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We consider self-interacting scalar fields with a conformal coupling in the de Sitter background and
study the quantum corrections from bubble loop diagrams. Incorporating the perturbative in-in formalism,
we calculate the quantum corrections in the vacuum zero point energy and pressure of self-interacting fields
with the potential V ∝ Φn for even values of n. We calculate the equation of state corresponding to these
quantum corrections and examine the scaling of the divergent terms in the vacuum zero point energy and
pressure associated to the dimensional regularization scheme. In particular, we show that for a quartic self-
interacting scalar field the conformal invariance is respected at two-loop order at the conformal point.
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I. INTRODUCTION

Quantum field theory in de Sitter (dS) background is a
rich topic which has important implications both observa-
tionally and theoretically [1–5]. Observationally, there are
strong evidences that the early Universe experienced a
period of inflation in which the background was nearly a dS
spacetime. In the simplest realization, inflation is driven by
a scalar field, the inflaton field, with a near-flat potential
[6,7]. While the inflaton field slowly rolls on top of its
potential, its quantum fluctuations are stretched on super-
horizon scales, which provide the seeds of large-scale
structure and the perturbations on the cosmic microwave
background [8,9]. The basic predictions of the models of
inflation are that these primordial perturbations are nearly
scale invariant, Gaussian, and adiabatic, which are well
supported by cosmological observations [10,11]. In addi-
tion, numerous observations indicate that the late Universe
is undergoing a phase of accelerating expansion. The origin
of dark energy as the source of the recent cosmological
acceleration is not known, but a cosmological constant
associated with the quantum zero point energy of fields
may be a good option [12–16].
On the theoretical side, while there is no compelling

theory of quantum gravity at hand, understanding quantum
fields in curved backgrounds, including the dS background,
may shed some light for the pursuit of a theory of quantum
gravity. Understanding important issues such as regulari-
zations and renormalization of cosmological correlations of
quantum perturbations in dS background can play impor-
tant roles as well. More specifically, similar to quantum
field theories in flat spacetime, physical quantities such as

the energy-momentum tensor, energy density, and pressure
suffer from infinities in a curved spacetime. Therefore, it is
an important question as how one can regularize and
renormalize the infinities to extract the finite physical
quantities. Furthermore, the fact that there is no unique
vacuum in a curved spacetime adds more complexities for
the treatment of regularization and renormalization in a
curved spacetime [17–22].
In this work, we study the quantum fluctuations of a self-

interacting scalar field with nonminimal coupling to gravity
in a dS background. The free quantum fields with the
conformal coupling in dS background [23–37] and the self-
interacting scalar field with a quartic potential V ∝ λΦ4

[38–49] are vastly studied in the literature. In this paper, we
extend those works to more general self-interacting poten-
tials with the emphasis on vacuum zero point energy
associated to the bubble diagrams. More specifically, we
study potentials of the form V ∝ λΦn for even values of
n ¼ 4; 6;… and calculate the expectation values of the
vacuum zero point energy and pressure associated to the
bubble diagrams. The case n ¼ 4 is renormalizable, but
higher-order interactions with n > 4 are not renormaliz-
able. However, it is understood that we work in an effective
field theory approximation where renormalizability is not a
fundamental requirement. The current setup may be viewed
as a low-energy limit of some unknown UV complete
theories which can be useful for phenomenological infla-
tionary model building. We employ the dimensional
regularization scheme [50–55] to regularize the quantum
infinities (for earlier works concerning the dimensional
regularization scheme in dS spacetime, see, for example,
[38–49]). This paper extends our earlier work [56] in which
the vacuum zero point energy associated to the bubble
diagram for a free field with a conformal coupling in a dS
background was studied. In the presence of self-interaction,
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we have to consider multiple bubble loop diagrams as
depicted in Fig. 1. For an even value of n, we have to
consider a bubble diagram with n

2
loops to obtain the order λ

corrections in the expectation values of physical quantities.

II. THE SETUP

We consider a real scalar fieldΦ in a dS spacetime which
is nonminimally coupled to gravity with the conformal
coupling ξ and the self-interacting potential VðΦÞ ¼
λΦn=n, in which λ is the self-interacting constant. As will
become evident soon, we consider even values of n with
n ¼ 4; 6;…. For the special case n ¼ 4, the coupling
constant λ is dimensionless, while for higher values of n
it has the dimensionM4−n. In addition, as we are interested
in the conformal limit, and also, to simplify the analysis, we
assume the field is massless, m ¼ 0. However, as we shall
see below, one can easily restore the mass in our formalism,
though the equations will become more complicated. In our
analysis below, we treat the contribution of the self-
interaction as a perturbation to the free theory and calculate
the vacuum zero point energy and pressure to first order in
coupling constant λ.
With the above discussions in mind, the action involving

the scalar field is given by

S ¼
Z

dDx
ffiffiffiffiffiffiffiffiffi
−gD

p �
−
1

2
ξΦ2R −

1

2
∇μΦ∇μΦ −

λ

n
Φn

�
; ð1Þ

where D refers to the dimension of the spacetime and gD
stands for the determinant of the metric. Since we employ
dimensional regularization to regularize the quantum infin-
ities, we keep the spacetime dimension general and set
D ¼ 4 − ϵ with ϵ → 0 as in the conventional dimensional
regularization approach. We work in the test field limit,
where the background geometry is the solution of the
Einstein field equations with no backreactions from the
scalar fields. In order for this approximation to be con-
sistent, the vacuum zero point energy and pressure

associated with the fluctuations of Φ should be much
smaller than the corresponding background quantities.
In the absence of the self-interaction, the theory is

classically conformal invariant in four-dimensional space-
time when ξ ¼ 1

6
. However, as is well known, this classical

symmetry is anomalous under quantum corrections.
Furthermore, the addition of the potential can break the
conformal invariance at the classical level, since the
coupling constant λ induces scale into the theory when
n ≠ 4. While the theory is still classically conformal
invariant for n ¼ 4, the quantum corrections break con-
formal invariance in this case as well. We consider the
arbitrary values of even n, while the special case of n ¼ 4
was studied extensively in the literature; see, for example,
the works of Woodard and collaborators [38–49].
The background spacetime has the form of the

Friedmann-Lemaître-Robertson-Walker metric:

ds2 ¼ aðτÞ2ð−dτ2 þ dx2Þ; ð2Þ

where τ is the conformal time related to cosmic time via
dt ¼ aðτÞdτ, in which aðτÞ is the scale factor. In our limit
of a fixed dS background, aHτ ¼ −1, in which H is the
Hubble expansion rate associated to the dS background.
Since the dS spacetime is maximally symmetric, the Ricci
tensor and Ricci scalar are given as follows:

Rμν ¼ ðD − 1ÞH2gμν; R ¼ DðD − 1ÞH2: ð3Þ

The scalar field equation is given by

□Φ − ξRΦ − λΦn−1 ¼ 0: ð4Þ

Note that, to simplify the above field equation, we use the
convention that the coupling constant has the form λ=n
instead of λ=n! which is usually used in quantum field
theory (QFT) textbooks.
To study the quantum fluctuations, we introduce the

canonically normalized field σðτÞ:

σðτÞ≡ a
D−2
2 ΦðτÞ; ð5Þ

in terms of which the action takes the following diagonal
form:

S¼1

2

Z
dτdD−1x

�
σ0ðτÞ2−ð∇σÞ2þ

�ðD−4ÞðD−2Þ
4

�
a0

a

�
2

þD−2

2

a00

a
−
�
ξRþ λ

aD
σn−2

�
a2
�
σ2
�
; ð6Þ

where a prime indicates the derivative with respect to the
conformal time.
To quantize the field, we expand it in terms of the

creation and annihilation operators in D − 1-dimensional
Fourier space as follows:

FIG. 1. The Feynman bubble diagrams for λΦn theory at the
leading order. For n ¼ 3 one is dealing with a nested (double
time) in-in integral, while for even values of n ¼ 4; 6; 8;… one
has a single time in-in integral. For each even value of n, one has
to consider a diagram with n

2
loops to calculate the order λ

corrections in expectation values such as hρiΩ.
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σðxμÞ ¼
Z

dD−1k

ð2πÞðD−1Þ
2

ðσkðτÞeik·xak þ σ�kðτÞe−ik·xa†kÞ; ð7Þ

in which σkðτÞ is the quantummode function and ak and a
†
k

satisfy the following commutation relation in D − 1 spatial
dimensions:

½ak; a0†k � ¼ δD−1ðk − k0Þ: ð8Þ

Correspondingly, the equation of motion of the free mode
function (with λ ¼ 0) from the action (6) is given by

σ00kðτÞ þ
�
k2 þ 1

τ2

�
DðD − 1Þξ −DðD − 2Þ

4

��
σkðτÞ ¼ 0:

ð9Þ

Note that the above equation is similar to the Mukhanov-
Sasaki equation associated to the inflaton perturbations in
an inflationary background [9]. Notice that for ξ ¼ 1

6
in

D ¼ 4 the second term in the big bracket vanishes and the
mode function reduces to its simple flat form. This
corresponds to the conformal limit which we consider
in our analysis below. However, note that, in a general
D-dimensional spacetime, the conformal limit corresponds
to the special value

ξ ¼ ξD ≡ D − 2

4ðD − 1Þ : ð10Þ

Imposing the Bunch-Davies (Minkowski) initial con-
ditions for the modes deep inside the horizon, the solution
of the mode function from Eq. (9) is given in terms of the
Hankel function:

ΦkðτÞ ¼ a
2−D
2 σkðτÞ ¼ ð−HτÞD−1

2

�
π

4H

�1
2

e
iπ
2
ðνþ1

2
ÞHð1Þ

ν ð−kτÞ;

ð11Þ

where

ν≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 1Þ2−4DðD − 1Þξ

q
: ð12Þ

From the above expression, we see that ν can be either real
or pure imaginary, depending on the values of ξ. In our limit
of interest where ξ is near its conformal value, ν is real. In
particular, for ξ ¼ 1

6
withD ¼ 4, we obtain ν ¼ 1

2
. As the in-

in integrals become nontrivial, and in order to prevent
complications associated to an imaginary ν in the mode
functions, in our analysis below we assume that ν is real.
This imposes the bound 0 < ξ ≤ D−1

4D , which for D ¼ 4

corresponds to ξ ≤ 3
16
.

The energy-momentum tensor in the presence of self-
interaction is given by

Tμν ¼ ð1 − 2ξÞ∂μΦ∂νΦþ
�
2ξ −

1

2

�
gμνgαβ∂αΦ∂βΦ

þ ξ

�
Rμν −

1

2
gμνR

�
Φ2 þ 2ξðgμνΦ□Φ −Φ∇ν∇μΦÞ

−
λ

n
gμνΦn: ð13Þ

Employing the field equation (4), one can eliminate □Φ,
and, using Eq. (3), Tμν is further simplified to

Tμν ¼ ∂μΦ∂νΦþ gμν
2

ð4ξ − 1Þ∂αΦ∂αΦ

þ ξ

2
ðD − 1Þð2þ ð4ξ − 1ÞDÞH2gμνΦ2 − ξ∇μ∇νΦ2

þ gμνλ

�
2ξ −

1

n

�
Φn: ð14Þ

Similarly, the trace of the energy-momentum tensor T ≡ Tμ
μ

is obtained to be

T ¼ 2

�
ðD − 1Þξþ 2 −D

4

�
ð∂αΦ∂αΦþDðD − 1ÞξH2Φ2Þ

þ λ

�
2ξðD − 1Þ −D

n

�
Φn: ð15Þ

The energy density ρ ¼ T00 is

ρ ¼ ð1þ 4ξÞ
2

Φ̇2 þ ð1 − 4ξÞ
2

∇iΦ∇iΦþH2

2

× ½ð1 − 4ξÞðDðD − 1ÞξÞ − 2ðD − 1Þξ�Φ2

− ξ∇0∇0Φ2 − λ

�
2ξ −

1

n

�
Φn: ð16Þ

Finally, the pressure P is given by

P ¼ 1

D − 1
⊥μνTμν; ð17Þ

in which ⊥μν ≡ gμν þ uμuν represents the projection oper-
ator and uμ ¼ ð1; 0; 0; 0Þ is the comoving four-velocity.
Consequently, we obtain

P ¼ 1

D − 1
ðT þ ρÞ: ð18Þ

In our analysis below, we will be mainly interested in
vacuum expectation values such as hρi, hPi, and hTi. This
was studied for a free theory with a nonzero mass in [56],
and here we extend these analyses in the presence of the
self-interaction λΦn. However, it is important to note that
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the expectation value is with respect to the full vacuum,
which we denote by jΩi so hρi≡ hΩjρjΩi and so on.
Because of the interaction term λΦn, the vacuum jΩi is
different than the vacuum associated to the free theory,
which is denoted by j0i. To prevent confusion, we define
hΩjρjΩi≡ hρiΩ while h0jρj0i≡ hρi0 and so on.

III. DIMENSIONAL REGULARIZATIONS
AND IN-IN FORMALISM

In this section, we calculate vacuum expectation values
such as hρiΩ using the dimensional regularization scheme
in D dimensions. As in [56], let us define

ρ1 ≡ 1

2
Φ̇2; ρ2 ≡ 1

2
gij∇iΦ∇jΦ; ρ3 ≡ 1

2
H2Φ2:

ð19Þ

Then,

hρiΩ ¼ ð1þ 4ξÞhρ1iΩ þ ð1 − 4ξÞhρ2iΩ
þ ½ð1 − 4ξÞDðD − 1Þξ − 2ðD − 1Þξ�hρ3iΩ
− ξh∇0∇0Φ2iΩ − λ

�
2ξ −

1

n

�
hΦniΩ: ð20Þ

Note that the first three terms in the first line in Eq. (20) are
formally the same as in [56] except that in [56] the
expectation values were with respect to the vacuum of
the free theory. The two terms in second line in Eq. (20) are
new. First, we have a term with the specific λ coupling.
Second, the contribution h∇0∇0Φ2iΩ is nontrivial. In the
analysis of [56], it was noticed that h∇0∇0Φ2i0 ¼ 0. This is
because hΦ2i0 is a constant, so it is easy to understand that
h∇0∇0Φ2i0 ¼ ∇0∇0hΦ2i0 ¼ 0. However, in the presence
of the interaction, we notice that ∇0jΩi ≠ 0, so one cannot
simply take the derivative outside the expectation value,
i.e., h∇0∇0Φ2iΩ ≠ ∇0∇0hΦ2iΩ.
Out of the five contributions into hρiΩ in Eq. (20), the

last term λhΦniΩ is the easiest term to calculate. This is
because it has a factor of λ, and, since we are interested in
first-order corrections in λ, we can simply assume the
vacuum in this case is the free vacuum and

λhΦniΩ ≃ λhΦni0 þOðλ2Þ: ð21Þ

Note that the assumption that n is even was necessary to
obtain the above result to leading order in λ. For odd values
of n, the linear term in λ vanishes, and one has to go to
higher orders of λ to calculate λhΦniΩ. This brings addi-
tional complexities involving the in-in integral as we shall
see in the next section.
Since Φ is a Gaussian free field in the absence of

interaction, one can easily see that, for even values of n,

hΦni0 ≃ ðn − 1Þ!!ðhΦ2i0Þn2; ð22Þ

in which ðn − 1Þ!! ¼ ðn − 1Þðn − 3Þ…1. For example, for
n ¼ 4, we have hΦ4i0 ¼ 3ðhΦ2i0Þ2. As a result, the last
term in Eq. (20) reads

λ

�
2ξ −

1

n

�
hΦniΩ ≃

�
2ξ −

1

n

�
λðhΦ2i0Þn2 þOðλ2Þ: ð23Þ

The quantity hΦ2i0 can be viewed as the coincident limit of
the Feynman propagator. It plays important roles in our
analysis below, in which the expectation values of the
physical quantities in the presence of interaction can be
expressed in terms of hΦ2i0.

A. Free theory

Here, we briefly review the results of [56] for the free
theory, which will be used in our following analysis as well.
In the free theory with λ ¼ 0, the vacuum j0i is dS
invariant, so from Eq. (20) we obtain

hρi0¼ð1þ4ξÞhρ1i0þð1−4ξÞhρ2i0þ½ð1−4ξÞDðD−1Þξ
−2ðD−1Þξ�hρ3i0: ð24Þ

As we shall see below, all three components of hρii0 are
expressed in terms of hΦ2i0, so let us calculate this quantity.
Performing the dimensional regularization analysis, we
have

hΦ2i0 ¼ μ4−D
Z

dD−1k
ð2πÞD−1 jΦkðτÞj2; ð25Þ

in which μ is a mass scale to keep track of the dimension-
ality of physical quantities. We decompose the integral into
the radial and angular parts as follows:

dD−1k ¼ kD−2dkdD−2Ω; ð26Þ

where dD−2Ω represents the D − 2-dimensional angular
part with the volume

Z
dD−2Ω ¼ 2π

D−1
2

ΓðD−1
2
Þ : ð27Þ

Combining all numerical factors and defining the dimen-
sionless variable x≡ −kτ, we obtain

hΦ2i0 ¼
π

3−D
2 μ4−DHD−2

2DΓðD−1
2
Þ

Z
∞

0

dxxD−2jHð1Þ
ν ðxÞj2: ð28Þ

Performing the integral, this yields [57]
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hΦ2i0 ¼
μ4−Dπ−

D
2
−1

2D
Γ
�
νþD

2
−
1

2

�
Γ
�
−νþD

2
−
1

2

�

× Γ
�
−
D
2
þ 1

�
cosðπνÞHD−2: ð29Þ

In particular, note that, for the conformal limit with ν ¼ 1
2
,

the above expression vanishes. With hΦ2i0 at hand and
using Eq. (23), the last term for hρiΩ in Eq. (20) is
calculated accordingly.
Following similar steps to calculate hρii0, we obtain the

following relations [56]:

hρ1i0 ¼ ðD − 1Þξhρ3i0;
hρ2i0 ¼ −ðD − 1Þhρ1i0 ¼ −ðD − 1Þ2ξhρ3i0; ð30Þ

where, from Eq. (19), hρ3i0 ¼ H2

2
hΦ2i0 with hΦ2i0 given in

Eq. (29). In the conformal limit where hΦ2i0 ¼ 0, we see
that hρii0 ¼ 0 and, correspondingly, hρi0 ¼ 0.
Similarly, calculating hTi0, one can show that hTi0 ¼

−Dhρi0 and, correspondingly [56],

hPi0 ¼ −hρi0: ð31Þ

This is the expected result indicating the local Lorentz
invariance for the free theory in which one expects to
locally have hTμνi ¼ −hρigμν.
It is important to note that, in the above results, D is

general, so to perform the regularization we consider
D ¼ 4 − ϵ. One sets ϵ → 0 at the end with the under-
standing that the singular terms in physical quantities with
inverse powers of ϵ are canceled by appropriate counter-
terms as in standard QFT analysis.
It is useful to look at the results in some limits of interest.

In the case of a massless field with no conformal limit,
ξ ¼ 0, one obtains

hρireg0 ¼ 3H4

32π2
¼ −

1

4
hTireg0 ðξ ¼ 0Þ: ð32Þ

On the other hand, as we noticed before, for the special case
of conformal point with ξ ¼ 1

6
, hρireg0 ¼ hTireg0 ¼ 0.

However, if one restores the mass so the theory is not
conformally invariant, one obtains [56]

hρireg0 ¼ −
H4

96π2
β2 þ H4

64π2

�
ln

�
H2

4πμ2

�
−
1

2

�
β4

þOðβ6Þ
�
ξ ¼ 1

6

�
; ð33Þ

in which β≡m=H.

B. In-in formalism

To calculate the first four terms in Eq. (20) to first order
in λ, we need to implement the in-in formalism, which
perturbatively relates the vacuum expectation values of the
interacting theory to the vacuum expectation of the free
theory as follows [58]:

hOðτÞiΩ¼
D
0
���T̄ei

R
τ

τ0
HIðτ0Þdτ0OIðτÞTe−i

R
τ

τ0
HIðτ0Þdτ0

���0E; ð34Þ

whereT and T̄ stand for time ordering and antitime ordering,
respectively. The subscript I in the right-hand side of the
above equation indicates that all quantities are calculated in
the interaction picture, i.e., with themode function of the free
theory given by Eq. (11). The initial time is τ0 ¼ −∞, while
the final slicing τ is the time when the measurement on the
quantum operatorO is made. As we work in an unperturbed
dS background, we have −∞ < τ0 ≤ τ < 0. Since the time
integrals in Eq. (34) are nontrivial, we shall restrict ourselves
to the casewhere the upper limit τ → 0, i.e., themeasurement
is being made toward the future boundary of dS. In an
inflationary setup with deviations from an exact dS back-
ground, the final slicing τ → 0 corresponds to the time of the
end of inflation. Finally, HI represents the interacting
Hamiltonian, which in our case is

HI ¼
λ

n
aD

Z
dD−1xΦðxÞn: ð35Þ

Note that the factor aD appears because of the volume
element

ffiffiffiffiffiffi−gp
.

To leading order in λ, the correction in hOðτÞiΩ is
given by

hOðτÞiΩ ¼ hOðτÞi0 þ 2Im
Z

τ

−∞
dτ0hOðτÞHIðτ0Þi0: ð36Þ

The first term above is the contribution in the absence of
interaction which was calculated in [56] for O ¼ ρ, P, etc.
Our goal below is to calculate the above integrals for four
different operators ρ1, ρ2, ρ3, and ∇0∇0Φ2 as appearing in
Eq. (20). In order to isolate the contribution of the free
theory, we denote the last term in Eq. (36) by ΔhOðτÞi.
Let us start with hρ3ðτÞiΩ, yielding

Δhρ3ðτ;x0Þi ¼
H2

2
ΔhΦ2ðτ;x0Þi

¼ λH2

n
Im

�Z
τ

−∞
dτ0aðτ0ÞD

×
Z

dD−1xhΦðτ;x0Þ2Φðτ0;xÞni0
�
: ð37Þ

Note that x0 is an arbitrary reference point in background
where the measurement is made. However, because of the
spatial translation invariance, we can set x0 ¼ 0, so we do
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not specify x0 in the rest of the analysis below. From the
above expression, we see that, for odd values of n, the
expectation values vanish in the light of the Wick theorem.
Therefore, for odd values of n, one needs to go to second
order of perturbations, leading to order Oðλ2Þ corrections.
This, in turn, requires nested time integrals (i.e., a double
time integral) which are more complicated than the single
time integral over τ0 which we encounter for even values of
n as given in Eq. (37). For this reason, as mentioned before,
we restrict our analysis to even values of n ¼ 4; 6;….
There are two different types of contributions when

performing the contractions in Eq. (37). The first type is in
the form hΦðτ;x0Þ2i0hΦðτ0;xÞni0. With a bit of effort, one
can show that this contribution has no imaginary compo-
nent, so this contribution vanishes. The second type
contracts each term of Φðτ;x0Þ with a term in Φðτ0;xÞn.
There are total nðn − 1Þ!! possibilities for these contrac-
tions. After performing the Wick contractions, we obtain
(for further details of Wick contractions, see the Appendix)

Δhρ3ðτÞi ¼ ðn − 1Þ!!λH2ðhΦ2i0Þn−22 μ4−DI3ðτÞ; ð38Þ

in which

I3ðτÞ≡
Z

τ

τ0

dτ0aðτ0ÞD
Z

dD−1q

ð2πÞðD−1Þ Im½ΦqðτÞ2Φ�
qðτ0Þ2�:

ð39Þ

Following similar steps for ρ1 and ρ2, we have

Δhρ1ðτÞi ¼ ðn − 1Þ!!λH2ðhΦ2i0Þn−22 μ4−DI1ðτÞ; ð40Þ

with

I1ðτÞ≡
Z

τ

−∞
dτ0

aðτ0ÞD
aðτÞ2

Z
dD−1q

ð2πÞðD−1Þ Im½Φ0
qðτÞ2Φ�

qðτ0Þ2�;

ð41Þ

and

Δhρ2ðτÞi ¼ ðn − 1Þ!!λH2ðhΦ2i0Þn−22 μ4−DI2ðτÞ; ð42Þ

with

I2ðτÞ≡
Z

τ

−∞
dτ0

q2aðτ0ÞD
aðτÞ2

Z
dD−1q

ð2πÞðD−1Þ Im½ΦqðτÞ2Φ�
qðτ0Þ2�:

ð43Þ

In addition, we have to calculate h∇0∇0Φ2iΩ as well,
which is given by

h∇0∇0Φ2iΩ ¼ 2

a2

�
hΦ02iΩ þ hΦΦ00iΩ þ 1

τ
hΦΦ0iΩ

�
: ð44Þ

Calculating each term as above, we obtain

h∇0∇0Φ2iΩ ¼ ðn − 1Þ!!λH2ðhΦ2i0Þn−22 μ4−DI4ðτÞ; ð45Þ

in which

I4ðτÞ≡
Z

τ

−∞
dτ0

aðτ0ÞD
aðτÞ2

Z
dD−1q

ð2πÞðD−1Þ Im½ðΦ0
qðτÞ2

þΦqðτÞΦ00
qðτÞ þ

1

τ
ΦqðτÞΦ0

qðτÞÞΦ�
qðτ0Þ2�: ð46Þ

IV.MEASUREMENTSAT FUTUREDS BOUNDARY

So far, our analyses were general except that we assumed
that n is even so we deal with a single time integral as in
Eq. (39). To proceed further, we should calculate each of
IiðτÞ listed above. We start with I3ðτÞ, which is easier. Let
us denote the (D − 2)-dimensional angular part of the
momentum integral by VD−2 as given in Eq. (27).
Defining the dimensionless variables x≡ −qτ0 and y≡
−qτ and switching the orders of the time and momentum
integrals, we obtain

I3 ¼
VD−2

ð2πÞD−1 Im

�
π2HD−4

16

Z
∞

0

dyyD−2ðHð1Þ
ν ðyÞÞ2

×
Z

∞

y

dx
x
ðHð2Þ

ν ðxÞÞ2
�
: ð47Þ

Looking at the integral over the x variable, we see that it is
in the form of a nested integral. Furthermore, its integrand
falls off quickly for large x as the integrand oscillates
rapidly with a decaying amplitude. Therefore, one expects
the dominant contribution for the interior integral comes
from the lower bound when x → y.
To proceed further and to calculate the integrals ana-

lytically, we have to impose some simplification approx-
imations. As a reasonable approximation, we take τ → 0.
This corresponds to performing the measurement at the
future boundary of dS. In inflationary models, this corre-
sponds to performing the vacuum expectation value at the
time of the end of inflation. In the limit τ → 0, the mode
function ΦqðτÞ in Eq. (11) simplifies to

ΦqðτÞ → −
iΓðνÞ
π

�
π

4H

�1
2

e
iπ
2
ðνþ1

2
Þð−HτÞD−1

2

�
−2
kτ

�
ν

: ð48Þ

In the context of inflation, this represents the superhorizon
limit of cosmological perturbations when q ≪ aH so
y ¼ −qτ → 0.
Expanding the interior integrand for x ≪ 1 and taking

the lower bound of integral with x → y → 0, the rest of the
integral over y can be taken analytically, yielding
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I3 ¼
4νπ

1
2HD−4

32ν

Γð−νþ d
2
− 1

2
ÞΓðν − d

2
þ 1ÞΓðd

2
− 1

2
Þ

Γð2ν − d
2
þ 3

2
ÞΓð1 − νÞ2

× sinðπνÞ sin
�
πν −

πD
2

�
: ð49Þ

Following the same strategy, we can calculate I1, I2, and
I4 analytically. It turns out that Ii are related to each other,
so all of them can be expressed in terms of I3 as follows:

I1 ¼
ð4ν2 þ d − 2ν − 1Þð−2νþ d − 1Þ

4ðd − 2νÞ I3; ð50Þ

I2 ¼ −
ðd − 1 − 4νÞðd − 1 − 2νÞðd − 1Þ

4ðd − 2νÞ I3; ð51Þ

and

I4 ¼ 8ν2I3: ð52Þ

With the above analytical values of the in-in integrals at
hand, we can calculate hρiΩ, hPiΩ, and hTiΩ. The expres-
sions for these quantities for a general value of ξ are too
complicated to report here, so we consider two special
limits for analytical presentations: first the conformal point
where ξ ¼ 1

6
and second the limit of small deviation from

the conformal point with δξ≡ ξ − 1
6
≪ 1. For general

values of ξ where the analytical results are intractable,
we present the numerical plots of hρiΩ and hTiΩ.

A. Conformal point: ξ = 1
6

At the conformal point with ξ ¼ 1
6
, we obtain

Δhρi ¼ λð3 − nÞ
3n

ðn − 1Þ!!
�
−H2

24π2

�n
2 ð53Þ

and

ΔhPi ¼ λð2n − 9Þ
9n

ðn − 1Þ!!
�
−H2

24π2

�n
2

: ð54Þ

From the above formulas for Δhρi and ΔhPi, and noting
that when λ ¼ 0 both hρi and hPi vanish, the equation of
state w ¼ P

ρ is obtained to be

w ¼ −2nþ 9

3n − 9
: ð55Þ

For example, for n ¼ 4, corresponding to two-loop quan-
tum corrections, we obtain w ¼ 1

3
so the quantum correc-

tions in the energy-momentum tensor behave like radiation.
On the other hand, for large values of n, the equation of
state approaches w → − 2

3
. It is intriguing that the quantum

corrections from self-interactions are not in the form of
w ¼ −1, which is expected from local Lorentz invariance.
It is instructive to calculate ΔhTi as well, yielding

ΔhTi ¼ λðn − 4Þ
n

ðn − 1Þ!!
�
−H2

24π2

�n
2

: ð56Þ

Interestingly, for the case n ¼ 4, we see that the quantum
corrections in the trace of energy-momentum tensor vanish.
This is consistent with the fact that for n ¼ 4 the parameter
λ is dimensionless, so the theory is classically scale
invariant and T ¼ 0 at the classical level. It is intriguing
that the two-loop quantum correction respects this result as
well. However, it is an open question whether or not higher-
order loop corrections (i.e., λ2 and higher-order corrections)
respect this conclusion.

B. Small deviation from conformal point

Now suppose we slightly deviate from the conformal
point with δξ ¼ ξ − 1

6
≪ 1. We calculate the quantum

corrections to leading order in δξ. By increasing the value
of n, the analysis becomes complicated, so here we present
the results for two cases n ¼ 4 and n ¼ 6.
Starting with n ¼ 4 to linear order in ðξ − 1

6
Þ, we obtain

Δhρi≃−
λH4

2304π4
þ λH4

32π4

�
−
1

ϵ
þ ln

�
H2

4πμ2

�
þ5

2
−γ

��
ξ−

1

6

�

þO
��

ξ−
1

6

�
2
�

ðn¼4Þ ð57Þ

and

ΔhPi ≃ −
λH4

6912π4
þ λH4

96π4

�
−
1

ϵ
þ ln

�
H2

4πμ2

�
þ 23

6
− γ

�

×

�
ξ −

1

6

�
þO

��
ξ −

1

6

�
2
�

ðn ¼ 4Þ; ð58Þ

in which γ is the Euler number. We have the divergent ϵ−1

term in both Δhρi and ΔhPi which appears when ξ ≠ 1
6

which should be removed by appropriate counterterms.
Interestingly, in this case, we see that the singular terms in
Δhρi and ΔhPi have the equation of state associated to
radiation, w ¼ 1

3
, as suggested in Eq. (55), while this does

not hold for the finite terms. Indeed, we have

Δhρi − 3ΔhPi ≃ 19λH4

96π4

�
ξ −

1

6

�
ðn ¼ 4Þ; ð59Þ

so the divergent ϵ−1 terms are canceled in the above
expression. In addition, the trace of energy-momentum
tensor is not zero:
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ΔhTi ≃ −
3λH4

16π4

�
ξ −

1

6

�
ðn ¼ 4Þ: ð60Þ

However, we notice that it has no singular part.
Now consider the case n ¼ 6, corresponding to three-

loop bubble diagrams. In this case, the coupling constant λ
has the dimension of M−2, so the quantum corrections
would scale like λH6. To linear order in ðξ − 1

6
Þ, one obtains

Δhρi ≃ 5λH6

27648π6
−
15λH6

512π6

�
−

2

3ϵ
þ ln

�
H2

4πμ2

�
þ 71

54
− γ

�

×

�
ξ −

1

6

�
þO

��
ξ −

1

6

�
2
�

ðn ¼ 6Þ: ð61Þ

As expected, we have the singular term ϵ−1. In addition,
there will be singular terms ϵ−2, but it comes at second
order ðξ − 1

6
Þ2. Similarly, for the pressure we obtain

ΔhPi ≃ −5λH6

82944π6
þ 5λH6

512π6

�
−

2

3ϵ
þ ln

�
H2

4πμ2

�
þ 127

54
− γ

�

×

�
ξ −

1

6

�
þO

��
ξ −

1

6

�
2
�

ðn ¼ 6Þ: ð62Þ

From Eq. (55) for w in conformal point with n ¼ 6 we
obtain w ¼ − 1

3
, so we expect the singular terms inΔhρi and

ΔhPi to be related with this equation of state. Indeed, we
have

Δhρi þ 3ΔhPi ≃ 35λH6

1152π6

�
ξ −

1

6

�
ðn ¼ 6Þ; ð63Þ

so the singular terms ϵ−1 are canceled in the above
expression. We have checked that the equation of state w ¼
− 1

3
also holds for the most singular terms ϵ−2 which appear

at second order ðξ − 1
6
Þ2.

A conclusion is that the equation of state Eq. (55), which
is obtained for the conformal point, is the equation of state
for the singular terms in inverse powers of ϵ in hρi and hPi
at each order of ðξ − 1

6
Þ as well.

C. Numerical plots for general value of ξ

As the analytical expressions for Δhρi and ΔhTi for the
general values of ξ are very complicated, here we present
their numerical plots for the special case of n ¼ 4.
In Fig. 2, we have presented the three-dimensional

behavior of Δhρi and ΔhTi as functions of two parameters
ðξ; μÞ. We have varied μ in units of H, while ξ is varied in
the interval 0 < ξ < 3

16
in which the index ν is real. In the

left panel in this figure, we have presented Δhρi=ð −λH4

2304π4
Þ,

while in the right panel we have presented ΔhTi=ð− 3λH4

16π4
Þ.

In the left panel, the horizontal surface represents the
surface with the value equal to unity, while in the right
panel the horizontal surface represents the surface
z ¼ ξ − 1

6
, independent of μ. In the left panel, we see that,

near the conformal point ξ ¼ 1
6
, Δhρi approaches the

constant value given in Eq. (57). On the other hand, in
the right panel, we see that near the conformal point ΔhTi
approaches the formula given in Eq. (60) in which the
quantum corrections in trace vanish at the conformal point.
To have a better visualization, in Figs. 3 and 4 we have

presented the two-dimensional sections of the above plot as

FIG. 2. The 3D diagrams of Δhρi and ΔhTi as functions of variables ðξ; μÞ for n ¼ 4. We have varied μ in units ofH, while ξ is varied
in the interval 0 < ξ < 3

16
. In the left panel Δhρi is measured in the scale of −λH4

2304π4
, while in the right panel ΔhTi is measured in the scale

of − 3λH4

16π4
. The green horizontal surface in the left panel represents the surface z ¼ 1, while in the right panel it represents the surface

z ¼ ξ − 1
6
. In the left panel near the conformal point ξ ¼ 1

6
, Δhρi approaches the constant value given in Eq. (57), while in the right panel

ΔhTi approaches the formula given in Eq. (60) near the conformal point.
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functions of μ (ξ) for fixed values of ξ (μ). In both panels in
Fig. 3, we see that ξ ¼ 1

6
plays a special role in which at this

point Δhρi ¼ −λH4

2304π4
and ΔhTi ¼ 0 independent of the value

of μ. This property is reinforced in Fig. 4, in which all
curves merge to each other at the conformal point ξ ¼ 1

6
.

V. SUMMARY AND DISCUSSIONS

In this work, we have studied the quantum fields with
self-interaction potential V ∝ λΦn in a dS background and
calculated the vacuum expectation values of the energy
density, pressure, and the trace of the energy-momentum
tensor. We have employed the perturbative in-in formalism
to calculate the corrections in hρiΩ, etc., to first order in λ.
To simplify the analysis, we have considered even values of
n. This is because for even values of n the nonzero
corrections appear at the first order of λ, while for odd
values of n the nonzero corrections appear at the order λ2.
Technically speaking, this corresponds to having a single
time in-in integral for even values of n, while for odd values
of n we need to consider nested (double time) in-in

integrals. For the case n ¼ 4 the self-coupling λ is dimen-
sionless, so the theory is renormalizable. However, for
higher-order interactions with n > 4, the theory is not
renormalizable. In view of effective field theory, one may
consider the current nonrenormalizable interactions as the
low-energy limit of some unknown UV complete theory.
Since our motivation is phenomenological, looking for
implications of zero point energy for potentials which may
be employed for inflationary model building, the condition
of renormalizability may not be a fundamental requirement
at this stage.
Our analysis were performed for general values of ξ, but

to report the analytical results we have considered two
special limits: the conformal point ξ ¼ 1

6
and the case with a

small deviation from the conformal point δξ ≪ 1. At the
conformal point, we obtain the equation of state Eq. (55)
between hρiΩ and hPiΩ. In particular, for n ¼ 4 we obtain
the intriguing result that w ¼ 1

3
with hTiΩ ¼ 0. This

suggests that the classical conformal invariance associated
to the case n ¼ 4 is respected under two-loop (i.e., order λ)
quantum corrections. It is an open question if this sym-
metry does hold to higher-order loop corrections. On the

FIG. 3. The diagram shows the behavior of Δhρi and ΔhTi as functions of μ for various fixed values of ξ. As in Fig. 2, Δhρi is
measured in the scale of −λH4

2304π4
, while ΔhTi is measured in the scale of −3λH4

16π4
. At the conformal point ξ ¼ 1

6
, Δhρi and ΔhTi are constant,

while the behaviors of the curves change for values of ξ below and above this value.

FIG. 4. The diagram shows the behavior of Δhρi and ΔhTi as functions of μ for various fixed values of ξ. As in previous plots,Δhρi is
measured in the scale of −λH4

2304π4
, while ΔhTi is measured in the scale of −3λH4

16π4
. At the conformal point ξ ¼ 1

6
, all curves merge to a fixed

value in each panel.
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other hand, for other values of n, the coupling λ is
dimensionful, so the theory is not conformally invariant
even at the classical level. Therefore, the equation of state is
different that that of radiation. It approaches w → − 2

3
for

large values of n. In the case of δξ ≠ 0 but being small, we
have calculated hρiΩ and hPiΩ to first order in δξ for cases
n ¼ 4 and n ¼ 6. Unlike the conformal point, we have the
divergent terms ϵ−1 at the order δξ and ϵ−2 for n ¼ 6 at the
order δξ2. We have found that these singular terms between
hρiΩ and hPiΩ are related by the equation of state Eq. (55)
at each order of δξ.
While we presented the analytical results only for the

above two special cases, we have presented the numerical
plots of Δhρi and ΔhTi for general values of ξ for n ¼ 4 in
Figs. 2–4. All these figures highlight the special roles
played by the conformal limit ξ ¼ 1

6
.

There are a number of directions in which the current
study can be extended. The first which comes to mind is
repeating this investigation for odd values of n. In this case,
the in-in analysis become more complicated, as one has to
go to second order in in-in integrals, with corrections
appearing at the order of λ2. The second question is to
extend the current analysis for n ¼ 4 to second order in λ
and see if the classical conformal invariance with w ¼ 1

3
and

hTiΩ ¼ 0 holds at the order of λ2 or not. Since we were

mostly interested in conformal limits, we have set the mass
of the field to be zero. However, one can easily incorporate
the effects of mass in the current analysis as well. In
particular, as a physical example, one may consider a
symmetry-breaking potential like V ¼ λðΦ2 − v2Þ2 in
which the effective mass and the cubic and the quartic
couplings are all related via the coupling constant λ.
Employing in-in formalism to second order in λ, one
can calculate the quantum corrections in vacuum zero
point energy from both the cubic and quartic self-
interactions. As the theory is not scale invariant even at
the classical level, then one may not expect the conclusions
w ¼ 1

3
and hTiΩ ¼ 0 to hold under loop corrections. We

would like to come back to the interesting example of
symmetry-breaking potential in the future.
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APPENDIX: WICK CONTRACTIONS

In this appendix, we briefly review some steps concerning Wick contractions.
Let us consider Eq. (37) in configuration space:

Δhρ3ðτ;x0Þi ¼
λH2

n
Im

�Z
τ

−∞
dτ0aðτ0ÞD

Z
dD−1xh0jΦðτ;x0Þ2Φðτ0;xÞnj0i0

�
: ðA1Þ

Going to Fourier space and setting x0 ¼ 0 because of the translation invariance, this yields

Δhρ3ðτ;x0Þi ¼
�
0

���� μ
ðn=2Þð4−DÞ

n
λH2Im

�Z
τ

−∞
dτ0aðτ0ÞD

Z
dD−1p1

ð2πÞD−1
dD−1p2

ð2πÞD−1
dD−1q1

ð2πÞD−1 � � �
dD−1qn

ð2πÞD−1

×
Z

dD−1x½ap1
ϕp1

ðτÞ þ a†p1
ϕ�
p1
ðτÞ�½ap2

ϕp2
ðτÞ þ a†p2

ϕ�
p2
ðτÞ�

× ½aq1ϕq1ðτ0Þeiq1·x þ a†q1ϕ
�
q1ðτ0Þe−iq1·x�½aq2ϕq2ðτ0Þeiq2·x þ a†q2ϕ

�
q2ðτ0Þe−iq2·x�

× ½aq3ϕq3ðτ0Þeiq3·x þ a†q3ϕ
�
q3ðτ0Þe−iq3·x�½aq4ϕq4ðτ0Þeiq4·x þ a†q4ϕ

�
q4ðτ0Þe−iq4·x�

× � � � × ½aqnϕqnðτ0Þeiqn·x þ a†qnϕ
�
qnðτ0Þe−iqn·x�

����0
	�

: ðA2Þ

As a specific example, consider n ¼ 6, where we present the Wick contractions for one case:

Δhρ3ðτ;x0Þi ⊃
�
0

���� μ
ð3Þð4−DÞ

6
λH2Im

�Z
τ

−∞
dτ0aðτ0ÞD

Z
dD−1p1

ð2πÞD−1
dD−1p2

ð2πÞD−1
dD−1q1

ð2πÞD−1 � � �
dD−1q6

ð2πÞD−1

×
Z

dD−1x½ap1
ap2

aq1aq2a
†
q3a

†
q4a

†
q5a

†
q6 � × ½eiðq1þq2−q3−q4−q5−q6Þ·x�

× ½ϕp1
ðτÞϕp2

ðτÞϕq1
ðτ0Þϕq2ðτ0Þϕ�

q3ðτ0Þϕ�
q4ðτ0Þϕ�

q5ðτ0Þϕ�
q6
ðτ0Þ�

�����0
	
: ðA3Þ
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Using Eq. (8) and noting that

Z
dD−1xeiðqi�qjÞ·x ¼ ð2πÞD−1δðD−1Þðqi � qjÞ; ðA4Þ

then Eq. (A3) is cast into the following form:

Δhρ3ðτ;x0Þi ⊃
�
0

���� μ
3ð4−DÞ

6
λH2Im

�Z
τ

−∞
dτ0aðτ0ÞD

Z
dD−1p1

ð2πÞD−1
dD−1p2

ð2πÞD−1
dD−1q1

ð2πÞD−1 � � �
dD−1q6

ð2πÞD−1

× δðq2 − q3Þδðq1 − q4Þδðp1 − q5Þδðp2 − q6Þδðq1 þ q2 − q3 − q4 − q5 − q6Þ

× ½ϕp1
ðτÞϕp2

ðτÞϕq1ðτ0Þϕq2ðτ0Þϕ�
q3ðτ0Þϕ�

q4ðτ0Þϕ�
q5ðτ0Þϕ�

q6
ðτ0Þ�

�����0
	
: ðA5Þ

After some manipulations, the above equation takes the following form:

hρ3ðτ;x0Þi ⊃
μ3ð4−DÞ

6
λH2Im

�Z
τ

−∞
dτ0aðτ0ÞD

Z
dD−1q1

ð2πÞD−1
dD−1q2

ð2πÞD−1
dD−1q5

ð2πÞD−1 ½jϕq1
ðτ0Þj2jϕq2ðτ0Þj2ϕ2

q5ðτÞϕ�2
q5
ðτ0Þ�

�
:

It is easy to show that the desired equation for Δhρ3ðτ;x0Þi, i.e., Eq. (38), for n ¼ 4 is obtained accordingly.
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