
Toward multiloop local renormalization within causal loop-tree duality
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Renormalization is a well-known technique to get rid of ultraviolet (UV) singularities. When relying on
dimensional regularization, these become manifest as ϵ poles, allowing one to define counterterms with
useful recursive properties. However, this procedure requires one to work at “integral level” and poses
difficulties to achieve a smooth combination with seminumerical approaches. This article is devoted to the
development of an integrand-level renormalization formalism, better suited for semi- or fully numerical
calculations. Starting from the loop-tree duality, we keep the causal representations of the integrands of
multiloop Feynman diagrams and explore their UV behavior. Then, we propose a strategy that allows one
to build local counterterms, capable of rendering the expressions integrable in the high-energy limit and in
four space-time dimensions. Our procedure was tested on diagrams up to three loops, and we found a
remarkably smooth cancellation of divergences. The results of this work constitute a powerful step toward a
fully local renormalization framework in quantum field theory.
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I. INTRODUCTION AND MOTIVATION

In the quest for precision in high-energy physics, the
need to compute higher perturbative orders has become
essential. Current and future high-energy colliders will
collect an enormous amount of data, which will lead to very
precise measurements. From the theory side, this translates
into a huge challenge to reduce the uncertainties in the
predictions extracted from quantum field theories (QFTs)
and pushes the available computational frameworks to their
limits.
In spite of the recent developments of several new

methodologies to tackle higher-order calculations [1], there
are some bottlenecks reluctant to be solved. One of them is
related to the presence of divergences and their nonlocal
cancellation. It is well known that generic QFTs possess
singularities in the high-energy limit, the so-called ultra-
violet (UV) divergences. For the particular case of gauge
theories, it is also known [2,3] that these divergences can be
always absorbed or hidden within free parameters of the
theory, through the renormalization procedure. On the other
hand, QFTs with massless particles also have low-energy
divergences, known as infrared (IR) singularities. As in the
UV case, there are several well-established methods to

tackle them, which mostly consist of adding and removing
suitable counterterms [4].
Both for IR and UV singularities, it is required to

introduce a regularization prescription to make manifest
and handle the divergences. Because of its nice properties,
dimensional regularization (DREG) [2,5–7] has become a
rather standard approach. When working with D ¼ 4 − 2ϵ
space-time dimensions, the singularities manifest as poles
in ϵ. In the IR sector, the ϵ poles cancel when we consider
IR-safe observables and we put together all the degenerated
configurations that include extra real radiation and virtual
particles [8]. Within the traditional subtraction approaches,
this cancellation occurs after integration of the real radi-
ation and loop amplitudes, including some suitable counter-
terms. Analogously, the UV divergences are removed
through renormalization counterterms, which include ϵ
poles that exactly match those present in the virtual
amplitudes. At this point, we have to emphasize that UV
divergences are only originated inside the loops, due to the
fact that the energy of the virtual states is unconstrained.
The computational framework described before has been

successfully applied to several relevant processes in collider
physics, up to next-to-next-to-leading order, which has
become the “new standard” in precision. Very recently,
next-to-next-to-next-to-leading order results appeared [9],
although the effort required to achieve them is increasing
enormously when adding extra loops or legs. Among the
different bottlenecks, there are severe difficulties to analyti-
cally calculatemultiloop,multileg Feynman integralswithin
DREG, since the presence of IR and UV singularities
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prevents a straightforward numerical implementation.
Additionally, IR divergences within loops avoid a direct
numerical cancellation with those present in the real-emis-
sion contributions, forcing one to use nonlocal or semi-
analytical techniques to render the expressions IR finite.
With this panorama in mind, novel techniques to explore

an efficient point-by-point or local cancellation of singular-
ities before integration are required [10–13]. In this direction,
the loop-tree duality (LTD) [14–23] allows one to open loop
amplitudes into sums of tree-level-like objects integrated
over a phase space, closely resembling the real-radiation
contribution. Using this formalism, the IR singular structure
of the loops is expressed in terms of phase-space integrals
[17], suggesting a clear connection to the real-radiation
contribution. In fact, this constitutes the basis of the four-
dimensional unsubtraction (FDU) framework [24–27],
where the “open loops” or dual amplitudes are combined
with the real radiation by means of suitable momentum
mappings. As a result, FDU provides integrand-level expres-
sions that are explicitly free of IR singularities, which are
canceled locally (i.e., point-by-point) integration, rendering
the expressionnot only finite, but also (andmost importantly)
integrable.
In order to achieve a local cancellation of UV divergences,

there are some recent methodologies in the market [28–33],
although most of them are not optimized for local IR
counterterms. Within the FDU framework, the treatment
of UV singularities is slightly different, but the objective is
the same: develop local renormalization counterterms. Even
if thewell-knownBogoliubov-Parasiuk-Hepp-Zimmermann
(BPHZ) renormalization program [34–43] provides a
systematic way of computing local UV subtraction counter-
terms, it was mainly thought for renormalization in
Minkowski space and requires some adjustments to be
incorporated within the FDU framework. Our procedure is
inspired in the expansion around UV propagators [44–47],
combined with the application of the LTD and a suitable
matching procedure to recover results in DREG-defined
schemes (such as MS). In this way, FDU has proven able to
achieve a fully local cancellation of both IR and UV
divergences up to next-to-leading order (NLO). Still, local
UV renormalization in FDU beyond NLO is an open
problem. A strategy to deal with UV singularities up to
two-loop level was developed in Refs. [45,47], allowing to
numerically reproduce some well-known MS results.
In this article, we explore a LTD-based strategy that

makes use of the so-called causal representation [48–57] to
unveil local UV counterterms for multiloop Feynman
integrals. The methodology is inspired, again, in the
expansion around UV propagators, but acting directly on
the Euclidean space of the causal dual integrands (i.e., the
integrands of the Feynman amplitudes after the application
of the manifestly causal LTD). We used the fact that the
causal dual representation has an analogous structure to the
real-radiation phase space, allowing us to split the integrand

in such a way that we can isolate the UV-divergent
contributions more efficiently.
The outline of this article is the following. In Sec. II, we

briefly review the basis of manifestly causal LTD and its
mathematical properties. Then, we discuss the generation
of local UV counterterms in Sec. III. We start reviewing in
Sec. III A the strategy presented in Refs. [45,46], and we
explain the causal-inspired approach in Sec. III B. After
presenting the general formalism, we explore useful sim-
plifications to keep the causal structure in the local
counterterms in Sec. III C. In Sec. IV, we apply our
renormalization methodology to two- and three-loop rep-
resentative diagrams, showing a smooth convergence in the
UV region. After discussing the results within our method,
we provide a comparison with the BPHZ renormalization
program in Sec. V, highlighting the similarities and
differences. Also, we include in the Appendix an analysis
about the momentum expansions leading to the UV
counterterms in both approaches. Finally, we present the
conclusions and future research directions in Sec. VI.

II. CAUSAL LOOP-TREE DUALITY

The motivation behind the LTD is intuitive: open loop
diagrams into a collection of tree-level-like objects. To
achieve this purpose, we make use of Cauchy’s residue
theorem to remove 1 degree of freedomper loop. In particular,
we choose to integrate out the energy component of each loop
momenta, which transforms the integration domain from
Minkowski toEuclidean space. This point is very important in
order to reach an integrand-level combination of the different
ingredients involved in higher-order cross section computa-
tions (namely, the real radiation and the virtual corrections).
Furthermore, integrating out the energy component implies
putting on shell certain internal lines of the diagrams.
In its original form, LTD decomposes any one- and two-

loop scattering amplitude in any QFT into a sum of trees
where some subsets of propagators were replaced by the so-
called “dual propagators” [14–16,58]. The dual propaga-
tors, denoted GDðqi; qjÞ, have a momentum-dependent
prescription that allows one to capture all the information
contained in the multiple cuts originated from the Feynman
tree theorem [59]. The integrand obtained after the appli-
cation of the LTD is called the dual integrand or dual
representation of the associated Feynman integral or multi-
loop scattering amplitude.
Recently, it was found that the iterated application of the

Cauchy residue theorem directly leads to the dual repre-
sentation. To illustrate this, let us consider a generic L-loop
scattering amplitude with N external particles,

AðLÞ
N ¼

Z
l1…lL

X
j

N j ×GFð1;…; L;…; nÞ

≈
Z
l1…lL

dAðLÞ
N ð1;…; nÞ; ð1Þ
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where N corresponds to the numerator (depending on the
loop and external momenta, fligi¼1;…;L and fpigi¼1;…;N ,
respectively), and GFð1;…; L;…; nÞ denotes a product of
Feynman propagators associated with the underlying top-
ology. f1;…; ng denotes sets of internal momenta that
depend on specific combinations of loop momenta. For the
sake of simplicity, we can assume 1 depends only on l1, 2
only on l2, and so on, while the remaining are nontrivial
linear combinations of fligi¼1;…;L. Regarding the integra-
tion measure, we have

Z
l1…lL

¼ ð−iμ4−dÞL
Z

ddl1

ð2πÞd …
ddlL

ð2πÞd ; ð2Þ

which is valid for an arbitrary number of space-time
dimensions d, and μ denotes an energy scale associated
with the regularization procedure (DREG in this case).
We start by taking the residue over the energy compo-

nent of l1, which is equivalent to put on shell, one by one,
the propagators of 1, i.e.,

AðLÞ
D ð1; 2;…; nÞ ¼

X
i1 ∈ 1

Res
�
dAðLÞ

N ð1;…; nÞ; qðþÞ
i1;0

�
; ð3Þ

where qðþÞ
j;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qj
!2 þm2

j − i0
q

is the positive on-shell

energy of the jth line. Then, we iterate the procedure
and we get

AðLÞ
D ð1; 2;…; k; kþ 1;…; nÞ
¼

X
ik ∈ k

Res
�
AðLÞ

D ð1; 2;…; k − 1; k;…; nÞ; qðþÞ
ik;0

�
; ð4Þ

in the kth step. The dual representation for an L-loop
amplitude is obtained by computing the Lth iterated
residue, and the original scattering amplitude is then
written as

AðLÞ
N ¼

Z
l⃗1…l⃗L

AðLÞ
D ð1; 2;…; k; kþ 1;…; nÞ; ð5Þ

with the integration being performed over a Euclidean
space (defined by the tensorial product of the space
components of the loop momenta) and

Z
l⃗i

¼ μ4−d
Z

dd−1l⃗i

ð2πÞd−1 : ð6Þ

It is worth appreciating that several contributions vanished
when iterating the residues; these are associated with the
so-called displaced poles, which correspond to nonphysical
configurations and allow us to define the concept of “nested
residues” [23].

Remarkably, further simplifications take place when all

the dual contributions (i.e., the terms inside AðLÞ
D ) are

explicitly added together: only those terms compatible with
causality survive [51]. In fact, Eq. (5) can be recast as

AðLÞ
N ¼

X
σ ∈Σ

Z
l⃗1…l⃗L

ð−1Þk N σðfqðþÞ
r;0 g; fpj;0gÞ
xLþk

×
Yk
i¼1

1

λσðiÞ
þ ðσ ⟷ σ̄Þ; ð7Þ

where we introduced the following definitions:
(i) The integration measure, analogous to the real-

emission phase space,

xLþk ¼
YLþk

j¼1

2qðþÞ
j;0 : ð8Þ

(ii) The order of the topology associated with the
Feynman graph k ¼ V − 1 (with V the number of
vertices).

(iii) The causal propagators 1=λi, with fλig, are asso-
ciated with physical threshold singularities of the
diagram.

Also, σ represents a combination of “k entangled” physical
thresholds from the set Σ of all the compatible thresholds. It
turns out that this formulation only contains terms that
become singular when going through physical thresholds,
manifestly exploiting the underlying causality of QFT and
motivating its name: causal dual representation [50,60,61].
It is important to highlight that LTD is “manifestly causal”
or, in other words, that such a representation naturally
emerges from the principles of the LTD framework [54].
Regarding the set Σ, it can be obtained starting from a
purely geometrical formulation [61], similar to the well-
known Cutkosky’s rules [62].
To conclude this section, let us briefly recall terminology

introduced in Refs. [23,50–52]. Given an L-loop scattering
amplitude, it belongs to the maximal loop topology (MLT)
family if the number of propagators fulfils n ¼ Lþ 1.
For the next-to-maximal loop topology (NMLT), we have
n ¼ Lþ 2 and so on. In general, the NkMLT family is
composed of L-loop diagrams with n ¼ Lþ kþ 1 propa-
gators or, equivalently, it is composed of diagrams of
topological order k.

III. LTD-INSPIRED STRATEGIES
FOR LOCAL RENORMALIZATION

In this section, we describe different strategies to
compute local renormalization counterterms. The differ-
ence between them lies in the starting point. Whereas the
first strategy makes use of the expansion around UV
propagators in Minkowski space, the second starts from
the LTD causal representation directly.
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A. UV expansion in Minkowski space

As already mentioned in the Introduction, given any
multiloop, multileg amplitude, the local UV counterterms
can be built by Taylor expanding its integrand (depending
on the loop four-momenta) in the high-energy limit around
the UV propagator, i.e.,

GFðqi;UVÞ ¼
1

q2i;UV − μ2UV þ i0
; ð9Þ

where, for the sake of simplicity, we define qi;UV ¼ li and
μUV plays the role of a renormalization scale. The order of
the expansion depends on the degree of divergence of the
original amplitude in the different UV limits. The pro-
cedure is described with plenty of details in Ref. [45],
extending previous techniques successfully applied at one-
loop level [25,26,44,47].
To illustrate the method, let us first consider the case of

the bubble integral in four space-time dimensions, i.e.,

Að1Þ ¼
Z

d4k
ðk2 −m2Þððk − pÞ2 −m2Þ ; ð10Þ

depending on the external four-momentum p. In this case,
the superficial degree of divergence is logarithmic (i.e.,
equal number of powers of the momenta in the numerator
and denominator), so the expansion must consider terms of,
at least, order 1=jkj4. This leads to

1

ðk − pÞ2 −m2
¼ 1

k2 − μ2UV

�
1þ 2k · p

k2 − μ2UV

−
p2 −m2 þ μ2UV

k2 − μ2UV
þ ð2k · pÞ2
ðk2 − μ2UVÞ2

�

þO
�

1

jkj7
�
; ð11Þ

where subleading terms are also included. Then, the
counterterm is written as

Að1Þ
UV ¼ 1

ðk2 − μ2UVÞ2
�
1þ 2k · p − p2

k2 − μ2UV

þ 2
m2 − μ2UV
k2 − μ2UV

�
: ð12Þ

Therefore, the renormalized amplitude Að1Þ
R ¼ Að1Þ −Að1Þ

UV

converges, as it goes as 1=jkj6 in the UV limit.
The one-loop case is rather simple, since the UV

diverging region is well identified, even when working
in the Minkowski space (i.e., directly from the Feynman
representation). So, as a more refined example, let us
consider a two-loop amplitude Að2Þ, assumed to be free of
any IR divergence, and build a set of counterterms that

render it integrable in the UV limit. The divergences of the
amplitude appear in two different configurations:
(1) when one of the loop four-momenta l1 or l2 tend to

infinity while the other is fixed (i.e., the so-called
simple UV limit),

(2) or when both simultaneously tend to infinity (double
UV limit).

Thus, we need to find local counterterms in each of these

UV regions. Consequently, the total counterterm Að2Þ
UV is

given by

Að2Þ
UV ¼ Að2Þ

UV;1 þAð2Þ
UV;2 þAð2Þ

UV2 ; ð13Þ

where the first two terms on the right-hand side correspond
to the simple UV limit, and the last term is obtained from
the double UV limit.
In the simple UV limit, lj → ∞, we need first to

consider the following replacements:

SUV;j∶ fl2
j jlj · kig

→ fλ2q2j;UV þ ð1 − λ2Þμ2UVjλqj;UV · kig: ð14Þ

After the replacements, the expansion in λ → ∞ to loga-
rithmic order (denoted by the operator Lλ) allows us to
extract the divergent part of the integral. Therefore, the
calculation of the counterterm corresponding to the loop
four-momentum lj can be written as

AUV;j ¼ LλðAjSUV;j
Þ: ð15Þ

It is worth noticing that the highest order in λ depends on
the particular expression that we are trying to renormalize:
it has to be high enough to cancel all the nonintegrable
terms in the UV limit. Still, removing the divergent parts in
the individual UV limits is not enough to guarantee
integrability: the double UV limit jlij; jljj → ∞ has also
to be considered to cancel overlapping singularities. The
corresponding replacement is

SUV2∶ fl2
j jlj · lkjlj · kig

→ fλ2q2j;UV þ ð1 − λ2Þμ2UVjλ2qj;UV · qk;UV

þð1 − λ2Þμ2UV=2jλqj;UV · kig: ð16Þ

This replacement and the subsequent expansion have to be
applied to the original amplitude without the simple UV
divergences, namely, A −

P
L
k¼1AUV;k. In fact, the simple

UV counterterms AUV;k could be divergent in the double
UV limit, so these additional divergences must also be
removed by the double limit counterterm. By applying the λ
expansion to logarithmic order, we get

AUV2 ¼ Lλ

��
A −

X
j¼1;12

AUV;j

�				
SUV2

�
: ð17Þ
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This strategy can be, in principle, generalized to higher-
loop orders. For instance, when the diagram contains three
loops, it is necessary to calculate triple limit counterterms.
The associated replacement is applied to every different
possible combination of loop four-momenta that simulta-
neously tend to infinity, giving ðL

3
Þ triple counterterms. The

replacements and expansion in λ are applied to the original
amplitude from which simple and double limit counter-
terms are already subtracted. That way, the divergences are
suppressed in all the possible limits until the integral
converges. Still, new overlapping UV-divergent structures
might appear, and this procedure could require one to
subtract more terms. These potential limitations are the
main motivation to explore alternative frameworks.

B. Causal LTD approach

Another way to build local UV counterterms consists of
applying the UV expansion directly to the causal dual
representation. In this way, the counterterm depends purely
on the Euclidean momenta, instead of the four-momenta
defined in a Minkowski space. This has several advantages,
in particular, working in Euclidean spaces allows a natural
definition of distances, so that we can easily associate the
high-energy limit with the large loop three-momentum
region. Furthermore, the causal dual representation lacks
nonphysical singularities in the integrand, which makes the
numerical integration of the renormalized amplitude much
more stable.
In order to develop this procedure, we start by modifying

the algorithm presented in Sec. III A, focusing on promot-
ing scalar products in Minkowski space-time to on-shell
energies and scalar products in Euclidean space.
At first order in the expansion jl⃗j → ∞, the new

algorithm transforms the Euclidean space propagator,
1=ðl⃗2 þm2Þ, into 1=ðl⃗2 þ μ2UVÞ. Thus, we consider the
new replacement rule for the simple UV limit,

SUV;j∶
n
l⃗2
j jl⃗j · k⃗i

o

→
n
λ2l⃗2

j − ð1 − λ2Þμ2UVjλl⃗j · k⃗i
o
; ð18Þ

where jl⃗jj → ∞, while k⃗i is kept fixed at a finite value.
Notice that the sign in front of the term proportional to μ2UV
is changed because we are working in a Euclidean space
(i.e., we removed the energy component). Regarding the
double limit jl⃗jj; jl⃗kj → ∞, the associated replacement is

SUV2∶
n
l⃗2
j jl⃗j · l⃗kjl⃗j · k⃗i

o

→
n
λ2l⃗2

j − ð1 − λ2Þμ2UVj

λ2l⃗j · l⃗k þ ð1 − λ2Þμ2UV=2jλl⃗j · k⃗i
o
: ð19Þ

After implementing Eqs. (18) and (19), the counterterm is
defined by expanding the resulting expression in λ around
infinity. Analogous replacements could be defined in the
simultaneous multiple UV limit, as we will explain later in
this section.
At this point, we should notice that there is a crucial

detail in this algorithm: the operator Lλ should not be
applied to the prefactor 1=xLþk, because it is related to the
integration measure. Let us recall the causal dual repre-
sentation from Eq. (7), symbolically written as

AðLÞ
N ¼

Z
l⃗1…l⃗L

AðLÞ
REDðfqðþÞ

i;0 gi¼1;…;Lþk; fpjgj¼1;…;NÞ
xLþk

; ð20Þ

and define the “reduced amplitude” AðLÞ
RED. It is worth

mentioning that, while developing this framework, we
noticed that Taylor expanding xLþk in the limit λ → ∞
leads to spurious divergences that ruined the convergence
in the high-energy region (in other words, that prevent the
fully local cancellation of UV divergences). Also, we notice
that the replacements (18) and (19) can be directly applied at

the level of on-shell energies, i.e., qðþÞ
i;0 , since they transform

the three-momenta.
Let us illustrate the proposed technique, considering a

generic scalar L-loop scattering amplitude (i.e., the numer-
ator is N ≡ 1). First, we take the UV limit of n-loop three-
momenta going simultaneously to infinity; we denote by γ
the set of indices corresponding to these loop momenta.
Then, let m be the number of internal lines (or propagators)
that depend on, at least, one of these n momenta. In this
way, scaling the loop three-momenta by λ and doing a naive
power counting, we have λ3n in the numerator coming fromQ

i∈ γ d
3l⃗i and λm in the denominator originated from the

integration measure prefactor 1=xLþk. Thus, in order to
define the counterterm in this simultaneous multiple UV

limit, AðLÞ
RED needs to be expanded in λ keeping terms

Oðλ3n−mÞ, besides subleading powers to adjust the finite
pieces. For instance, in the case of MLT diagrams [50,53],
it would be necessary to expand up toOð2n − 1Þ. For more
complicated topologies, such as NkMLT, the superficial
degree of UV divergence is lowered both by the prefactor
(xLþk → λm) and the presence of causal entangled thresh-
olds involving several loop momenta going to infinity.
Still, with a larger number of loops, there is a larger

number of possible combinations for taking these n simul-
taneous limits: explicitly, there are ðLnÞ multiple UV limits.
Therefore, the number of loops significantly increases the
complexity of the calculations. Furthermore, overlapping
singularities might appear, as in the Minkowski-space
expansion, which require keeping higher-order terms in λ.
The origin of such singularities is the direct implementation
of replacement rules (18) and (19), which could introduce
additional spurious dependencies of the loopmomenta in the
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numerators: this problem is particularly evident at three
loops and beyond.

C. On-shell energy expansions within causal LTD

The expansion at the level of the loop three-momenta
could lead not only to cumbersome expressions, but also to
alter the nice structure of causal LTD representations. Still,
if it does not introduce any spurious or noncausal diver-
gence, new functional dependences besides the on-shell
energies qðþÞ

i;0 will appear.
Let us start with the single UV limit and consider qðþÞ

j;0 ,
assuming that it depends on l⃗i. Using the definition of the
on-shell energies and rescaling l⃗i, we have

qðþÞ
j;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl⃗iþ k⃗Þ2þm2

j

q

→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2
�
l⃗2
i þμ2UV

�
þ2λl⃗i · k⃗þ k⃗2−μ2UVþm2

j

r
; ð21Þ

where k⃗≡ q⃗j − l⃗i. Then, if we expand in λ, we obtain

S0UV;i∶ qðþÞ
j;0 → λqðþÞ

i;0;UV þ l⃗i · k⃗

qðþÞ
i;0;UV

−
ðl⃗i · k⃗Þ2

2λðqðþÞ
i;0;UVÞ3

þ k⃗2 þm2
j − μ2UV

2λqðþÞ
i;0;UV

þOðλ−2Þ: ð22Þ

If we keep different masses, the replacement in the case
i ¼ j with k⃗ ¼ 0 takes the form

S0UV;i∶ qðþÞ
i;0 → λqðþÞ

i;0;UV þm2
i − μ2UV

2λqðþÞ
i;0;UV

þOðλ−2Þ;

where the subleading terms depending on m2
i − μ2UV ensure

the local cancellation of UV singularities.
Following these ideas, it is possible to obtain a gener-

alization for describing the multiple UV limit. Let us
consider

q⃗j ¼
X
k∈ δ

l⃗k þ p⃗j ð23Þ

to be the three-momentum of the jth internal line with mass
mj, where p⃗j is any combination of external momenta and
δj is the set of indices of the loop momenta on which qj
depends. Let γ be the set of loop three-momenta that are
going to infinity and define

l⃗j;γ ¼
X

k∈ γ∩δj

l⃗k; ð24Þ

v⃗j ¼ q⃗j − l⃗j;γ: ð25Þ

With this notation, the replacement from Eq. (19) takes the
form

qðþÞ
j;0 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2ðqðþÞ

δj∩γ;0;UVÞ2 þ 2λl⃗j;γ · v⃗j þ v⃗2j − μ2UV þm2
j

q
;

ð26Þ

with qðþÞ
δj∩γ;0;UV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l⃗2
j;γ þ μ2UV

q
. Notice that this expression

is valid regardless of the number of simultaneous divergent
loop three-momenta, ρ ¼ #ðγÞ. Then, if we perform a
Taylor expansion and keep terms up to Oðλ−3Þ, the
replacement rule S0UVρ;γ simplifies to

qðþÞ
j;0 → λqðþÞ

δj∩γ;0;UV þ l⃗j;γ · v⃗j

qðþÞ
δj∩γ;0;UV

−
ðl⃗j;γ · v⃗jÞ2

2λðqðþÞ
δj∩γ;0;UVÞ3

þ v⃗2j þm2
j − μ2UV

2λqðþÞ
δj∩γ;0;UV

þ ðl⃗j;γ · v⃗jÞ3
2λ2ðqðþÞ

δj∩γ;0;UVÞ5

−
ðl⃗j;γ · v⃗jÞðv⃗2j þm2

j − μ2UVÞ
2λ2ðqðþÞ

δj∩γ;0;UVÞ3

−
5ðl⃗j;γ · v⃗jÞ4

8λ3ðqðþÞ
δj∩γ;0;UVÞ7

−
ðv⃗2j þm2

j − μ2UVÞ2
8λ3ðqðþÞ

δj∩γ;0;UVÞ3

þ 3ðl⃗j;γ · v⃗jÞ2ðv⃗2j þm2
j − μ2UVÞ

4λ3ðqðþÞ
δj∩γ;0;UVÞ5

þOðλ−4Þ: ð27Þ

At this point, we can define an iterative procedure to
locally subtract all the UV-divergent contributions for
any arbitrary number of loops. Given an L-loop reduced

scattering amplitude AðLÞ
RED, we calculate the simple UV

counterterms,

AðLÞ
RED;UV;i1

¼ Lλ

�
AðLÞ

REDjS0
UV1 ;i1

�
; ð28Þ

with i1 ∈ f1;…; Lg. Then, we subtract the sum of simple
UV counterterms to the reduced amplitude, defining

AðLÞ
RED;1 ¼ AðLÞ

RED;0 −
XL
i1¼1

AðLÞ
RED;UV;i1

; ð29Þ

with AðLÞ
RED;0 ¼ AðLÞ

RED to simplify the recursive relations.
The next step consists of removing the double UV
singularities, which is achieved by defining the double
UV counterterms, i.e.,

AðLÞ
RED;UV;fi1;i2g ¼ Lλ

�
AðLÞ

RED;1jS0
UV2 ;fi1 ;i2g

�
; ð30Þ
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and summing them over all the possible couples fi1; i2g.
We obtain

AðLÞ
RED;2 ¼ AðLÞ

RED;1 −
XL
i1¼1

XL
i2¼i1þ1

AðLÞ
RED;UV;i1i2

: ð31Þ

Repeating the procedure L times, we arrive to

AðLÞ
RED;UV ¼ AðLÞ

RED;L−1 − LλðAðLÞ
RED;L−1jS0

UVL;f1;…;Lg
Þ; ð32Þ

which corresponds to the locally renormalized reduced
amplitude. Notice that this procedure is rather general, and
the operator Lλ could change step by step. This is because
Lλ involves performing the λ series expansion to different
orders, to ensure that all nonintegrable terms in the limit
l⃗ → ∞ are removed. Also, we have to take into account
that keeping subleading orders in the first loops might lead
to new and more UV singular terms for the remaining
loops, implying that the expansion in λ for the subsequent
iterations had to be done to higher orders.
To conclude this section, we would like to comment on

the loop-momenta flow dependence. Since our approach
aims at a local cancellation of the UV divergences, the UV
local counterterms could eventually exhibit an explicit
dependence on the loop momenta. Still, one crucial
advantage of the causal LTD representation is that it
depends only on on-shell energies, i.e., qðþÞ

i;0 . So, the

loop-momenta dependence is hidden inside these qðþÞ
i;0 ,

and any explicit loop-momenta dependence will be gen-
erated from the UV expansion of the on-shell energies. In
the next section, we will show explicit local UV counter-
terms, and we will see that their explicit dependence on the
loop-momenta flow is minimized.

IV. BENCHMARK MULTILOOP EXAMPLES

In this section, we present representative examples up to
three loops and study their numerical convergence. We will
rely on the simplified strategy based on on-shell energy
expansions. Additionally, we would like to emphasize that
our motivation here is limited to show that the UV
divergences are canceled with the proposed local renorm-
alization counterterms; being able to provide precise
numerical predictions would require high-precision inte-
grators and this study is out of the scope of the present
research.

A. Sunrise diagram with equal masses and fixed
renormalization scale

A simple diagram that we can use to test our local
renormalization strategy is the two-loop MLT sunrise with
an external four-momentum pμ ¼ ðp0; p⃗Þ. It is worth
mentioning that, in the scalar case (i.e., N ≡ 1), MLT
diagrams are the most UV singular (with a superficial

degree of divergence 2L − 1). For the two-loop case, the
causal dual representation is given by

Að2Þ ¼
Z
l⃗1;l⃗2

1

x3

�
1

λþ1
þ 1

λ−1

�
; ð33Þ

where

λ�1 ¼ qðþÞ
1;0 þ qðþÞ

2;0 þ qðþÞ
3;0 � p0 ð34Þ

are the causal thresholds associated with MLT diagrams
and

q1 ¼ l1; q2 ¼ l2; q3 ¼ l1 þ l2 − p ð35Þ

is the momenta assignation, as shown in Fig. 1. The
corresponding on-shell energies are given by

qðþÞ
1;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l⃗2
1 þm2

1

q
; ð36Þ

qðþÞ
2;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l⃗2
2 þm2

2

q
; ð37Þ

qðþÞ
3;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl⃗1 þ l⃗2 − p⃗Þ2 þm2

3

q
; ð38Þ

and we set, in this subsection,m1 ¼ m2 ¼ m3 ¼ M as well
as p⃗ ¼ 0⃗. Therefore, the reduced amplitude is

Að2Þ
RED ¼ 1

qðþÞ
1;0 þ qðþÞ

2;0 þ qðþÞ
3;0 þ p0

þ 1

qðþÞ
1;0 þ qðþÞ

2;0 þ qðþÞ
3;0 − p0

: ð39Þ

This diagram depends on two-loop momenta l⃗1 and l⃗2, so
the potential UV-divergent regions to be considered are
jl⃗1j → ∞ and jl⃗2j → ∞, as well as the simultaneous
limit jl⃗1j; jl⃗2j → ∞.
In the case jl⃗1j → ∞, Eq. (22) yields the replacement

qðþÞ
1;0 → λqðþÞ

1;0;UV keeping only the leading order in λ, while

q1

q2

q3

+p -p

FIG. 1. Momenta assignation for the two-loop MLT diagram
studied, according to Eq. (35).
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qðþÞ
3;0 → λqðþÞ

1;0;UV due to the dependence of q⃗3 on l⃗1. After
applying these transformations to the reduced amplitude,
we get

Að2Þ
REDjS0UV;1 ¼

1

2λqðþÞ
1;0;UV þ qðþÞ

2;0 þ p0

þ 1

2λqðþÞ
1;0;UV þ qðþÞ

2;0 − p0

; ð40Þ

to which the expansion λ → ∞ is applied up to order 1, in
accordance with the formula found in Sec. II: 3n − 2 ¼ 1
for n ¼ 1 (single UV limit) andm ¼ 2 (two other momenta
depending on l⃗1). Finally, the limit λ → 1 is taken, and the
reduced part of the counterterm is given by

Að2Þ
RED;UV;1 ¼

1

qðþÞ
1;0;UV

; ð41Þ

meaning that the total counterterm in the limit jl⃗1j → ∞ is

Að2Þ
UV;1 ¼

Z
l⃗1;l⃗2

1

x3q
ðþÞ
1;0;UV

: ð42Þ

In the case jl⃗2j → ∞, we can exploit the exchange symmetry
of the indices 1 ↔ 2. This leads directly to the counterterm

Að2Þ
UV;2 ¼

Z
l⃗1;l⃗2

1

x3q
ðþÞ
2;0;UV

: ð43Þ

For the double UV limit, we first define

ðAð2Þ
REDÞ0 ¼ Að2Þ

RED −Að2Þ
RED;UV;1 −Að2Þ

RED;UV;2; ð44Þ
which corresponds to the original reduced amplitude after
subtracting the single UV counterterms. Using Eq. (27),
we have

qðþÞ
1;0 → λqðþÞ

1;0;UV; ð45Þ

qðþÞ
2;0 → λqðþÞ

2;0;UV; ð46Þ

qðþÞ
3;0 → λqðþÞ

12;0;UV; ð47Þ

with

qðþÞ
12;0;UV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl⃗1 þ l⃗2Þ2 þ μ2UV

q
; ð48Þ

and the condition μUV ≡M. These replacements lead to

ðAð2Þ
REDÞ0jS0UV2 ¼

1

λ
�
qðþÞ
1;0;UVþqðþÞ

2;0;UVþqðþÞ
12;0;UV

�
þp0

þ 1

λ
�
qðþÞ
1;0;UVþqðþÞ

2;0;UVþqðþÞ
12;0;UV

�
−p0

: ð49Þ

In this case, the expansion in λ is carried out to order 3.
After taking the limit λ → 1 and restoring the prefactor, the
counterterm of the double UV limit is

Að2Þ
UV;12 ¼

Z
l⃗1;l⃗2

1

x3

�
2p2

0�
qðþÞ
1;0;UV þ qðþÞ

2;0;UV þ qðþÞ
12;0;UV

�
3

þ 2

qðþÞ
1;0;UV þ qðþÞ

2;0;UV þ qðþÞ
12;0;UV

−
1

qðþÞ
1;0;UV

−
1

qðþÞ
2;0;UV

�
: ð50Þ

Finally, the total counterterm for the sunrise diagram is
obtained summing the counterterms for the three limits,

Að2Þ
UV ¼ Að2Þ

UV;1 þAð2Þ
UV;2 þAð2Þ

UV;12

¼
Z
l⃗1;l⃗2

2

x3

�
p2
0

Q3
UV

þ 1

QUV

�
; ð51Þ

where we defined QUV ¼ qðþÞ
1;0;UV þ qðþÞ

2;0;UV þ qðþÞ
12;0;UV,

namely, the UV version of the causal threshold present
in this MLT diagram. By Taylor expanding, it can be

proved that the renormalized amplitudeAð2Þ
R ¼ Að2Þ −Að2Þ

UV
converges since the divergent orders are exactly canceled in
both the simple and the double UV limit.
This example shows the importance of applying the

replacement and subsequent Taylor expansion to ðAð2Þ
REDÞ0

instead of Að2Þ
RED. This is because the simple UV counter-

termsAð2Þ
RED;UV;1 andA

ð2Þ
RED;UV;2 add spurious divergences in

the double UV limit, which are then subtracted by

Að2Þ
RED;UV;12. In this particular example, the counterterms

for the simple UV limits are completely eliminated by

Að2Þ
RED;UV;12 and they do not appear in the complete UV

counterterm. In addition to this, it is important to work with
the reduced amplitudes, since the expansion of the pre-
factor associated with the phase-space measure would
introduce additional contributions that prevent a local
UV renormalization, unless extra terms are introduced. It

is also worth noticing that, in the particular case ofAð2Þ
UV, all

the dependencies on the masses and renormalization scale
are embodied within the on-shell energies.
Another interesting remark is that the replacements S0

UV,
as given in Eqs. (22) and (27) keeping only the leading
order in λ, are defined by the Taylor expansion of SUV at
first order in λ. However, for obtaining the double UV

counterterm Að2Þ
RED;UV;12, an expansion in λ up to order 3 is

carried out. Therefore, the subleading terms of the original
replacement SUV2 , absent in S0

UV2 , are missing when this
new substitution is applied. The convergence of the
renormalized amplitude, even without these missing terms
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(i.e., just taking into account the leading term of the
replacement) is very smooth.

1. Numerical integration

After proving that the renormalized amplitude Að2Þ
R is

integrable in the UV region by construction, we test the
numerical stability of the formalism in d ¼ 4 space-time
dimensions. For doing so, we use first spherical coordinates
to parametrize the loop three-momenta, i.e.,

l⃗i ¼ lifsinðθiÞ cosðϕÞ; sinðθiÞ sinðϕÞ; cosðθiÞg; ð52Þ

with li ∈ ð0;∞Þ. Then, we compactify the integration
domain by changing variables according to

li ¼
xi

1 − xi
; ð53Þ

where xi ∈ ð0; 1Þ and the integration measure from Eq. (6)
reads

Z
l⃗i

¼
Z

1

0

dxi

Z
π

0

dθi

Z
2π

0

dϕi
sinðθiÞx2i

8π3ð1 − xiÞ4
: ð54Þ

The UV limit is reached when xi → 1. Hence, for studying
the quality of the convergence of the locally renormalized
amplitude, we introduce a cutoff energy Λ such that li < Λ
for all the loop three-momenta (in this example, i ¼ f1; 2g)
and numerically evaluated Að2Þ

R for different values of Λ.
Switching to xi, this means that the upper limit should set to

xMAX
i ¼ Λ

1þ Λ
: ð55Þ

If the cancellation of UV divergences is stable, we expect

Að2Þ
R to converge as Λ → ∞ (or xi → 1).
In Fig. 2, we present the results for a fully numerical

integration ofAð2Þ
R as a function of the cutoff Λ. We work in

arbitrary units, fixing p0 ¼ 0.2 for the external momenta,
M ¼ 0.4 for the three internal lines, and μUV ¼ 0.4 as
the renormalization scale. For testing purposes within
Mathematica, we used four different setups:
NINTEGRATE with AdaptiveMonteCarlo, the default
NINTEGRATE, and CUHRE and VEGAS from CUBA library
[63]. The renormalized amplitude increases as higher-
energy contributions are taken into account, stabilizing

very fast and converging to Að2Þ
R ¼ ð372� 2Þ × 10−6. This

value is obtained from the average of the integral within the
four different scenarios at Λ ¼ 1025 and leads to a relative
error estimation of Oð1%Þ. Also, we consider the error
estimation provided by VEGAS, which is fully compatible
with the statistical fluctuations among the different inte-
gration methods: concretely, it returns Oð0.4%Þ, on aver-
age, over the whole range of Λ.

Finally, we present in Fig. 3 a plot showing the value of the
numerical calculation of the renormalized amplitude for
different values of M. The cutoff energy was Λ ¼ 1025 and
the energy of the external particle was fixed to p0 ¼ 2=10.
We considered different computational setups to test the
numerical stability and the smoothness of the mass depend-
ence. In fact, we can see that they are in perfect agreement
with each other. For M > 0.06, the relative error estimation
provided by VEGAS is Oð0.4%Þ and the relative differences
comparing the four different methods is Oð1.5%Þ. The
largest deviations arise in the limit M → 0, where IR
singularities appear. In that region, VEGAS leads to an error
of Oð15%–80%Þ with 500000 integrand evaluations.

B. Generic sunrise diagram

For a generic sunrise diagram, truncating the expansion
in λ and retaining only the leading order within the

FIG. 2. Analysis of the numerical convergence for the sunrise
with equal masses and μUV ¼ M, as a function of the cutoff Λ.
The results are normalized to Að2Þ

R ðΛ ¼ 1025Þ, using M ¼ 4=10,
p0 ¼ 2=10 and neglecting units. Four different setups are
considered for performing the numerical integration, as described
in the text.

FIG. 3. Analysis of the mass dependence of the renormalized

amplitude Að2Þ
R , with a fixed cutoff Λ ¼ 1025 and p0 ¼ 2=10.

Four different setups are considered for performing the numerical
integration, as described in the text.
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replacement rules given is not enough to locally cancel the
UV divergences. For instance, nontrivial terms involving
differences of the masses appear and prevent integrability
in the double UV limit. Thus, we need to keep subleading
terms in λ within the on-shell energies. If we do so, the total
counterterm obtained for the generic sunrise diagram (i.e., a
two-loop MLT) is given by

Að2Þ
UV ¼

Z
l⃗1;l⃗2

1

x3

�
2

QUV
þ 1

Q2
UV



2l⃗12 · p⃗þ m2

1

qðþÞ
1;0;UV

þ m2
2

qðþÞ
2;0;UV

− μ2UV

�
1

qðþÞ
1;0;UV

þ 1

qðþÞ
2;0;UV

��

þ 2p2
0

Q3
UV

þ 1

Q2
UVðqðþÞ

12;0;UVÞ3


l⃗2
12ðm2

3 þ p⃗2Þ

−
�
1þ 2qðþÞ

12;0;UV

QUV

�
ðl⃗12 · p⃗Þ2 − μ4UV

þ μ2UVðm2
3 þ p⃗2 − l⃗2

12Þ
��

: ð56Þ

Notice that the structure in the numerator is far more
complex than the one found in the equal-mass case. Still, if
we set mi ≡M, p⃗ ¼ 0 and μUV ¼ M, Eq. (56) reduces to
Eq. (51). Also, we notice that the explicit loop-momenta
flow dependence is rather minimal and only manifests in
the numerators: the denominators solely contain combina-
tions of on-shell energies.
Once the counterterm was analytically computed, we

proceed to test numerically the quality of the convergence.
In the first place, we set p⃗ ¼ 0, which is still a rather
general case (essentially, this covers any timelike or null
vector pμ when p0 is real). In Fig. 4, we consider
m1 ¼ 3=10, m2 ¼ m3 ¼ 5=10, p0 ¼ 2=10, and μUV ¼ 1,
in the four scenarios described in Sec. IVA 1. The
renormalized amplitude increases as higher-energy contri-
butions are taken into account, stabilizing very fast and

converging to Að2Þ
R ¼ 2.46� 0.09. This value is obtained

from the average of the integral within the four different
scenarios at Λ ¼ 1025. Regarding the error estimation, we
obtain a relative error of Oð7.8%Þ from the comparison
among methods, while VEGAS leads to Oð0.4%Þ. At this
point, we will consider as default estimator during the rest
of the work the error provided by VEGAS, since the largest
discrepancies come from CUHRE and the default setup of
NINTEGRATE. We found that CUHRE largely overestimates
the error, leading to Oð60%Þ, although the difference
among the central values with respect to VEGAS is Oð4%Þ.
Additionally, we test the stability of the numerical results

when varying the values of the masses. In particular, as we
show in Fig. 5, we keep m2 ¼ m3 ¼ 5=10, p0 ¼ 2=10, and
μUV ¼ 1 fixed, and we consider m1 ∈ ð1=50; 1Þ. The
numerical integration was performed using NINTEGRATE

with AdaptiveMonteCarlo (blue), the default NINTEGRATE
(orange), CUHRE (green), and VEGAS (red). The depend-
ence on m1 is very smooth, and the error band delimited by
the central values obtained with the four methods isOð5%Þ
for the low-mass region, although it reaches up to Oð50%Þ
for m1 ≈ 1. We notice that the discrepancies between
NINTEGRATE with AdaptiveMonteCarlo (blue) and the
default NINTEGRATE (orange) are Oð5%Þ for the whole
range of m1, and a similar result is obtained when
comparing CUHRE (green) and VEGAS (red). Again,
CUHRE gives a largely overestimated relative error, while
VEGAS with 5000000 points and 10 iterations leads
to Oð0.5%Þ.

FIG. 4. Analysis of the numerical convergence for the sunrise
with different masses, as a function of the cutoff Λ. The results are
normalized to Að2Þ

R ðΛ¼1025Þ, using m1¼3=10, m2¼m3¼5=10,
μUV ¼ 1,p0 ¼ 2=10 and neglecting units. Four different setups are
considered for performing the numerical integration, as described
in the text. The purple error band is generated using the output
of VEGAS.

FIG. 5. Analysis of the mass dependence of the renormal-
ized amplitude Að2Þ

R , with a fixed cutoff Λ ¼ 1025. We set
m2 ¼ m3 ¼ 5=10, p0 ¼ 2=10, and μUV ¼ 1. Three different
setups are considered for performing the numerical integration,
as described in the text. The error band (purple) is provided by
VEGAS, although it can not be appreciated in the plot since it is
very small, i.e., Oð0.5%Þ.
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Finally, we study the dependence on the renormalization
scale μUV. For this purpose, we fixm1 ¼ 5=10,m3 ¼ 3=10,
and p0 ¼ 2=10 (with p⃗ ¼ 0, as in the previous examples
shown in this section). The cutoff scale is set to Λ ¼ 1025,
and we rely on VEGAS with 5000000 points and 10
iterations to integrate the expressions. The relative error
provided by this method is Oð0.8%Þ. In Fig. 6, we vary the
value of m2 within the range ð1=50; 1Þ and consider three
different values of μUV: 1=2 (dashed blue), 1 (red), and 2
(dotted blue). The green region serves as a estimator of the

perturbative error associated with Að2Þ
R ðΛ ¼ 1025Þ. We

observe that the counterterm defined in Eq. (56) success-
fully cancels, at integrand level, all the UV singular terms
for arbitrary values of masses and the renormaliza-
tion scale.

C. Three-loop MLT diagram

The next step in complexity consists of locally renorm-
alizing a three-loop amplitude. The simplest but most
divergent scalar example is the three-loop MLT diagram,
given by

Að3Þ ¼
Z
l⃗1;l⃗2;l⃗3

1

x4

�
1

λþ1
þ 1

λ−1

�
; ð57Þ

with

λ�1 ¼ qðþÞ
1;0 þ qðþÞ

2;0 þ qðþÞ
3;0 þ qðþÞ

4;0 � p0 ð58Þ

the causal threshold, which is totally analogous to the two-
loop MLT [50]. The momenta assignation is given by

q1 ¼ l1; q2 ¼ l2; q3 ¼ l3;

q4 ¼ l1 þ l2 þ l3 − p; ð59Þ

and the on-shell energies are

qðþÞ
1;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l⃗2
1 þm2

1

q
; ð60Þ

qðþÞ
2;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l⃗2
2 þm2

2

q
; ð61Þ

qðþÞ
3;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l⃗2
3 þm2

3

q
; ð62Þ

qðþÞ
4;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl⃗1 þ l⃗2 þ l⃗3 − p⃗Þ2 þm2

4

q
: ð63Þ

Then, the reduced amplitude is obtained from the integrand
of Eq. (57) by removing the prefactor 1=x4. The procedure
for computing the local counterterm is analogous to the one
described for the generic sunrise, although the intermediate
step expressions are more lengthy. First, we need to
compute the single UV counterterms for jl⃗ij → ∞ for
i ¼ f1; 2; 3g, expanding the reduced amplitude in λ and
retaining up to Oðλ−1Þ terms: these are equivalent to
Eq. (41). Then, the double UV counterterms require to
expand up to Oðλ−3Þ, while the triple UV counterterms up
to Oðλ−5Þ. For the sake of completeness, the final counter-
term is provided as a publicly available Zenodo file [64].
After deriving the counterterm, we proceed to test the

numerical cancellation of nonintegrable contributions in all
the UV limits. The locally renormalized amplitude behaves
as 1=jl⃗j4, 1=jl⃗j7, and 1=jl⃗j10 in the single, double, and
triple UV limits, respectively: this implies that it is
integrable in the whole UV region.
Following with the tests, we study the convergence of

the numerical integration for increasing values of the
UV cutoff. After setting p⃗ ¼ 0, we consider m1 ¼ 4=10,
m2 ¼ m3 ¼ m4 ¼ 6=10, p0 ¼ 2=10, and μUV ¼ 1,
using two different methods within NINTEGRATE:
AdaptiveMonteCarlo (blue line) and default configuration
(orange line). For this particular case, even if the local
cancellation of UV singularities is guaranteed, the numeri-
cal precision required to converge in a reasonable amount
of time exceeds the limit of double precision available
within CUBA library. Thus, in this subsection, we rely only
on NINTEGRATE since it allows one to perform the
calculations with more than 100 digits of precision.
The results are shown in Fig. 7. The relative error
associated with NINTEGRATE with AdaptiveMonteCarlo
is Oð2%–5%Þ, using 1 × 106 points, while the default
configuration provides an overestimation of Oð100%Þ: in
any case, both methods lead to compatible results within
the error bands. The renormalized amplitude tends to
stabilize very fast, already reaching the asymptotic value
for Λ ¼ 105 with the default NINTEGRATE method. Still,
MonteCarlo based methods tends to oscillate more and the
convergence occurs within a band of Oð10%Þ. By averag-
ing over these two methods, the renormalized amplitude is

FIG. 6. Analysis of the mass and renormalization scale
dependence μUV of Að2Þ

R , with a fixed cutoff Λ ¼ 1025 and
m2 ∈ ð1=50; 1Þ. The external energy is fixed to p0 ¼ 2=10, as
well asm1 ¼ 5=10 andm3 ¼ 3=10. We use the VEGAS method to
perform the numerical integration.
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Að3Þ
R ðΛ ¼ 1025Þ ¼ 3.5� 1.3. Notice that the error is larger

than the one found for the generic sunrise diagram; this
could be further reduced by increasing the number of
evaluations within the integrators.
Again, we test the stability of the numerical results when

varying the values of the masses. In particular, as we show
in Fig. 8, we keep m2 ¼ m3 ¼ 5=10, p0 ¼ 2=10, and
μUV ¼ 1 fixed. We consider m1 ∈ ð1=48; 1Þ and three
different scenarios: m4 ¼ m2=2 (blue), m4 ¼ m2 (orange),
and m4 ¼ 2m2 (green). The numerical integration was
performed using NINTEGRATE with AdaptiveMonteCarlo.
We tested other numerical integrators, but they were less
efficient in converging. As we saw in the two-loop MLT
case, the dependence on m1 is very smooth, as well as
the transition for different values of m4. Furthermore, the
results follow the expected behavior: the heavier the

particles, the less probable their production or their pres-
ence within the loop.
To conclude, we study the dependence on the renorm-

alization scale μUV. We fix m1 ¼ 5=10, m3 ¼ m4 ¼ 3=10,
and p0 ¼ 2=10 (with p⃗ ¼ 0), together with Λ ¼ 1025. In
Fig. 9, we vary the value of m2 within the range ð1=48; 1Þ,
and consider three different values of μUV: 1=2 (dashed
blue), 1 (red), and 2 (dotted blue). As expected, the local
counterterm cancels all the UV singular terms for arbitrary
values of masses and the renormalization scale. Still, we
can appreciate that the dependence on μUV is very strong:
the results change roughly 2 orders of magnitude when
modifying the scale by a factor 2 up or down. This suggests
a very strong divergent behavior in the UV, pointing to the
correctness of the proposed local counterterms (i.e., if they
were wrong, the result would diverge wildly).

D. Three-loop NMLT diagram

The final benchmark example reported in this work is a
three-loop NMLT diagram without any external momenta
(i.e., a vacuum diagram). The corresponding reduced
amplitude is given by

Að3Þ
RED ¼ 1

λ1λ2
þ 1

λ2λ3
þ 1

λ3λ1
; ð64Þ

where

λ1 ¼ qðþÞ
1;0 þ qðþÞ

2;0 þ qðþÞ
3;0 þ qðþÞ

4;0 ; ð65Þ

λ2 ¼ qðþÞ
1;0 þ qðþÞ

2;0 þ qðþÞ
5;0 ; ð66Þ

λ3 ¼ qðþÞ
3;0 þ qðþÞ

4;0 þ qðþÞ
5;0 ð67Þ

FIG. 7. Analysis of the numerical convergence for the three-
loop MLT diagram with different masses, as a function of the
cutoff Λ. The results are normalized to Að3Þ

R ðΛ ¼ 1025Þ, using
m1 ¼ 4=10, m2 ¼ m3 ¼ m4 ¼ 6=10, μUV ¼ 1, p0 ¼ 2=10 and
neglecting units.

FIG. 8. Analysis of the mass dependence of the renormalized

amplitude Að3Þ
R , with a fixed cutoff Λ ¼ 1025. We set

m2 ¼ m3 ¼ 5=10, p0 ¼ 2=10, and μUV ¼ 1. Then, we vary
m1 ∈ ð1=48; 1Þ and consider three different values of m4: m4 ¼
m2=2 (blue), m4 ¼ m2 (orange), and m4 ¼ 2m2 (green).

FIG. 9. Analysis of the mass and renormalization scale
dependence μUV of Að3Þ

R , with a fixed cutoff Λ ¼ 1025 and
m2 ∈ ð1=50; 1Þ. The external energy is fixed to p0 ¼ 2=10, as
well as m1 ¼ 5=10 and m3 ¼ m4 ¼ 3=10. We use NINTEGRATE
with the AdaptiveMonteCarlo method to perform the numerical
integration.
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are the causal thresholds associated with the vacuum
NMLT topology and

q1 ¼ l1; q2 ¼ l2; q3 ¼ l3;

q4 ¼ −l1 − l2 − l3; q5 ¼ −l1 − l2 ð68Þ
are the momenta assignation, as shown in Fig. 10. The
explicit expression of the on-shell energies is given by

qðþÞ
1;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l⃗2
1 þm2

1

q
; ð69Þ

qðþÞ
2;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l⃗2
2 þm2

2

q
; ð70Þ

qðþÞ
3;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l⃗2
3 þm2

3

q
; ð71Þ

qðþÞ
4;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl⃗1 þ l⃗2 þ l⃗3Þ2 þm2

4

q
; ð72Þ

qðþÞ
5;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl⃗1 þ l⃗2Þ2 þm2

5

q
: ð73Þ

In order to build the counterterm, we start looking at the
single UV limit. As we explained before, the expansion in λ
has to be done up to order 3n −m around infinity, with m
number of internal lines depending on the n-divergent loop
three-momenta l⃗γ . Hence, we set n ¼ 1 for the single UV

limit. For the momenta l⃗1 and l⃗2, we have m ¼ 3 and the
amplitude is already integrable in the limits jl⃗1j → ∞ and
jl⃗2j → ∞. However, for l⃗3, it is m ¼ 2, so we need to
expand the reduced amplitude up to order 1. Then, the
corresponding local counterterm for the reduced amplitude
is given by

Að3Þ
RED;UV;3 ¼

1

qðþÞ
3;0;UV

�
qðþÞ
1;0 þ qðþÞ

2;0 þ qðþÞ
5;0

�

¼ 1

qðþÞ
3;0;UVλ2

; ð74Þ

which leaves unchanged the causal threshold associated
with λ2.
Regarding the double UV limit (n ¼ 2), there are

three cases. All of them have m ¼ 4, i.e., four propagators
depend on fli;ljg for any pair i, j. Then, the expansion is
carried out up to order 3n −m ¼ 2 in λ. After applying
the replacement rule S0UVρ;γ (with ρ ¼ 2 and γ ¼
ff1; 2g; f1; 3g; f2; 3gg) defined in Eq. (27) to

ðAð3Þ
REDÞ0 ¼ Að3Þ

RED −Að3Þ
RED;UV;3; ð75Þ

and expanding up to order 2 in λ, we obtain

Að3Þ
RED;UV;12 ¼

1

Q2;UV

�
1

qðþÞ
12;0;UV

−
1

qðþÞ
3;0;UV

�

þ 1

Q2
2;UV

; ð76Þ

Að3Þ
RED;UV;13 ¼

1

qðþÞ
1;0;UV

�
1

Q̃13;UV
−

1

2qðþÞ
3;0;UV

�

þ 1

Q̃2
13;UV

; ð77Þ

Að3Þ
RED;UV;23 ¼

1

qðþÞ
2;0;UV

�
1

Q̃23;UV
−

1

2qðþÞ
3;0;UV

�

þ 1

Q̃2
23;UV

; ð78Þ

where we introduced the shorthand notation

Q̃ij;UV ¼ qðþÞ
i;0;UV þ qðþÞ

j;0;UV þ qðþÞ
ij;0;UV; ð79Þ

and Q2UV corresponds to the UV version of the causal
threshold λ2, i.e.,

Q2;UV ¼ qðþÞ
1;0;UV þ qðþÞ

2;0;UV þ qðþÞ
12;0;UV: ð80Þ

Notice that Q̃ij;UV is not directly related to a causal
threshold of the original Feynman diagram.
Finally, in the triple UV limit, we start from the

reduced amplitude without the simple and double UV
counterterms, i.e.,

ðAð3Þ
REDÞ00 ¼ ðAð3Þ

REDÞ0 −Að3Þ
RED;UV;12

−Að3Þ
RED;UV;13 −Að3Þ

RED;UV;23; ð81Þ

and perform the expansion in λ up to order 4. This is
because n ¼ 3 (three simultaneous momenta are going to
infinity) and m ¼ 5 (there are five internal lines). The
resulting counterterm is lengthy, thus we present it as a
publicly available file in Zenodo [64].

FIG. 10. Momenta assignation for the three-loop NMLT dia-
gram according to Eq. (68).
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As in the other examples, we tested the convergence. In
the first place, we verify that the renormalized amplitude is
integrable in the whole UV region, since it behaves as
1=jl⃗j4, 1=jl⃗j7, and 1=jl⃗j11 in the single, double, and triple
UV limits, respectively. Furthermore, we check that it
behaves as 1=jl⃗j5 when only jl⃗1j → ∞jl⃗2j → ∞, pointing
toward a faster convergence.
After that, we analyze the convergence, varying the

UV cutoff. In Fig. 11, we set m1 ¼ 4=10, m2 ¼ m3 ¼
m4 ¼ 1=10, m5 ¼ 4=10, and μUV ¼ 1, using three different
methods: NINTEGRATE with AdaptiveMonteCarlo (blue
line), the default NINTEGRATE (orange line), and VEGAS

(red line). The renormalized amplitude quickly reaches
the asymptotic value, although oscillations are present (as in
the three-loop MLT case). By averaging over these three

methods, the renormalized amplitude is Að3Þ
R ðΛ ¼ 1025Þ ¼

35� 13, which leads to a relative error ofOð70%Þ. Still, the
individual methods have large errors: Oð100%Þ for the
default NINTEGRATE scenario and Oð20%Þ for VEGAS

(orange band). The estimation for NINTEGRATE with
AdaptiveMonteCarlo is Oð1%Þ, using 5 × 106 points, and
the method converges much faster than the other two
strategies: for this reason, we set it as default for the next
studies of this section.
The next check consisted of studying the stability of the

integral when varying the values of the masses. In Fig. 12,
we keepm2 ¼ m3 ¼ 4=10,m5 ¼ 3=10, and μUV ¼ 1 fixed.
We consider m1 ∈ ð1=48; 1Þ and three different scenarios:
m4 ¼ m2=2 (blue), m4 ¼ m2 (orange), and m4 ¼ 2m2

(green). The dependence on both m1 and m4 is smooth,
and the value of the integral decreases when heavier
particles are considered. Again, this confirms the overall
good quality of the local UV cancellation.
Finally, we examine the dependence on the renormaliza-

tion scale μUV. We keep fixed m1¼2=10, m3¼m4¼3=10,

andm5 ¼ 1=10, and the cutoffΛ ¼ 1025. Then, we varym2

within the range ð1=48; 1Þ, as we show in Fig. 13. We
consider three different values of μUV: 1=2 (dashed blue), 1
(red), and 2 (dotted blue). The band formed around the
central value (i.e., for μUV ¼ 1) is very wide, covering
roughly 2 orders of magnitude. Again, this indicates that the
original integral is very UV divergent and that the local
counterterms found with our procedure successfully neu-
tralize these nonintegrable terms.

V. CONNECTION TO BPHZ APPROACH

As stated in the Introduction, techniques for getting rid of
UV singularities are well established in the literature. One
relevant example in the context of this work is the
Bogoliubov-Parasiuk-Hepp-Zimmermann formalism. It
was originally developed by Bogoliubov and Parasiuk in
Ref. [34] and consisted of the definition of an operator

FIG. 11. Analysis of the numerical convergence for the three-
loop NMLT diagram with different masses, as a function of the
cutoff Λ. The results are normalized to Að3Þ

R ðΛ ¼ 1025Þ, using
m1 ¼ 4=10, m2 ¼ m3 ¼ m4 ¼ 1=10, m5 ¼ 4=10, μUV ¼ 1 and
neglecting units. The orange error band is obtained using VEGAS.

FIG. 12. Analysis of the mass dependence of the renormalized
amplitudeAð3Þ

R , with a fixed cutoff Λ ¼ 1025. We set m2 ¼ m3 ¼
4=10, m5 ¼ 3=10, and μUV ¼ 1. Then, we vary m1 ∈ ð1=48; 1Þ
and consider three different values of m4: m4 ¼ m2=2 (blue),
m4 ¼ m2 (orange), and m4 ¼ 2m2 (green).

FIG. 13. Analysis of the mass and renormalization scale depend-

ence μUV ofAð3Þ
R , with a fixed cutoffΛ ¼ 1025 andm2 ∈ ð1=48; 1Þ.

We fix m1 ¼ 2=10, m3 ¼ m4 ¼ 3=10, and m5 ¼ 1=10.
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acting on diagrams with the purpose of locally removing
the UV singularities. This operator, known as Bogoliubov’s
R operator, relies on Taylor-like expansions in momentum
space combined with graph theory techniques to identify
overlapping singularities. It was shown that this strategy
can successfully remove UV singularities for any renor-
malizable QFT [37], even at higher perturbative orders.
Recently, there were efforts to define an extended operator,
the R� operator [65], capable of removing both IR and UV
singularities.
The purpose of this section is to compare the BPHZ

approach with respect to the local renormalization program
within causal loop-tree duality. As a first step, let us
consider a graph Γ. Then, the BPHZ R operator acting
on Γ is given by

Rγ ≡ 1 − tδðΓÞp : ð82Þ

The operator tδðΓÞp symbolizes the Taylor expansion up to
order δðΓÞ (the UV degree of divergence of the graph or
subgraph), depending on the external momenta p, that
extracts the divergent part of the diagram. It is important to
notice that this Taylor expansion is equivalent to the
expansion around the UV propagator described in
Sec. III A (as shown in the Appendix): the operator tp is
analogous to Lλ in our formalism, choosing μUV ¼ m.
Also, we observe that taking the UV limit of a set of loop

momenta δ corresponds to the application of the R operator
to a certain subdiagramwhose internal lines only depend on
the loop momenta li ∈ δ. In particular, the R operator
applied on the whole graph Γ is equivalent to the simulta-
neous UV limit of all loop momenta. Thus, we appreciate a
parallelism with the operators S0

UV;i introduced in Sec. III B
to take the simultaneous UV limit of i-loop momenta.
Additionally, to discuss the removal of divergences of

each subgraph γ ∈Γ, let us write the decomposition

IΓðp; kÞ ¼ IΓ=γIγðpγ; kγÞ; ð83Þ

where contracting γ to a point within Γ leads to the
“reduced diagram” Γ=γ. The external momenta kγ and
pγ have to be chosen consistently with the parametrization
of Γ and the energy-momentum conservation at the
vertices. Then, the UV-expansion operator tγ applied to
the amplitude IΓ, removes the subdivergence coming
from γ.
Once we identify common aspects of both strategies, we

proceed to look into more detail the different operations
performed. On one hand, the first step of our UV-expansion
algorithm consists of removing the single UV limits. Using
the notation introduced for BPHZ formalism, the single UV
counterterm can be rewritten as

AðLÞ
RED;1 ¼

�
1 −

X
i¼1

tγi

�
AðLÞ

RED;0: ð84Þ

Then, the counterterms for the double UV limit take the
form

AðLÞ
RED;2 ¼

�
1 −

XL−1
k¼1

XL
j>k

tγjk

��
1 −

XL
i¼1

tγi

�
AðLÞ

RED;0: ð85Þ

Finally, iterating the procedure, the locally renormalized
amplitude is given by

AðLÞ
RED;L ¼

Yn
l¼1

�
1 −

X
i¼fi1;…;ing

tγfi1 ;…;ing

�
AðLÞ

RED;0; ð86Þ

where the summation is carried out over all ordered
pairs fi1;…; ing.
On the other hand, let us consider Zimmermann’s forest

formula [37], i.e.,

RΓIΓ ¼ ð1 − tΓÞ
X
α

� Y
γ ∈F α

ð−tγÞ
�
IΓ: ð87Þ

Now, let us consider a graph without disjoint subgraphs,
meaning that a couple of subgraphs can just be non-
overlapping if one of the subgraphs is contained in the
other. It was shown by Bergere and Zuber [66] that the
product of tγ operators of overlapping graphs applied on an
amplitude is zero. So, it follows that Zimmermann’s forest
formula (87) has the same form of Eq. (86). In the case that
the diagram considered has disjoint subgraphs, the algo-
rithm presented in this paper would need to be modified to
recover Zimmermann’s forest formula. In fact, in Eq. (86),
there are some missing terms where the divergences of
disjoint subgraphs are simultaneously removed, unlike
in Eq. (87).
To end this comparison between both strategies, it should

be noted that all the calculations and reasoning in this section
are equally valid when working in three-dimensional
Euclidean space. Therefore, the local renormalization pro-
posed in this article bymeans ofUVexpansionswithin causal
loop-tree duality is equivalent to the BPHZ approach, in the
case of Feynman diagrams without disjoint subgraphs. Still,
since our local renormalization technique starts from the
causal LTD representation, it has the advantage that the
structure of the denominators is independent of the explicit
momenta labeling: only on-shell energies appear (which, of
course, implicitly depends on the momenta configuration).

VI. CONCLUSIONS AND OUTLOOK

In this work, we explored techniques for achieving
an integrand-level renormalization of multiloop, multileg
scattering amplitudes. We started by reviewing a method
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that exploits the expansion of the integrand around the UV
propagator in the Minkowski space. Even if this technology
was successfully tested in Refs. [25,26,45,47] up to two
loops, going beyond this level poses additional difficulties.
These difficulties are mainly related to the presence of new
overlapped singularities introduced by counterterms in the
different UV limits. In this regard, we also showed that our
method shares several nice properties with the BPHZ
renormalization program, in particular, when dealing with
graphs without disjoint subgraphs.
Thus, we exploited the nice properties of loop-tree

duality [14] to perform the UV expansion in a Euclidean
space. We took advantage of the so-called causal dual
representations [50] to expand around the infinite three-
momentum regions inside the positive on-shell energies,
which leads to more compact expressions. We tested the
methodology with scalar Feynman integrals belonging to
the maximal loop topology family at two and three loops
and the next-to-maximal loop topology at three loops. In all
the cases, the counterterms found locally cancel the non-
integrable terms of the original amplitude in all the UV
limits, hence rendering the expressions integrable in four
space-time dimensions and without the need of introducing
any additional regularization method.
One key aspect of the formalism presented in this work is

the definition of reduced amplitudes and the subsequent
application of the UVexpansion on them, instead of acting
on the whole amplitude. In this way, the local renormal-
ization does not alter the integration measure that appears in
the causal dual representation; any multiloop, multileg
renormalized scattering amplitude reads

AðLÞ
R;N ¼

Z
l⃗1…l⃗L

X
k

1

xLþk
ðAðL;kÞ

RED −AðL;kÞ
RED;UVÞ; ð88Þ

where we are summing over different topological families
of order k. This will be particularly relevant in the context
of the FDU [24–26] approach, since the dual (i.e., virtual
after the application of LTD) contribution is combined, at
integrand level, with the real radiation. This real-dual
combination involves a kinematical mapping, and keeping
a phase-space measure within the contributions coming
from loops plays a crucial role in the local cancellation of
IR divergences. Thus, in sight of a unified framework to
compute physical observables at higher order directly in
four space-time dimensions [67,68], our findings regarding
local renormalization from causal LTD might be very
helpful.

Supporting data for this paper are openly available from
the Zenodo repository [64].
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APPENDIX: EQUIVALENCE OF MOMENTUM
EXPANSIONS IN THE UV LIMIT

In order to show the equivalence between the expansion
around the UV propagator (as described in Sec. III A) and
BPHZ renormalization in Minkowski space-time, let us
consider a propagator depending on an arbitrary number of
loop and external momenta. Let us define the propagator of
the jth internal line as

Δðkj; mjÞ ¼
1

k2j −m2
j
; ðA1Þ

where kj ¼
P

n∈ δj
ln þ

P
i pi. δj is the set of indices of

loop momenta l on which the jth internal four-momentum
depends. The summation over i also runs through all
external momenta on which it depends. Let us consider
the UV limit of some loop momenta, whose indices
define the set γ. Applying the replacements given in
Eqs. (14)–(16) (depending whether it is a simple or multiple
UV limit) and setting μUV ¼ mj, the propagator in Eq. (A1)
becomes

Δðkj; mjÞjSUV;γ

¼ 1�
λ
P

n∈ δj
n∈ γ

ln þ
P

m∈ δj
m∉γ

lm þP
ipi

�
2 − λ2m2

j

¼ x2�P
n∈ δj
n∈ γ

ln þ x
�P

m∈ δj
m∉γ

lm þP
ipi

��
2
−m2

j

ðA2Þ

where the replacement x ¼ 1
λ is carried out. This way, a

Taylor expansion at λ → ∞ corresponds to expanding x
around 0. After this expansion, the final result is recovered
by taking the limit x → 1.
On the other hand, it can be shown by a change of

variables that

xn
dn

dxn
¼

�X
m∈ δj
m∉γ

lm
∂

∂lm
þ
X
i

pi
∂

∂pi

�
n
: ðA3Þ
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Then, the Taylor expansion of the propagator up to order N
can be obtained from

XN
n¼0

1

n!

�X
m∈ δj
m∉γ

lm
∂

∂lm
þ
X
i

pi
∂

∂pi

�
n
Δðkj; mjÞ: ðA4Þ

Let us now define pi, which can be an external momentum
or a loop momentum that does not belong to γ. In other
words, the momenta labeled by pi are kept finite. Then, we
can write

�X
m∈ δj
m∉γ

lm
∂

∂lm
þ
X
i

pi
∂

∂pi

�
n
Δðkj; mjÞ ¼

�X
i

p̄i
∂

∂p̄i
−
X
s∉δj

ls
∂

∂lm

�
n
Δðkj; mjÞ

¼
�X

i

p̄i
∂

∂p̄i

�
n
Δðkj; mjÞ ¼ p̄μ1

i1
� � � p̄μl

il

∂
lΔðkj; mjÞ

∂p̄μ1
i1
� � � ∂p̄μl

il

: ðA5Þ

Therefore, it is shown that the UV-expansion algo-
rithm proposed in Sec. III taking μUV ¼ m and ap-
plied on a single propagator corresponds exactly to the
Taylor expansion performed within the Bogoliubov’s

R operation in the BPHZ formalism. The argument
presented here can be straightforwardly generalized to
deal with an amplitude with an arbitrary number of
propagators.
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JOSÉ RÍOS-SÁNCHEZ and GERMAN SBORLINI PHYS. REV. D 109, 125004 (2024)

125004-18

https://doi.org/10.1007/BF01608388
https://doi.org/10.1007/BF01609059
https://doi.org/10.1007/BF01609059
https://doi.org/10.1007/BF01609353
https://doi.org/10.1140/epjc/s10052-013-2566-8
https://doi.org/10.1007/JHEP12(2010)013
https://doi.org/10.1007/JHEP12(2010)013
https://doi.org/10.1007/JHEP02(2019)143
https://arXiv.org/abs/1907.12450
https://doi.org/10.1103/PhysRevD.105.016012
https://doi.org/10.1007/JHEP05(2017)148
https://doi.org/10.1007/JHEP12(2019)163
https://doi.org/10.1103/PhysRevLett.124.211602
https://doi.org/10.1007/JHEP01(2021)069
https://doi.org/10.1007/JHEP01(2021)069
https://doi.org/10.1007/JHEP04(2021)129
https://doi.org/10.1007/JHEP04(2021)129
https://doi.org/10.1007/JHEP02(2021)112
https://doi.org/10.1007/JHEP02(2021)112
https://doi.org/10.1103/PhysRevLett.122.111603
https://doi.org/10.1103/PhysRevLett.122.111603
https://doi.org/10.1103/PhysRevLett.123.059902
https://doi.org/10.1103/PhysRevLett.123.151602
https://doi.org/10.1103/PhysRevLett.123.151602
https://arXiv.org/abs/2009.05509
https://doi.org/10.1016/j.nuclphysbps.2008.09.114
https://doi.org/10.1007/JHEP04(2021)183
https://doi.org/10.1103/PhysRevD.104.036014
https://doi.org/10.1063/1.1703676
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.5281/zenodo.10692163
https://doi.org/10.1007/JHEP05(2017)037
https://doi.org/10.1007/BF01646611
https://doi.org/10.1007/BF01646611
https://arXiv.org/abs/2404.05491
https://arXiv.org/abs/2404.05492
https://doi.org/10.1007/JHEP12(2022)066
https://doi.org/10.1007/JHEP12(2022)066

