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The spinor-helicity representations ofmassive and (partially)massless particles in four-dimensional (anti–)
de Sitter (A)dS spacetime are studiedwithin the framework of the dual pair correspondence.We show that the
dual groups (also known as “little groups”) of the anti–de Sitter and de Sitter groups are, respectively,Oð2NÞ
andO�ð2NÞ. ForN ¼ 1, the generator of the dual algebra soð2Þ ≅ so�ð2Þ ≅ uð1Þ corresponds to the helicity
operator, and the spinor-helicity representation describes massless particles in (A)dS4. For N ¼ 2, the dual
algebra is composed of two ideals, s andmΛ. The former ideal s ≅ soð3Þ fixes the spin of the particle, while
themass is determined by the latter idealmΛ, which is isomorphic to soð2; 1Þ, isoð2Þ, or soð3Þ depending on
the cosmological constant being positive, zero, or negative. In the case of a positive cosmological constant,
namely dS4, the spinor-helicity representation contains all massive particles corresponding to the principal
series representations and the partially massless particles corresponding to the discrete series representations
leaving out only the light massive particles corresponding to the complementary series representations. The
zero and negative cosmological constant cases, which had been addressed in earlier references, are also
discussed briefly. Finally, we consider the multilinear form of helicity spinors invariant under (A)dS group,
which can serve as the (A)dS counterpart of the scattering amplitude, and discuss technical differences and
difficulties of the (A)dS cases compared to the flat spacetime case.
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I. INTRODUCTION

The massless spinor-helicity (SH) representation1 in flat
spacetime (Mink4) has proven very effective in expressing
and determining scattering amplitudes (see e.g., [3–6]

for reviews) and their massive counterpart is also prevalent
in recent time (see [7,8] and [9,10], and more). Moreover,
several attempts to generalize it to (anti–)de Sitter
spaces [ðAÞdS4] were undertaken in the literature (see
e.g., [11–13] for dS4 and [14–18] for AdS4). In the series
of references [15–17], the Mink4 SH representation is
deformed to (A)dS4 ones with a term in translation
generators proportional to the cosmological constant.
Despite this deformation, the main salient structure of
the scattering amplitude remains the same, while only the
momentum conservation delta function is modified to a
Λ-dependent function.
In this paper, we generalize the ðAÞdS4 SH representa-

tion used in [12,15–17] to include massive and partially
massless cases and carefully analyze their irreducible
representation (irrep) content (see also [11] for the use
of SUð2Þ spinor in computing cosmological correlators in
dS4). Our analysis is systematic, using the reductive dual
pair correspondence [19,20] (see [21–23] for physics-
oriented reviews, and [24–27] for mathematics-oriented
ones), the adequate mathematical framework responsible
for most of the technical successes, yet always behind the
curtain in the physicists’ treatments of the subject.
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1Usually the term spinor-helicity refers to the simplifying
parametrization of scattering amplitudes, as functions of kin-
ematic variables and polarization tensors, in terms of complex
spinors. This “parametrization” in terms of spinor variables can
be understood as a specific representation of the Poincaré algebra
(see, e.g., [1,2]), and hence we refer to this representation as the
spinor-helicity representation, where each generator of the
Poincaré algebra are given as differential operators of spinor
variables.
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We show that the dual groups of the AdS4 and dS4
groups are respectively Oð2NÞ and O�ð2NÞ.2 For the N ¼
1 case, the generator of the dual algebra soð2Þ ≅ so�ð2Þ ≅
uð1Þ corresponds to the standard helicity operator of the
SH formalism, and the SH representation describes mass-
less fields3 in ðAÞdS4. For the N ¼ 2 case, the dual algebra
is composed of two ideals, s and mΛ. The former ideal
s ≅ soð3Þ fixes the spin of the (A)dS field, while the mass
of the field is determined by the latter ideal mΛ, which is
isomorphic to soð1; 2Þ, isoð2Þ or soð3Þ depending on the
cosmological constant being positive, zero, or negative. In
the case of positive cosmological constant, namely dS4, the
SH representation contains all massive fields corresponding
to the principal series representations of soð1; 4Þ and the
partially massless fields corresponding to the discrete series
representations of soð1; 4Þ. The only irreps left out are the
light massive fields corresponding to the complementary
series representations of soð1; 4Þ. We also comment on the
Mink4 and the AdS4 case, analyzed in earlier literature. The
Mink4 case was analyzed in detail in the earlier work [8] of
the two of the authors. See also more widely known later
work [9]. The AdS4 case was analyzed in [23] in terms of
creation/annihilation operators. We also briefly comment
on the dual pairs responsible for the SH representations of
(A)dS particles in other dimensions.
Remark that the dual group is also known as “little

group”. This terminology is misleading because the dual
group differs from the little group of the induced repre-
sentation à la Wigner: the actual little group is a subgroup
of Lorentz, while the dual group commutes with the
Lorentz. See the Appendix of [8] for the explicit compari-
son between the little group and dual group in the case of
Poincaré algebra.

Finally, we consider the multilinear form of helicity
spinors invariant under ðAÞdS4 group, which can be used
for the (A)dS counterpart of the scattering amplitude.
Despite the similarity with the Mink4 case, we find a
few technical differences and difficulties in the ðAÞdS4
cases. We discuss these points and propose potential
resolutions.

II. SPINOR-HELICITY REPRESENTATIONS
OF (A)DS FIELDS

The SH representation of massive Mink4 fields [8,9] and
that of massless ðAÞdS4 fields [11,15–17] admit a common
and simple generalization,

Paḃ ¼ λIaλ̃Iḃ þ Λ
∂

∂λIa
∂

∂λ̃I
ḃ
; ð2:1Þ

Lab ¼ 2iλIða
∂

∂λIbÞ
; L̃ȧ ḃ ¼ 2iλ̃Iðȧ

∂

∂λ̃I
ḃÞ ; ð2:2Þ

where I ¼ 1;…; N, and the N ¼ 1 case corresponds to the
massless case and the Λ ¼ 0 limit corresponds to Mink4
case. Here, λ̃Iȧ is the complex-conjugate of λIa for real
“momenta”. Round brackets indicate symmetrization with
weight one. Both of the indices a, b and ȧ; ḃ are raised and
lowered by the two-dimensional Levi-Civita tensor.4 We
shall denote this ðAÞdS4 isometry algebra as symΛ. It is
straightforward to check that the commutators of the above
operators satisfy the Lie brackets of the ðAÞdS4 algebra
with cosmological constant Λ: the generators Lab and
L̃ȧ ḃ ¼ Lab

† form standard Lorentz subalgebra soð1; 3Þ ≅
slð2;CÞ with ½Lab; L̃ċ ḋ� ¼ 0 and

½Lab; Lcd� ¼ −iðϵacLbd þ ϵbcLad þ ϵadLbc þ ϵbdLacÞ:
ð2:6Þ2The Lie groupO�ð2NÞ is a real form of the complex Lie group

Oð2N;CÞ that can be defined in several different ways (see, e.g.,
[28]). It is a subgroup of SUðN;NÞ, containing elements
g∈ SUðN;NÞ satisfying gTηg ¼ η for

η ¼
�

0 IN
IN 0

�
;

where IN is the N × N identity matrix. For N > 1, SO�ð2NÞ is
noncompact, and for N > 2 it is simple. The following isomor-
phisms hold for the corresponding Lie algebras for low values
of N:

so�ð2Þ ≅ soð2Þ; so�ð4Þ ≅ soð3Þ ⊕ soð1; 2Þ;
so�ð6Þ ≅ suð1; 3Þ; so�ð8Þ ≅ soð6; 2Þ:

3The SH representations describe single-particle states, but we
will use the term “field” and “particle” interchangeably, as the
most relevant context is scattering amplitudes in quantum field
theory. Let us also note that the twisted-adjoint representa-
tion actively used by Vasiliev is of spinor-helicity type (see,
e.g., [29]).

4We follow notations and conventions of [8] with

ðσμÞaḃ ¼ ð1; σ⃗Þaḃ; ðσ̄μÞȧb ¼ ϵȧ ḋϵbcðσμÞcḋ ¼ ð1;−σ⃗Þȧb;
ð2:3Þ

where σi, i ¼ 1, 2, 3, are the usual Pauli matrices, which verify
ðσμÞaȧðσμÞbḃ ¼ −2ϵaȧϵbḃ, and

ðσμνÞab ¼
1

4
ðσμσ̄ν − σνσ̄μÞab;

ðσ̄μνÞȧ ḃ ¼ −
1

4
ðσ̄μσν − σ̄νσμÞȧḃ:

ð2:4Þ

Indices are raised and lowered via

ψa ¼ ϵabψ
b; ψa ¼ ϵabψb; ϵacϵcb ¼ δab; ð2:5Þ

and similarly for dotted indices.
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The translation generators Paḃ carry a vector representation
of soð1; 3Þ, that is a bifundamental representation of
slð2;CÞ,

½Lab; Pcḋ� ¼ iðϵcaPbḋ þ ϵcbPaḋÞ;
½L̃ȧ ḃ; Pcḋ� ¼ iðϵḋ ȧPcḃ þ ϵḋ ḃPcȧÞ: ð2:7Þ

With the cosmological constant Λ, the translation gener-
ators no longer commute but satisfy

½Paḃ; Pcḋ� ¼ iΛðϵacL̃ḃ ḋ þ ϵḃ ḋLacÞ: ð2:8Þ

Hence, we find symΛ ≃ soð1; 4Þ for Λ > 0 and symΛ ≃
soð2; 3Þ for Λ < 0.5

The ðAÞdS4 algebra symΛ is a subalgebra of spð8N;RÞ
generated by all bilinears in λIa,

∂

∂λIa
and their complex

conjugates. The dual algebra, denoted by dualðNÞ
Λ , is the

stabilizer of symΛ within spð8N;RÞ, and is generated by

KI
J ¼ λIa

∂

∂λJa
− λ̃Jȧ

∂

∂λ̃Iȧ
; ð2:9aÞ

MIJ ¼ λIaλ
Ja − Λ

∂

∂λ̃I
ȧ

∂

∂λ̃Jȧ
;

M̃IJ ¼ λ̃Iȧλ̃J
ȧ − Λ

∂

∂λIa
∂

∂λJa
: ð2:9bÞ

The SH representation of symΛ is reducible and its
decomposition into irreps can be carried out on the side

of dualðNÞ
Λ . In the following, we shall identify the dual

algebra dualðNÞ
Λ and explain the intimate relation between

symΛ and dualðNÞ
Λ , first through a preliminary analysis on

the eigenvalues of Casimir operators, then using the more
solid and powerful method of the dual pair correspondence.

III. PRELIMINARY ANALYSIS

In this section, we identify the dual algebra dualðNÞ
Λ for

N ¼ 1, 2, and establish its relation to symΛ at the level of
Casimir operators. By comparing the eigenvalues of the

Casimir operators of symΛ and dualðNÞ
Λ , we provide a

preliminary assessment of the correspondence between the

irreps of symΛ and dualðNÞ
Λ .

A. N = 1

In the N ¼ 1 case, considered in [15–17], the dual

algebra dualð1ÞΛ is simply isomorphic to uð1Þ generated by

K ¼ λa
∂

∂λa
− λ̃ȧ

∂

∂λ̃ȧ
; ð3:1Þ

which is nothing but the standard helicity operator. The
K ¼ s state describes massless helicity s representations in
Mink4, AdS4, and dS4. This universal description is due to
the conformal symmetry they enjoy; the SH representations
of symΛ can be lifted to a single irreducible representation,
typically referred to as ‘singleton’, of the four-dimensional
conformal group soð2; 4Þ [30–33] (see also [34–36] for the
oscillator realization, where sometimes the representation is
referred to as ‘doubleton’ for a historical reason). This
special property of singleton can be easily understood in
terms of the dual pair correspondence, as it was shown in
[23]. We shall come back to this point in Sec. IV C.

B. N = 2

The N ¼ 2 case will turn out to be sufficient to describe
all massive spin representations in four dimensions. The
generators M ¼ M12 and M̃ ¼ M̃12 commute with the
subalgebra soð3Þ ≃ suð2Þ ⊂ uð2Þ generated by KI

J ¼
KI

J − 1
2
δIJKK

K while the uð1Þ part K ¼ KI
I satisfies,

½M; M̃� ¼ −ΛK; ½K;M� ¼ 2M; ½K; M̃� ¼ −2M̃:

ð3:2Þ

Taking into account thatM† ¼ M̃ andK† ¼ K,6 it is easy to
show that the Hermitian generators 1

2
K, 1

2
ðM þ M̃Þ and

i
2
ðM − M̃Þ form soð2; 1Þ for Λ > 0, soð3Þ for Λ < 0 and

isoð2Þ for Λ ¼ 0. The last case corresponds to the massive
Mink4 SH formulation [8,9]. To summarize, we find that
for N ¼ 2, the dual algebra is the direct sum,

dualð2ÞΛ ≃ s ⊕ mΛ; ð3:3Þ

where the two ideals s and mΛ are

s ¼ soð3Þ; mΛ ¼

8>><
>>:

soð2; 1Þ ½Λ > 0�
soð3Þ ½Λ < 0�
isoð2Þ ½Λ ¼ 0�

: ð3:4Þ

Below, we will show that the common ideal s for any Λ is
responsible for the spin label of the symΛ irreps, whereas
the other subalgebra mΛ determines the mass. In order to
see this identification, let us first exploit the relations

between Casimir operators of symΛ and dualð2ÞΛ .
Since symΛ is a rank two Lie algebra soð1; 4Þ or

soð2; 3Þ for Λ ≠ 0, there are two independent Casimir

5Note here that Λ is related to the actual cosmological constant
Λcc by Λcc ¼ 3Λ.

6Note that the Hermitian conjugation † is defined with respect
to the L2ðC2NÞ norm, and hence λIa

† ¼ ðλIaÞ� ¼ λ̃Iȧ and
ð∂=∂λIaÞ† ¼ −∂=∂λ̃Iȧ.
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operators; the quadratic and quartic ones, whose expres-
sions in vector notation read,

C2ðsymΛÞ ¼ −
1

2
JA1

A2
JA2

A1
; ð3:5aÞ

C4ðsymΛÞ ¼
1

2
WAWA; WA ¼ 1

2
ϵABCDEJBCJDE; ð3:5bÞ

where the capital indices take the values A;B;… ¼
0; 1;…; 4 and JAB ¼ −JBA are the generators of symΛ.
Splitting JAB into Lorentz and translation generators as
J4μ ¼ Pμ=

ffiffiffiffiffiffijΛjp
and Jμν ¼ Lμν, the two Casimirs are

C2ðsymΛÞ ¼ −
1

2Λ
P2 þ 1

4
ðL2 þ L̃2Þ; ð3:6aÞ

C4ðsymΛÞ ¼
1

4Λ
PaȧPbḃLabL̃ȧ ḃ þ

1

16Λ
P2ðL2 þ L̃2Þ

−
1

4
ðL2 þ L̃2Þ − 1

64
ðL2 − L̃2Þ2: ð3:6bÞ

Here, P2 ¼ PaḃP
aḃ ¼ −2PμPμ, L2 ¼ LabLab, and

LμνLμν ¼ 1
2
ðL2 þ L̃2Þ, where we use the mostly-plus sig-

nature for ημν. Note that ΛC2ðsymΛÞ and ΛC4ðsymΛÞ
reproduce the familiar quadratic Casimir and the Pauli-
Lubański vector squared in the Λ → 0 limit.
On the other hand, the dual algebra is composed of two

rank-one ideals, so we have one Casimir operator for each,

C2ðsÞ ¼
1

2
KI

JK
J
I ; ð3:7Þ

C2ðmΛÞ ¼ −
1

2Λ
fM; M̃g þ 1

4
K2: ð3:8Þ

The SH representation of symΛ (2.1) and (2.2) and that of

dualð2ÞΛ (2.9a) and (2.9b) relate these Casimir operators as

C2ðsymΛÞ ¼ C2ðmΛÞ þ C2ðsÞ − 2; ð3:9aÞ

C4ðsymΛÞ ¼ −C2ðmΛÞC2ðsÞ: ð3:9bÞ

From the above relations, we can read off the Casimir
eigenvalues of the unitary irreps of symΛ by fixing an irrep

of dualð2ÞΛ ≃ s ⊕ mΛ. For the ideal s ≃ soð3Þ, the
(2sþ 1)-dimensional irreps with

C2ðsÞ ¼ sðsþ 1Þ; ð3:10Þ

account for all unitary irreps. About the ideal mΛ, the
quadratic Casimir operator can be parametrized as

C2ðmΛÞ ¼ μðμþ 1Þ; ð3:11Þ

which is invariant under

μ → −1 − μ; ð3:12Þ

and we have the following options:
(1) For Λ > 0, apart from the trivial irrep with

μðμþ 1Þ ¼ 0, we have three series of unitary irreps
for soð2; 1Þ:
(a) The principal series irreps C�μ with complex μ

satisfying

μðμþ 1Þ < −
1

4
; ð3:13Þ

which is spanned by eigenstates of K with even/
odd integer eigenvalues, related to the labelþ=−
respectively. We can parametrize irreps in this
series via μ ¼ − 1

2
þ iρ with ρ∈R. In this case,

the map (3.12), ρ → −ρ, is an isomorphism, and
hence we may restrict to the case ρ > 0.

(b) The complementary series irrep Cμ with −1 <
μ < 0 satisfying

−
1

4
≤ μðμþ 1Þ < 0; ð3:14Þ

spanned by all even K-eigenstates. The map
(3.12) is again an isomorphism.

(c) The positive/negative discrete series irrep D�
2μþ2

with

μ ¼ −
1

2
; 0;

1

2
; 1;

3

2
;…; ð3:15Þ

spanned by the K-eigenstates with eigenvalues
�2ðμþ 1Þ;�2ðμþ 2Þ, etc. These are lowest/
highest weight irreps.

(2) For Λ → 0, the “bosonic/fermionic” irrep of isoð2Þ
with jμj → ∞ while keeping finite

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−Λμ2

q
; ð3:16Þ

which is spanned by K-eigenstates with even/odd
eigenvalues. These irreps can be thought of as the
counterpart of the massive scalar and spinor repre-
sentations of the Poincaré group (depending on the
parity of the K-eigenstates).
The trivial representation, with m ¼ 0, and which

can be thought of as the counterpart of the zero-
momentum irrep of the Poincaré group.

(3) For Λ < 0, the (2μþ 1)-dimensional irrep of soð3Þ
with

μ ¼ 0;
1

2
; 1;

3

2
;…; ð3:17Þ

with a basis composed of K-eigenstates with eigen-
values −2μ;−2μþ 2;…;þ2μ.
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These irreps of dualð2ÞΛ are in one-to-one correspondence
with the irreps of symΛ with

C2ðsymΛÞ ¼ μðμþ 1Þ þ sðsþ 1Þ − 2; ð3:18aÞ

C4ðsymΛÞ ¼ −μðμþ 1Þsðsþ 1Þ; ð3:18bÞ

and we can compare these values with those of known
irreps of symΛ.

1. Mink4

To begin with, let us consider the Poincaré case with
Λ ¼ 0 which has been treated in [7,9]. The quadratic
Casimir,

lim
Λ→0

ΛC2ðmΛÞ ¼ −MM̃; ð3:19Þ

of the dual algebra m0 determines the mass,

MM̃ ¼ −PμPμ ¼ m2; ð3:20Þ
while the ‘spin s’ representation of the dual algebra s
corresponds to the spin, thus defining a Poincaré repre-
sentation of mass m and spin s. In fact, in all cases of
symΛ, the irrep label s of the dual algebra s simply
corresponds to the spin of the four-dimensional field.

2. dS4

The unitary irreps of dS4 Lie algebra, namely soð1; 4Þ,
were first classified in [37] where the eigenvalues of the
Casimir operators are also given; see Appendix A for a
summary, and [38] for the physical interpretations of these
irreps. More recent treatments of dS representations can be
found e.g., in [39–44].
Comparing the result (3.18b) with the Casimir eigen-

values identified in [37], we find that the irrep label μ of the
dual algebra mΛ parametrizes the mass squared as7

m2 ¼ Λ½−μðμþ 1Þ þ sðs − 1Þ�: ð3:21Þ
Depending on the spin s, different ranges of mass are
allowed for the unitarity of the symΛ irreps:
(1) For the scalar case with s ¼ 0, the allowed μ are

(a) The complex values of μwith (3.13) correspond-
ing to the principal series representations of
soð1; 4Þ, with the isomorphism (3.12).

(b) The real values of −2 < μ < 1 with

−
1

4
≤ μðμþ 1Þ < 2; ð3:22Þ

corresponding to the complementary series rep-
resentations of soð1; 4Þ, with the isomorphism
(3.12). The μ ¼ 0 case (or equivalently, the μ ¼
−1 case) corresponds to the conformally coupled
scalar.

(c) The positive integer values of μ corresponding to
the discrete series representations of soð1; 4Þ.
The μ ¼ 1 case corresponds to the minimally
coupled massless scalar, whereas μ ¼ 2; 3;…
correspond to tachyonic scalars.

The unitarity of these symΛ irreps includes not only all the
mΛ unitary regions (3.13), (3.14) and the integer part of
(3.15), but also the complementary series region 0 < μðμþ
1Þ < 2 not allowed for the unitarity of mΛ.
(2) For integral spins s ¼ 1; 2;…, the allowed μ are

(a) The complex values with (3.13) corresponding
to the principal series representations of
soð1; 4Þ, with the isomorphism (3.12).

(b) The real values of −1 < μ < 0 with (3.14)
corresponding to the complementary series rep-
resentations of soð1; 4Þ, with the isomor-
phism (3.12).

(c) The integer values μ ¼ 0; 1;…; s − 1. These
integer values correspond to the partially mass-
less fields of depth s − μ, where the depth 1
corresponds to the massless field.

The unitarity of these symΛ irreps allows the mΛ unitary
regions (3.13) and (3.14), but restricts (3.15); integers
greater than s − 1 are excluded together with the half-
integer values.
(3) For half-integral spins s ¼ 1

2
; 3
2
;…, the allowed μ are

(a) The complex values of μ with (3.13) corre-
sponding to the principal series representation
of soð1; 4Þ, with the isomorphism (3.12).

(b) The half-integer values μ ¼ − 1
2
; 1
2
;…; s − 1

corresponding to the discrete series representa-
tions of soð1; 4Þ. The positive half-integer
values correspond to the partially massless
fields of depth s − μ.8 Note that μ ¼ − 1

2
cor-

responds to the endpoint of the continuous

7Here, we define the massm2 of a field φ of spin s in ðAÞdSdþ1

via the wave equation,�
∇2 þ 2Λcc

dðd − 1Þ ½ðs − 2Þðsþ d − 2Þ − s� −m2

�
φ ¼ 0:

Parametrizing the eigenvalue of the quadratic Casimir operator of
the irrep associated with φ as

C2 ¼ ΔðΔ − dÞ þ sðsþ d − 2Þ;
we can write the mass squared as

m2 ¼ 2Λcc

dðd − 1Þ ðΔþ s − 2Þðsþ d − 2 − ΔÞ;

which reproduces the formula (3.21) upon using μ ¼ Δ − 2 (or
μ ¼ −Δþ 1) for d ¼ 3. (See for instance [45] for an extended
discussion of the dS4 case, and [46,47] including also the AdS4
case.)

8The partially massless fermion irreps are unitary only in
dS4 [48].
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spectrum of massive fields, which we may refer
to as the lightest massive fermions. For s ¼ 1

2
, it

simply corresponds to the massless spinor.
The unitarity of these symΛ irreps includes the mΛ
principal series (3.13) but entirely excludes the comple-
mentary series (3.14), and restrict the discrete series (3.15);
any half-integers greater than s − 1 are excluded together
with the integer values.

C. AdS4

In the AdS4 case with Λ < 0, the irrep label μ of the dual
algebra mΛ parametrizes the mass squared again as (3.21).
The allowed μ for the unitarity of the lowest-energy irreps
of symΛ are μ ¼ s − 1; s; sþ 1;… for spin s ¼ 0; 1

2
1;….

The μ ¼ s − 1 case corresponds to the massless spin s field,
and higher μ cases correspond to massive fields. The reason
that we have a discrete mass spectrum is due to the fact that
μ is an eigenvalue of the generator of the compact subgroup
SOð2Þ associated with rotations in the plane of temporal
directions, and hence is quantized. These representations
can be interpreted as the irreps of 3d conformal group;
Δ ¼ μþ 2 and s correspond to the conformal weight and
spin of the conformal primaries, respectively. In the scalar
case, the μ ¼ −1 and μ ¼ 0 cases mapped by (3.12) are
distinct irreps and correspond to different modes of the
conformal scalar in AdS4. Note that, moving to a covering
group of SOð1; 4Þ, the point μ ¼ − 3

2
can be included for

s ¼ 0, and it corresponds to the conformal scalar in 3d.
The unitarity of the lowest energy irreps of symΛ ≅

soð2; 3Þ excludes the lower μ values with μ < s − 1 from
(3.17), corresponding to partially massless fields, together
with all integer/half-integer values of μ for half-integral/
integral spin.
Let us note that there are a few other types of symΛ

irreps with unbounded energy. These irreps would cover
different ranges of C2ðsymΛÞ and C4ðsymΛÞ.

IV. DUAL PAIR CORRESPONDENCE

In the previous section, we have identified the corre-
spondences between the irreps of symΛ and those of

dualð2ÞΛ through the Casimir eigenvalues. We have
observed that the region of μ allowed by the symΛ unitarity
does not match the region allowed by the mΛ unitarity.
This mismatch does not lead to a contradiction, because
the SH representations cover only a part of unitary irreps

of symΛ ⊕ dualð2ÞΛ . In other words, the SH Fock space

contains only a part of unitary irreps of symΛ ⊕ dualð2ÞΛ .
In order to identify the actual content of the unitary irreps
that the Fock space contains, we need a more rigorous
analysis using the dual pair correspondence.

For general N, the dual algebras (2.9) are dualðNÞ
Λ>0 ≃

so�ð2NÞ and dualðNÞ
Λ<0 ≃ soð2NÞ, respectively. The inter-

play between the isometry and the dual algebras can be

understood within the general framework of the dual pair
correspondence, also known as Howe duality which
amounts to the following; when a Spð2N ;RÞ group
contains a pair of reductive subgroups ðG; G̃Þ which are
mutual stabilizers,9 there exists a one-to-one correspon-
dence between the irreps of G and G̃ appearing in the
decomposition of the oscillator (or metaplectic) represen-
tation of Spð2N ;RÞ (see e.g., [23] for more details). In our
context, the oscillator representation is simply the repre-
sentation realized by the helicity spinors, or simply SH
representation. Hence, the ðAÞdS4 groups SymΛ>0 ¼
Spð1; 1Þ and SymΛ<0 ¼ Spð4;RÞ and their respective

dual groups DualðNÞ
Λ>0 ¼ O�ð2NÞ and DualðNÞ

Λ<0 ¼ Oð2NÞ
realized by helicity spinors as (2.8) and (2.9) form reductive
dual pairs in Spð8N;RÞ, the group generated by all
quadratic operators in helicity spinors and their derivatives.
Note that Spð1; 1Þ and Spð4;RÞ are isomorphic to the
double covers of SO↑ð1; 4Þ and SO↑ð2; 3Þ, respectively. In
fact, the flat space case with Λ ¼ 0 can be viewed as the
Inönü-Wigner contraction of the reductive dual pair
ðSpð1; 1Þ; O�ð2NÞÞ or ðSpð4;RÞ; Oð2NÞÞ.
Let us remark once again that the dual group ought not to

be confused with the standard little group of the induced
representation à la Wigner; the former commutes with the
isometry whereas the latter is a part of the isometry by
definition. In the Λ ¼ 0 case, the SUð2Þ subgroup of the
dual group and the little group are explicitly shown to be
distinguished (see the Appendix of [8]) as they represent
respectively left and right actions on SUð2Þ which para-
metrizes a momentum eigenstate.
The dual pair correspondence assures that the irreps of

the ðAÞdS4 group, that is Spð1; 1Þ and Spð4;RÞ, realized
by helicity spinors are in one-to-one correspondence with
the irreps of the dual group O�ð2NÞ or Oð2NÞ. In other
words, by singling out an irrep of the dual group, the
reducible SH representation of the ðAÞdS4 group (2.8) is
restricted to an irrep. Then, the remaining task is to
establish the dictionary between such irreps of the
ðAÞdS4 group and its dual group O�ð2NÞ [or Oð2NÞ].
For that, we once again focus on the cases of N ¼ 1 and 2.

A. dS4

Let us consider first the case with Λ > 0. We aim to
obtain a dictionary between the irreps of Spð1; 1Þ and
O�ð2NÞ appearing in the decomposition of the SH
representation.
For N ¼ 1, the dual pair correspondence between

Spð1; 1Þ and O�ð2Þ has been explicitly established in
[23]. Here, we just quote the result. Since O�ð2Þ is
isomorphic to Uð1Þ, it has only one-dimensional irreps,
each labeled by an integer. This integer corresponds to

9In other words, G̃ is the maximal subgroup of Spð2N ;RÞ
commuting with G, and vice versa.
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twice the helicity of a Spð1; 1Þ massless representation.
The analysis is based on the decomposition of the Spð1; 1Þ
irrep into its maximal subgroup Spð1Þ × Spð1Þ, and the SH
representation restricted by the O�ð2Þ irrep condition is
shown to have a structure of the massless spin s irrep of
Spð1; 1Þ demonstrated e.g., in [37].
For the N ¼ 2 case, we need to begin with identifying

irreps of the dual group O�ð4Þ. Thanks to the isomorphism
O�ð4Þ¼ ½SUð2Þ×SLð2;RÞ�=Z2 [here, SUð2Þ and SLð2;RÞ
are simply the Lie groups associated with s ¼ soð3Þ and
mΛ>0 ¼ soð2; 1Þ], we know everything about the unitary
irreps ofO�ð4Þ: the irreps of SUð2Þ are all given by (2sþ 1)-
dimensional representation, which will be denoted by ½2s�
henceforth, while SLð2;RÞ has three classes of unitary
irreps, namely C�

μ¼−1
2
þiρ

(3.13), Cμ (3.14) and D�
2μþ2

(3.15). We will denote these O�ð4Þ irreps as π̃s;μ.
In the previous section, we have seen that not all O�ð4Þ

irreps correspond to irreps of Spð1; 1Þ based on the match
of Casimir operators. We shall see below how they are
restricted. For that, we first consider the dual pair
ðSpð1Þ; O�ð4ÞÞ ⊂ Spð8;RÞ, whose representations are
explicitly identified in Sec 5.4 in Ref. [23]; Since Spð1Þ ≅
SUð2Þ the Spð1Þ irreps are again given by [m] with non-
negative integer m, and they correspond to the O�ð4Þ irreps
½m� ⊗ D�

mþ2. Note that only discrete series representations
appear in the SLð2;RÞ side, with the highest/lowest weight
mþ 2 tied with the dimension mþ 1 of the SUð2Þ irrep
[which is a consequence of the fact that the Howe dual is a
compact group, namely Spð1Þ]. Whether the irrep D�

mþ2 is
a highest/lowest weight one is conventional at this stage,
and only one sign is chosen depending on the convention
of SLð2;RÞ.
Now we move on to the dS4 group Spð1; 1Þ and consider

its maximal compact subgroup, which is Spð1Þ × Spð1Þ.
This subgroup forms its own dual pair in the same SH space
[that is, in Spð16;RÞ] with O�ð4Þ ×O�ð4Þ. The latter
contains the original dual group O�ð4Þ as the diagonal
subgroup. The situation is conveniently depicted by the
“seesaw” diagram,

ð4:1Þ

where the arrows indicate the respective dual pairs. Any
irrep of Spð1; 1Þ, say πσ with some label σ, can be
decomposed into irreps of Spð1Þ × Spð1Þ as

πσ ¼ ⨁
m;n

Nm;n
σ ½m� ⊗ ½n�; ð4:2Þ

where Nm;n
σ are the multiplicities of ½m� ⊗ ½n�, and each of

½m� ⊗ ½n� correspond to the O�ð4Þ ×O�ð4Þ irrep,

ð½m� ⊗ D−
mþ2Þ ⊗ ð½n� ⊗ Dþ

nþ2Þ: ð4:3Þ

Here, we used the correspondence between the irreps of
Spð1Þ and O�ð4Þ that we introduced earlier. Note that
the first SLð2;RÞ irrep is a lowest-weight irrep, while the
second is a heighest-weight irrep. This is because the
Spð1Þ × Spð1Þ is embedded in the opposite signature parts
of Spð1; 1Þ. The irrep (4.3) of O�ð4Þ ×O�ð4Þ can be
decomposed as well into the diagonal subgroup O�ð4Þ:

ð½m� ⊗ D−
mþ2Þ ⊗ ð½n� ⊗ Dþ

nþ2Þ ¼ ⨁
s;μ
Ñs;μ

m;nπ̃s;μ; ð4:4Þ

where Ñs;μ
m;n are the multiplicities of theO�ð4Þ irrep π̃s;μ that

we have introduced before. The crucial point assured by the
seesaw duality (see [24–26] and also Sec. 2.3 of Ref. [23])
is the equality between two multiplicities; for any
½m� ⊗ ½n�,

Nm;n
σðs;μÞ ¼ Ñs;μ

m;n: ð4:5Þ

Here, σðs; μÞ is the label of the Spð1; 1Þ irrep dual to the
O�ð4Þ irrep π̃s;μ.
Now let us identify the multiplicities Ñs;μ

m;n. The decom-
position (4.4) comes in two parts; the decomposition of the
SUð2Þ irreps,

½m� ⊗ ½n� ¼ ½jm − nj� ⊕ ½jm − nj þ 2� ⊕ � � � ⊕ ½mþ n�;
ð4:6Þ

and the decomposition of the SLð2;RÞ irreps [49] (see
also [50]),

D−
mþ2 ⊗ Dþ

nþ2 ¼
Z

∞

0

dρ Cð−1Þ
mþn

−1
2
þiρ

⊕ ⨁
0≤k<jm−nj

2

Dsgnðm−nÞ
jm−nj−2k:

ð4:7Þ

We see that the multiplicities are either 1 or 0. Hence, for a
fixed π̃s;μ the above decomposition simply restricts the
possible ½m� ⊗ ½n�which appear in the decomposition (4.2)
of πσðs;μÞ. Moreover, we find that certain π̃s;μ’s do not admit
any ½m� ⊗ ½n� implying that such irreps cannot correspond
to any (even trivial) Spð1; 1Þ irrep. In other words, they are
simply not contained in the SH representation. Let us see
the details now. By choosing the SUð2Þ irrep as ½2s�,m and
n are restricted as

jm − nj ≤ 2s ≤ mþ n; mþ n − 2s∈ 2Z: ð4:8Þ

For the SLð2;RÞ irreps with label μ, we have three choices,
the principal series C�

μ¼−1
2
þiρ

, the complementary series Cμ
and the discrete series D�

2μþ2. We notice already that the
complementary series is not available since it does not
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appear in the content of the tensor product decomposition,
that is, in the rhs of (4.7).

If we select a principal series representation Cð−1Þ
mþn

−1
2
þiρ

, we

do not have further restrictions on possible values of m and
n. Therefore, we find

πσðs;−1
2
þiρÞ ¼ ⨁

jm−nj≤2s≤mþn
mþn−2s∈ 2Z

½m� ⊗ ½n�: ð4:9Þ

These correspond to the spin s principal series representa-
tions of Spð1; 1Þ, describing massive spin s fields.
If we select a discrete representation D�

2μþ2, we find a
further restriction on the space and obtain,

π�σðs;μÞ ¼ ⨁
jm−nj≤2s≤mþn
mþn−2s∈ 2Z
2μþ2≤jm−nj
�ðm−nÞ>0

½m� ⊗ ½n�: ð4:10Þ

The additional bound on m and n restricts also possible
values of μ. For integer s, we find μ ¼ 0; 1;…; s − 1, and
for half-integer s, we find μ ¼ − 1

2
; 1
2
;…; s − 1. These

irreps correspond to the spin s discrete series representation
of Spð1; 1Þ describing partially massless spin s fields and
the lightest massive fermions. One can also see that they
always come with two chiralities or helicities �.
To summarize, we find that the SH representations

contain exactly all the unitary representations of Spð1; 1Þ
except for the complementary series ones; the Spð1; 1Þ (not
SLð2;RÞ) complementary series representations corre-
spond to the interval − 1

2
≤ μ < 1 for s ¼ 0 and − 1

2
≤ μ <

0 for s ¼ 1; 2;…, respectively, while fermions do not
appear in the complementary series. Interestingly, the SH
representation with the dual pair ðSpð1; 1Þ; O�ð4ÞÞ contains
also the massless spin s fields which can be realized by the
ðSpð1; 1Þ; O�ð2ÞÞ dual pair. The conformal scalar with μ ¼
0 (equivalently μ ¼ −1) is in the field content of Vasiliev’s
higher spin gravity, together with all integer spin massless
fields. This conformal scalar in dS4 can be realized only by
the latter dual pair. For a more formal treatment of the
ðSpð1; 1Þ; O�ð4ÞÞ dual pair, one may consult with [51,52].

B. AdS4

The Λ < 0 case is more straightforward, and it was
recently discussed in [23]. We use the seesaw diagram,

ð4:11Þ

relating the reductive dual pairs ðSpð4;RÞ; Oð2NÞÞ and
ðUð2Þ; Uð2NÞÞ in Spð8N;RÞ.

For N ¼ 1, the irreps of Oð2Þ are ½2s�Oð2Þ with 2s∈N
and ½1; 1�Oð2Þ. The one-dimensional irreps ½0�Oð2Þ and
½1; 1�Oð2Þ corresponds to the scalar irreps of Spð4;RÞ,
whereas ½2s�Oð2Þ correspond to the massless spin s irreps
of Spð4;RÞ. The latter irreps are two-dimensional, com-
posed of the helicity �s irreps, which are related by the Z2

part of Oð2Þ ≅ Z2 ⋉ SOð2Þ, so they assemble into a single
irrep for Oð2Þ.
For N ¼ 2, the dual representation of ½μþ s; μ −

s�Oð4Þ ¼ ½s�Oð3Þ ⊗ ½μ�Oð3Þ is the discrete series repre-
sentation DSpð4;RÞðμþ 2; sÞ with the lowest energy
μþ 2 ¼ sþ 2; sþ 3;…. Note that in this case the SH
representation contains all the massive fields while
excludes the massless fields, which can be realized by
the ðSpð4;RÞ; Oð2ÞÞ dual pair.
Above, we had mentioned that Spð4;RÞ contains many

representations other than the discrete series ones. These
irreps would correspond to rather exotic fields such as
tachyon, continuous spin [53–55] and even the ones living
in bitemporal counterpart of AdS4 (see [56,57] for related
discussions). These irreps might be also realized using
proper SH representations, namely dual pairs with different
dual groups Oð1; 1Þ, Oð2; 1Þ, Oð3; 1Þ, and Oð2; 2Þ. In the
simplest Oð1Þ ≅ Z2 case, the dual pair describes the
conformal scalar and spinor fields in 3d, corresponding
to the even and odd representation of Z2 respectively.

10 Let
us remark also that this different signature variety is not
available for dS4 with Spð1; 1Þ since O�ð2NÞ does not
allow any signature variations and 2N must be even.

C. Conformal group

As we had commented above, the four-dimensional
conformal group soð2; 4Þ [30–33] has a special represen-
tation called ‘singleton’ which reduces to the massless
irreps of ðAÞdS4 with multiplicity one.11 This can be easily
seen from the dual pair correspondence, see Sec. 8.2 of
Ref. [23]. First, within the SH representation, the conformal
symmetry SUð2; 2Þ that the massless fields enjoy is
enhanced to Uð2; 2Þ with the dual group Uð1Þ. The dS4
group reduction can be understood from the dual pairs,

ð4:12Þ

10Note that the dual pair correspondence works at the level of
group representations, and hence is sensitive to finite subgroups
as well. This aspect cannot be captured when presenting the
generators of Lie algebras. See [23] for more details.

11In fact, the scalar irrep of soð2; 4Þ reduces into two irreps of
soð2; 3Þ which can be interpreted as the two possible boundary
conditions of the AdS4 scalar field.

BASILE, JOUNG, MKRTCHYAN, and MOJAZA PHYS. REV. D 109, 125003 (2024)

125003-8



where the reduction of O�ð2Þ ≅ Uð1Þ to Uð1Þ is trivial,
thereby explaining the singleton property of the massless
Spð1; 1Þ irrep. Similarly, the AdS4 group reduction follows
the dual pairs,

ð4:13Þ

where again Oð2Þ ≅ Uð1Þ⋊Z2 reduces to Uð1Þ trivially
except for the scalar case, and hence the same mechanism
works for the massless Spð4;RÞ irreps.

D. Other dimensions

The SH formalism for massless fields in Mink4 can be
extended to 3d [58], 5d [59], 6d [60] and 10d [61] (see also
[62]). These do not cover all massless representations, but
only the “singleton” ones. In the case of three and six
dimensions, such SH representations can be uplifted to the
irreps of conformal groups fSO↑ð2; 3Þ ≅ Spð4;RÞ andfSO↑ð2; 6Þ ≅ O�ð8Þ. Together with the four-dimensional
one fSO↑ð2; 4Þ ≅ SUð2; 2Þ, the conformal groups can be
regarded as symplectic groups Spð4; FÞ12 over F ¼ R;C,
and H,

Spð4;RÞ ¼ Spð4;RÞ; Spð4;CÞ ≅ Uð2; 2Þ;
Spð4;HÞ ≅ O�ð8Þ: ð4:14Þ

These groups naturally include as subgroups the three-,
four-, and six-dimensional Lorentz groups isomorphic to
SLð2;RÞ, SLð2;CÞ, and SLð2;HÞ, respectively.
For the SH representations of (A)dS fields, the (A)dS

groups in the spinor representation need to contain the
Lorentz group in the spinor representation. In four dimen-
sions, this was possible thanks to the embedding of the
Lorentz group Spð2;CÞ into Spð4;RÞ as well as Spð1; 1Þ.
We can summarize the situation in the following diagram
where the middle column corresponds to the Lorentz group

and its dual, while the left and right columns correspond to
the AdS4 and dS4 groups and their duals, respectively,

Spð4;RÞ ⊃ Spð2;CÞ ⊂ Spð1; 1Þ
↕ ↕ ↕

Oð2nÞ ⊂ Oð2n;CÞ ⊃ O � ð2nÞ
ð4:15Þ

In three dimensions, we find an analogous structure that
ensures the SH representations of ðAÞdS3 fields. The
relevant diagram is the following:

Spð2;RÞ × Spð2;RÞ ⊃ Spð2;RÞ ⊂ Spð2;CÞ
↕ ↕ ↕

OðnÞ ×OðnÞ ⊂ Oð2nÞ ⊃ Oðn;CÞ
ð4:16Þ

In five dimensions, we find the following structure
(SU�ð4Þ ≅ fSO↑ð1; 5Þ is the dS5 group).

Uð2; 2Þ ⊃ Spð1; 1Þ ⊂ U�ð4Þ
↕ ↕ ↕

Uð2nÞ ⊂ O�ð4nÞ ⊃ U�ð2nÞ
ð4:17Þ

Note that the flat limit of the above should agree with the 5d
SH representations constructed in [59].

V. MULTILINEAR INVARIANTS

A. Generalities

The ðAÞdS4 SH representation can be utilized in physical
observables like scattering amplitudes in flat space. Of
course, n-particle scattering amplitudes in ðAÞdS4 would
not make a literal sense, and one should regard them rather
as boundary n-point correlation functions. See e.g., [64–68]
for the recent application of SH formalism to conformal
field theory correlators. At the technical level, they are
nothing but the functions of n helicity spinors invariant
underSymΛ, which is essentially the branching rule under
the restriction Sym×n

Λ ↓SymΛ. This leads to the dual pair,

ð5:1Þ

12Here, the symplectic group Spð4; FÞ is defined as the matrices A∈GLð4; FÞ satisfying A†Ωð4ÞA ¼ Ωð4Þ where † is the conjugation
with respect to F and Ωð4Þ is the four-dimensional symplectic matrix [63]. This definition differs from the standard definition of
symplectic groups.
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where DualðN1;…;NnÞ
Λ is given by

DualðN1;…;NnÞ
Λ>0 ¼ O�ð2ðN1 þ � � � þ NnÞÞ;

DualðN1;…;NnÞ
Λ<0 ¼ Oð2ðN1 þ � � � þ NpÞ;

2ðNpþ1 þ � � � þ NnÞÞ; ð5:2Þ

where p and n − p are respectively the number of incoming
and outgoing particles. Note that in dS4 case, there is no
distinction between incoming and outgoing particles as the
energy of a particle is not positive definite.
In (5.1), we require that the down-right factor

DualðN1Þ
Λ × � � � ×DualðNnÞ

Λ carry an irrep correspondingly
to the particle species entering the scattering, and the down-
leftSymΛ carry the trivial representation, that is invariance
under ðAÞdS4 symmetry. The translation invariance con-
dition is deformed by the derivative part in Paḃ (2.8), and its
solution becomes more involved, while the Lorentz invari-
ance can be easily achieved, like in the flat space case, by
assuming that the amplitude is a function of the contracted
variables,

hiIjJi ¼ λiIaλ
jJa; ½iIjJ� ¼ λ̃iIȧλ̃jJ

ȧ: ð5:3Þ

Here, iI; jJ are collective indices in which i; j ¼ 1; 2;…; n
label the particles entering to the scattering, whereas I ¼
1; 2;…; Ni and J ¼ 1; 2;…; Nj are the dual group indices

for each particle. The DualðNÞ
Λ irrep condition depends on

N, and it is sufficient for us to consider N ¼ 1 and N ¼ 2.
ForN ¼ 1, it is the usual helicity condition. ForN ¼ 2with

dualð2ÞΛ ¼ s ⊕ mΛ, the irrep condition of s can be imposed
like in the flat space case as in [7,9], and we need to impose
the irrep condition of mΛ which becomes involved due to
the derivative parts of M and M̃ given in (2.9).
As a side remark, let us point out that the complex

positive Grassmannian structure of scattering amplitudes of
n massless fields [69–71] naturally appears within the
framework of the dual pair correspondence, as explained in
Sec. 7 of [23]. When the scattering particles are all
massless, that is N1 ¼ � � � ¼ Nn ¼ 1, the spacetime sym-
metry SymΛ is enhanced to Uð2; 2Þ, while the dual group
Dualð1;…;1Þ

Λ becomes the indefinite unitary groupUðp; n −
pÞ in the dual pairs (5.1). In this enhanced setting, we do
not require the full invariance under Uð2; 2Þ but only under
the subgroupSymΛ, which contains the Lorentz subgroup
SLð2;CÞ. Together with the diagonal subgroup C× gen-
erated by the total helicity and the dilation operator, the
Lorentz SLð2;CÞ can be uplifted to GLð2;CÞ, which has
GLðn;CÞ as its dual group. The situation can be again
summarized by the following seesaw diagram.

ð5:4Þ

The Lorentz invariance is equivalent to the condition that
under restriction to GLð2;CÞ, the amplitudes carry a one-
dimensional representation, wherein SLð2;CÞ acts trivially,
and GLð1;CÞ ≅ C× acts diagonally. The corresponding
GLðn;CÞ representation is a degenerate principal series
representation (see e.g., [72]), which is realized as the space
of functions on the complex positive Grassmannian mani-
fold Gr2;nðCÞ.
Coming back to the picture (5.1), the only nontrivial part

of the conditions are the translational invariance condition,
and the irrep condition ofmΛ forN ¼ 2. WhenΛ ¼ 0, both
of these conditions are algebraic and could be solved by
imposing the helicity spinors to be constrained on the shell
of the momentum conservation and constant mass-squared.
When Λ ≠ 0, both of these conditions become differential
equations.

B. Translational invariance

Let us consider first the condition of translation invari-
ance,

PaḃA ¼
�
λIaλ̃I ḃ þ Λ

∂

∂λIa
∂

∂λ̃I
ḃ

�
A ¼ 0; ð5:5Þ

where I ¼ iI;J ¼ jJ denote the collective indices. In the
Mink4 case, the solution is nothing but the momentum
conservation delta distribution δ4ðpÞ with

paḃ ¼ λIaλ̃I ḃ; ð5:6Þ

and hence we expect a similar kind of distributional
property for the Λ ≠ 0 solution. For the massless 3 pt
case, this equation has been analyzed in detail in
Appendix E in Ref. [16], where the authors made an
ansatz as a function of h12i½12�, h23i½23�, and h31i½31� and
derived a system of four partial differential equations
(PDEs). Instead of solving these equations directly, they
checked that the amplitudes obtained from field theoretical
approach (that is, spacetime integral of three AdS plane
wave solutions) solve the equations. The solution is span-
ned by four independent distributions of h12i½12� þ
h23i½23� þ h31i½31� ¼ 1

2
paḃp

aḃ.
Let us revisit the problem slightly differently for the

general case (massive or massless n-pt). Since A should
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involve themomentum conservation delta function in the flat
limit, we consider the ansatz A¼Aðpaḃ;hIJ i; ½IJ �Þ.13
Then the condition (5.5) sets up the differential equation,�

paḃ þ Λ
�
pcḋ ∂

∂paḋ

∂

∂pcḃ
þH

∂

∂paḃ

þ λJ aλ̃Kḃ
∂

∂hIJ i
∂

∂½IK�
��

A ¼ 0; ð5:7Þ

with the number operator H,

H ¼ N þ 1

2
hIJ i ∂

∂hIJ i þ
1

2
½IJ � ∂

∂½IJ � ; ð5:8Þ

where N ¼ P
n
i¼1 Ni is the sum of the ranks of the dual

groups for all n particles, and the factor 1=2 has been
introduced to take the antisymmetry of IJ into account. The
last termof thedifferential equation (5.7) is problematic since
it is not expressed in terms of the variables paḃ, hIJ i and
½IJ � only. We can bypass the problem by focusing on the
“longitudinal part” of the equation; contracting (5.7) with
paḃ, we find�
paḃpaḃ þ Λ

�
paḃpcḋ ∂

∂paḋ

∂

∂pcḃ
þHpaḃ ∂

∂paḃ
þ 2R

��
A

¼ 0; ð5:9Þ

where R is a differential operator acting on the Lorentz
invariant variables as

R ¼ 1

2
hIJ i ∂

∂hJLi ½IK� ∂

∂½KL� : ð5:10Þ

ViewingΛ as a deformation parameter, our aim is to find the
deformation of the delta distribution solution of the Λ ¼ 0
case. We can better control the situation by going to the
Fourier space qaḃ where the constant solution corresponds to
the correct delta distribution in the Λ ¼ 0 case. Since the
constant solution is isotropic, we assume that Ã is a function
of t ¼ 1

2
qaḃqaḃ, and this reduces the equation to the simple

second-order differential equation in the t variable,��
t
∂

∂t
þ 2

��
ð1 − ΛtÞ ∂

∂t
þ ΛðH − 4Þ

�
− ΛR

�
Ã ¼ 0:

ð5:11Þ
We can use the separation of variables,

RÃr ¼ rÃr; ð5:12Þ

to decompose the PDE (5.11) into hypergeometric differ-
ential equations with two types of solutions, the first one
being,

Ãr ¼ 2F1ðaþ; a−; 2;ΛtÞfr; ð5:13Þ

where a� are

a� ¼ 1

2

�
6 −H �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH − 2Þ2 − r

q �
; ð5:14Þ

and fr is an arbitrary function of hIJ i and ½IJ �. The second
solution of the hypergeometric differential equation takes the
form,

1

t
þ Λ

X∞
n¼0

ðaþ − 1Þnþ1ða− − 1Þnþ1

ðnþ 1Þ!n!
× ½lnðΛtÞðΛtÞn þ cnðΛtÞnþ1�; ð5:15Þ

with

cn ¼
Xn−1
m¼0

�
1

aþ þm
þ 1

a− þm
−

1

mþ 2
−

1

mþ 1

�
: ð5:16Þ

The hypergeometric function 2F1ðaþ; a−; 2;ΛtÞ reduces to 1
forΛ ¼ r ¼ 0, while the second solution (5.15) to 1=t. Since
the constant solution corresponds to the desired delta dis-
tribution, we retain only the hypergeometric function.
Remark that for r ¼ 0, the hypergeometric function gets
simplified to give

Ã0 ¼ ð1 − ΛtÞH−4f0: ð5:17Þ

This is consistent with the expressions obtained in [15–17]
for massless 3 pt. We remark also that the hypergeometric
function (5.13) has a branch point at Λt ¼ 1,14 which might
be interpreted as the cosmological horizon and related to the
alpha vacua.15 Eventually, the most general invariant will be
linear combinations of Ar with different r values.

C. Mass condition

Let us move on to the irrep condition of mΛ for each of
the n particles, fixing their masses. For the discrete series

irreps of dualð2ÞΛ>0 in the dS4 case and the finite-dimensional

irreps of dualð2ÞΛ<0 in the AdS4 case, we can impose the
highest-weight condition MiA ¼ 0 or the lowest-weight
condition M̃iA ¼ 0, on the Ki eigenstate with

13Note that the variables paḃ are not independent from hIJ i
and ½IJ �, as they are related by paḃp

aḃ ¼ hIJ i½IJ �. Therefore,
whenever the latter combination appears, we have to regard them
as a function of paḃ to avoid the related ambiguities.

14In [15–17], the qaḃ variables carry a spacetime coordinate
interpretation, and the branch point corresponds to the boundary
of the coordinate chart.

15In de Sitter space, there is a one-parameter family of dS
invariant vacuum states [73]. This vacuum ambiguity would lead
to an analogous ambiguity in n-point correlation functions.
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Kif ¼∓ 2ðμi þ 1Þf; ð5:18Þ

for dS4 and

Kif ¼ �2μif; ð5:19Þ

for AdS4. Here, the Ki, upon acting on f, reduces to the
differential operator,

Kif ¼
�
hiIJ i ∂

∂hiIJ i − ½iIJ � ∂

∂½iIJ �
�
f; ð5:20Þ

where the repeated indices J and I are summed over
except for the particle label i. The highest-weight condition
MA ¼ 0 can be translated as well into the differential
equations,

Mif ¼
�
hi1i2i þ Λ

�
2

∂

∂½i1i2� þ ½JK� ∂

∂½i1J �
∂

∂½i2K�
��

f

¼ 0;

where the repeated indices J , K include ith particle’s
values iI, and the lowest-weight condition is simply given
by the complex conjugate of the above.
Note that the K eigenstate conditions (5.18) and (5.19)

become singular in the flat limit where μ is sent to infinity
while μ

ffiffiffiffiffiffijΛjp
held fixed. Moreover, the principal series

irreps of dS4 have neither a highest nor a lowest weight
state. Therefore, the above conditions are inapplicable in
that case. We may consider to use the K eigenstate with
eigenvalue 0 or �1 to avoid this problem, but in that case
we cannot use any more the simple condition M ¼ 0 (or
M̃ ¼ 0). Instead we need to use the Casimir condition
involving the anticommutator fM; M̃g resulting in a fourth-
order differential equation instead of (5.21).
In fact, for the principal series irreps, it is more natural to

impose,

ðMi − M̃iÞf ¼ 2
ffiffiffiffi
Λ

p
μif; ð5:21aÞ

ðMi þ M̃i −
ffiffiffiffi
Λ

p
KiÞf ¼ 0; ð5:21bÞ

which has also a well-defined flat limit, and can be
expressed as second-order differential equations in hIJ i
and ½IJ �. Solving these conditions is beyond the scope of
the current work. Instead, let us make a few remarks on the
change of basis where the O�ð4Þ actions become more
natural.
For the change of basis, we fix the convention as

a; b; ȧ; ḃ ¼ þ;− and ϵ−þ ¼ ϵþ− ¼ 1 and perform Fourier
transform with respect to λI− and its complex conjugate as

�
λI−ffiffiffiffi
Λ

p ;
ffiffiffiffi
Λ

p ∂

∂λI−
;
λ̃I−ffiffiffiffi
Λ

p ;
ffiffiffiffi
Λ

p ∂

∂λ̃I−

�
⟶ i

�
∂

∂ζI
; ζI;

∂

∂ζ̃I
; ζ̃I

�
:

ð5:22Þ

Then, the dual algebra generators read,

KI
J ¼ λI

∂

∂λJ
− ζJ

∂

∂ζI
− λ̃J

∂

∂λ̃I
þ ζ̃I

∂

∂ζ̃J
; ð5:23aÞ

MIJffiffiffiffi
Λ

p ¼ i

�
λI

∂

∂ζJ
− λJ

∂

∂ζI
þ ζ̃I

∂

∂λ̃J
− ζ̃J

∂

∂λ̃I

�
; ð5:23bÞ

where we used λI ¼ λIþ and λ̃I ¼ λ̃Iþ. In this basis, the
o�ð2NÞ generators become first-order differential operators,
and hence can be easily integrated to a Lie group. This basis
admits in fact a natural realization in terms of quaternions; see
Appendix B for the details. While the new basis (5.23a) and
(5.23b) renders the dual algebra as simple first-order differ-
ential operators, the Lorentz algebra becomes second order
instead. In other words, in the basis where the dual algebra is
linearly realized, the dS4 algebra is not. And vice versa; we
can go to another basis where the dS4 algebra is realized
linearly, but then the dual algebra is not.
For N ¼ 2, we can consider a different Fourier trans-

formation,

�
λ2affiffiffiffi
Λ

p ;
ffiffiffiffi
Λ

p ∂

∂λ2a
;
λ̃2ȧffiffiffiffi
Λ

p ;
ffiffiffiffi
Λ

p ∂

∂λ̃2ȧ

�
⟶ i

�
∂

∂ξa
; ξa;

∂

∂ξ̃ȧ
; ξ̃ȧ

�
;

ð5:24Þ

where only the I ¼ 2 variables are transformed. Upon a
further change of basis,

za ¼ ξa − iλ1a

2
; wa ¼ ξa þ iλ1a

2
;

z̃ȧ ¼ ξ̃ȧ þ iλ̃1
ȧ

2
; w̃ȧ ¼ ξ̃ȧ − iλ̃1

ȧ

2
; ð5:25Þ

the conditions (5.21a) and (5.21b) become simple,

M − M̃ffiffiffiffi
Λ

p ¼ za
∂

∂za
þ z̃ȧ

∂

∂z̃ȧ
− wa ∂

∂wa − w̃ȧ ∂

∂w̃ȧ ; ð5:26aÞ

M þ M̃ffiffiffiffi
Λ

p − K ¼ 2

�
za

∂

∂wa − z̃ȧ
∂

∂w̃ȧ

�
: ð5:26bÞ

The condition (5.21b) can be solved by an arbitrary
function of za, z̃ȧ, and zaw̃ḃ þ waz̃ḃ. Furthermore, the
condition (5.21a), which fixes the principal series label,
becomes a simple homogeneity condition with respect to
the number operator (5.26a). The variables zaw̃ḃ þ waz̃ḃ

have weight zero and hence are not constrained, while the
homogeneity of jzj ¼ ffiffiffiffiffiffiffiffiffi

zaz̃ȧ
p

is restricted to μ. The spin
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condition further restricts the variables zaw̃ḃ þ waz̃ḃ and
za=jzj. In the end, the remaining freedom corresponds to
the massive irrep of Spð1; 1Þ. However, in this basis, the
spin part s of the dual algebra, that is generated by KI

J, is
realized by second-order differentials.
Therefore, the dS4 invariance condition and the O�ð4Þ

irrep condition for each of the particles cannot be solved
within a single basis, but by employing multiple bases that
are related by Fourier transformations. These conditions
may be solved for concrete examples of interest. We leave
this to future investigations.
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APPENDIX A: UNITARY AND IRREDUCIBLE
REPRESENTATIONS OF dS4 GROUP

AND CASIMIRS

Unitary and irreducible representations (UIRs) of the dS4
isometry group were first classified by J. Dixmier in [37].
In this appendix, we recall this classification and the
eigenvalues of the quadratic and quartic Casimir operators,

(i) π�p;q: [p ¼ 1
2
; 1; 3

2
;…; q ¼ p; p − 1;…; 1 or 1

2
] with

C2 ¼ −pðpþ 1Þ − ðq − 1Þqþ 2

¼ −pðpþ 1Þ − ðqþ 1Þðq − 2Þ;
C4 ¼ −pðpþ 1Þðq − 1Þq; ðA1Þ

corresponding to the discrete series.
(ii) πp;0: [p ¼ 1; 2;…] with the quadratic and quartic

Casimir operators taking the values

C2 ¼ pðpþ 1Þ − 2;

C4 ¼ 0: ðA2Þ

These UIRs form the discrete series.
(iii) νp;σ: [p ¼ 0; σ > −2] and [p ¼ 1; 2;…; σ > 0] and

[p ¼ 1
2
; 3
2
;…; σ > 1

4
] with

C2 ¼ pðpþ 1Þ − σ − 2;

C4 ¼ −pðpþ 1Þσ; ðA3Þ

corresponding to the principal and complementary
series.

APPENDIX B: QUATERNION REALIZATION
OF dS4 GROUP

The dual pair ðSpðM;MÞ; O�ð2NÞÞ can be naturally
realized in terms of quaternions. The oscillator representa-
tion is the space of functions on HMN , where O�ð2NÞ acts
on a function Φ by right multiplication,

hQjUO�ð2NÞðAÞΦi ¼ hQAjΦi; ðB1Þ

where Q is an M × N quaternionic matrix and A is an
N × N quaternionic matrix satisfying,16

A†jA ¼ j; ðB2Þ

thereby representing an arbitrary element of O�ð2NÞ. For
M ¼ 1, each of the quaternionic elements of Q ¼ ðqIÞ,
seen as a 2 × 2 complex matrix, can be parametrized by two
complex numbers as

qI ¼
�

λI þ iζI ζI þ iλI

−ζ̃I þ iλ̃I λ̃I − iζ̃I

�
: ðB3Þ

Note that we recover the expressions (5.23a) and (5.23b)
from the above parametrization of qI .
For even N ¼ 2L, the SpðM;MÞ action can also be

represented by the left multiplication of a quaternionic
matrix,	�

Q1

P2

�



USpðM;MÞðBÞΦ
�

¼
	
Bt

�
Q1

P2

�



Φ
�
; ðB4Þ

where B is an element of SpðM;MÞ, and hence a 2M × 2M
quaternionic matrix satisfying

B†
�

0 IM
IM 0

�
B ¼

�
0 IM
IM 0

�
: ðB5Þ

The submatrices Q1 and P2 are M × L quaternionic
matrices, and P2 is the Fourier conjugate of Q2 where
Q1 and Q2 form the M × 2L matrix Q ¼ ðQ1Q2Þ.

16Here, j denotes the basis element of quarternions that can be
represented by the Pauli matrix iσ2.
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