K(p/A) and k(p/A) are related to R,(p) by

p2

k(p/A)

For example, in [1] the following choice is made:

Ri(p) = {K(p/N)}. (6)

The same R, (p/A) is also obtained from

26—2%
K(p/A) = Aiﬂ
P+ A0
k(p/A) = K(p/A)(1 = K(p/A))
o e s)

g}
(p2 + Aze_ziT)

Please note that the modified correlation functions (5)
are not normalized by the partition function

Zy = / [dd) exp (Sx[4). (9)

Hence, for n = 0, the A independence of (5) amounts to the
A independence of the partition function

d
xZn=0. (10)

This implies that 9,52} must be a total differential with
respect to the field variables as we explained in Sec. I.
Indeed we find the ERG differential equation as [8]]

0 P olnK(p/A)
—AdpeSnl7) /,,5¢(p) HA TERAL

1 OR\(p)K(p/A)? 6

— eS/\[d)] .
3NN RA(p) 5¢(—p)} }
(11)

We would like to replace the field variables ¢(p) b
alternative field variables o(p) that simplify the Wilson
action in the limit A — 0+. We define

RA( ) P2

o) =8 PP =\ kA

o(p).  (12)

We assume that this is an analytic change of variables with
respect to the momentum p. [That is the case with the two
examples (7), (8).] The Jacobian of this change of variables
is a field independent constant, and the Wilson action for
the ¢ field is given by

2

Jldglexp (=3 f, 7 d(p)d(=p) ) L
Jldo]exp (=1 [, o(p)a(=p)) |

(13)

'We have added a constant to rewrite (26) of [8] as a total
differential.
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By definition, the partition function does not change:

/ (do]eShel — / [d]eS9). (14)

In the following we adopt a particular convention of the
Gaussian functional integral:

[idelexn (=5 [ etwiat-p)) =1 ()

This implies

Jdelexo(= [ Atwratriat=r))

:exp<—%6(0)/plnA(p)), (16)

where
5(0) = / dPxeP® =VT (17)

is the volume of spacetime.
In terms of the o variables, the same correlation functions
are given by

o) ttr0 =TT —

(o2 i)

< o(py)-- ~a<pn>> . (18)

S

The ERG equation (11) that guarantees the A independence
of the correlation functions is now given by

BRI PG,
oA 2/, 0N bo(p)

R

The Wilson action S',[o] can be interpreted so that the
field modes with p < A are still to be integrated. As we
decrease A toward 0, less and less number of degrees of
freedom are to be integrated, and eventually we obtain

lim $4[o] = ~600) = [ alplot=p). (20

A—=0+ p

We will derive this limit in Appendix A. Let us note that
this was already observed also by Wilson [1] in its zero
dimensional version of the ERG before discussing the full

fledged ERG in terms of “spin variables.” The reader may
be puzzled by such a simple form of §, [6] at A = 0O for any
microscopic model; it seems that the physics is lost. The
crucial observation here is that the choice of variables is
very important. As we shall see in Sec. IV, S, [o] is related
to the generating functional of connected correlation
functions. Thus, the physics is not lost, but in order to
obtain desired results one must adopt suitable variables
before taking the limit A — 0.

Using (15), we obtain the cutoff independent partition
function as

[ ideles = exp (~ev(0). @)

where e, is the density of the vacuum energy. Taking §(0)
literally, it diverges, and the partition function is either
infinite (if €,,. < 0) or zero (if €,,. > 0), but €, is a finite
physical quantity. We will drop the prime from the Wilson
action S [o] from now on.

Let us conclude this section by considering two Wilson
actions associated with the same microscopic action and
built via two different sets of cutoff functions, say K, R,
and K,, R,. Augmenting the result from [8] by a constant
multiple, one obtains

oSl —

This is consistent with

/[d¢]eS1[¢] - / [dqb]esz[‘ﬁ]. (23)

III. DIRAC FERMION THEORY

It is straightforward to generalize what we have intro-
duced for the scalar theory to the Dirac fermion theory. We
introduce Dirac spinor fields o(p) and 6(—p) so that the
modified correlation functions, defined by

Cw(pr)-w(p)w(=q1) - w(=q,))
= s —1 .o .6
ZH\/_RA@_»R_A(J»<”(”') (P

X (‘/pﬁjpma(g—p))"’(‘q”"'5(“1")>SA’ 1
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are independent of A. This implies the ERG equation

0 _ 1
—A— Salod] — _Z/AaAlogRA(p) (25)
P

oA
< {55(5—19) {eSA <6(_p) " 56((;19)) }

{0+ 6&21))) J st

where the right-hand side is again a total differential. As
opposed to (3) for scalar fields, we use

Ra(p) = AR(p/A) (27)

for the Dirac fermions.
In this case we find the asymptotic behavior

(26)

Alir(l)l+SA [6’ 6] = _gvaca(o)

- [ st=potr). 28)
P
Using the convention

[dsdalexp |- / a=plar)] =1, @9

we obtain
/ (dod)e$07 — exp (—e,e8(0)).  (30)

IV. EFFECTIVE POTENTIAL

So far we have discussed how to obtain the vacuum
energy density as the limit of a Wilson action as A — 0+.
In literature it is more standard to calculate it as the
minimum of the effective potential. Let us briefly explain
the equivalence of the two approaches.

We define
WAl =Sslel +5 [ olplotop). ()
where
J(p) =/ Rx(p)o(p). (32)

The ERG equation for W,[J] is obtained from that for
Salo] as

9 1 [ 0R\(p) &
A W __/A A Ml (33
oA 2/, oA 8J(p)dJ(-p) 39)

As is explained in Appendix A, W,[J] becomes the
generating functional of the connected correlation

functions in the limit A — 0+. Expanding W, [J] in powers
of J, we obtain

Wall) = exd0) +5 [ JDIC(p)Ip) 4 (34

where the constant part is the same as that in the expansion
of Sj[o]. The ERG equation (33) gives

aCA_l aRA(p)
A= [ AT eaw. 69

If we know C,,(p), we can solve this to determine c,. That
is what we will do in Sec. VI.

What is usually studied in the context of the exact
renormalization group is the one-particle-irreducible (1PI)
Wilson action I'y, which is defined as the Legendre
transform of W, [J]:

FA[@—%/pRA(p@(p)‘D(—p)EWA[J]—/pJ(—p)CD(p),
(36)
where
o) =30, )
In the limit A — 0+, we obtain the effective action
lim [ [®] = Tugr[®]. (38)

A—-0+

For constant fields J(p) = jé(p) and ®(p) = ¢d(p), we
obtain
WAl =wa(j)8(0).  TA[®@] = GA(@)8(0).  (39)

Equation (36) reduces to the Legendre transformation

Gal) =3 NP =wrli) = jo. (40
where
¢ =wr(J)- (41)
The inverse Legendre transformation gives
J=-G\(9). (42)

We assume that j = 0 corresponds to the minimum, not the
maximum, of —G,(¢). The effective potential is the limit

lim G,(¢). (43)

Veff((ﬂ) = T ASOt
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Let v, be the value of ¢ at the minimum of —G,(¢),
satisfying

G\ (vy) =0. (44)
We then obtain
ca =wa(0) = Galvp) - %AZU%- (45)
Hence, we obtain
Evac = —Alif(l)lf/\ = —Alif&G/\(U/\) = Ver(v), (46)

where » is at the minimum of the effective potential
satisfying

Véff(”) =0. (47)

V. THE GAUSSIAN THEORY

In this section we compute &, for the Gaussian theory,
both bosonic and fermionic.

A. Scalar theory

We assume a quadratic form
1
Salel = ¢xd(0) =5 | a(p)Ca(p)o(=p).  (48)
P
Substituting this into (19), we obtain

A3 [ AIBAP) (e o)) (40w)

oA 2 oA

5] o dln RA(p)
Ay Calp) = —A—— (1 = Ca(p))Calp).  (49b)
The second equation can be solved as
F
Ca(p) = (p) ’ (50)

where F(p) is independent of A. This corresponds to the
correlation function

(H(P)b(@)) = 8(p +q) ﬁ x el (51)

The Gaussian theory is given by
F(p) = p*+m’, (52)

where m? is a constant squared mass.

Equation (49a) now gives

AL e =L A
ANNT 2,

We will solve this first for 2 < D < 4, and then for D = 4.
For the scalar theory, Ry(p) = A’R(p/A), and

aRA(P) 1
0N p*+m?+Ru(p)

(53)

OR(p)
oA

A

=(2-p-9,)R\(p). (54)

For 2 < D < 4, we can rewrite (53) as

P*+%+R(p)

1 m> 1 }

P> +R(p) A (P +R(p))

% [{(1-100,)r0)}
:AD/[){(I—%p-a,,)R(P)}[
YL T

Integrating this, we obtain

p*+m*+Rpy(p) p*+Ra(p)

1 m2
e mp))z] ' 55)

amembt (-t e {(1-br o))

pP+m*+Ry(p)  m’ }
p*+ Ra(p) p*+RA(p)]

_%uln

(56)

125007-5



CARLO PAGANI and HIDENORI SONODA

PHYS. REV. D 109, 125007 (2024)

where c is a constant of integration with mass dimension D,
and the last integral is UV finite. Hence, we obtain

, 1 24 m? m?
e =erg [ -0 @
p

where the integral is UV finite, and we obtain

1/[1 p*+m? mT m2/[ 1 1]
— n-———— [— U
2 » p2 p2 D » p2+m2 p2

which is negative for 2 < D < 4. ¢, is not analytic with
respect to m?. This is equal to the zero-point energy
calculated with dimensional regularization:

L a1 D\, .
R QR i = r(-Z)m»"
2/(27[)D_1 P = T )t ( 2>(m)

where the integral multiplied by m* is obtained as

L{(l‘ép‘%)””}m
1

2 (= . d P
W/ W TR 2

Integrating (60) over A, we obtain

e (o)

(59)
For D = 4, we can rewrite (53) as
(58)
|
dacy / {( 1 ) 1 1 1
-A—= l—=p-0, |R(p) ¢ |A* 5———m*A\? + m*
oA Jp 27 7 p* +R(p) (P> +R(p))? (P> +R(p))
1 ORA(p) 1 1 m? m*
+§/A AA [2 2 ) 7 27 (2 30 (60)
p 0N PP +m’ +RA\(p) PP+ RA(p) (PP +RA(P))? (P*+ Ra(p))
|
By definition we find
AF(T) 25 64
A2 — U (64)
Since ¢, remains finite as A — 0+, we obtain
(61) 4 m2 A—=0+ 1 4 m2 4
A*F ) —4(47[)2m lnp—l—constxm . (65)
Hence, we obtain
i L™ (66)
Eyae = —lIMmcp = —c+——m " In—,
vac A0+ A 4(4]_[)2 /42

S b )l

A 2
m*In= + A4F<m—2>,
U A

1
 2(4x)? (62)

where c is a constant of integration, y is an arbitrary mass

parameter, and
2 1 © 0 21 R 2
A4F<m—2> E—/ dA’—,/{lnp s x(p) +m
A 2 Ja oN' J, p*+ Ry (p)
m? 1 m* }
p* + Ry (p)

+
2(p*+Ru(p))?
_ l/ {lnpz + Ra(p) +m? m’
2/, P>+ Ru(p) P>+ Ra(p)

1 m*
2 RA<p>>2] '

(63)

where we have redefined c by absorbing a constant multiple
of m*. The change of u can be compensated by a change of
c. This result is consistent with the zero-point energy
obtained by dimensional regularization with a minimal
subtraction (D =4 —¢):

el/ d°'p \/ﬁ+l m* o mt lnmzey—%
| —5= m — .
2] anp VP c2(4n)?  4(4n) 2

4zp
(67)

Let us conclude this section by commenting on the
massless case which would be the Gaussian fixed point in
the dimensionless framework. From Egs. (57) and (66), we
expect that the vacuum energy density vanishes for the fixed
point theory. We find it instructive to see how this happens in
some details. In the dimensionless framework, where all
the physical quantities are rendered dimensionless by using
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appropriate powers of the cutoff A, the Gaussian theory is ~ Though this result is expected, it is still nice to get it by
given by integrating out the fluctuating field.

5 ! 2+ mj B. Dirac th
S,[6] = ,6(0) — / 5@@#5@), (68) irac theory
2Jp p*+mi +R(p) We assume a quadratic form

where the logarithmic scale ¢ is introduced by A = pe™, and _ ~
$2l0.6] = cra2(0) = [ a(=p)Cralplolp). (74

2 2 P
C. = C_A g m_ — m_ 2t 69
=AD" M= u? e (69) We obtain
Equation (53) gives Conlp) = i(p+im) (75)
. | 1 T RA(p) (B im)
—-D ¢, = l1-=p-0, |R —- .
(m2)= [0 =228 iy e
70
7o) Ra(p) = AR(p/A). (76)
. —_ 2 _ .
At the fixed point m; = 0, we obtain This corresponds to
$6) =250 5 [ 3(-p) s Lesalp) () : I
2/, P> +R(p) Cw(p)w(-q)) =6(p—q) Grim’ (77)
. s . 2
where the fixed point value ¢* is given by The ERG equation for ¢, is given by
et e [
o= —— l—=p-0, |R(p) . (72) A CFJ\:/A /\(p)T 78
D/, 20 7 p* +R(p) oA LU TN Ra(p) (B + im) (78)
By integrating over the fluctuating field 6 in (71), we obtain R R —m
the vanishing vacuum energy density =Trl / A Ap) AlP) - (79)
p A (Ra(p)—m)*+p
2
B = —fF & l / log 2[97 =0. (73) The solution to this equation is analogous to the scalar case.
2J)p " p*+R(p) We give it only for 3 < D < 4:

AP mAP~! -p
CF,A:CF+TTI —/p{(l _p'aP)R(p)}pzi(g()P)2+ D—1 /p{(l —P‘ap)R(P)}(pRz(f_)RW

Y /{(1 . ap)R<p)}R(p)3 —3p°R(p) 5 AP /{(1 —p-ap)R(p)} p*—6p?R(p)? + R(p)*

D-2 (P> +R(p)*) D-3 (p* +R(p)*)*
1 (Ralp) —m)? + p? Ra(p) » =P +RA(P)* | RA(P)(RA(P)* = 3P°)
+ 5 2 7 T T m 2 22t 2 23 ’ (80)
» p*+Ra(p) p*+Ra(p) 2(p* + Ra(p)?) 3(p* +Ra(p)?)
where cp is a constant of integration. Taking the limit A — 0+, we obtain
1 pP4+m? m? 11 D b
=—cp—Trl= h———--—) =- Trl - ——T( ——= | (m?)2. 81
Evac cr T 2/p <n e 7 cp+Tr 5 (4,;)% 5 (m*)2 (81)

*This result is reminiscent of the fixed point value for the cosmological constant. See, for example, [9—11].
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This is consistent with the energy density of the Dirac

vacuum:
1 dD—lp =
—ETTI/W\IP2+m2. (82)

The factor% is there because only the negative energy states
contribute to the vacuum.

VI. THE LARGE N LIMIT

We consider the O(N) linear sigma model in D dimen-
sions (2 < D < 4). Let S, [o] be the Wilson action in terms
of the spin variables ¢/ (p)(I = 1, ..., N). Expanding S, [o]
in powers of fields, we obtain

Sulo] = ex8(0) + 3 [ ) (=plenn(p) +-- (8)

where the repeated indices are summed. The ERG equation

A2 s :l/AalogRA(m o
oA 2,7 oA sdl(p)

x[(a’(p)+ > )>ewﬂ (84)

gives

Al zl/pAal“;AA“’)Nu Cen(p).  (89)

In the large N limit, we find

RA(p)
1+¢ = , 86
ZA(p) P2+RA(P> +m/\ ( )
where the squared mass m3 satisfies
IRA(
AamA 2f A A (p +RA( )+m3)? 37
oA (87)

1
its f,, FENPETY

The positive constant 1 is a ¢* self-coupling. Equation (85),
combined with (86), is the same as Eq. (53) for the
Gaussian theory, except for the cutoff dependence of the
squared mass. We refer the reader to Appendix B for a
derivation of Egs. (85)—(87).

The solution to (85) is given by

1 1 m 1/ 1 1
—CA = C— m —_
NA 2T |\ F Ra(p) + mE P

2 2
_l/ n? +RA( )+mA_ﬂ ’ (88)
2/, p? I

where c is a constant of integration. Denoting the physical
squared mass by

my, = Alir&m%, (89)

we obtain the vacuum energy density as

hm —cy

—e —
N V¢ -0+ N

:—c+—m

2, "eh mPh

(P +m )

1 +my, m2,
G
2/, P P

Ll Do 2F 7)
= —C e
24

Q

35 (90)

N

ph+ g

where 2 < D < 4. With ¢ and mf)h fixed, this has a well-
defined strong coupling limit

C

N T

(m3;)?. ©n

For (90) to have a good weak coupling limit, we must
introduce appropriate 4 dependence to c¢. We note

m2 1 1 1
k=-TA L 2 /< —> 92
A 2/, \pP+Ry(p) +mi  p? 92)

is independent of A. Writing

y)
c= c’+§k2, (93)

we obtain an alternative expression for c,:

1 ,+/1{1/< 1 1)}2
—CA = C — < — _
NA 212/, \P* +Ru(p) +m3 p?

2 2 2 )
P p p
This gives
1 D pa\2
N Evac = — < 471.)D/2 4 < E) (mgh) 2 )

Q

2) (12 )8

_5 (4 )g 28, (95)
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In the weak coupling limit, where ¢’ is fixed instead of c,
we reproduce the Gaussian result (58):

R P C)
~Evac— —C —3 D
N 2 (471')7

i~}

()= (96)

VII. CONCLUSIONS

In this work we have studied the field independent part of
the Wilson action that is fundamental in the calculation of
the partition function. Let us summarize our results.

We have considered a general ERG equation for the
Wilson action involving two cutoff functions. This equation
has a diffusionlike form for both scalar fields and fermions.
We have introduced the field variables o that simplify the
form of the Wilson action in the limit A — 0, as given by
(20) and (28). Moreover, in Eq. (22), we have formally
related two equivalent Wilson actions, constructed by two
different sets of cutoff functions, that give rise to the same
correlation functions and partition function. We have also
related our formalism to the generating functional for
connected correlation functions and to the 1PI generating
functional in Sec. IV. Finally, we have made our discussion
concrete by considering two examples: the Gaussian
models for scalar and fermionic fields (Sec. V) and the
large N limit of the O(N) linear sigma model (Sec. VI). We
hope this work lays a ground for further generalizations.

(s8] 1 n
ST
0 Pls--sPn 1

e (2

For instance, it may be natural to go beyond the flat space
and work on more general background spacetimes.
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APPENDIX A: THE LIMIT OF S,[6] AS A - 0+

In the limit A — 0+ we expect S, [o] to become “trivial”
since below the UV cutoff A = 0 there is no mode left to be
integrated. To make this statement precise let us compute

Alir&S Alo]

explicitly, where o is a special choice of field variables
defined by (12).

For this goal, we take a rather roundabout path. We first
consider the generating functional WW[J] of the connected
correlation functions defined by [12]

= Juade e (=5 [ s =0 (. T
J

_ / (do] exp [SA[G] _% /,, J(p) T (=p)

RA(P)

We now introduce new field variables by

J(p)=/Ra(p)o(p) (A3)
Taking the Jacobian into account, we obtain
e — 1 — /[dj] exp |:WA [J]
Slarjesn (<4, 24552
1 1
_2/,,RA(p>(*7 (P)=J(P))(T(=p) —J(—p))],

(A4)

where

< (d(p1) - P(p)) (A1)
52
/1,56(p>56(—p))6(p1> o 'G(pn)>SA
(-p)

n / - (p)(f(p)] (A2)

[

Wal) = $ulel +5 [ olplol=p) = 51| ]

I [ I(p)I(=p)
+§/p RA(p) ’ (43)

and we have used the triviality of the Gaussian functional

integral
Jiastewn (- / a(plal=p)) =1 (a0

The right-hand side of (A4) is independent of A. In the limit
A — 0+ the functional integral becomes one over the delta
functional
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1
g
-0+ 7 J (=
JldJ']exp <_%fp (Z)A(;()) m)

1 1
<exp (=3 [ 25 TP =HNI )= 1(-p))

=67 (p)-7(p)). (A7)
p
and we obtain
AIE&WAU] = W[J]. (A8)
Fixing o(p), we obtain
AILI(I)lJrJ(p) =0. (A9)
Hence, we obtain
/\III(I)I+WA[ RAG] - W[O] = _gvac(s(o)' (AlO)
Thus, Eq. (A5) gives the desired limit
lim $,[o] = —e0c3(0) =2 [ a(pla(=p).  (Al1)
Air(l)l+AU_ Evac ipopg p)

APPENDIX B: BRIEF REVIEW OF THE LARGE
N LIMIT

In this appendix we briefly review the large N approxi-
mation in the ERG by following the method adopted in
[13], which is based on the method introduced in [14] for
the effective potentials. The large N limit of the ERG has
been discussed by several authors; we refer the interested
reader to [14—17] and references therein for a complete list
of references that certainly includes pioneering works such
as [18.,2].

The main aim of this appendix is to derive Eqgs. (85)—(87)
in the main text. We work in D dimensions with
2 < D < 4. To obtain the large N limit it is convenient
to adopt the 1PI formalism. Let us consider the ansatz

Y e XA RN (o ML

This is consistent at leading order in large N. We next

introduce the variable ¢ defined by ¢ = % In the large N
limit, the ERG equation for I';, reads

1 oR
~AO\T)p = = / AZRalp )QA;,,,_,,M, (B2)
p

2 oA

where

Gnip.—q [(ﬂ]{(af +RA(q))5(q — 1) M}

~Sp(g—r1)
(B3)

It turns out simpler to work with the Legendre transform
of I';,. We introduce the functional

Flol =Tilol - [ atp)o(-p). (B4
p
where ¢ = 5{2—;} [p]. Tt follows that
SF )
@(p) = - : B5
) do(-p) (B3)
The ERG equation for F,[o] is then given by
CAOLF L] = - / AP G (Be)
AL A 2 ) oA Asp,—pl@]s
where G,, regarded as a functional of o, satisfies
Gnplol] (6 + Rala)ilg = 1) = alr= )|
q
=d(p—r). (B7)
and can be expressed by a geometric series of o.
A particular solution to (B6) is given by
N |
Il = 30) + enol0) + ) 5. / el
-~~0(pn)5<2pi>lm(p1,--.,pn), (B8)
=1
where
1/ (‘]2+RA(‘1))
Ch = —— 1og N (B9a)
A D) . qg
), (e #)
CiA == -, (B9b)
P2\ HRae) &

InA:/hA(Q)hA(CI+P1)"'hA((]+P1+"'+Pn_1),
q

(B9c¢)

with h15(q) = 1/(¢* + Ra(q)).
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The general solution to (B6) is obtained as

Fjlo] = Flo] + I,[o]. (B10)
where F[o] is an arbitrary functional independent of A. In
the present case we consider

1

Flol = £0000) + f10(0) 3 [ So(p)o(-p).

5 (B11)

where A is a positive constant reminiscent of the ¢*-
interaction coupling. Finally, let us also write down in a
compact form the solution for the case of constant field o.
We find

. 1 e c
FA(a):F(a)—EL[IogqqinA—I—? . (B12)
where
Falo] = Fx(0)5(0),  Flo] = F(6)5(0).  (B13)

The main aim of this appendix has been to derive
Eqgs. (85)—(87) in the main text. Let us work in the
symmetric phase, where c), = GA(0) [see Eq. (45)].
According to the relations among the various functionals
detailed in Sec. IV, we can write the right-hand side of (85)
by employing the following equation:

or -1
() =Ra(p) (=52 Ra0)) | @19
4 @=0
which implies Eq. (86) after we identify m3 with
ol A

_Gos:_g[(p:()] :mjz\ (BlS)
The ERG equation associated with o, reads

1 AOAR
~A——0ys = = (—02F )" /“ B16

dAGA 2( o A) q(q2_605+RA)2 ( )

which reproduces Eq. (87) once expressed in terms of m5.
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