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We construct, for the first time, a Bemfica-Disconzi-Noronha-Kovtun (BDNK) theory for linear
stochastic fluctuations, which is proved to be mathematically consistent, causal, and covariantly stable. The
Martin-Siggia-Rose action is shown to be bilocal in most cases, and the noise is not white. The presence of
nonhydrodynamic modes induces long-range correlations in the primary fluid variables (temperature,
chemical potential, and flow velocity). However, correlators of conserved densities remain localized in
space, and coincide with those calculated within fluctuating Isreal-Stewart theory. We show that, in some
cases, there is a nonlocal change of variables that maps the Israel-Stewart action into the BDNK action.
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I. INTRODUCTION

Every system that dissipates must also fluctuate. This is a
universal law of statistical mechanics, known as the
fluctuation-dissipation theorem (FDT) [1,2], whose physi-
cal content can be summarized with the following simple
argument. Consider an isolated system, and let X be a list of
observables that we use to characterize its macroscopic
state. In a fluid, these are the hydrodynamic fields. We call
Pe ¼ PðjX − hXij ≤ ϵÞ the probability of finding X within
a distance ϵ from the microcanonical average hXi, and
Pn ¼ 1 − Pe the probability for the complementary event.
The evolution equation of these two probabilities can be
modeled schematically as follows:

�
Peðtþ ΔtÞ
Pnðtþ ΔtÞ

�
¼

�
1 − Pe→n Pn→e

Pe→n 1 − Pn→e

��
PeðtÞ
PnðtÞ

�
; ð1Þ

where Pi→j is the probability of spontaneously jumping
from the event i to the event j in a time Δt. Since the
microcanonical probability Pi ∝ eSi (¼ “number of micro-
scopic realizations of i”) is stationary under time evolution,
it must be conserved under the process (1), giving (a
schematic representation of) the FDT1:

Pe→n ¼ eSn−SePn→e: ð2Þ

Hence, if there is a dissipative mechanism Pn→e that drives
X toward its equilibrium average hXi, then there must
also be a random force Pe→n that spontaneously pushes X
away from it. The rates of the two processes are propor-
tional to each other, meaning that, fixed the entropies Si,
increasing dissipation leads to a corresponding increase in
fluctuations.
In everyday applications of hydrodynamics, the effect of

fluctuations is often negligible [5]. This is due to the factor
eSn−Se in the FDT (2), which is usually minute, as it scales
like ∼e−Nϵ2 , where N is the number of particles in a fluid
parcel. Indeed, in a typical experiment involving water
undergoing laminar flow, one may work with fluid parcels
of 1 mm radius, which contain N ∼ 1020 water molecules.
On the other hand, as one pushes relativistic nucleus-
nucleus collision simulations to smaller and smaller sys-
tems, N progressively decreases, until we reach systems
with N ∼ 5 particle degrees of freedom in a fluid parcel (in
pp collisions), where fluctuating phenomena cannot be
neglected [6]. For this reason, there is increasing interest in
including random noise sources in hydrodynamic simu-
lations of the quark-gluon plasma [7,8]. This has also
triggered a wave of interesting advancements on the
theoretical side [9–17].
The present article focuses on the problem of self-

consistently adding hydrodynamic fluctuations to the
first-order causal and stable theory of relativistic viscous
hydrodynamics, known as Bemfica-Disconzi-Noronha-
Kovtun (BDNK) theory [18–21]. This turns out to be
an unexpectedly difficult problem, as the standard

1In the continuous version of (2), one assumes Fokker-Planck
dynamics, ∂tP ¼ −∂XðFPÞ þ ∂

2
XðQPÞ, for the probability dis-

tribution PðXÞ, with dissipative force FðXÞ and noise scale Q.
Requiring eSðXÞ to be a stationary solution, one gets Q ¼
ð∂XSÞ−1F, so that a larger dissipative drag F corresponds to a
larger noise scale Q, at fixed entropy. See [3] for more general
formulations of the FDT, or [4] for a formulation in a relativistic
context.
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approaches [22,23] suffer from unphysical UV divergences,
resulting from a spontaneous “condensation” of the non-
hydrodynamic modes [24]. Here, we rely on the Fox-
Uhlenbeck approach [25] to heal such pathologies, and
suppress nonhydrodynamic contributions.2 Ourmain tool to
achieve this goal is the following rigorous result (which is
proven in Sec. III); If the entropy S entering the micro-
canonical probability distribution eS is a Lyapunov func-
tional of the nonfluctuating theory in all reference frames,
then the linearized fluctuating theory is causal, stable, and
mathematically consistent. We recall that “Lyapunov func-
tional” means “nondecreasing in time and maximized at
equilibrium” [28], and that S is a Lyapunov functional in all
reference frames if and only if there is a timelike future-
directed vector field Eμ (known as the information current)
such that ∂μEμ ≤ 0, and S−Seq¼−E¼−

R
EμdΣμ across all

Cauchy surfaces [29–32].
Throughout the article we adopt the metric signature

ð−;þ;þ;þÞ, and work in natural units: c ¼ kB ¼ 1.

II. BASICS OF STOCHASTIC HYDRODYNAMICS

In this section, we show how one can use the knowledge
of the information current to construct a theory of hydro-
dynamic fluctuations in relativity. In order to do this, we
need to “rederive” stochastic hydrodynamics, following a
path that is slightly different from the textbook derivation
[1,33], but is equally rigorous, and fully self-contained.

A. The building blocks of a stochastic theory

Let ΨðxμÞ∈RM be a collection of stochastic degrees of
freedom of the linearized macroscopic theory, defined so
that hΨi ¼ 0 at equilibrium (which is assumed to be
homogenous). By “degree of freedom”, here we mean that
the knowledge of their value at a given instant of time fully
identifies the hydrodynamic state at that time. In the
standard approach, the degrees of freedom obey a system
of Langevin-type differential equations [34], which are of
first order in time:

∂tΨ ¼ −Mð∂jÞΨþ Sð∂jÞξ: ð3Þ

The field ξðxμÞ∈RN is a collection of stochastic noises,
while the background matrices Mð∂jÞ and Sð∂jÞ are
polynomials in the space derivatives ∂j. In general, the
numberM of components of Ψmay differ from the number
N of components of ξ. Hence, while M is a square M ×M
matrix, S is in general rectangular, with M × N elements.
As part of the definition of Ψ and ξ, we assume that hΨi

is the set of “classical” (i.e., nonstochastic) hydrodynamic

variables, and hξi ¼ 0. Hence, when we average (3), we
recover the classical hydrodynamic equation of motion:

∂thΨi ¼ −Mð∂jÞhΨi: ð4Þ

This implies that, if we are given a classical hydrodynamic
theory, then we know the operator Mð∂jÞ that enters the
stochastic differential equation (3) of the fluctuating theory.
Note that this is true only in the linear regime. In fact, if M
depended also Ψ itself, then hMð∂jÞΨi ≠ hMð∂jÞihΨi,
meaning that nonlinear fluctuations “renormalize” M [35].
Let us now focus on the stochastic term Sξ in Eq. (3).

There is no general prescription for how many components
ξ should have and what the operator Sð∂jÞ should look like.
Hence, we cannot deduce the whole structure of the noise
from hydrodynamics alone, and we may need (in principle)
to rely on a microscopic model. However, in practice, we
are never interested in the noise itself. Rather, the final goal
is to compute hydrodynamic correlators of the form
hΨΨ…Ψi. As long as this is our only goal, we don’t
really need to know the structure of S and ξ in detail.
Instead, if the noise is Markovian and the system is in
thermodynamic equilibrium, we will be able to use the FDT
to effectively get rid of the noise, and obtain formulas for
the correlators hΨΨ…Ψi which are independent of the
particular model of noise one is using. The details are
provided in the next subsection.

B. The Fox-Uhlenbeck formulation
of the fluctuation-dissipation theorem

Since the equilibrium state is homogenous and sta-
tionary, all correlators are invariant under spacetime trans-
lations, e.g., hΨðxÞΨTðyÞi ¼ hΨðx − yÞΨTð0Þi. Hence, we
can write the two-point correlators of fields and noise
as integrals in momentum space, with kμ ¼ ðω; kjÞ, as
follows:

hΨðxÞΨTðyÞi ¼
Z

d4k
ð2πÞ4 e

ikðx−yÞGSðkÞ;

hξðxÞξTðyÞi ¼
Z

d4k
ð2πÞ4 e

ikðx−yÞQðkÞ; ð5Þ

where GS is a Hermitian M ×M matrix, and Q is a
Hermitian N × N matrix (recall that Ψ and ξ are column
vectors). If we express (3) in momentum space, it becomes
ΨðkÞ ¼ ½MðikjÞ − iω�−1SðikjÞξðkÞ. Then, it is straightfor-
ward to verify that the correlation matrices GSðkÞ and QðkÞ
are related by the following identity [25]:

GSðkÞ ¼ ½MðikjÞ − iω�−1SðikjÞQðkÞ
× S†ðikjÞ½MðikjÞ − iω�−†: ð6Þ

2This is similar to the approach employed in [15,23] to study
stochastic fluctuations in Israel-Stewart theory [26]. However, we
utilize the regularization scheme first presented in [27] to ensure
that the equal-time correlators are well-defined.
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Note that MðikjÞ − iω is invertible for all kμ ∈R4=f0g,
since the roots of detðM − iωÞ are the dispersion relations
ωðkjÞ of the classical theory, which have a negative
imaginary part due to dissipation. If we plug (6) into the
first equation of (5), and we evaluate the result on two
equal-time events, e.g., x ¼ ð0;xÞ and y ¼ ð0; yÞ, we
obtain

hΨðxÞΨTðyÞi¼
Z

d3k
ð2πÞ3 e

ik·ðx−yÞ
Z

dω
2π

½MðikjÞ− iω�−1

×SðikjÞQðkÞS†ðikjÞ½MðikjÞ− iω�−†: ð7Þ

Let us now turn our attention to the entropy S, which is
functional of state, i.e., S ¼ S½Ψ�. Since we are working in
the linear regime, the fluctuations can be approximated as
Gaussian. In other words, we can write S½Ψ�¼S½0�−E½Ψ�,
where E ¼ R

E0d3x ¼ OðΨ2Þ is the integral of the zeroth
component of the information current [30], which is
quadratic in the fields. Integrating by parts, we can always
express E½Ψ� as follows:

E ¼ 1

2

Z
d3xΨTKð∂jÞΨ; ð8Þ

where Kð∂jÞ is a non-negative definite Hermitian operator.
Then, since the probability distribution is eS ∝ e−E, all
equal-time correlators are Gaussian functional integrals,
which can be evaluated using standard field-theory tech-
niques [36]. In the case of two-point correlators, we have

hΨðxÞΨTðyÞi ¼
R
DΨe−EΨðxÞΨTðyÞR

DΨe−E

¼
Z

d3k
ð2πÞ3 e

ik·ðx−yÞK−1ðikjÞ: ð9Þ

If we compare (7) with (9), we see that, in order for the
noise to be consistent with the equilibrium probability
distribution dictated by statistical mechanics, a compati-
bility constraint must hold:Z

dω
2π

½MðikjÞ − iω�−1SðikjÞQðkÞS†ðikjÞ½MðikjÞ − iω�−†

¼ K−1ðikjÞ: ð10Þ

Till this point, our analysis was fully general, since no
assumption has been made about the noise. Now we
introduce the Markovianity postulate, according to which
the noise is not correlated in time, i.e., hξðxÞξTðyÞi ∝
δðx0 − y0Þ. This is equivalent to requiring that Q does not
depend on ω. Under this assumption, the ω-integral above
can be evaluated analytically. With some algebra (which is
provided in Appendix A), one finally arrives at the
following identity [25]:

SðikjÞQðkjÞS†ðikjÞ
¼ MðikjÞK−1ðikjÞ þK−1ðikjÞM†ðikjÞ: ð11Þ

This is the fluctuation-dissipation theorem. It tells us that,
even if we do not know the details of S and ξ, still, the
combination SQS† is uniquely fixed by statistical mechan-
ics. Plugging (11) into (6), and (6) into (5), we finally
obtain

hΨðxÞΨTðyÞi ¼
Z

d4k
ð2πÞ4 e

ikðx−yÞ½MðikjÞ − iω�−1

× ½MðikjÞK−1ðikjÞ þ K−1ðikjÞM†ðikjÞ�
× ½MðikjÞ − iω�−†: ð12Þ

This shows that (if the noise is Markovian) the two-point
correlator is uniquely determined by hydrodynamics alone.
In fact, in order to evaluate (12), we only need to know the
classical equation of motion (4), which gives usM, and the
information current, which gives us K through Eq. (8).

C. The forward and the backward correlator

It is straightforward to verify that the symmetric corre-
lator GSðx − yÞ ¼ hΨðxÞΨTðyÞi, as given in (12), is the
sum of two correlators; the forward correlator Gþðx − yÞ,
and and the backward correlator G−ðx − yÞ, given by,
respectively,

Gþðx−yÞ¼
Z

d4k
ð2πÞ4e

ikðx−yÞ½MðikjÞ−iω�−1K−1ðikjÞ;

G−ðx−yÞ¼
Z

d4k
ð2πÞ4e

ikðx−yÞK−1ðikjÞ½MðikjÞ−iω�−†: ð13Þ

Recalling thatKðikjÞ is Hermitian, we see thatG−ðx − yÞ ¼
Gþðy − xÞT . Furthermore, using the first equation in (A4),
we can perform the integral inω analytically, and we obtain:

Gþðx − yÞ

¼ Θðx0 − y0Þ
Z

d3k
ð2πÞ3 e

ik·ðx−yÞe−ðx0−y0ÞMðikjÞKðikjÞ−1:

ð14Þ

This tells us that Gþ and G− are just the restrictions
of GS to positive and negative times respectively, namely
G�ðxÞ ¼ Θð�x0ÞhΨðxÞΨTð0Þi. Furthermore, we note that,
for x0 > 0, GþðxÞ is a solution of the classical equation of
motion (4), with initial condition (9) (see Appendix B for a
more direct proof) [1]. Thus, the forward correlator is a
solution of the following partial differential equation:

½∂t þMð∂jÞ�GþðxÞ ¼ δðtÞGSðxÞ: ð15Þ
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D. The Martin-Siggia-Rose approach

Even if we know the two-point correlator, we still
need a procedure to evaluate all higher-point correlators
hΨΨ…Ψi. Such a procedure is called Martin-Siggia-Rose
(MSR) approach [37,38], and is summarized below.
Our goal is to find the probability distribution P½Ψ� for

the “history” of the field ΨðxμÞ in a spacetime region of
interest. To this end, let us first note that Ψ is a solution of
the stochastic differential equation (3). Hence, if we fix an
initial condition Ψ−∞ in the far past, we can think of Ψ as a
functional Ψ½Ψ−∞; ξ�, in the sense that for every choice of
Ψ−∞ and ξðxμÞ there is a unique realization of the field
ΨðxμÞ that solves (3).3 Thus, we can write

P½Ψ� ¼
Z

DΨ−∞P½Ψ−∞�
Z

DξP½ξ�δ∞½Ψ −Ψ½Ψ−∞; ξ��;

ð16Þ

where δ∞ is a functional Dirac delta. However, since the
system is dissipative, it quickly loses memory of its initial
state in the far past, so that we can write Ψ½Ψ−∞; ξ� ¼ Ψ½ξ�
(in the spacetime region of interest). Therefore, we can
directly perform the integral over the initial data, and we are
left with

P½Ψ� ¼
Z

DξP½ξ�δ∞½Ψ −Ψ½ξ��: ð17Þ

Considering that Ψ ¼ Ψ½ξ� if and only if (3) holds, we
know that δ∞½Ψ −Ψ½ξ�� and δ∞½∂tΨþMΨ − Sξ� are
proportional to each other. The proportionality constant
is the functional determinant of ∂t þM (see Appendix C 1),
which does not depend on Ψ and ξ. It is therefore a global
constant, which can be taken out of all integrals. Thus, we
have

P½Ψ� ∝
Z

DξP½ξ�
Z

DΨ̃ei
R

d4xΨ̃Tð∂tΨþMΨ−SξÞ; ð18Þ

where we employed the identity 2πδðaÞ ¼ R
eiax̃dx̃ to

convert the Dirac delta into a Fourier integral, at the
expense of introducing a new fictitious field Ψ̃ðxμÞ.
Now, even if we do not know the probability distribution
P½ξ�, we know that it is Gaussian, because we are working
in the linear regime. Hence, if we perform the integral in the
noise, the most general result must have the form of a

bilocal Gaussian weight for the variable Ψ̃ (to see this, just
complete the square). Thus, we arrive at the generic
expression,

P½Ψ� ∝
Z

DΨ̃ei
R

d4xΨ̃Tð∂tΨþMΨÞ−1
2

R
d4xd4yΨ̃TðxÞHðx−yÞΨ̃ðyÞ;

ð19Þ

where H is some bilocal kernel which depends only on the
difference x − y due to translation invariance. This implies
that the average of an arbitrary functional F½Ψ� can be
expressed as a path integral as follows:

hF½Ψ�i ¼
R
DΨDΨ̃eiSF½Ψ�R
DΨDΨ̃eiS

; ð20Þ

with the (complex) effective action

S½Ψ; Ψ̃� ¼
Z

d4xΨ̃Tð∂tΨþMΨÞ

þ i
2

Z
d4xd4yΨ̃TðxÞHðx − yÞΨ̃ðyÞ: ð21Þ

To complete the construction of the theory, we only need to
specify the kernel Hðx − yÞ. This is easily done by
requiring that the two-point correlators, as computed
through the path integral (20), coincide with the explicit
formula (12) provided by the fluctuation-dissipation theo-
rem. All the detailed calculations are reported in
Appendix C 2. Here, we provide only the final result:

Hðx − yÞ ¼ δðx0 − y0Þ
Z

d3k
ð2πÞ3 e

ik·ðx−yÞ½MðikjÞK−1ðikjÞ

þK−1ðikjÞM†ðikjÞ�: ð22Þ

Again, we see that the knowledge of the classical equation
of motion and of the information current fully specifies the
stochastic theory. In fact, if we fix the operators Mð∂jÞ and
Kð∂jÞ, this uniquely identifies the effective action S,
thereby allowing us to compute all correlators hΨΨ…Ψi.
Let us remark that the presence of the factor δðx0 − y0Þ in

Eq. (22) is related to the Markovianity assumption for the
noise. If we released this assumption, H would depend on
x0 − y0 in nontrivial ways.

III. MATHEMATICAL CONSISTENCY,
CAUSALITY, AND STABILITY

It is well-known that, if the classical equation of motion
(4) admits an information current, then it is causal and
covariantly stable [29,30]. Furthermore, it is straightforward
to prove that the initial value problem is uniquely solvable
for initial data in the Schwartz space [39,40]. Hence, the
classical theory is well-behaved and mathematically

3The existence of the information current implies that the
solutions to (3) are unique. Proof: If Ψ1 and Ψ2 are two solutions
of (3) with the same initial condition and the same ξ, then ΔΨ ¼
Ψ2 − Ψ1 is a solution of (3) with vanishing initial condition and
ξ ¼ 0. Thus, E½ΔΨ� ¼ 0 in the far past. Since E is non-negative
definite, and it is nonincreasing along solutions of (3) without
noise, we have E½ΔΨ� ¼ 0 at all later times. But E½ΔΨ� vanishes
if and only if ΔΨ ¼ 0 (by definition of Lyapunov function [28]),
proving that Ψ2 ¼ Ψ1.
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consistent. In this section, we show that similar results hold
also for the fluctuating theory.

A. Convergence of the functional integrals

One of the major difficulties with fluctuating hydro-
dynamics is that, even if a hydrodynamic theory is stable
on-shell, namely along solutions of (4), it may become
unstable off shell, if certain (usually UV) fluctuations
are entropically favored [30]. When this happens, the
probability distribution P½Ψ�, as given in (19), is non-
normalizable [23]. As a consequence, the MSR path
integral (20) becomes ill-defined, and the whole fluctuating
theory is mathematically inconsistent. Let us show that, in
the presence of a well-defined information current, this can
never happen.
First, let us note that, if the information current is

timelike future directed, then E is non-negative definite.
Hence, e−E is a regular Gaussian distribution, which is
normalizable. Thus, the functional integral (9) is well-
defined, and all equal-time correlators are “convergent” (in
a distributional sense). The nonequal-time ones require
more work.
Let ΦðxμÞ be a solution of the classical equation of

motion (4). Then, along Φ, we have that ∂μEμ ≤ 0.
Integrating over the volume, and switching to momentum
space, we obtain

d
dt

Z
d3k
ð2πÞ3Φ

†ðt;kÞKðikÞΦðt;kÞ ≤ 0: ð23Þ

Expressing the initial condition for Φðt;kÞ in the form
Φð0;kÞ ¼ KðikÞ−1VðkÞ, we can solve (4) explicitly, and
get ΦðtÞ ¼ e−MtK−1V, where the k-dependence is from
now on understood. Then, (23) becomes

d
dt

Z
d3k
ð2πÞ3 V

†K−1e−M
†tKe−MtK−1V ≤ 0: ð24Þ

Evaluating this formula at t ¼ 0, we finally obtain

0 ≤
Z

d3k
ð2πÞ3 V

†ðMK−1 þ K−1M†ÞV

¼
Z

d3xd4yVTðxÞHðx − yÞVðyÞ; ð25Þ

where we used Eq. (22) in the last step. But since VðxÞ ¼
Kð∂jÞΦðxÞ is arbitrary (asK is invertible), we can conclude
that ImS is always non-negative, see Eq. (21). It follows
that the weight jeiSj ¼ e−ImS is a regular Gaussian,
making the probability distribution (19) normalizable,
and the path integral (20) well-defined.
As a consistency check, we also note that, due to the

first inequality in (25), and identity (12), the Hermitian
matrix GSðkÞ is necessarily non-negative definite, as it

should be, since hΨðkÞΨ†ðpÞi ¼ ð2πÞ4δ4ðk − pÞGSðkÞ.
Previous attempts at deriving a fluctuating generalization
of BDNK failed at making GSðkÞ non-negative definite
[22,23], and are strictly speaking mathematically incon-
sistent. However, if one has an information current and
follows our procedure, the resulting GSðkÞ is non-negative
definite by construction.

B. Bounds from microcausality

The dispersion relations ωnðkÞ of the fluctuating theory
are defined to be the singularities of the forward correlator
in momentum space. From Eq. (14), we see that the such
singularities are determined by the algebraic equation
det½MðikÞ − iω� ¼ 0, which is also the defining equation
for the dispersion relations of the classical theory (4) but if
there is an information current, the classical theory is causal
and covariantly stable, so that the dispersion relations
satisfy all the necessary conditions for covariant stability.
In particular, setting k ¼ ðkx; 0; 0Þ, we have [41]

Imωn ≤ jImkxj; ð26Þ

which is also the consistency criterion with microcausality
in quantum field theory. Hence, the dispersion relations of
the fluctuating theory obey all the causality bounds derived
in [42].

C. Causality and covariant stability
of the fluctuating theory

Now we only need to prove that the full fluctuating
theory is causal and stable. To this end, let us couple the
system with a small external (nonstochastic) forcing term
FðxμÞ, which drives the fluid out of equilibrium. Then, the
Langevin-type equation of motion (3) becomes

∂tΨ ¼ −Mð∂jÞΨþ Sð∂jÞξþ F; ð27Þ

whose solution is

ΨðxÞ ¼
Z

d3k
ð2πÞ3 e

ik·x

Z
t

−∞
dse−Mðt−sÞSξðsÞ

þ
Z

d3k
ð2πÞ3 e

ik·x

Z
t

−∞
dse−Mðt−sÞFðsÞ; ð28Þ

where, again, the dependence of the integrand on k is
understood. As can be seen, the solution to (27) is the sum
of two contributions. The first, which we call Ψu, is just the
unperturbed solution of (3), i.e., the solution in the absence
of external forces. The second, which we call Ψp, is the
classical perturbation introduced by F, and is a solution of
the nonstochastic equation of motion ∂tΨp ¼ −MΨp þ F.
In the stochastic theory, an individual realization (28) of

the system does not teach us anything about causality and
stability. In fact, apparent superluminal signals (or apparent
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unstable bursts) may just be the result of random fluctua-
tions [43]. Instead, to assess these features rigorously, one
has to repeat the same experiment multiple times, using the
same F, and study the impact of the external forcing on the
correlators hΨΨ…Ψi. From (28), we have

hΨΨ…Ψi ¼ hðΨu þΨpÞðΨu þΨpÞ…ðΨu þΨpÞi: ð29Þ

Now, let us assume that FðxμÞ is supported inside a
compact spacetime region R. Then, since the classical
theory (4) is causal and covariantly stable (because we have
an information current [29,30]), and there is dissipation, the
Minkowski diagram of ΨpðxμÞ must possess certain math-
ematical properties [44], which are schematically illustrated
in Fig. 1. First, Ψp is supported inside JþðRÞ, so that, if we
consider correlators that are causally disconnected fromR,
the right-hand side of (29) reduces to hΨuΨu…Ψui. This
tells us that the information about F cannot exit the
lightcone, meaning that the stochastic theory is rigorously
causal. Secondly, Ψp decays to zero at late times, so that
hΨΨ…Ψi → hΨuΨu…Ψui long time after the force F has
acted. This means that the equilibrium state is stable in the
rest frame but since all Lorentz observes agree on whether a
subluminal signal grows or decays, stability assessments
are Lorentz-invariant in causal systems. In particular,
following the same steps as in the proof of Theorem 2
of [44], one can straightforwardly establish covariant
stability of the full stochastic theory.

D. More on the fluctuation-dissipation theorem

In Sec. II B, we discussed the Fox-Uhlembeck formu-
lation of the FDT in relativistic hydrodynamics. However,
the most general formulation of the fluctuation-dissipation
theorem (in the Gaussian limit) is an identity relating the

symmetric correlator GS to the retarded linear response
Green function of the system. Let us show that the two
formulations of the FDT are indeed equivalent.
Let us introduce the auxiliary field Λ ¼ Kð∂jÞΨ, which

is the thermodynamical conjugate of Ψ, see Eq. (8). If we
Fourier-transform in space, we can rewrite the classical
equation of motion (4) in Onsager’s canonical form
∂thΨi ¼ −MðikjÞK−1ðikjÞhΛi. Following (Landau and
Lifshitz) [1], if we couple Ψ with an external force f
through an interaction potential of the form −ΨTf, then the
externally perturbed equation of motion can be obtained
through the replacement hΛi → hΛi − f=T, where T is the
temperature of the background state. The result is

∂thΨi ¼ −MK−1ðhΛi − f=TÞ: ð30Þ

This equation is the statistical average of (27), once onemakes
the identification F ¼ MK−1f=T. Fourier-transforming (30)
also in time, we obtain an equation of the form hΨðkÞi ¼
GRðkÞfðkÞ, with retarded Green’s functions4

GRðkÞ ¼ ðM − iωÞ−1MK−1

T
: ð31Þ

Comparing with Eq. (12), we recover the FDT in its standard
formulation [48]:

GSðkÞ ¼ T
iω

½GRðkÞ − GRðkÞ†�: ð32Þ

IV. RELATIVISTIC DIFFUSION

Now that the consistency of the theory has been estab-
lished, we can provide some concrete examples. Our first
example is the relativistic diffusion equation, interpreted as a
first-order (BDNK-type) theory. Its interpretation as an
Israel-Stewart theory, and the related fluctuating generaliza-
tion, have already been studied in detail [15,23].

A. Classical theory

Let φðxμÞ∈R be a linearized stochastic field, with units
L−3=2 (L being “length”). Suppose that its classical equa-
tion of motion is τ∂2t hφi þ ∂thφi ¼ D∂j∂

jhφi, where D is a
diffusion constant and τ is the UV cutoff timescale of the
theory. This equation of motion is of second order in time.

FIG. 1. Qualitative Minkowski diagram of the perturbation
ΨpðxμÞ, which is a classical solution of the nonstochastic
differential equation ∂tΨp ¼ −Mð∂jÞΨp þ F, where FðxμÞ is
an external forcing term. The blue region R is the (compact)
support of F, while the shades of red are a colormap of the
intensity jjΨpjj2 (red ¼ large, white ¼ small). From causality of
the non-stochastic equation of motion (4), we know that the
support of Ψp is contained inside JþðRÞ, namely the future light
cone of R [45–47]. From stabilityþ dissipation of (4), we also
know that Ψp → 0 at late times [44].

4The poles of the retarded Green’s function are the same as
those of the forward correlator obtained from Eq. (13). If Ψ is a
list of local observables, then the retarded correlator GRðxÞ in real
space must vanish outside the light cone by causality [42]. It turns
out that, in BDNK, this is usually not the case, and GRðxÞ is
nonvanishing for t > 0 everywhere. This implies that some (but
not all) components of Ψ are nonlocal. Such components
correspond to quantities that depend on the choice of hydro-
dynamic frame (and have no physical significance [20]). See
Sec. VII for more details.
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It follows that the system has two dynamical degrees of
freedom. Hence, we need to introduce a second stochastic
variable πðxμÞ, such that

τ∂thφi þ hφi ¼ hπi;
∂thπi ¼ D∂j∂

jhφi: ð33Þ

From this, we immediately obtain the evolution operator for
the couple Ψ ¼ fφ; πgT , namely

Mð∂jÞ ¼
�

1=τ −1=τ
−D∂j∂

j 0

�
: ð34Þ

Now we need the information current. In [27], it was shown
that the UV-regularized information current for this theory
is not unique. However, different regularization prescrip-
tions have different regimes of applicability, with different
cutoff length scales λ. The one with shortest cutoff length
scale is the one with λ ¼ τ, which, expressed in terms of φ
and π, reads explicitly,

E0 ¼ 1

2
½π2 þ τD∂jφ∂

jφ�;
Ej ¼ −Dπ∂jφ;

σ ¼ D∂jφ∂
jφ; ð35Þ

where σ is the associated entropy production rate. Note that,
sinceφ and π have dimensionsL−3=2,Eμ has dimensionL−3,
as it is the density of a dimensionless quantity (the informa-
tion). It can be easily checked that the dissipation equation
∂μEμ ¼ −σ holds along all solutions of the classical equation
of motion (33). The conditions for Eμ to be timelike future-
directed, and for σ to be positive definite, are τ ≥ D > 0.
Under these conditions, both the classical and the fluctuating
theory aremathematically consistent, causal, and covariantly
stable. The condition τ ≥ D tells us that the cutoff timescale
of the theory cannot be shorter than the diffusion stepD [49].
From (35), we obtain

Kð∂jÞ ¼
�
−τD∂j∂

j 0

0 1

�
: ð36Þ

B. Fluctuating theory

From the knowledge ofM andK, we can build the whole
fluctuating theory. From (9), we can straightforwardly
compute the two-point equal-time correlators. Solving
the integral in momentum directly, we obtain,

hφðxÞφðyÞi ¼ 1

4πτDjx − yj ;

hφðxÞπðyÞi ¼ 0;

hπðxÞπðyÞi ¼ δ3ðx − yÞ: ð37Þ

From Eqs. (21) and (22), we can compute the MSR action.
If we express it as the spacetime integral of a Lagrangian
density, i.e., S ¼ R

LðxÞd4x, we find

L ¼ φ̃

τ
½φþ τ∂tφ − π� þ π̃½∂tπ −D∂j∂

jφ�

þ iφ̃
4πτ2D

Z
φ̃ðx0; yÞ
jx − yj d

3y: ð38Þ

The symmetric two-point correlators at nonequal times can
be computed from Eq. (12):

�hφðxÞφðyÞi hφðxÞπðyÞi
hπðxÞφðyÞi hπðxÞπðyÞi

�

¼
Z

d4k
ð2πÞ4

2eikðx−yÞ

ω2þðDk2−τω2Þ2
�
ω2ðDk2Þ−1 iω

−iω Dk2

�
: ð39Þ

Finally, the forward correlators can be computed from
Eq. (13). The result is

Θðx0 − y0Þ
� hφðxÞφðyÞi hφðxÞπðyÞi
hπðxÞφðyÞi hπðxÞπðyÞi

�

¼
Z

d4k
ð2πÞ4

eikðx−yÞ

−iωþDk2 − τω2

�
−iωðDk2Þ−1 1

−1 1− iωτ

�
:

ð40Þ

The matrix exponential in (14) can be computed explicitly,
but the result is rather cumbersome, and not very enlight-
ening. Usually, one is not able to provide an analytic
expression for the correlators at nonequal times, which are
then left in the form of integrals in momentum space. This
is not a problem for practical applications, since one is
mostly interested in the infrared (i.e., small k) part of the
Fourier integrals.

C. Interpretation of the classical theory

We aim to analyse the physical content of the fluctuating
theory constructed above. To this end, we need to fix a
precise physical interpretation for the variables φ and π.
This is easily done once we note that the classical equations
of motion (33) can be rewritten in the form of a con-
servation law, ∂μhJμi ¼ 0, with conserved current

Jμ ∝
�

π

−D∂
jφ

�
þ “noise”: ð41Þ

Therefore, π can be interpreted as the fluctuation to a
conserved densityn, andφ as the fluctuation to the associated
chemical potential μ (recall Fick’s law: J ∝ −∇μ). Of course,
bothφ and π have been rescaled by a background constant, in
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order to have unitsL−3=2. In particular, ifT is the temperature,
we have that

φ ¼
�
1

T
∂n
dμ

�
1=2

δμ;

π ¼
�
1

T
dμ
dn

�
1=2

δn: ð42Þ

Now, from the first equation of (33), we see that δn and δμ are
not proportional to eachother, and are independent stochastic
degrees of freedom. Thus, themodel under consideration is a
BDNK theory of diffusion, whose conserved current has the
following (first-order) classical constitutive relation [20]:

hJμi ¼ dn
dμ

� hδμi þ τ∂thδμi
−D∂

jhδμi

�
: ð43Þ

Starting from this interpretation, let us discuss the results of
Sec. IV B.

D. Analysis of the fluctuating theory

Equation (37) tells us that (at a given instant of time) the
fluctuations in chemical potential are long range, since
hδμðxÞδμðyÞi ∝ jx − yj−1, and they are uncorrelated from
the fluctuations in density, since hδnδμi ¼ 0. Both these
phenomena arise because the UV sector of BDNK contains
the spurious nonhydrodynamic mode φðxμÞ ¼ e−t=τ, which
describes a pure “frame relaxation” that does not involve
any transport of charge (i.e., π ¼ 0). In the classical theory,
this mode is irrelevant, being dissipated away within a
timescale τ. However, in the fluctuating theory, it can be
repeatedly activated by the noise, causing the chemical
potential to perform spontaneous jumps of the kind δμ →
δμþ ae−t=τ (a ¼ const). Since these jumps are uniform in
space, they induce long-range correlations in the chemical
potential. Furthermore, since they leave δn unaffected, they
statistically decouple δμ from δn. For this reason, the equal-
time density correlator remains local, and it coincides with
that of the nonrelativistic theory,

hδnðxÞδnðyÞi ¼ T
dn
dμ

δ3ðx − yÞ: ð44Þ

Let us now turn our attention to the MSR Lagrangian
density (38). As can be seen, it is local in time, but nonlocal
in space. The locality in time is a consequence of the
Markovianity assumption for the noise. The nonlocality in
space appears because hδμðxÞδμðyÞi is long-range. We
remark that the nonlocality of the effective action is not a
signal of causality violation, because “long-range correla-
tion” is not equivalent to “long-range causation”, and the
fluctuating theory is causal by construction, see Secs. III B
and III C. Also, it is automatically verified that ImS ≥ 0,
since we can write ImS ¼ R

U½φ̃�dt, where

U½φ̃� ¼ 1

4πτ2D

Z
d3xd3y

φ̃ðxÞφ̃ðyÞ
jx − yj ð45Þ

is analogous to the Coulomb potential energy, which is
non-negative definite [50]. Thus, we have resolved the
problem of mathematical inconsistency of fluctuating
BDNK discussed in [15].
Finally, let us focus on the nonequal time correlator (39).

Since the chemical potential undergoes unphysical “hydro-
dynamic-frame fluctuations”, we cannot learn much from
it. Instead, we should only focus on the density-density
correlator, which is what can be eventually measured in an
experiment:

hδnðxÞδnðyÞi ¼ T
dn
dμ

Z
d4k
ð2πÞ4 e

ikðx−yÞ 2Dk2

ω2 þ ðDk2 − τω2Þ2 :

ð46Þ

We note that, in the infrared limit (ωτ ≪ 1), this correlator
reduces to its nonrelativistic analog (see [33], Sec. 89,
Problem 1). More importantly, the correlator (46) coincides
with the density-density correlator of the Israel-Stewart
theory of diffusion [15].

E. The noise is not white

From Eq. (11), we find that

SðikÞQðkÞSðikÞ† ¼ 2

τ2Dk2

�
1 0

0 0

�
; ð47Þ

where we recall that QðkÞ is the Fourier transform of the
noise-noise correlator, see Eq. (5). But since S is expected
to be a polynomial in the wave vector, QðkÞ must contain a
power k−2 or lower, for Eq. (47) to hold. It follows that
hξðxÞξðyÞi cannot be a simple Dirac delta in space, and it
must be long-range. This tells us that, even if we did not
specify a model for the noise, we know that it cannot be a
white noise in space.

V. NONDISPERSIVE TELEGRAPHER EQUATION

In 3þ 1 dimensions, it is usually impossible to find an
analytical expression for the forward correlator GþðxÞ in
real space. Hence, one needs to keep the Fourier integral
(13) unsolved, or to rely on numerical techniques.
However, it is useful to have a least one explicit example
where the Fourier integral can be solved analytically, which
is what we provide in this section.

A. Outline of the theory

If φ is the chemical potential of the electric charge, then
the relativistic diffusion equation is coupled to the Maxwell
equations, and we must introduce an Ohmic correction to
the four-current. The interaction with the electromagnetic
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field modifies the relativistic diffusion equation into
τ∂2t hφi þ ð1þ τΣÞ∂thφi þ Σhφi ¼ D∂j∂

jhφi, where Σ is
the electric conductivity coefficient [27]. If we set
τ ¼ D ¼ Σ ¼ 1, we obtain the following equation of
motion:

∂
2
t hφi þ 2∂thφi þ hφi ¼ ∂j∂

jhφi: ð48Þ
The above choice of transport coefficients is particularly
convenient, as the dispersion relations are justω ¼ −i� jkj.
Equation (48) models the propagation of electric pulses
through nondispersive dissipative media, and is frequently
used in telegraphy [51]. Aswe did in Sec. IV,we introduce an
auxiliary stochastic degree of freedom π, such that

∂thφi þ hφi ¼ hπi;
∂thπi þ hπi ¼ ∂j∂

jhφi: ð49Þ

Thus, we have the dynamical operator:

Mð∂jÞ ¼
�

1 −1
−∂j∂j 1

�
: ð50Þ

The information current Eμ and the entropy production
rate σ are

E0 ¼ 1

2
½π2 þ ∂jφ∂

jφ�;
Ej ¼ −π∂jφ;

σ ¼ π2 þ ∂jφ∂
jφ: ð51Þ

In fact, the dissipation equation ∂μEμ ¼ −σ holds along all
exact solutions of the classical equations of motion (49).
Furthermore, Eμ is future-directed nonspacelike, and σ is
non-negative definite. Hence, both the classical and the
fluctuating theory are mathematically consistent, causal, and
stable. From (8), we obtain the information kernel,

Kð∂jÞ ¼
�
−∂j∂j 0

0 1

�
; ð52Þ

so that, recalling Eq. (9), the equal-time correlators immedi-
ately follow:

hφðxÞφðyÞi ¼ 1

4πjx − yj ;

hφðxÞπðyÞi ¼ 0;

hπðxÞπðyÞi ¼ δ3ðx − yÞ: ð53Þ

B. Forward correlator

We are now in the position to compute the forward
correlators of the present theory. From (14), we get

GþðxÞ ¼ ΘðtÞe−t
Z

d3k
ð2πÞ3 e

ik·x

" cosðjkjtÞ
k2

sinðjkjtÞ
jkj

− sinðjkjtÞ
jkj cosðjkjtÞ

#
:

ð54Þ

The Fourier integral can be solved analytically. In particu-
lar, for t > 0, we obtain

� hφðxÞφð0Þi hφðxÞπð0Þi
hπðxÞφð0Þi hπðxÞπð0Þi

�

¼ e−t

4πjxj
� Θðjxj − tÞ δðjxj − tÞ
−δðjxj − tÞ −δ0ðjxj − tÞ

�
: ð55Þ

As one would expect, the ππ (i.e., density-density) corre-
lator propagates on the surface of the future light cone. On
the other hand the φφ (i.e., chemical potential-chemical
potential) correlator is supported outside the future light
cone.

VI. CAUSAL VISCOSITY

Let us finally study an example of causal and stable
viscosity at zero chemical potential.

A. Outline of the theory

We consider the linearized dynamics of an energy-
momentum tensor δTμν with a viscous correction in the
form of a shear-stress tensor, and a bulk viscous term.
The BDNK degrees of freedom are chosen to be
Ψ ¼ fδT; δuj; δvjg, representing respectively the temper-
ature perturbation, the flow velocity, and the momentum
per unit enthalpy. The first and the last quantity are taken to
be hydrodynamic-frame invariants, defined as follows:
δT00 ¼ cvδT, and δT0j ¼ ðϵþ PÞδvj, where cv is the
specific heat and ϵþ P is the enthalpy density. The velocity
δuj, on the other hand, is an infrared effective field, which
loses any physical meaning above a certain cutoff scale τ.
When the shear and bulk viscosity coefficients are related
by the identity ζ ¼ 2η=3, the contributions from shear and
bulk combine into a single symmetric tensor, and the
averaged equations of motion can be written in the form5

cv∂thδTi þ ðϵþ PÞ∂jhδvji ¼ 0;

τ∂thδuji þ hδuji − hδvji ¼ 0;

ðϵþ PÞ∂thδvji þ s∂jhδTi − 2η∂k∂ðkhδujÞi ¼ 0: ð56Þ

5We choose to set ζ ¼ 2η=3 because this considerably sim-
plifies all later calculations, and makes our analysis easier to
follow. For example, it allows us to derive a relatively simple
effective action, see Eq. (62). On the other hand, we stress that
there is no fundamental obstruction in carrying out the con-
struction in the general case. The information current exists for
arbitrary values of ζ [27].
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This describes the dynamics of a BDNK model for viscous fluid dynamics. The dynamical operator is then

Mð∂jÞ ¼

2
64

0 0 ðϵþ PÞ=cv∂j
0 1=τ −1=τ

s=ðϵþ PÞ∂k −η=ðϵþ PÞðδkj∂l∂l þ ∂
k
∂jÞ 0

3
75: ð57Þ

It can be shown [27] that all the solutions of this
first-order model for viscous hydrodynamics are also
exact solutions of a corresponding Israel-Stewart
model (but the reversal is not true). This one-way
mapping makes it possible to not only prove the causal-
ity and stability of the system in Eq. (56), but also
derive the exact information current and entropy produc-
tion rate:

TE0 ¼ 1

2

�
cv
T
δT2 þ ðϵþ PÞδvjδvj þ 2ητ∂ðjδukÞ∂ðjδukÞ

�
;

TEj ¼ sδTδvj − 2ηδvk∂ðkδujÞ;

Tσ ¼ 2η∂ðjδukÞ∂ðjδukÞ: ð58Þ

As usual, the dissipation equation ∂μEμ ¼ −σ holds along
solutions of the equations of motion, and the conditions
for causality and stability can be determined [27]. The
information kernel is then

Kð∂jÞ¼
1

T

2
64
cv=T 0 0

0 −ητðδkj∂l∂lþ∂j∂
kÞ 0

0 0 ðϵþPÞδkj

3
75: ð59Þ

B. Correlators of the theory

The equal time correlators for this theory are presented
in [27]. The symmetric correlators follow from Eq. (12),
and they can be expressed as a block matrix:

2
64
hδTðxÞδTðyÞi hδTðxÞδujðyÞi hδTðxÞδvjðyÞi
hδukðxÞδTðyÞi hδukðxÞδujðyÞi hδukðxÞδvjðyÞi
hδvkðxÞδTðyÞi hδvkðxÞδujðyÞi hδvkðxÞδvjðyÞi

3
75¼

Z
d4k
ð2πÞ4 e

ikðx−yÞ

2
64
GS
TTðkÞ GS

Tuj
ðkÞ GS

Tvj
ðkÞ

GS
ukT

ðkÞ GS
ukuj

ðkÞ GS
ukvj

ðkÞ
GS
vkT

ðkÞ GS
vkuj

ðkÞ GS
vkvj

ðkÞ

3
75; ð60Þ

with

GS
TTðkÞ ¼

4ηT3ðϵþ pÞ2T4

jðϵþ PÞ2η2ðτω − iÞ þ Tω½2ηk2 − ðϵþ PÞωðτω − iÞ�j2 ;

GS
Tuj

ðkÞ ¼ 2iT2ðϵþ PÞ2kjððϵþ PÞk2 − cvTω2Þ
jðϵþ PÞ2η2ðτω − iÞ þ Tω½2ηk2 − ðϵþ PÞωðτω − iÞ�j2 ;

GS
Tvj

ðkÞ ¼ 4ηcvT3ðϵþ PÞωk2kj
jðϵþ PÞ2η2ðτω − iÞ þ Tω½2ηk2 − ðϵþ PÞωðτω − iÞ�j2 ;

GS
ukuj

ðkÞ ¼ Tðϵþ PÞ2ððϵþ PÞk2 − cvTω2Þðkkkj=k2Þ
jðϵþ PÞ2η2ðτω − iÞ þ Tω½2ηk2 − ðϵþ PÞωðτω − iÞ�j2 þ

2T
ηk2 ðϵþ PÞ2ω2ðδkj − kkkj

k2 Þ
ðϵþ PÞ2ω2 þ ðηk2 − τðϵþ PÞω2Þ2 ;

GS
ukvj

ðkÞ ¼ 2icvT2ðϵþ PÞωððϵþ PÞk2 − cvTω2Þðkkkj=k2Þ
jðϵþ PÞ2η2ðτω − iÞ þ Tω½2ηk2 − ðϵþ PÞωðτω − iÞ�j2 þ

2iTðϵþ PÞωðδkj − kkkj
k2 Þ

ðϵþ PÞ2ω2 þ ðηk2 − τðϵþ PÞω2Þ2 ;

GS
vkvj

ðkÞ ¼ 4ηc2vT3ω2kkkj
jðϵþ PÞ2η2ðτω − iÞ þ Tω½2ηk2 − ðϵþ PÞωðτω − iÞ�j2 þ

4ηTk2ðδkj − kkkj
k2 Þ

ðϵþ PÞ2ω2 þ ðηk2 − τðϵþ PÞω2Þ2 : ð61Þ

The remaining follow immediately from the Hermiticity of
GSðkÞ. The correlator hδvkðxÞδvjðyÞi corresponds to the
physical correlations of the fluid velocity, and it reduces to
the standard Navier-Stokes result in the limit τ → 0.

The dual Israel-Stewart model has ten degrees of free-
dom: the temperature T, Landau’s flow velocity vj, and the
stress tensor Πjk. The fluctuations of T and vj in the Israel-
Stewart model are equivalent to the fluctuations of T and vj
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in the BDNK model above. The symmetric tensor Πjk

however corresponds to −2η∂juk within BDNK. Since the
vector uj only has three degrees of freedom, while Πjk has
six, the fluctuations of Πjk contain information that is not
present in BDNK. This explains why vj, not uj, should be
understood as the fluid velocity. The vector uj is only
a proxy that is used to describe the dynamics of the

shear stress tensor without including its full degrees of
freedom.

C. Effective action

The effective action for the fluctuating viscous hydro-
dynamic model presented in this section can be determined
from Eqs. (21) and (22). We find that

S ¼
Z

d4x

�
δT̃

�
∂tδT þ ϵþ P

cV
∂jδvj

�
þ δũj

�
∂tδuj þ

δuj − δvj

τ

�
þ δṽj

�
∂tδvj þ

∂
jδT
T

−
η

ϵþ P
∂kð∂kδuj þ ∂

jδukÞ
��

þ iT
ητ2

Z
d4xd4yδðx0 − y0ÞδũjðxÞ

�
3δjk

16πjx − yj þ
ðx − yÞjðx − yÞk
16πjx − yj3

�
δũkðyÞ: ð62Þ

The first integral is the “on shell” action that encapsulates
the equations of motion in the absence of stochastic
fluctuations. The second integral expresses the effect of
thermal fluctuations on the system, containing the noise
correlator. Note that here, the noise term depends only on
δuj; this is expected as only δuj appears in the entropy
production, which is related to the magnitude of fluctua-
tions through the fluctuation-dissipation theorem.
To evaluate the noise kernel (22) explicitly, we made use

of the following distributional identities:

Z
d3k
ð2πÞ3 e

ik·r 1

k4
¼ −

r
8π

þ “Infinite constant”;

Z
d3k
ð2πÞ3 e

ik·r kk
T

k4
¼ 1

8πr

�
I −

rrT

r2

�
;

Z
d3k
ð2πÞ3 e

ik·r 1

k2
¼ 1

4πr
; ð63Þ

The first can be verified by solving the integral in spherical
coordinates. To obtain a meaningful result, one needs to
regularize the denominator, e.g., by replacing k4 with
k4 þ ε4, and then sending ε to zero. When this is done,
there is a contribution proportional to ε−1 that does not
depend on r, giving the infinite constant. The second
integral can be obtained by differentiating the first twice.
The third integral is just the trace of the second.

VII. ORIGIN OF LONG RANGE
CORRELATIONS IN BDNK

It can be verified that, in the explicit examples consid-
ered in this manuscript, the retarded correlator GRðxÞ of the
primary BDNK fields (temperature, chemical potential, and
flow velocity) exits the future light cone. For example, in
the diffusion model of Sec. IV, the retarded correlator takes
the form,

GRðxÞ¼ΘðtÞ
Tτ

Z
d3k
ð2πÞ3e

ik·xe−tMðikjÞ
�ðτDk2Þ−1 −1

1 0

�
: ð64Þ

For positive times, this is a classical solution of the equations
of motion (33), whose initial data has infinite support:

GRð0þ;xÞ ¼ 1

Tτ

� 1
4πτDjxj −δ3ðxÞ
δ3ðxÞ 0

�
: ð65Þ

Since the nonlocality comes from the φφ component, we
conclude that the field φ, which may be interpreted as the
chemical potential (in the hydrodynamic frame defined by τ),
is not a genuinely local field [42], while π is necessarily local
(being proportional to a conserved density). Below, we
provide a simple explanation for the nonlocality of φ.

A. From Israel-Stewart to BDNK

Consider an Israel-Stewart theory [26] of diffusion, with
degrees of freedomΨ ¼ fπ; qjg, representing respectively a
conserved density and its associated flux. Postulate the
following (Cattaneo-type [52]) classical equations ofmotion:

τ∂thqji þ hqji ¼ −D∂
jhπi;

∂thπi þ ∂jhqji ¼ 0: ð66Þ

Then, apply the Helmholtz decomposition theorem, accord-
ing to which any vector field qj can be decomposed as the
sum of an irrotational vector field and a solenoidal vector
field, namely qj ¼ −D½∂jφ − ð∇ × AÞj�, with

φðxÞ ¼ 1

4πD

Z
d3y

ð∂jqjÞy
jx − yj ;

AjðxÞ ¼ 1

4πD

Z
d3y

ð∇ × qÞjy
jx − yj : ð67Þ

Now, if one takes the statistical average of the first definition
above (the one of φ), and applies τ∂t þ 1 on both sides, one
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obtains τ∂thφi þ hφi ¼ hπi, which is the first equation
of (33). Furthermore, since ∂jqj ¼ −D∂j∂

jφ, the second
equation of (66) is equivalent to ∂thπi ¼ D∂j∂

jhφi, which is
the second equation of (33). Hence, we have recovered the
BDNK model for relativistic diffusion discussed in Sec. IV.
The above mapping between classical BDNK and

classical Israel-Stewart is exact, at least in the linear regime.
It tells us that a BDNK model for diffusion can also be
viewed as an Israel-Stewart model for diffusion, provided
that we interpret the BDNK chemical potential φ as the
potential of the irrotational part of the Israel-Stewart flux
qj, and the cutoff scale τ as the Cattaneo-type relaxation
time. Similar reasoning was used in [27] to map model (56)
into Israel-Stewart’s theory for viscosity.

B. Nonlocality of the BDNK primary fields

Let us use the “duality” between Israel-Stewart and
BDNK in the linear regime to explain the origin of the long-
range correlations in φ. The Israel-Stewart degrees of
freedom π and qj in (66) are local physical observables,
representing respectively the density and flux of conserved
charge. Thus, their correlation is necessarily short-range
[33]. Indeed, correlators in any Israel-Stewart theory are
always supported inside the light cone [15]. For model (66),
we have

hqjðxÞqkðyÞi ¼ D
τ
δjkδ3ðx − yÞ; ð68Þ

at equal times. On the other hand, the BDNK chemical
potential φ, as defined in (67), is a nonlocal functional of
qj. This intrinsic nonlocality is ultimately what generates
long-range correlations in φ. Indeed, if we multiply the first
equation of (67) by itself, and take the average, we recover
the (long-range) BDNK correlator (37):

hφðxÞφðyÞi ¼ 1

4πτDjx − yj : ð69Þ

C. Deriving the BDNK action from the
Israel-Stewart action

The MSR action of all Israel-Stewart theories can be
straightforwardly constructed following the method of [23].
For the diffusion model (4), we have

S¼
Z

d4x

�
π̃ð∂tπþ∂jqjÞþ

q̃j

D
ðτ∂tqjþqjþD∂jπÞþi

q̃jq̃j
D

�
:

ð70Þ

Clearly, this is a perfectly local action. Let us now apply the
change of variables introduced in Sec. VII A, namely
qj ¼ −D½∂jφ − ð∇ × AÞj�. Integrating by parts, we obtain

S ¼
Z

d4x

�
π̃ð∂tπ −D∂j∂

jφÞ þ ∂jq̃jðτ∂tφþ φ − πÞ

þ ð∇ × q̃Þjðτ∂t þ 1Þð∇ × AÞj þ i
q̃jq̃j
D

�
: ð71Þ

Let us additionally introduce the fields φ̃ ¼ τ∂jq̃j and
Ãj ¼ τð∇ × q̃Þj. Applying the Helmholtz decomposition
theorem to vector field q̃j, we find that

4πτq̃ðxÞ ¼ −∇
Z

d3y
φ̃ðyÞ
jx − yj þ∇ ×

Z
d3y

ÃðyÞ
jx − yj ; ð72Þ

where ∇ denotes differentiation with respect to x. With the
aid of this formula, we can rewrite

R
d3xq̃jq̃j as a bilocal

integral involving only φ̃ and Ãj. The resulting effective
action is reported below:

S ¼
Z

d4x

�
π̃ð∂tπ −D∂j∂

jφÞ þ φ̃

τ
ðτ∂tφþ φ − πÞ

�

þ i
Z

d4xd4y
4πDτ2

δðx0 − y0Þ φ̃ðxÞφ̃ðyÞjx − yj
þ “action forfAj; Ãjg”: ð73Þ

This shows that the Israel-Stewart action (70), expressed in
terms of φ and π, coincides with the BDNK action, see
Eq. (38). Thus, Israel-Stewart and BDNK are exactly the
same stochastic theory6; the only difference is that Israel-
Stewart possesses an additional dynamical field Aj, whose
evolution decouples from that of fφ; πg. In particular, Aj

does not affect the dynamics of the conserved density. This
explains why all the physically meaningful observables of
BDNK are indistinguishable from those of Israel-Stewart,
in the linear case. It also shows that the apparent nonlocality
of BDNK is a mathematical artifact of the hydrodynamic
frame choice, with no physical relevance.
It should be possible to perform a similar mapping

between the BDNK model outlined in Sec. VI and the
Israel-Stewart theory for viscosity in the Landau frame
[53]. The main difficulty in this case is that the analog of the
Helmholtz decomposition for the shear stress tensor Πjk is
far from trivial.

VIII. CONCLUSIONS

We have successfully constructed, in the linear regime, a
fluctuating formulation of BDNK hydrodynamics that is
causal, stable, and mathematically consistent also off-shell.
The Martin-Siggia-Rose path integral is always convergent,

6The change of variables does not affect the measure of the path
integral. In fact, the transformation fqj; q̃jg ↔ fφ; Aj; φ̃; Ãjg is
linear, and its Jacobian determinant is an overall constant that
cancels out when we take the quotient on the right-hand side
of (20).
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and the effective action S obeys the self-consistency
requirement ImS ≥ 0 by construction, healing the path-
ologies of the previous formulations. Furthermore, the
equal-time correlators are consistent with the probability
distribution eS up to first order in derivatives (since the
information current Eμ is exact to first order in the gradient
expansion [27]). Finally, the cutoff scale τ at which the
fluctuating theory breaks down is the same scale τ at which
the deterministic theory breaks down, meaning that the
regime of applicability of the stochastic theory is the largest
possible.
Unfortunately, the mathematical rigor comes at the

expense of physical intuition and aesthetical simplicity.
In fact, enforcing both causality and convergence of the
MSR path integral forced us to employ elaborate UV-
regularization schemes, which gave rise to conspicuous
cutoff phenomena. Such phenomena include long-range
correlations of the primary fluid variables (such as temper-
ature T, chemical potential μ, and flow velocity uμ), bilocal
contributions to S, and an unusual statistical decoupling of
conjugate variables at equal times, e.g., hδnðxÞδμðyÞi ¼ 0.
All these effects are artifacts of the regularization scheme,
and they arise due to the presence of spurious nonhydro-
dynamic modes, which cause the effective fields to undergo
fast, but long-range, fluctuations at fixed conserved den-
sities. As expected, all the unphysical UV phenomenology
cancels out when we examine the transport of conserved
charges below the cutoff frequency scale τ−1, giving
sensible results for all observable quantities.
Perhaps the most surprising result of our analysis is that

(in the linear regime) the two-point correlators of the
conserved densities, such as hδT0νðxÞδT0ρðyÞi, are indis-
tinguishable from those of the Israel-Stewart theory [15] at
all scales (even beyond the respective regimes of appli-
cability), provided that we identify the BDNK cutoff scale τ
with the Israel-Stewart relaxation time [26]. This result is
far from obvious, for two reasons. First, BDNK theory and
Israel-Stewart theory are profoundly different field theories,
with different choices of dynamical degrees of freedom.
Secondly, and more importantly, because all the field-field
correlators of the Israel-Stewart theory are short-range, and
the MSR action is fully local, while fluctuating BDNK
exhibits strong nonlocalities (despite being causal).
To better understand this unexpected correspondence,

we studied the relationship between Israel-Stewart and
BDNK frameworks in the case of a simple model for causal
diffusion (in the linear regime), uncovering the following
mechanism. The degrees of freedom ΨIS of the Israel-
Stewart theory can be decomposed into a “BDNK part”
ΨBDNK and purely transient partΨTR, such that the effective
MSR action splits exactly into two disconnected parts:

SIS½ΨIS� ¼ SBDNK½ΨBDNK� þ STR½ΨTR�: ð74Þ
This makes Israel-Stewart and BDNK physically equiv-
alent (in the linear regime), since the dynamics ofΨTR fully

decouples from the dynamics of the conserved quantities.
Furthermore, we found that ΨBDNK is a nonlocal functional
of ΨIS, so the nonlocality of linearized BDNK is a direct
consequence of the locality of Israel-Stewart, and it has no
physical impact on causality. Intuitively, the decomposition
of ΨIS into ΨBDNK and ΨTR is similar to the decomposition
of the Klein-Gordon equation,

−∂2tϕ ¼ ðm2 − ∂
2
xÞϕ; ð75Þ

into a particle and an antiparticle sector:

i∂tϕþ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ∂

2
x

q
ϕþ;

i∂tϕ− ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − ∂

2
x

q
ϕ−: ð76Þ

Individually, the two parts ϕþ and ϕ− undergo nonlocal
dynamics, because they themselves are nonlocal func-
tionals of ϕ [54,55]. Still, they are separate degrees of
freedom of a perfectly local theory. In a similar way,
linearized stochastic BDNK appears to be a nonlocal field
theory, but it is ultimately a “sector” of linearized stochastic
Israel-Stewart theory, which is manifestly local.
In fact, both Israel-Stewart and BDNK lead to exactly the

same physical predictions (in the linear regime), with the
difference that:

(i) Adding fluctuations to the Israel-Stewart theory in both
special and in general relativity can be done through
systematic techniques, since it is possible to calculate
Eμ directly from the constitutive relations [29]. We do
not have a similar technique in BDNK, and the present
method does not generalize to curved spacetimes;

(ii) The Israel-Stewart theory admits a fully nonlinear
Schwinger-Keldysh formulation [17], while BDNK
does not seem to have a consistent Schwinger-
Keldysh formulation even in the linear regime [23];

(iii) In the nonlinear regime, the primary fluid variables
such as the temperature and chemical potential will
couple in nontrivial ways. For BDNK, this will lead
to interactions between short-range and long-range
fluid variables, making it difficult to determine
whether the correlation functions of conserved
currents will remain short-range;

(iv) In the local rest frame, thenoise inBDNKis correlated
in space. Due to the relativity of simultaneity, such
noise correlations become non-Markovian in a
boosted frame. In other words, the noise depends
on thewhole spacetime history of the fluid. Such non-
Markovian behavior has been seen in microscopic
derivations of fluctuating relativistic mechanics [56],
but it poses a challenge for potential numerical
simulations of non-linear fluctuating BDNK.

Given the above facts, we believe that, if the goal is
to implement fluctuations in a relativistically covariant
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framework, it is perhaps best to stick to the Israel-Stewart
theory.
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APPENDIX A: PROOFS OF THE
FOX-UHLENBECK FDT

Here, we provide two proofs that Eq. (10) implies
Eq. (11). Throughout this appendix, the dependences of
the matrices on kj ∈R3 will be understood. This does not
cause any harm, because in both Eqs. (10) and (11) the
wave vector is fixed.

1. Residue theorem

Defined the matrix LðkjÞ ¼ SðikjÞQðkjÞS†ðikjÞ, we
only need to show that

Z þ∞

−∞

dω
2π

½M − iω�−1L½M† þ iω�−1 ¼ K−1 ðA1Þ

implies L ¼ MK−1 þ K−1M†. Since both equations are
continuous inM, it will suffice to prove the result assuming
that M is diagonalizable. Then, given that diagonalizable
matrices are dense in the space of all matrices, the result
will automatically hold for all M by continuity.
By assumption, we have thatM ¼ P

n iωnPn, where iωn
are eigenvalues of M, and Pn are eigenprojectors, withP

n Pn ¼ I, and PmPn ¼ δmnPn [57]. It immediately
follows that PnM ¼ MPn ¼ iωnPn. Therefore, if we
multiply Eq. (A1) on the left by Pm and on the right by
P†
n, we obtain

PmLP
†
n

Z þ∞

−∞

dω
2π

1

ðω − ωmÞðω − ω�
nÞ

¼ PmK−1P†
n: ðA2Þ

The integral can be evaluated using the residue theorem,
and the result is −iðωm − ω�

nÞ−1. To get this outcome, one
needs to keep in mind that the functions ωnðkÞ are just the
dispersion relations of the classical theory (4), since the
latter are solutions of the equation detðM − iωÞ ¼ 0.
Hence, by hydrodynamic stability, we know that ωm lays
in the lower ω-plane, while ω�

n lays in the upper ω-plane,
meaning that, no matter on which side we close the contour

integral, there will always be one and only one residue,
giving the same final result. Thus, we have that

PmLP
†
n ¼ ðiωm − iω�

nÞPmK−1P†
n: ðA3Þ

Summing over all m and n, we finally obtain L ¼
MK−1 þK−1M†, which is what we wanted to prove.

2. Matrix exponentials

We can also provide a second proof. First, let us note
that, if the classical theory (4) is stable, then e−Mt decays
exponentially to zero at large t. Hence, for ω∈R, we have
the following well-known identities:

½M − iω�−1 ¼
Z þ∞

0

e−ðM−iωÞtdt;

½M† þ iω�−1 ¼
Z þ∞

0

e−ðM†þiωÞsds: ðA4Þ

Plugging these formulas into (A1), and integrating in ω, we
obtain Z þ∞

0

e−MtLe−M
†tdt ¼ K−1: ðA5Þ

Multiplying on the left by eMϵ and on the right by eM
†ϵ

(with ϵ∈R), and performing the change of integration
variable t − ϵ → t, we obtainZ þ∞

−ϵ
e−MtLe−M

†tdt ¼ eMϵK−1eM
†ϵ: ðA6Þ

Differentiating both sides with respect to ϵ, and evaluating
the result at ϵ ¼ 0, we finally arrive at the fluctuation-
dissipation theorem; L ¼ MK−1 þK−1M†. This completes
our second proof.

APPENDIX B: EVOLUTION OF THE
FORWARD CORRELATOR

If we evaluate Eq. (3) at a point x ¼ ðt;xÞ with t > 0, we
right-multiply it by ΨTð0Þ, and take the statistical average,
we obtain a partial differential equation for GþðxÞ ¼
hΨðxÞΨð0Þi, which holds only for positive times:

½∂tþMð∂jÞ�GþðxÞ¼Sð∂jÞhξðxÞΨTð0Þi ðif t > 0Þ: ðB1Þ

On the other hand, we can also solve Eq. (3), so that we
have

Ψð0Þ ¼
Z

0

−∞
esMð∂jÞSð∂jÞξðsÞds: ðB2Þ

This implies that the correlator on the right-hand side
of (B1) can be expanded in terms of averages of the form
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hξðt;xÞξTðs; yÞi, where t > 0 and s ≤ 0. However, the
noise is assumed Markovian (i.e., noises at different times
are uncorrelated), so that hξðt;xÞξTðs; yÞi ∝ δðt − sÞ ¼ 0,
and the right-hand side of (B1) vanishes identically. Thus,
½∂t þMð∂jÞ�Gþ ¼ 0 at positive times, which is what we
wanted to prove.

APPENDIX C: PROOFS FOR MSR

1. Jacobian determinant

The proportionality constant between δ∞½Ψ − Ψ½ξ�� and
δ∞½∂tΨþMΨ − Sξ� is a functional Jacobian determinant:

J ¼ det

�
δð∂tΨþMΨ − SξÞ

δΨ

�
¼ det

�
δðDΨ − SξÞ

δΨ

�
; ðC1Þ

where, to lighten the notation, we introduced the operator
Dð∂μÞ ¼ I∂t þMð∂jÞ. We have that

Dð∂μÞΨðxÞ ¼ Dð∂μÞ
Z

d4x̃δ4ðx − x̃ÞΨðx̃Þ: ðC2Þ

Therefore, the functional derivative in (C1) reads explicitly

δðDΨ − SξÞx
ðδΨÞy

¼ Dð∂μÞδ4ðx − yÞ; ðC3Þ

and does not depend on Ψ or ξ. Note that, for this result to
hold, the linearity of the equation of motion (3) is crucial.
For examples, if there was a term proportional to Ψ2 in (3),
then the Jacobian J would depend on Ψ.
There is one more subtlety that we need to discuss. We

have shown that the proportionality constant between
δ∞½Ψ −Ψ½ξ�� and δ∞½∂tΨþMΨ − Sξ� is the determinant
of ∂t þM. The careful reader may have noticed that such a
determinant may in general happen to be zero, making the
whole change of variables in the Dirac delta meaningless.
Luckily, this does not happen in dissipative systems. In fact,
the kernel of ∂t þM is the space of solutions of the classical
equations of motion. If such equations of motion are
dissipative, the associated solutions must decay in time,
and they are, therefore, unbounded in the past. For this
reason, they are naturally excluded from the measure of the
functional integral, making the operator ∂t þM invertible
in the functional space of interest.

2. Evaluation of the stochastic kernel

The effective action S can be expressed as a generalized
quadratic form as follows:

−iS¼1

2

Z
d4xd4yðΨTðxÞ;Ψ̃TðxÞÞWðx−yÞ

�ΨðyÞ
Ψ̃ðyÞ

�
; ðC4Þ

where the kernel W can is a square block matrix, given by
the Fourier integral

Wðx−yÞ¼
Z

d4k
ð2πÞ4 e

ikðx−yÞ
�

0 −iD†ðikÞ
−iDðikÞ HðkÞ

�
; ðC5Þ

with Dð∂μÞ defined as in appendix C 1. It is well-known
that the Fourier components of propagators of Gaussian
path integrals can be obtained by simply inverting the
kernel matrix in Fourier space; namely,7

� hΨðxÞΨTðyÞi hΨðxÞΨ̃TðyÞi
hΨ̃ðxÞΨTðyÞi hΨ̃ðxÞΨ̃TðyÞi

�

¼
Z

d4k
ð2πÞ4 e

ikðx−yÞ
�

0 −iD†ðikÞ
−iDðikÞ HðkÞ

�
−1
: ðC6Þ

Note that only the block hΨðxÞΨTðyÞi in the above matrix
is a statistical average in the proper sense. In fact, the
weight eiS of the path integral is in general complex, and it
cannot be interpreted as a probability distribution. Thus, the
“average”, say, hΨðxÞΨ̃ðyÞi may be complex valued, even
if bothΨ and Ψ̃ are real-value quantities. On the other hand,
evaluating the path integral (20) is formally equivalent to
averaging F½Ψ� over its probability distribution, as given
in (17). For this reason, only the correlator hΨðxÞΨTðyÞi is
physically meaningful, being a genuine average.
The block-matrix inverse in (C6) can be evaluated

explicitly using Corollary 3.3 of [59], giving

hΨðxÞΨTðyÞi ¼
Z

d4k
ð2πÞ4 e

ikðx−yÞDðikÞ−1HðkÞDðikÞ−†:

ðC7Þ

Comparing this expression with (12), and considering that
D ¼ M − iω, we find thatH ¼ MK−1 þK−1M†. Given that
HðkÞ does not depend on ω, we can perform the integral in
time, and obtain (22).

7Note that D†ðikÞ ¼ DTð−ikÞ for all real k. To prove this fact,
we just need to note that the function fðλÞ ¼ e−λkxDð∂Þeλkx ¼
DðλkÞ is entire for λ∈C, and it takes real values for real λ. Thus,
we can apply the Schwartz reflection principle [58], and we have
that ½fðλÞ�� ¼ fðλ�Þ, where � denotes ordinary complex con-
jugation. Taking λ ¼ i, we obtain ½DðikÞ�� ¼ Dð−ikÞ.
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