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In the two-dimensional Liouville conformal field theory, correlation functions involving a degenerate
field satisfy partial differential equations due to the decoupling of the null descendant field. On the other
hand, the instanton partition function of a four-dimensional A =2 supersymmetric theory in the
Q-background at a special point of the parameter space also satisfies a partial differential equation
resulting from the constraints of the gauge field configurations. This partial differential equation can be
proved using the nonperturbative Dyson-Schwinger equations. We show for the next-to-simplest case that
the partial differential equations obtained from two different perspectives can be identified, thereby
confirming an assertion of the Bogomol’nyi-Prasad-Sommerfield/conformal field theory correspondence.
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I. INTRODUCTION

Ever since the groundbreaking work of Seiberg and
Witten on four-dimensional A/ = 2 supersymmetric gauge
theories with gauge group SU(2) [1,2], there has been
continuous progress in constructing and analyzing N = 2
supersymmetric theories. Although many impressive state-
ments have already been made over the last few decades,
we continue to discover new interesting results.

It has long been appreciated that when understanding a
complicated system, it is helpful to explore its deformations
and study the dependence on the deformation parameters.
This general lesson has been convincingly demonstrated in
[3]. The four-dimensional N =2 supersymmetric gauge
theories were studied in the Q-background Rgl’gz, with two
deformation parameters ¢; and ¢,. The deformed theory
breaks Poincaré symmetry in a rotationally covariant way
while still preserving a combination of the deformed
supersymmetry. Applying the localization technique, the
supersymmetric partition function Z and correlation func-
tions of A =2 chiral operators have been computed
exactly for a large class of four-dimensional A =2

*saebyeok. jeong @gmail.com
"Xinyu.zhang @zju.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/109(12)/125006(19)

125006-1

supersymmetric gauge theories. At generic points in the
parameter space, the low-energy effective prepotential F .
can be extracted from Z by taking the flat-space limit [3,4],

(1.1)

feff = — lim E16 IOgZ
£

1.€z—>0

Further investigation of the Q-background with finite &, &,
resulted in the proposal of a remarkable relation, the
Bogomol’nyi-Prasad-Sommerfield/conformal field theory
(BPS/CFT) correspondence, which identifies correlation
functions of A/ = 2 chiral operators with quantities in two-
dimensional conformal field theories or deformations
thereof.

After establishing the BPS/CFT correspondence, we
expect to gain insights into four-dimensional N = 2 super-
symmetric gauge theories using the knowledge of two-
dimensional theories, and vice versa. One particular
implementation of the BPS/CFT correspondence is the
Alday-Gaiotto-Tachikawa (AGT) correspondence, which
was first conjectured as a relationship between a class of
superconformal SU(2) quiver gauge theories and the
Liouville conformal field theory [5], and was soon
extended to a more general relationship between quiver
gauge theories with other gauge groups and the Toda
conformal field theory [6].

The four-dimensional A = 2 superconformal field the-
ories considered in the AGT correspondence can be obtained
by compactifying the six-dimensional A" = (2,0) super-
conformal theory on a punctured Riemann surface C [7].
When the theory admits a weakly-coupled Lagrangian
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description, we can often compute its partition function in
the Q-background [3,8]. It was proposed that the instanton
part of the partition function Z@"on can be identified with a
conformal block in the Liouville/Toda conformal field
theory, and the partition function on a (squashed) sphere
S 19,10], which is given by the integral of the absolute value
squared of the full partition function, can be identified with
correlation functions in the Liouville/Toda conformal field
theory on C. Based on careful analysis of the structure of the
instanton moduli space, some versions of the AGT corre-
spondence have been proved [11-13].

In the study of the AGT correspondence, it is often
assumed that the Coulomb branch parameters take generic
values. However, it is also interesting to specialize these
parameters and explore the consequence of the AGT
correspondence in the N =2 gauge theory context. In
two-dimensional conformal field theory, we can make one
of the fields in the correlation function degenerate. Belavin,
Polyakov, and Zamolodchikov (BPZ) showed that such
correlation functions satisfy partial differential equations as
a result of the decoupling of the null descendant field
[14,15]. The order of the differential equation is the level of
the null field in the corresponding degenerate representa-
tion. In the case of Toda field theories, similar differential
equations have been derived for certain four-point corre-
lation functions in [16,17]. Correspondingly, the gauge
field configurations in the four-dimensional A/ = 2 super-
conformal quiver gauge theories are constrained. We will
show that the corresponding instanton partition functions
also satisfy partial differential equations. In the context of
the A/ = 2 gauge theory, the specialization of the Coulomb
parameter initiate partial Higgsing of the theory, producing
a half-BPS surface defect as a result [18,19]. The differ-
ential equation we obtained is the quantized chiral ring
relation of the so-obtained 2D/4D coupled system [20].
This program was investigated carefully in the Nekrasov-
Shatashvili limit [21] of the Q-background, which corre-
sponds to the classical limit ¢ — oo of two-dimensional
conformal field theories [22-31]. However, previous meth-
ods become less powerful when we would like to go
beyond such limits. Our results provide a new method to go
beyond this limit.

In this paper, we shall follow the idea of [32] to provide a
derivation of the differential equation using the nonpertur-
bative Dyson-Schwinger (NPDS) equations, which result
from the fact that the path integral of the instanton partition
function is invariant with respect to the transformations
changing topological sectors of the field space. We review the
result of [32] and study the case of U(2) superconformal
linear quiver gauge theories with the next-to-simplest con-
straint in this paper. Similar methods have also been applied
to the study of Bethe/gauge correspondence [21,33,34]
in [35].

The rest of the paper is organized as follows. In Sec. I, we
recall some basic facts about two-dimensional Liouville

field theory and review the derivation of BPZ equations on
the degenerate correlation functions. In Sec. III, we review
the relevant details of four-dimensional N =2 quiver
gauge theories in the Q-background. We summarize the
result of the partition function and review the NPDS
equations. In Sec. IV, we study the superconformal gauge
theory with gauge group U(N). We show that the instanton
partition function at the simplest nontrivial degenerate point
in the parameter space is a (generalized) hypergeometric
function. After working out this simple warm-up example,
we consider the U(2) superconformal linear quiver gauge
theory in Sec. V. We review the second-order differential
equation on the instanton partition function derived in [32]
and derive the third-order differential equation for the next-
to-simplest case. We also identify the differential equations
derived from both sides using the AGT dictionary. Finally,
we conclude in Sec. VI and discuss possible directions for
future work. In Appendix A, we review some standard
material on the (generalized) hypergeometric function. In
Appendix B, we derive the partition function of the U(1)
factor using the NPDS equations.

II. DEGENERATE CORRELATION FUNCTIONS
IN THE LIOUVILLE FIELD THEORY

In this section, we recall some basic facts about two-
dimensional Liouville field theory and present the deriva-
tion of the BPZ equations on the degenerate correlation
functions.

A. Degenerate fields in the Liouville field theory

The two-dimensional Liouville conformal field theory is
defined by the action,

1 0
Stiouville = / d’c\/q (E 0,0 P + pe*? + ERgb) ,
(2.1)

where the background charge Q = b+ b~!, and R is
the Ricci scalar of the Riemann surface. The symmetry
algebra of the theory is two independent copies of the
Virasoro algebra, with the central charge ¢ =1 + 602. In
the following, we focus on the chiral part, which is spanned by
generators L, for n € Z and the central charge c, satisfying

C
[Lmv LI‘J = (m - n)Lm+n +— (m?

S (2.2)

(m - m)tsm-&-tLO-

For the Virasoro algebra, a conformal primary field V
with the conformal dimension A is defined to be

Ln>OVA = 0, L()VA - AVA (23)

The descendant fields are obtained by taking the linear com-

binations of the basis vectors L_zVa=L_, L_, ---L_, Va,
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where 7 ={l1<n; <n,<---<mn}. The conformal
dimension of the basis vector L_;V, is A + |r|, where

the number |7i| = Y./, n; is called the level of L_;V,.
A primary field V, is called degenerate if it has a null
descendant field V =Y -CsL_;Va # Va, such that
L,V = 0 for n > 0. If the null field is at the level one, then
L,(L_Vs) =0,

n>0. (2.4)

This is automatically true for n > 2, and for n = 1 we have
0 — LIL—IVA — 2LOVA - ZAVA (25)

Thus the field V, = 1 with zero conformal dimension. If
the level-two descendant field V = (C 1’1L%1 + CoL_5)V,

is null, then L,V = 0 for n > 1. The nontrivial constraints
are

0 — L]V — (<4A + 2)C1‘] + 3C2>L_]VA’
0=1L,V (6AC1 4 <4A +§> cz>v

OILIV:

(2.6)

0=L,V = ((6 +18A)C),, + <4A +9+ %) Cra+ 5C3)L_1VA.

Therefore, we have

0 2A+4 4
6A +6 3 0| =o,
6+ 180 4A+9+5 5

which gives two solutions

A(3’1> - —1 - 2b2,

- 1 1
V(3’1> = (4[)2 L%l + L_ 1L )+ (b —§>L_3> VA(3.1)’

(2.12)
2
A(1’3) =-1 _ﬁ7
N b 11
V(I.S) = ZL_I + L_lL_2 + ﬁ —5 L_3 VA(I,3)'
(2.13)

Generally, the conformal dimension of a degenerate field
can be read from the Kac determinant formula, and is
given by

Therefore, we have

4A4+2 3
=0, (2.7)

6A  4A 4

which gives two solutions

(2A44)C15 +4C3)L_,Va+ ((6A+6)Cy 11 +3C15)L% VA,

13 ~ 1
A(2.1):_§_Zb2’ Vo= (sz L >VA(2,1), (2.8)
13 v 272
A(].Z) - —E—m, V(1.2> - (b L—l +L_2)VA(1.2>. (29)
If the level-three descendant field V = (C1,1.1L3_ |+
C1,2L—1L—2 -+ C3L_3)VA is null, then V = 0 for
n > 1. Since Ly = [L,, L], we only need
(2.10)
[
2 _ b b—] 2
A(m,n) = Q (m 4+ " ) s m,ne Z+, (214)

with the null vector being at the level mn.

B. BPZ equations

Now we are ready to derive the BPZ equations on the
(r + 3)-point correlation function of the conformal primary
fields, with one of the primary fields being degenerate. In
order to relate a correlation function involving Virasoro
generators acting on a primary field with a correlation
function of purely primary fields, we use the conformal
Ward identities, which state that inserting the holomorphic
energy-momentum tensor in a correlation function of
primary fields yields,

<T(Z) ﬁ VA,-(Zi)>

i=—1

_§<Z et )<lr]i_[11VA > (2.15)

i=—1

The simplest nontrivial example is the second order BPZ
equation. We assume that Ay = Ay ;). The decoupling of
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the null descendant field (2.8) implies that the (r + 3)-point
correlation function satisfies,

1 o A,
+ —+
; (ZO - 210z (29— Zi)2>:|

(Vi o[ ]va (@) ) =0

i#0

1 0
b? oz

(2.16)

Similarly, the third-order BPZ equation with Ay = A3 )
can be derived from the decoupling of the null vector
(2.12),

_{1a3+az<1 o, _ A )
4oz 04\ —zi0n (20— 2)
1 10 2
D5t o)
( 2 ; (z0—~2)*0z  (20—2)
(Vs @[Tva (@) )

i#0

(2.17)

There are additional constraints on the correlation
functions due to the global conformal symmetry. Using
the holomorphy of the energy-momentum tensor at infinity,
T(z) = O(z™) as z — oo, we deduce the global conformal
Ward identities,

(2.18)

[Z ) I Vala)) =0,

Zra))(Tvaw)-o e
i)>:o. (2.20)

8 et

i=—1 =1

For our purpose, it is convenient to get rid of all the d_; and
0,,1 terms using (2.18) and (2.20),

0 r+1 r+1 r+1 2Z1 ; r+1
s ([T vet) =[S 57520 5 B0 [ (] vage),

i==1 i—0 <r+1 T2

r+1 r
Z
Ve, (zi >— [ S
azr+1<H I( = UZ%I_

i=—1

i=—1 r+1 - Z i=—1

We then fix z_; = o0 and z,,; = 0, and the remaining global conformal Ward identity (2.19) gives

i=0

Let us decouple a prefactor from the correlation function,

<VA_1(oo)VAW)(zo)IL[VA,-(Zi)VAH > KHZ >

i=1

(

where ;(r'z’;) (z) only depends on the ratios of z;, i =0, ...,

r

Z (Li+A)—A+4,,,=0.

i=0

Using

S a-a o (v

r41 2Z A r+1
azl ; Z21 - ZrJr1:| <,‘1__[1 VAi(Zi)>' (221)
H Va,(z)Va,, )> =0. (2.22)
<j Tij m,n
I (1-2)" e (223)
0<i<j<r i

r. The identity (2.22) is satisfied if

(2.24)
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the second-order BPZ equation (2.16) can be express in terms of y

(m,n)

3 (2) as

1 ! Zi \? 1
0=|=(Vo+Lo+ > Tyi—2 —(1+ Vo+Lo+ > T
(oo o 2o ) = (1) (Tt o )

r Z
+Z::zo—z,- (v +L; +]Z;T,,
+Z

and the third-order BPZ equation (2.17) becomes

2 + Ar+l:|)(§"+3>( )

i1 Z.
£t
i —Zj 2 —Zj

=0

3 3 2
O—Lbz(%“ﬁZTsz-z}) () (v i)

Jj=1

Y I +i£+A
b2 0—2)2 r+1

=l

_ <b2+%);%<v + L+ Z T;;

DI

tlZO_

(oo T
j=1

(2.26)
j=1
Vo+ L T
o+ o+21: oJZO_Z]>
J
—1
Vi+L+ Z T —— Z )
Jj=i+1 LT Jj= Zi
—1
Jj=i+1 ‘_ZJ 20: ._ZJ>
(2), (2.27)

()—Z

r 3
- (L
e

where we denote
(2.28)

We should determine L; and T';; when we identify the BPZ
equations with the differential equations derived in the
corresponding gauge theories.

III. FOUR-DIMENSIONAL N =2 QUIVER GAUGE
THEORY IN THE Q-BACKGROUND

In this section, we review some useful results of
four-dimensional N =2 quiver gauge theories in the
Q-background. A detailed discussion can be found in
[8,29,36].

A. Partition function

Let us consider four-dimensional N" = 2 superconformal
linear quiver gauge theories with gauge group

G:U(Nl)XU<N2)X "XU(N,), (31)

where Ny =N, =--- =N, =N. The vector superfield

splits into a collection of vector multiplets for each gauge

3,1
3 + Ar+1>:|)(£+3)

I
factor U(N;). The matter superfields consist of r—1
hypermultiplets transforming in the bifundamental repre-
sentations (N;, N, 1), N hypermultiplet transforming in the
antifundamental representation of U(N;), and N hyper-
multiplet transforming in the fundamental representation of
U(N,). Here we denote by N; the representation of G in
which the ith factor acts in the defining N-dimensional
representation, while all other factors act trivially. It is
convenient to extend the quiver by including two frozen
nodes U(N,) and U(N,,;) corresponding to the flavor
symmetry U(N) x U(N). The Yang-Mills coupling con-
stant g; and the theta-angle 9; for the gauge factor U(N;)
are combined into the complexified gauge couplings,

9 47‘[

We introduce
. Zj .
q; = exp (2xir;) = ,oi=1,...,r, (3.3)
Zi-1
and gy = g,,, = 0. Therefore, z_; = o0, z,.,; =0, and

20,21, ---» 2, are defined up to an overall rescaling.
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The vacuum expectation values of the adjoint scalars in
the vector multiplet for the gauge factor U(N;) are
a; = diag(a; ;. ..., a; y). We also encode the masses of the
(anti)fundamental hypermultiplets in ay =diag(ag ;. ....ag x)
and a, . = diag(a, 1 1....,a,,1y). We denote the collec-
tion of Coulomb parameters as
a={a,li=0,...r+lLa=1,..N} (3.4
The partition function of the theory in the Q-background
[Rfs‘1 &, 1s given by a product of the classical, the one-loop,
and the instanton contributions,
J

Zclassical (a; q: ¢, €2>Zl—100p (a; €1, 82)

X Zinstanton(a;q; £, 82),

Z(a;q;€1.8,) =
(3.5)

where we denote the collection of Coulomb parameters as

a={a;,li=0,...r+1,a=1,...,N}, and the collec-
tion of coupling constants as ¢ = {¢;|i = 1,...,r}. The
classical part of the partition function is simply
2
chamcal a g€, 82 H H 25152 ia (36)

i=1 a=1

and the one-loop contribution to the partition function is

r Is(a;, —a; + eley, €
ZI_IOOP(a; 81’ 82) — - Hlfo H(l,/)’ 2( Lo I+1,ﬂ | 1 2) , (37)
[T=i [acpl2(@ia — aip + €1ler, e2)02(aiq — aip + €2]e1, €2)
where € = €| + &, and the Barnes double Gamma function I';(x|e;, &,) is defined by
d 1 o dt e
r , — —r . 3.8
e =ew gt [t o
The instanton part of the partition function is an co=¢e(u—1)+e&(v-1). (3.13)
equivariant integration on the instanton moduli space with
respect to the maximal torus of the gauge group and the The weight Qy is given by
SO(4) rotation. Applying the equivariant localization
theorem, it is given by the fixed point formula as A L
| oy = [[ai =][=""" (3.14)
stlanton (a;q;€1 €y (39) i=1 =0

) — Zgyzinstanton(a; Y§€1 ,82).
Y

The sum is over all fixed points of instanton configurations,
which are labeled by the collections of Young diagrams,

Y={r90<i<r+1l,a=1,...,N}, (3.10)
where Y0 — y(+1.9) — ¢ Each Young diagram Y is a
finite collection of boxes 0 = (u, v) €Y arranged in left-
justified rows, with the row lengths in nonincreasing order.

The total number of boxes in the Young diagram Y is
denoted by |Y/|, and the number of boxes in each row gives a

Y=Y 12Yy 2 2Ypy)> Yoy = - =0). (3.11)
We define the arm-length and leg-length as

AL =Y,-v, LL =Yl —u. (3.12)
We also define the content ¢ of a box [0 = (u,v) €Y

to be

where k; is the instanton charge associated with the gauge
factor U(N;), and

(3.15)

N
ki = ; |y ().

The measure Z™@N (g: ¥; ¢, &,) is the product of factors
corresponding to the field content of the theory,

Zinstanton (a. Y' £ 82)

{Hzlvr?ct?c?rm al,Y " 51582)]
{HZL?EE?(;O“ awY ) ajtq, Y<+1)§81,€2):|, (316)

where we denote d; = {a;,Ja=1,...,N} and y —
{Y (i.a) o = 1, ..., N}. The contribution from a bifundamen-
tal hypermultiplet is

125006-6
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N

Zimanon(G, Y. b, Wsey.e;) = H H lag — by — el + e, (AL +1)]
ap=lgey@
x [ laa—bs+e (L +1) — 4", (3.17)
Oew?®

If we set one collection of Young diagrams to be empty, we obtain the contributions from an (anti)fundamental
hypermultiplet,

N
Zimanon Gy 0.3, Y Ve ) = [ [ (@0w—ais—co). (3.18)
ap=lOeylh
' - N
Z{)??;%Igon(arv Y(r)’ ar-&-lvo; €1, 82) = H H (ar.a —Adr1p +eo+ 8)’ (319)
af=1eyra
|
where € = € + &,. The contribution of the vector multiplet sical N
can be written in terms of that of the bifundamental — #/;(x)"*" = H (x = a;4) = det (x — @;(0)). (3.23)
a=1

hypermultiplet as

) R . o
stanton (= V7. _ stanton (5 = ¥ -1
Zyneton(d, Yy, &,) = Zmanon(a, Y, a,Y; e, ) .

(3.20)

B. % -observables, qq-characters
and NPDS equations

With the fixed point formula of instanton partition
function (3.9), we can define the expectation value of
certain BPS observables O in the Q-background as

<O> — Zinstanton(a; Y; €1, 82)_1

> ZQYzinstamon(a; Y;e, Ez)O[Y], (321)
Y

where O[Y] is the value of O evaluated at the instanton
configuration labeled by Y.

The standard local observables in the N' = 2 theory on
R* are gauge-invariant polynomials of the scalar compo-
nents of the vector multiplet, Tr®/ (x). However, Poincaré
symmetry is broken in the Q-background, and the operators
Trd!(x) are invariant under the deformed supersymmetry
of the Q-background only at x = 0, the fixed point of the
rotation. The % -observable is constructed as the generating
function of such operators,

o0

1
& (x)=xNexp (—Z nTrd>f(O)>, i=1,...,r.
nx

n=1

(3.22)

Classically, %/;(x) is equal to the characteristic polynomial
of the scalar component in the vector multiplet of the ith
factor of the gauge group

Quantum mechanically, the % -observables receive correc-
tions due to the mixing between the adjoint scalar and
gluinos. The value of %/;(x) evaluated at the instanton
configuration labeled by Y is given by

(x—co—g))(x—co—g)

’

7,0 =]] [(x—ai,(» I

Oeylia (X_EE)(X_EE_‘?)

(3.24)

where ¢ = a;, + cq is the shifted content of the box
OeY(@® Fori=0andi=r+ 1, we define

A
=

Il
=

(x - aO,a) ’

S
Il

A
+
=
1
=

(3.25)

(x - ar+l,a)'

]
Il
—_

From the % -observables, we can build an important
class of gauge-invariant composite operators, the so-called
qq-characters. Let us denote

(3.26)

The #th fundamental qq-characters 2 ,(x) in linear quiver
gauge theories can be written as

125006-7
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Yo(x+e(1=7))
2031 " Zp-1

XZH 7,5, x+€h1()+l_f))]’

icordiel
\1\ f

Lp(x) =

£=0,1,..r+1, (3.27)
where [0,r] ={0,1,2,...,r}, and h;(i) is the number of
elements in / which is less than i. As demonstrated in [36],
although the qq-characters 2 ,(x) has singularities in finite
x, its expectation value (2 ,(x)) is a polynomial in x of

degree N,

(Z'¢(x)) = Te(x).

These equations are called NPDS equations, and contain
nontrivial information of the instanton partition function of

the theory. In particular, the x™ coefficient 2 f;") of the
large-x expansion of 27,(x) has zero expectation value
when 7 is a positive integer,

(3.28)

(2t =0, x>l (3.29)

C. Dictionary of AGT correspondence

It is useful to summarize the dictionary of AGT corre-
spondence in order to make the paper self-contained. The
main statement of the AGT correspondence is an identifi-
cation between the (r 4 3)-point correlation function in the
Liouville field theory with the partition function of super-
conformal quiver gauge theory with gauge group SU(2)".
|

<vA_1<oo>[[vA,.<z,~>vA,H<o>> — F(Br A

« [ ey

where the prefactor f(A_;,...,A,,;) is independent of z,
and 290 (a;z;¢,,¢,) is the U(l) part of the partition
function.

D. Degenerate partition function

Up to this point we assumed that the Coulomb moduli a
are generic. Then the instanton partition function (3.9)
contains an infinite sum over collections of Young dia-
grams Y. However, we can tune some of the parameters to
special values so as to force some of Y@ to have a
constrained shape. For example, we can adjust

Let us decompose the U(2) gauge group into the U(1)
part and the SU(2) part,

2
_ 1 ;L _
a; = 5 Ajas Aiog = djg — 4d;.

From the point of view of an SU(2) linear quiver gauge
theory, the masses of the anti-fundamental, fundamental
and bifundamental hypermultiplets are given by

(3.30)

Hiip1 =dip1 — 4,
(3.31)

Ho=0r114—ay,

i=1,...,

ﬂa:ao,a_alv

r—1.

If we identify the Liouville parameter b with the
Q-deformation parameters &, €, as
€

pr =11

(3.32)
&

and relate the conformal dimensions A; with the Coulomb
parameters a in the following way:

& — (g, —aoz)2

A = NPT
1 de ey
A _gz—(a,+1,1 — 1)
r+l 4e ey ’
A (@1 _ail(a,»—aig +e)’ i=0,....r. (3.33)
€16
then we have
r—1 .
<Z§ 1—8o 4&1&2) <H Zi—A;> <Z-/;f1sz —A, Ay+l>
i=1
Z(wziene) (3.34)
a z,81,82) ’
aj+(m=1eg +(n—-1)g, a=1,
(e
’ ar a#l,

where m,n€Z". Since the measure of the instanton
partition function contains a factor,

H (a(),a — Al

O=(u,v) € Y(:2)

ef(u—1)—g(w-1)), (3.36)

the contribution to the instanton partition function vanishes
unless the Young diagrams Y('® =0 for a# 1, and
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O = (m,n) ¢ Y'Y, Hence, the number of Young dia-
grams we need to sum over reduces drastically. In particu-
lar, when m > 1 and n = 1, the Young diagram Y"-!) can
have at most m — 1 rows. According to the AGT dictionary,
(3.35) corresponds to a degenerate field with the conformal
dimension A, ).

Physically, the tuning of the Coulomb parameters (3.35)
initiates a partial Higgsing of the four-dimensional N = 2
gauge theory, after which only a part of the gauge symmetry
is restored on the two-dimensional surfaces C,, and C,,.
Therefore, the partition function of the ' = 2 gauge theory
subject to the constraints yields the correlation function of
the surface defects defined by coupling the two-dimensional
degrees of freedom on these surfaces to the remaining four-
dimensional gauge field. See Refs. [19,20] for more detail
on the Higgsing construction of the surface defects in the
N = 2 gauge theory.

IV. SUPERCONFORMAL THEORY
WITH GAUGE GROUP U(N)

In this section, we take a simple example to illustrate
the basic idea of deriving the differential equation on the
instanton partition function at a special point in the

|

&

N (M)E

instanton — >
Z = Z Iy

ap1 —ar, + €
=y FN_] << 0,1 2. 2>
&

ag | — ao l,—&-s; )E

fapgr —ap, +e\V
’ - ’ C]] )
= ) a=2

parameter space. We consider the U(N) gauge theory with
N fundamental hypermultiplets and N antifundamental
hypermultiplets for general N > 2. At the degenerate point
of parameter space,

apy + €,
agg =
ayq

a=1,

atl. (4.1)

the instanton partition function is only summed over the
Young diagram Y(":") which has only one row,

vy —

(1,1)](1,2)

(1,k1)7®,"' 7®> .

(4.2)

Therefore, we can label the Young diagram Y(I!) by the
instanton charge k.

In this case, we face no obstruction in proving directly
that the instanton partition function is a (generalized)
hypergeometric function from the instanton partition func-
tion. The instanton partition function is

(4.3)

(4.4)

which is a (generalized) hypergeometric function, and satisfies the (generalized) hypergeometric differential equation (see

the Appendix A for details),

N
0 Ay — Ay, t &

0= T 5 B 2 )

[%H <Ch 9q, - & Chalh

N

o) apg1 —
[] (o=t
a=2 q1 &

)

(4.5)

1) :| Zinstanton .

Now we would like to derive the above differential equation using the NPDS equations. There is only one fundamental

gq-character in this theory,

21 (x)

=% (x+e)+q

Wo(x)Y 5 (x + ¢)
Y\ (x) '

(4.6)

At the degenerate point (4.1), the value % (x)[Y] simplifies to
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_ T _ - (x—ap —&w-1)—¢)x-a —&v)
Zlr] = Loz x al‘a)] [,/1 (x—a; —e(v-1))(x—a;; —&v— 51)}

_ T Y—a (x—ayy —&)(x—ay —&k)

; 01:[1( ]a)] [(x_al.])(x_al,l — &k —51)]

- —(x—al,l—el)ﬂu—al,a)][ * a1 — &k }

X — 611’1 - €2k1 — &1

L a=2
_ go(x)x—lloql +81 —82](1 (47)
X — ao’l - €2k1
Accordingly, 27, (x)[Y] becomes
€] €
Z1OY]=g(x+e)| 1+ +q1%(x+¢e)| 1 — . 4.8
1(0)[Y] of )< x+€—ao,1—€2k1> 1Y 5( )( x_a0’1+81—82k1> (4.8)
The x~! coefficient of the large-x expansion of 27| (x)[Y] is given by
3&”(1_1)[Y] =e%(ao + exk) — q11% (a0 + e2k) + &). (4.9)
Using the relation
<k{)> sttdnton<a Y 81,82 Z qklzmstmton(a Y 81’82)k
P={r@}
. e —1 a r_.
= ZmaN(a; Y ey, 6,) <q1 a_> 2N a; qy; €1, €), (4.10)
q1

the equation (2~ (1_1)> = 0 becomes

N

9 0 .

0= [H <00,1 + &4, o0 aO.a) 9 H (ao |+ &q, p + e — )} Zinstanton | (4.11)
a=1 1 a=1

which coincides with the differential equation (4.5).

V. SUPERCONFORMAL LINEAR QUIVER GAUGE THEORIES

In this section, we would like to derive the differential equation on the instanton partition function of the superconformal
linear quiver gauge theory using the NPDS equations.

A. Large-x expansion of fundamental % -observables

The first step is to compute the large-x expansion of the % -observables,

Y (x)[Y] = xN exp [glog <1 > + Z Z CDH])“_ :*)} = xVexp <—ic;;';[f]>, (5.1)

where
N
Ciu¥] = Tr@?(0)[¥] = > {a?,a + ) [ea+e) +(@o+e) - —(o+ 8)"]}- (5.2)
a=1 Oeylia

125006-10
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In particular, we have

Yi(x+e)¥] =[] (x~(aia—¢)

a=1

(x—co+e)x—co+e)

X — —
a=1 Oe o (x—cg)(x—co+e)
N
0 !
CialY] = <Z aga> — 2e,65k;, (5.3) —exp (=) CilVT) (5.4)
a=1 o nx"
We also have the similar expression for %/;(x + €)[Y], where
N
CLlYl=) {(ai,a —e)"+ Y l(@-e) + (@ -e)-a" - (@~ 8)”]}- (5.5)
a=1 Oeyla
Therefore, we obtain the large-x expansion of Z;(x)[Y], r
£ P ()] A=) (th,-> =[[(+x). (510
| Niel i=0

Yin(x+o)[Y] CinlY]
B =" =1+ = (5.6)
Yi(x0)[Y] ; x
The first two terms of {;,, are given explicitly as
Cin = Aﬁ”,
Cin= Agz) —eey(ki — ki), (5.7)
where
N
Al(l) = Z (ai.(l - ai+1,a + 8)’
a=1
o _ 1y Loy
— 2 2
A = EZ a7, = (aiy1a = €)°] +E("4i ). (58)

B. Generating function of the fundamental
qq-characters

After expanding the %/ -observables, we would like to
calculate the large-x expansion of the qqg-characters. In
order to deal with all of the fundamental qq-characters at
the same time we introduce the generating function,

r+1
G, () =D () AT 2021zt X p(x—e(1-2))
=0
=AY [(sz,) HE,-()H—eh,(i))}, (5.9)
Iclo.] - Niel i€l

where

Ic(0.r

In the following, we would like to sum over I C [0, 7] to
obtain the large-x expansion of ¥,(x;1),

© @ ()
= . 5.11
70 =3 " (5.11)
Let us define
1z;
;= S 12
i (5.12)

When r =0, 4,(t) is given by a sum over / =9 and

I = {0},

1 7))

Go(x;1) = T+ iz 1T = Ep(x)
_ 1+g”°f,f"". (5.13)
Hence,
900 =1. G5 =uy,. nezt. (5.14)

For general r > 1, we can compute the value of the
generating function (5.9) using the recurrence relation
between ¥, (x;¢) and ¢,_;(x; 7). We divide the sum over
I C [0, r] into two classes: » ¢ I and rel,
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gr(x;;)_ljtzr mbY [(Hrz)H_,)H—eh,/ }

rclo—1t Nier iel
1z
S ——
Zr I’ clo,r—1]t Nier iel

= gr—l (X; t) + MrA:—ll <E‘r <x + 8t%) - 1) (Ar—lgr—l(X; t))

)

= Crn
=9, 1(x;1) + u, A llnz: (rter? (A1Y,-1(xs1))
= C "
= go(x; t) + Z I/t] Z J j—lgj—l (x; t)) (515)
= (x+ st
Hence, we obtain the recursive relations,
701 =9y (1) = 1, (5.16)
=" ui. (5.17)
=0
d
Zu,e“,ﬁZu,C,lgj | —sZu,@,IA] 115 A (5.18)
3 4 ! _ 0 1 d
771 = ZOMjCjJ + Zluj[gj,lgﬁ-_ (1) +¢;, 2g Z u;ATY [gj,lta(Aj—lgﬁ V() + 2¢;, 2t—
J= J=
'\ -1 A%
+ € FZIMJCJIA]_I <t&> Aj—l’ (519)
-4 ! 4 -3 -2 -1
G0 =Y ulia+ Y w0 + a9 (1) + a9 (1)
=0 =1
~ Al 9 (-2) 9 (-1) 9
- 821 u;A7 Cj,lfa (Aj—lgj—l (1) + 24,',21& (Aj—lgj—l (1) + 3Cj,3[5 A
]:
2 A7 9V (a_,@ 3 AW N At (12) A 5.20
+e jz_:uj 1[G i (A9 (1) + 3852 o) -1 e ;MjCjJ i\ 15 ) At (5.20)
|
We further introduce the notation, ; % A, = A,U,[0], (5.22)
‘ 0
U,[s1,52, ..., 5/] = Z H w; &), (5.21) t&(A,U,[sl,...,sf]):A,(fUr[s],...,sf]+Uﬁe[s,,...,sf}),
0<i;<--<iy<rn=
(5.23)
where [sq,...,s/] is a sequence of non-negative integers, r
and we adopt the convention that {;, = 1. We have the Zujéj,mUj_l[Sl, v Sel =U,[s1, 80, ...,5.,m], (5.24)

following useful relations from the definition, j=1
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h 0\?3
where A7 <t5> A, = U,[0] + 6U,[0,0] + 6U,[0,0,0], (5.28)
U®sy,....s,] = U,[0,s1, ..., 5, + U,[51,0, ..., s/]
44 U,sy.....5..0]. (5.25) After solving the recurrence relations, the first few terms of

4™ (1) can be written as
We also have
) (1) =1, (5.29)

At
"ot

A, = U,[0], (5.26)
) gV = U,[1), (5.30)
A <z3> A, = U,0] + 20,[0,0,  (5.27)

ot _
G\ (1) = U,[2] + U,[1.1] - U, [0, 1], (5.31)

G (1) = U3] + U [2.1] + U,[1,2] — e(U,[1.1] + 20,{0.2]) + £2U,[0. 1]
UL 11 = e2U,[0.1.1] + U,[1,0. 1]) + 262U, (0.0, 1], (5.32)

G (1) = U, J4] + U,[1,3] + U,[2,2] + U,[3.1]
— (U, 2. 1]+ 20,{1.2] + 3U,(0.3]) + (U, [1. 1] + U,[0.2]) — €U, [0. 1]
+U,2.11]+ U,[1,2.1] + U,[1,1,2]
—&(3U,[1,1,1] 4+ 3U,[0.2,1] + 3U,[0, 1,2] + 2U,[1,0,2] + U,[2,0.1])
+€2(6U,[0,1,1] + 3U,[1,0, 1] + 6U,[0,0,2]) — 662U, [0,0, 1]
+U,[1,1,1,1] = e(3U,[0.1,1,1] + 2U,[1,0,1,1] + U,[1,1,0, 1))
+&2(6U,[0,0,1,1] + 3U,[0,1,0, 1] + 2U,[1,0,0, 1]) - 663U, [0, 0,0, 1]. (5.33)

In this paper, we are interested in the special case N = 2, with % (x) = x> — (ay; + app)x + ag ag,. We can deduce
from the NPDS equations (3.28) that (#/((x)¥,(x; 1)) is a polynomial in x for arbitrary f. In particular, we have

(1) = (ao.1 + ap2)(%y 2 (1) + ag,a02(%: " (1))
= (U,[3]) = (ap;s + ao2)(U,[2]) + ap a02(U,[1])
2,1]) + (U, [1.2]) = 26(U,[0,2]) — (ao, + do + €){U,[1, 1]) + e(ag, + aoa + €)(U,[0,1])
1,1,1]) — e(U,[1,0,1]) = 2¢(U,[0, 1, 1]) + 2&*(U,[0,0, 1]), (5.34)

and

0= (,(1)) = (any +ap2) (@5 (1)) + ag,1a02(457 (1)
= (U,[4]) = (ao,1 + ag2)(U,[3]) + ag1a02(U,[2]) + (U,[1.3]) + (U,[3.1]) = 3&(U,[0,3]) + (U,[2.2])

— (a1 + apa + &)U, [2.1]) = (ag) + ao, + 2€)(U,[1.2]) + e(e + 2a9, + 2a9,)(U,[0,2])
+ (a0 + &)(agp + &)(U,[1.1]) — e(ag1 + €)(ao + £)(U,[0.1]) + (U,[2. 1. 1]) + (U,[1.2,1]) + (U,[1. 1, 2])
—e(U,[2,0,1]) —2¢(U,[1,0,2]) — 3¢(U,[0,2, 1]) = 3¢(U,[0, 1,2]) + 6¢*(U,[0,0,2])
— (ao +agy +3e)(U,[1, 1,1]) + e(ao, + apz + 3¢)(U,[1,0,1])
+2¢(ag + agp + 3e)(U,[0, 1, 1]) = 26*(ag 1 + ag + 3¢)(U,[0,0,1])
F UL 1,1 1]) = e(3(U,[0,1, 1, 1]) + 2(U,[1,0, 1, 1]) + (U,[1. 1,0, 1))
+ €X(6(U,[0,0,1,1]) + 3(U,[0,1,0,1]) + 2(U,[1,0,0,1])) — 6¢*(U,[0,0,0,1]). (5.35)
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By taking the residue of (5.34) at r = —z;!, we have

r Z
0=(liz)+ [—001 —apy + Z A —2e) + Z - Aﬁ‘l)] (Cia) + 00.100,2441('1)
Z] Z; =i Zj —Z;

i~1 Z
AV ) ~ (a0 + a0 + ) (A~ e) A

=0 % T

r Z

+ L (A = 2€)(¢12) = (a0 + a2 + &) (A — ) A

Pt R R
+ Y i (A0 _2e) (AN — ) A

0<i, <ip<i (Zil - Zi)(ziz - z)

+Z Z i) i (A() 28)( ( —s)A

=57 (2 —2)(z, — 2)

0 (n () _ oy 40
AT oA 5.36
i l<11212<r Z,] - Z,‘)(Ziz - Zi) ( 8)( 6') ( )

In particular, when j = 0, we have

0_<Co,3>—<ao1+aoz+z ) (Con) + aga02A

20— %

— 3 S (A —26) (i) — (g + d0n + &) (AL — ) AL

i=1 <0 i

iy Zi (1) (1) (1
+ 2 Ay’ —2e)(A;7 —¢e) A 7. 5.37
lSilEizsr (ZO _ Zil)(zo _ Zi2> ( 0 6‘)( iy 8) 123 ( )

We also need the equation obtained by taking residue of (5.35) at t = —z ',

0= (Lo4) — (00,1 + app + Z Az(l)) (Co3) + ao1a02(S02)

=1 20 = Zi

+ <e<e + 2aq, + 2a92) — (ag, + aga +26) ANV (Cin) + (ao + ) (ags + €) (AL — &) AN

—3¢e)(¢is) + (Co28in) — (agy +ag, + €)A§1)<Co,2>

O_Zz

Zi) iy (1) (1) 1) (1)
+ Ai" =€) A (Co2) + (Ay T = 3e) Ay (¢,
Z e T (A = A oa) + (A =300 4(2)
+ <A<o = 3e><A§, )2 26)(C1,0) = (aoy + ags + 36) (A = 2¢) (A — £).A)]
- ¥ i, (A = 3) (A = 26)(AD — ) A, (5.38)

1<iy <iy<is<r (ZO — 4 )(ZO - Ziz)(ZO - Zig)

C. Derivation of the differential equations

Now we are ready to derive the differential equations satisfied by the instanton partition function using the NPDS
equations. The key point is that {, take special values at a degenerate point in the parameter space.
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1. Second-order differential equation

In order to derive a second-order differential equation,
we should tune the parameters in the following way:

ap,) = a + €, Qoo = dyp. (5.39)
The configuration of the gauge fields are constrained so that

the Young diagram Y{'!) has only one row and Y(1:?) = 0,

YW =(](@1,1)(1,2) (1,k1),(2)>. (5.40)

Hence, the Young diagram Y(I') is completely determined
by the instanton charge k;, and

W (x+o)lk]
Y o(x)
(xt+e—ag;)(x+e—ap,)
(x —ag1)(x = apy)
X~ doa +2e; —ey(k; — 1)
x—ag; +e —e(k —1)

() nk
:1+ZCO,L1]’
n=1

X

(5.41)

which gives

Coalki] =3 +2e,,

Coolki] = (261 +&2)ag; +eag, +e(2e) + &) + €16k,

Coalki] = (2¢ +£2)a(2),1 +&(2e) +&)ag, +eaj,
+&(2e) + &) ag, +2€16a0 1k +€163k3. (5.42)

Hence, from (5.37), we have

0=¢1&(ags —agy) (ki) +e1&3(k)

,
Zi 1 1
—Z e [—ao,zAl(' )+82A§ N(ky)
i=1 20— %

+-A:('2) _€1€2<ki - ki+1>]

(5.43)
1<iy <iy<r (20— 2i,) (20— 2,

Using

instant — instant
Zinstan 0n<k1> — _vozms an on’

Zinstanton<ki _ ki+1> = viZiﬂStanton’ (544)

we obtain a differential equation on the instanton partition
function,

0 = {ng% — &) (ao,] - Clo.z - Z il A§1)> VO

i=1 <0~ %i

Er Zi (1) (2) v
+ a ./4 - ./4 + &€ i
— Z0—2 [ 0,271 i 1€2 ]

Zi,Zi,

+
1<iy <ip<r (ZO - Zil)(zo - Ziz)

iy i

(A(l) _ €>A(1) }Zinstanton.
2

(5.45)

This is the equation that was derived in [32] to confirm the
BPS/CFT correspondence for this particular case.

2. Third-order differential equation
The derivation can be extended to the next-to-simplest

case, as we now explain. To obtain a third-order differential
equation, we tune the parameters

a()‘] = a],l —|— 281, a0_2 = Cl]’z. (546)

In this case, the configurations of the gauge field are
required to satisfy that the Young diagram Y(!'!) has at most
two rows and Y(1:2) = 0,

D) | @,2) ... |L,y2)| .. |(1,91)
vy — 0],

(2’1) (272) (2>y2)

(5.47)

where we denote the number of boxes in the first and the
second row of the Young diagram YV as y, and y,,
respectively. The instanton charge k; = y; + y,. Then, we
have

Y (x+e)Y]
= Y=———————
O(X)[ ] @o(x)
(xde—ap;)(x+e—agy)
(X—ao,l)(X—ao,z)
Xx+£—a0,1+2€1—£2y1x+6—a0,1+£1—82y2
Xt+e—apg1t+e —&y xte—ap—&ym
- COn[Y}
=1 = - 5.48
+; . (5.48)
We have
4‘071:481“‘282,
Cop= (31 +&r)ag +eag, +e(3e +¢&) +e16k, (5.49)

while {4 are related to {3 as
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3 1
Coa = <3ao.1 —2e—g +§€2k1>503 Se6k] - 55155(640.1 —&))k?

3 1 3 1
) <§ (5e1 + er)ad, + = (e1 + 3e,)(3ey + &2)ag +=eaf, + 58(751 + 362)00,2) ki

2 2
—2(3e1 + &)y, — £2(3e) + &2)af, +&(2e; + £)(3e; + £2)ag; — 3eag 14,
—2¢(3e; + &)ag a0, + ea(3).2 + e(5e) + 2&y)ag, + €(2e; + &) (3 + €3)ag . (5.50)

Using (5.37), (5.50), and (5.36), we can get rid of all terms with ({y3), ({o4), and ({;3) in (5.38), and we obtain a
differential equation on the instanton partition function,

& s 8%
0=¢=V+ —3ap, +3ag, +& +3 E
{ ot ( do.1 oo T & 20—

: e

i

r

+& [(610,1 —aop)(ag; — app — €1) — Z

<2A 26165V, + A (2‘10,1 —4ap, + 8_22>>

20 — %
D (e R ST Tt
(zo —-z;) 2 1< =her (20— 2i) (20 — 23,)

(2491 — 2a9, + 82)(610,2-/4,('1) - Agz) +£8V,)

t Zi—ly (2"41(‘1) —2¢ = 52)(%2«451) - A,@ +6V;)
| 2i,Zi,

1<i <ir<r (z0 = Zi )(z0 = Ziz)

+ AV (AT + aga A + e189V) + AL (AP + agp A + 160V))

2 ) e (ADBAD - &) AD — 264D A

1<, Stiner (20 = 20 (20 = 21,) (20 — 233)

(AL — )AL (—ag, + ag, —€)

I

+2

2
Zilziz

+
1<i) <i,<r (ZO - Zil)z(zo - z,-z)

(AL —e)2A) - 26, — £y A

2
2% 1) (1) (1) } instanton
+ L AV — ) AN AN — 2 — 6)) 1 2 . 5.51
1<i <ir<r (ZO = Zj )(ZO - Zi2)2 ( 5 ) B ( : l 2) ( )

D. Identification with the BPZ equations

The final step is to identify the differential equations we derived in the gauge theory side with the BPZ equations by
solving the undetermined parameters L; and 7';;. We find that the following solution exists:

2
e —(a 1 —a
Lo=A_ —Ay— ( 1.1 12) ,
48182

= .5)2 ) —a. 2
Li=—A, - (aiy — aia) (ait11 — ait12) Ci=1...r—1.

4eqey dee,

82 - (ar,l - ar,2)2

L,= _Ar - ArJrl +

’

4e1&;
1 1

T~~ pu—
! 28182

J (5.52)
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With this identification of parameters, we observe the
precise agreement between (2.26), (2.27), and (5.45),
(5.51). It is easy to check that (2.24) is also satisfied.
Notice that the prefactor can also be written as

T.L 2\
1I=) 11 (=2
i=0  /o<idjer\ L

2 —1
_ [ AaRemg T -4 4*152 ~Ar=Ar
(2 =) (=

i=1
(a; (ZIZ

2(aj-ajy1)(@;=a; | +e)
46‘16‘2
xqu 11

+ J
<1 Zj) erey
0<i<j<r i

(5.53)

which give the expected tree-level partition function and
the U(1) part of the partition function (see Appendix B
for details). Therefore, we confirm the BPS/CFT
correspondence.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we perform the derivation of the differential
equation on the instanton partition function at a special
point in the parameter space using the method of NPDS
equations and identify the differential equations with the
BPZ equations in the Liouville field theory. Therefore, we
confirm the main assertion of the BPS/CFT correspon-
dence. It is interesting to notice that this application of
NPDS equations is complementary to the study of chiral
trace relations in [37], where parameters are taken to be
generic.

There are several obvious generalizations of our paper.
First of all, it is natural to consider the general degenerate
fields with conformal dimension A, ,) and derive the
differential equation of order mn on the instanton partition
function. The computation will be unavoidably lengthy, but
the basic idea is the same. To simplify the derivation, it is
sometimes useful to consider the NPDS equations of both
fundamental and nonfundamental qq-characters.

We can also generalize the discussion to the U(N)
superconformal linear quiver gauge theories. However,
from the knowledge of corresponding Toda field theory,
we do not expect to obtain a differential equation on the
instanton partition function. Instead, the equations derived
from the NPDS equations will generally relate the instanton
partition function with the expectation values of certain
BPS observables. Only if we take the Nekrasov-Shatashvili
limit can we get a differential equation on the instanton
partition function. The nonconformal A,-quiver SU(3)
gauge theory and the degenerate irregular conformal block
in the A, Toda field theory were studied in [35] along this
direction. The detailed discussion on the general quiver will
appear in a separate paper.

In spite of the successful application of the NPDS
equations to derive the BPZ equations, there are still some

open problems. From the point of view of conformal field
theory, it is equally good to choose any one of the fields to
be degenerate, and we have the BPZ equation for every
choice. In the corresponding four-dimensional theory, we
need to tune the parameters in the following way for
arbitrary i =0, ...,r

a
Ajig =
a

However, we do not get the expected constraints of the form
(6.1). For example, the constraint is Y(*+19) ¢ y(-@) rather
than Y(+1@) = y(i9) for ¢ # 1. This problem is associated
with the annoying U(1) factor in the AGT dictionary. We may
have to figure out how to factor out the U(1) factor at the level
of the measure Z™N (q: ¥; ¢, &,). Progress in this direc-
tion will also lead us immediately to a derivation of the BPZ
equation for the conformal field theory on a torus.

i1 (m=1)e +(n—1e, a=1,

wtl. (6.1)

i+1,as
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APPENDIX A: GENERALIZED
HYPERGEOMETRIC FUNCTION

A generalized hypergeometric functiop oF q(al, s Ay
by, ,bq,z) is defined as the power series,
o] ar'z .. ar_l Zn
F (aj,...ayby,....bjz) =Y ——L2 (Al)
P 1s .y p9 1s s Vg 5
q — by - by n!
where the parameters ap, - ay, by, ...,b, are complex

numbers. The notation x" is the rising factorial or
Pochhammer function, which is defined for real values
of n using the Gamma function provided that x and x + n
are real numbers that are not negative integers,

__F(x—i—n).

"= A2
The generalized hypergeometric function ,F q(al, s Ay
by, ....b,:7) is a solution to the generalized hypergeomet-

ric function,
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E d d d
{zH(zd—ZJran) —zd—Z’H(zd—Zern - 1)]

n=1

><,,Fq(al,...,a,,;bl,...,bq;z):O. (A3)
Clearly, the order of the parameters {a,,...,a,}, or the
order of the parameters {b, ..., b,} can be changed with-

out changing the value of the function. The standard
hypergeometric function ,F(a, b; c; z) is simply a special
case of the generalized hypergeometric function when
p=2and g =1.

If any a; is a nonpositive integer, then the series (Al)
only has a finite number of terms and becomes a poly-
nomial of degree —a;. If any by is a nonpositive integer
(excepting the previous case with by < a;), then the series
(A1) is undefined. Excluding these special cases for which
the numerator or the denominator of the coefficients can be
0, the radius of convergence can be determined using the
ratio test. In this paper, we are interested in the case
p = g + 1. The ratio of coefficients tends to one, implying
that the series (Al) converges for |z| < 1 and diverges
for |z| > 1.

r

APPENDIX B: U(1) FACTOR

In this appendix, we derive the U(1) factor using the
NPDS equations.

When N = 1, we have % (x) = x — @, and the NPDS
equations lead to

0= ([Zo(x)F,(x:1)]=V)
= (@7 (1) —ap(g " (1)
= (U,[2]) + (U,[1. 1]) = €U, [0, 1]) — ao(U,[1])
= Z”i(<§i,2> —ao(Ci1))
i—0
+ Z i i, ((Ci1Cinn) — €(Ci 1)), (B1)
0<iy<ir<r
where
{in=a;j—aj +e, (B2)
Cio=ay(a;—aj +e)—eek—ky). (B3)

Picking up the residue at ¢t = —zjfl we obtain,

-1

~.

_ — \/= _ Zj _ _ _ _ Zj _ _ _ _
erexkj—kj1) =(a;—ap)(a;—a;;, +e)+ Z —(a;=a;,1)(a;—a;; +e)+ —(a;—a;)(a;—aj +e)
iS5 T L i=0 Si T
- Zi - = ~ - L oo 2 - -
= Z Z‘_Z'(aj_aj—%l)(ai_ai—s-l+€)+ '_Z'(ai_ai-i—l)(aj_aj—&-l+8)' (B4)
=1 T %) =0 i %
From the structure of the instanton partition function, we see that
d instanton
(kj—kjiy) :zjd—zlogZ . (B5)
j
Therefore, we have the U(1) part of the instanton partition function
Z. _(@i-aj 1) @j-a; 41 +e)
instanton _ H ( _ Z_J) 12 (B6)
]

0<i<j<r
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