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We consider rigid-body quantization of the Skyrmion in the most general four-derivative generalization
of the Skyrme model with a potential giving pions a mass, as well as in a class of higher-order Skyrme
models. We quantize the spin and isospin zero modes following the results of Pottinger and Rathske.
Although one could hope that a one-parameter family of theories could provide a smaller spin contribution
to the energy at some point in theory space—which would be welcome for Bogomol'nyi-Prasad-
Sommerfield-type models, we find that the standard Skyrme model limit, with two time derivatives, gives
rise to the smallest spin contribution to the energy. We speculate whether this tuning of the spin energy
could be useful in the larger picture of quantizing vibrational and light massive modes of the Skyrmions.
Finally, we establish a topological energy bound for the Pottinger-Rathske model with potential terms as
well as new bounds for higher-order Skyrme models, with and without a potential.
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I. INTRODUCTION

The Skyrme model [1,2] is a low-energy effective field
theory description of QCD in a pure pion theory, where
baryons are solitons known as Skyrmions. Although the
model was proposed already in the sixties by Skyrme, it
first received serious attention after Witten showed that the
Skyrmion is the nucleon of QCD in the large-Nc limit in the
seminal papers [3,4]. Although the Skyrme model provides
a qualitative description of the nucleon to about the 30%
level of accuracy compared with experiments [5], a major
obstacle in using the theory for nuclei is that it gets the
binding energies wrong by roughly an order of magnitude,
already at the classical level. The community has worked
on solving this problem at the classical level, essentially by
finding so-called Bogomol'nyi-Prasad-Sommerfield (BPS)
limits of the theory, for which there exist solutions,1 the
idea being that once one have found the BPS limit, a small
perturbation could create the tiny binding energies of about
1% of the nucleon mass per baryon. To list a few of the
attempts to find a BPS-type model for Skyrmions, the
Sutcliffe model [6,7] is a five-dimensional Yang-Mills

theory that realizes a flat-space holographic description
of Skyrmions as the holonomy of the gauge fields [8]; the
BPS-Skyrmemodel is a radical change of the Skyrmemodel
by eliminating the model and replacing it by the topological
charge current squared as well as a suitable potential [9,10];
finally, the weakly-bound Skyrme model is based on an
energy bound using the Hölder inequality for which the
Skyrme term and a potential to the fourth power saturates the
energy bound [11,12]. The Sutcliffe model requires an
infinite number of vector bosons added to the Skyrme
model in order to reach the BPS limit, i.e., the limit in
which the classical energy is directly proportional to the
baryon number, hence yielding vanishing classical binding
energy. The advantage of the model, similarly to holo-
graphic constructions [13] and the hidden local symmetry
approach [14], is that all the couplings to the infinite tower of
vector bosons are determined. The BPS-Skyrme model has
(analytic) solutions for any baryon number that saturates the
Bogomol’nyi bound, but near-BPS solutions turn out to be a
numerically challenging problem [12,15–17]. The weakly-
coupled Skyrme model only saturates the Bogomol’nyi
bound for a single baryon, hence all nuclei already have a
nonvanishing albeit small classical binding energy. It turns
out that all the solutions take the shape of lattices of point-
particlelike Skyrmions [12]. For completeness, we can
mention that a dielectric formulation of the Skyrme model
[18] also provides small binding energies [18,19], but also in
this case the solutions tend to be point-particlelike con-
stellations like in the weakly-bound Skyrme model [19].
Now as put forward in the recent paper [20], although the

BPS race that has taken place for over 10 years in the
community has given rise to interesting ideas and some
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1There exists a Bogomol’nyi bound for the standard Skyrme
model, but there are no solutions saturating the bound, which
means all solutions have positive binding energy.
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analytic solutions, the vanishing classical binding energy
does not solve the problem of the binding energy of nuclei,
simply due to the spin contribution. In order to illustrate
this, let us consider the standard Skyrme model with the
rational map approximation [21,22]:

E ¼
Z

d3x½λða1 þ a2BÞE2 þ λ−1ðb1 þ b2BÞBE4�; ð1Þ

with a1;2, b1;2 being positive coefficients, B the baryon
number and λ the length scale. Using the rational map
approximation is a good approximation to Skyrmions with
baryon numbers B ¼ 1; 2;…; 7 in the massive Skyrme
model, i.e. once the pion mass term is turned on and
overestimates the energies only by a few percent [23–25].2
Finding the Derrick stability, we obtain

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4ðb1 þ b2BÞB
e2ða1 þ a2BÞ

s
; ð2Þ

which for large B goes like λ ∝
ffiffiffiffi
B

p
. The size of the

Skyrmion hence grows like
ffiffiffiffi
B

p
. Since the mass of the

Skyrmion grows at least as fast as B, the moment of inertia
scales like B2 or higher. The spin contribution to the energy
found in the seminal paper by Adkins-Nappi-Witten
(ANW) thus goes like

Espin ¼
J2

2Λ
∝

J2

B2
: ð3Þ

Hence, even for nuclei whose ground state has a spin, the
spin contribution is suppressed by roughly B2 and quickly
becomes negligible (for B ¼ 7, the suppression is by a
factor of 1=49). Even more troublesome are the nuclei that
are bosonic with spin 0 and isospin 0 in the ground state, as
their contribution is just zero. These nuclei exist for B up to
40 for stable nuclei and 48 for “long-lived” nuclei. For
nuclei with B≳ 40, the Coulomb repulsion begins to be
important, so the isospin quantum number is generically
nonvanishing in the ground state of such nuclei.
Now let us contemplate a BPS model, which by

definition has vanishing classical binding energy for the
Skyrmions. Using only rigid-body quantization, we can
thus compute the binding energy of e.g. 4He as

Δ ¼ 4ðM1 þ EspinÞ − ð4M1 þ 0Þ ¼ 3

2Λ
: ð4Þ

Computing this number within the standard Skyrme model
as a rough estimate, one obtains of the order of 4 × 4.6% of

the nucleon mass, which is about 175 MeV. The physical
binding energy of 4He is about 28.3 MeV. For nuclei with
nonvanishing spin and/or isospin in the ground state, the
problem is, of course, slightly less severe.
We can thus see that the BPS models cannot solve the

binding energy problem of the Skyrme model in the scheme
of rigid-body quantization, as also explained in Ref. [20].
In the latter reference, it was proposed that since the
number of zero modes are fixed and independent of the
baryon number,3 the quantum contribution is underesti-
mated for B > 1 nuclei and the resolution is to take more
modes into account in the quantization procedure. We can
now see that there are two ways to approach the problem: in
the spirit of Ref. [20] one could take as many degrees of
freedom as needed into account and quantize them to
hopefully arrive at a cancellation of contributions that land
just right on the nuclear physics scale of about 8 MeV per
nucleon. Alternatively, one could believe in the semi-
classical approximation of solitons being a good descrip-
tion of nature, with the classical contribution (mass) being
the dominant one, and all quantum corrections being much
smaller in magnitude, thus possibly avoiding too large
cancellations (fine tuning) in the final result.
With the latter notion of naturalness in mind, which is

also confirming the validity of using solitons in the first
place, one may ask whether it is possible to lower the spin
contribution to the nucleon. In this paper, we study this
question in a generalization of the Skyrme model to the
most general Lorentz-invariant Lagrangian written in terms
of the chiral Lagrangian field U∈SUð2Þ with up to four
derivatives and up to second order in a polynomial
potential. Unfortunately, our result is, as it turns out, the
Skyrme model limit of the model at hand gives the smallest
spin contribution to the energy for the nucleon. For the
naturalness path forward, one would thus stick with the
Skyrme term, whereas if one proceeded along the cancel-
lation path to nuclear phenomenology, this model intro-
duces an extra parameter that could be used to fine tune the
binding energies.
The generalization of the Skyrme model to the most

general fourth-order derivative term, has been studied
previously in the literature in the context of the Skyrme
model and the chiral Lagrangian. In the scheme of an EFT,
there are only two different fourth-order derivative terms
involving the pion matrix U [28–32].4 Scrutinizing ππ
scattering data in the D-wave using the chiral Lagrangian,
Weinberg’s renowned result [33] did not apply, and Gasser

2A multilayered rational map may be utilized for larger
Skyrmions, where two or more different angular maps are utilized
in radial layers of the soliton [26,27].

3To be more precise, the number of rotational and isorotation
zero modes are 6 for B > 1, whereas spin and isospin are equal in
magnitude for the B ¼ 1 Skyrmion due to spherical symmetry.

4One might naively think that one could also write down the
term trðU†

□UÞ2, but by using integration by parts and field
redefinitions, it can be shown to be equivalent to the two fourth-
order derivative terms studied in this paper as well as a
combination of some higher-than-fourth-order terms.
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and Leutwyler’s result was that a nonvanishing coefficient
of the squared kinetic term was favored [34,35]. With this
result Donoghue, Golowich and Holstein used the Skyrme
model with this new kinetic term squared to predict the
proton mass from the ππ scattering data, obtaining 880�
300 MeV [36]. They calculated the contribution to the
mass from the proton’s spin by using ANW leading order
formula [5], but with the full moment of inertia of the
Skyrmion [36] (see also Ref. [37]). This was considered a
good approximation, since the deviation from the Skyrme
model limit (i.e., vanishing kinetic term squared) was
experimentally quite small. The nucleon-nucleon potential,
which turned out not to lead to an attractive force at
medium distances in the standard Skyrme model, was
computed for many generalizations in the search for this
attractive property and also in the Skyrme model with the
kinetic term squared [38,39]. They also did not find the
exact contribution of the spin energy, but simply computed
the moment of inertia and used it in the ANW formula.
The exact computation of the spin contribution to the

energy of the Skyrmion was first done by Pottinger and
Rathske [40], by solving the cubic equation relating the
spin operator squared to the moments of inertia using
Cardano’s formula, which we will review. Although
Donoghue, Golowich, and Holstein worked with the same
model earlier, we will here denote the massless Skyrme
model with the squared kinetic term as the Pottinger-
Rathske (PR) model, since they treated the spin contribu-
tion to the energy exactly and not perturbatively, as other
groups did.
The kinetic term squared, in contrast to the Skyrme term,

contains four time derivatives, which in turn makes it lose
SOð4Þ Euclidean symmetry in the Hamiltonian after
performing the usual Legendre transformation from the
Lorentz-invariant Lagrangian. It also gives the unpleasing
side effect of opening up for runaway directions in the
Hamiltonian energy. This is generically not unexpected for
low-energy effective field theories at higher orders in the
derivative expansion.
The kinetic term squared has also been considered in

further literature, in the context of Skyrme-type models, see
the review [41]. In particular, the nucleon-nucleon potential
has been studied in an extension of the PR model with a
sextic derivative term, being the baryon current squared
[42]. Finite density computations of the energy in a hybrid
model with both quarks and pions have been considered,
using also the kinetic term squared [43]. Solitons with
nonvanishing Hopf number were also studied in the
Skyrme model with the squared kinetic term [44].
The Skyrmion and in particular the Skyrme model with
the squared kinetic term can be related to the soliton in the
Nambu-Jona-Lasinio model by a derivative expansion [45].
The Skyrme model, including the squared kinetic term, was
generalized to include several sextic derivative terms and
these terms were used to improve the fitted value of the

pion decay constant [46]. The stability versus metastability
aspects of the Skyrmion was ported from quantum chromo-
dynamics (QCD) to electroweak Skyrmions in Ref. [47].
A nonsingular spacetime defect soliton has been studied on
a nonsimply connected topology with nontrivial field
solutions using the Skyrme model with the squared kinetic
term [48]. Closed timelike curves were studied in the
Skyrme model with the squared kinetic term—all coupled
to Einstein gravity [49]. In all the papers of this paragraph,
either the perturbative ANW formula for the spin contri-
bution to the energy was used, or only the stability/
metastability aspects of the Skyrmion were studied.
In this paper, we point out that the spin contribution to

the energy changes with a positive definite correction upon
including an arbitrary higher-order derivative term in the
Lagrangian that contains 4 time derivatives, under these
conditions: The higher-order derivative term is Lorentz
invariant and its static energy is positive definite. This
means that including 4 time derivatives in a Skyrme-type
model, instead of 2 time derivatives, can only increase the
spin contribution to the energy and hence exacerbate the
binding energy problem. We illustrate this claim by
considering generalizations of the Skyrme model with
the kinetic term squared (the PR model) as well as with
8th, 10th, and 12th order derivative terms that contain four
time derivatives (and no d’Alembertian).
The paper is organized as follows. In Sec. II we review

the Pottinger-Rathske (PR) model and collective coordinate
(or rigid-body) quantization therein. In Sec. II A we give
our chosen calibration scheme and in Sec. II B we present
the numerical results of the paper. In Sec. III we include a
class of higher-order Skyrme models with four time
derivatives and between 8 and 12 derivatives in total,
whose quantization is identical to the model of Sec. II
with modified moments of inertia. We conclude in Sec. IV
with a discussion and outlook. We have delegated technical
details of the models in the paper to appendices. In
particular, the positivity of the static energy of the PR
model is given in Appendix A 1 and of the higher-order
models in Appendix A 2. A topological energy bound for
the massless PR model is reviewed in Appendix B 1 and
bounds are found for the case that includes nonderivative
potentials. Finally, new topological energy bounds are
found for the higher-order models in Appendix B 2.

II. THE POTTINGER-RATHSKE
SKYRME MODEL

We consider the chiral Lagrangian with the most general
Lorentz-invariant Lagrangian, up to fourth order in deriv-
atives [28–32], which was considered previously by
Donoghue-Golowich-Holstein [36] and by Pottinger-
Rathske (PR) [40]. In addition to the derivative terms,
we include the standard pion mass term [50], as well as the
loosely bound potential term [51,52]; hence the total
Lagrangian is also the most general Lagrangian up to
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polynomials of order 2, in the chiral Lagrangian field,
U [52]:

L¼F2
π

16
trðRμRμÞþ 1

32e2
trð½Rμ;Rν�½Rμ;Rν�Þ− β

32
ðtrðRμRμÞÞ2

−
F2
πm2

π

8
trð12−UÞ−F2

πM2

32
½trð12−UÞ�2; ð5Þ

where the right-invariant chiral current is

Rμ ¼ ∂μUU†; ð6Þ
Fπ is the pion decay constant, e is the Skyrme coupling
constant, β is the dimensionless coupling of the other
fourth-order derivative term which we shall dub the kinetic
term squared,mπ is the pion mass,M is the mass parameter
of the loosely bound potential term, the chiral Lagrangian
or Skyrme field U is related to the pions via

U ¼ 12σ þ iπ · τ; ð7Þ
where τ are the standard Pauli spin matrices, and finally
we use the Minkowski metric with the mostly positive
signature.
By the most general fourth-order derivative theory with

only the field U, we mean that field redefinitions and
integration-by-parts relations have been taken into account,
leaving the two displayed terms as a representation of the
two independent terms that exist, at this order in the
derivative expansion [28–32].
The topological charge of the field U is known as the

baryon number and can be computed as

B ¼ −
1

24π2

Z
d3xϵijktrðRiRjRkÞ; ð8Þ

which arises due to the finite-energy condition on U
implying that limjxj→∞U ¼ 12 (or another constant, that
however can be rotated into the unit matrix) which in turn
effectively point-compactifies 3-space to S3 and hence
π3ðSUð2ÞL × SUð2ÞR=SUð2ÞdiagÞ ¼ Z ∋ B.
We first redefine new dimensionless coupling constants as

1

e2
¼ α2ð2η− 1Þ; β ¼ 2α2ð1− ηÞ; η∈ ½−1;1�; ð9Þ

where η interpolates between the two fourth-order soliton-
stabilizing terms and α is an overall positive coefficient. For
the details of the positivity of the static energy in the PR
model, see Appendix A 1. The Lagrangian now reads

L ¼ 1

2
trðRμRμÞ þ 2η − 1

16
trð½Rμ; Rν�½Rμ; Rν�Þ

−
1 − η

8
ðtrðRμRμÞÞ2 −m2

1trð12 −UÞ

−
m2

2

4
½trð12 − UÞ�2; ð10Þ

where the energy and length units are rescaled as

μ ¼ Fπα

4
; λ ¼ 2α

Fπ
; ð11Þ

and the dimensionless mass parameters are given by

m1 ≔
2αmπ

Fπ
; m2 ≔

2αM
Fπ

: ð12Þ

The real parameter η interpolates between three different
models, see Table I.
The Lagrangian splits into potential and kinetic energy as

L ¼ TL − V; ð13Þ

V ¼
Z

d3x

�
−
1

2
trðR2

i Þ −
2η − 1

16
trð½Ri; Rj�2Þ

þ 1 − η

8
ðtrðR2

i ÞÞ2 þm2
1trð12 −UÞ

þm2
2

4
½trð12 −UÞ�2

�
; ð14Þ

TL ¼
Z

d3x

�
−
1

2
trðR2

0Þ −
2η − 1

8
trð½R0; Ri�2Þ

−
1 − η

8
ðtrðR2

0ÞÞ2 þ
1 − η

4
trðR2

0ÞtrðR2
i Þ
�
: ð15Þ

Using the hedgehog ansatz

U ¼ 12 cos fðrÞ þ ix̂ · τ sin fðrÞ; ð16Þ

with x̂ ¼ x=r being a unit 3-vector in R3, r ¼ jxj and the
potential or static energy becomes

V ¼
Z

d3x

�
ðf0Þ2 þ 2 sin2f

r2
þ 1− η

2
ðf0Þ4 þ 2η

sin2ðfÞðf0Þ2
r2

þ sin4f
r4

þ 2m2
1ð1− cosfÞ þm2

2ð1− cosfÞ2
�
; ð17Þ

which can be seen to be positive (semi)definite, term
by term, for η∈ ½0; 1�. In order to see that this is still

TABLE I. A one-parameter family interpolating between 3
different models, with η ¼ 1 being the Skyrme model limit.

Skyrme term Kinetic term squared

η ¼ 1 1 0
η ¼ 1=2 0 1=2
η ¼ −1 −3 2
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a positive static energy functional for η∈ ½−1; 1�, we
rewrite it as

V¼
Z

d3x

�
ðf0Þ2þ2sin2f

r2
þ1þη

2

�
2sin2ðfÞðf0Þ2

r2
þ sin4f

r4

�

þ1−η

2

�
ðf0Þ2− sin2f

r2

�
2

þ2m2
1ð1−cosfÞ

þm2
2ð1−cosfÞ2

�
; ð18Þ

which is indeed positive semidefinite for η∈ ½−1; 1�.
The static equation of motion for the profile function of

the Skyrmion is found by varying the static potential energy
(17) with respect to f, yielding:

f00 þ 2f0

r
−
sin 2f
r2

þ 3ð1 − ηÞðf0Þ2f00 þ 2ð1 − ηÞ ðf
0Þ3
r

þ 2η sin2ðfÞf00
r2

þ η sinð2fÞðf0Þ2
r2

−
sin2ðfÞ sin 2f

r4

−m2
1 sin f −m2

2ð1 − cos fÞ sin f ¼ 0; ð19Þ

which needs to be accompanied by the boundary con-
ditions fð0Þ ¼ π and fð∞Þ ¼ 0 corresponding to a unit-
Skyrmion (B ¼ 1).
Introducing a classical rotation of the spherically sym-

metric hedgehog Skyrmion can be done in two ways, either
by isospinning the soliton

UðAÞðx; tÞ ¼ AðtÞUðxÞAðtÞ†; ð20Þ

which however is equivalent to spinning it via

UðAÞðx; tÞ ¼ UðRðtÞxÞ; Rij ¼
1

2
trðτiAτjA†Þ; ð21Þ

where UðxÞ is a static solution to the field equations. The
(classical) kinetic part of the Lagrangian can now readily be
written down

TL ¼
Z

d3x

�
−
1

2
trðTiTjÞ −

2η − 1

8
tr
�
½Ti; Rk�½Tj; Rk�

�

þ 1 − η

4
trðTiTjÞtrðR2

kÞ
�
aiaj

þ
Z

d3x

�
−
1 − η

8
trðTiTjÞtrðTkTlÞ

�
aiajakal; ð22Þ

where Ti ¼ i
2
½τi; U�U† and the suð2Þ-valued angular

momenta, aiτi, are defined as

ai ¼ −i trðτiA†ȦÞ: ð23Þ

In general, the kinetic energy is quite a complicated
expression; however, for the spherically symmetric hedge-
hog ansatz (16), the integrals reduce to

T ¼ Jiai − TL ¼ 1

2
Λ1a2i −

3

4
Λ2a2i a

2
j ; ð24Þ

with the momentum conjugate to ai:

Ji ¼
∂TL

∂ai
¼ Λ1ai − Λ2ðajÞ2ai: ð25Þ

and

Λ1 ¼
16π

3

Z
dr r2

�
sin2f þ η sin2ðfÞðf0Þ2 þ sin4f

r2

�
; ð26Þ

Λ2 ¼ ð1 − ηÞ 64π
15

Z
dr r2sin4f; ð27Þ

where we have used the following angular integrals

Z
dθ dϕ sin θx̂ix̂j ¼ 4π

3
δij;Z

dθ dϕ sin θx̂ix̂jx̂kx̂l ¼ 4π

15
ðδijδkl þ δikδjl þ δilδjkÞ:

Every term in Λ1 is positive definite for η∈ ½0; 1�, but this is
not the case for η in the full range of static positivity,
namely η∈ ½−1; 1�. It is expected that Λ1 takes the mini-
mum value for η ¼ −1 and the maximum value for η ¼ 1
(ignoring the fact that the solution f depends on η), whereas
the opposite is expected for Λ2. There are two competing
effects at play: η → 1 (from below) increases the moment
of inertia by increasing Λ1, but it also decreases Λ2, which
reduces the moment of inertia by the quartic kinetic term,
and vice versa for η → −1.
The basic strategy for quantizing the isospin rotation,

which for spherical symmetry is equal to a spatial rotation
of the hedgehog Skyrmion, is to write the kinetic energy
(24) in terms of JiJi, which is the square of the momentum
conjugates. If this is possible, canonical quantization
applies and we simply replace the operator ð2JÞ2 with
∂
2

∂A2
ij
, with Aij being the elements of the isospin rotation

matrix A of Eq. (20); the latter is just the Laplacian operator
on the 3-sphere [5], which has eigenvalues lðlþ 2Þ, with
l ¼ 0; 1; 2; 3;…, l ¼ 2j and j is the isospin quantum
number. As a result the lowest spin of a fermion j ¼ 1

2

corresponds to l ¼ 1 and hence J2 ¼ 3
4
. Unfortunately,

simply squaring Eq. (25) does not allow for the elimination
of ai, so we need to solve for ai and insert the result into
Eq. (24), which hopefully is a function of JiJi, i.e. the

NONLINEAR RIGID-BODY QUANTIZATION OF SKYRMIONS PHYS. REV. D 109, 125001 (2024)

125001-5



momentum conjugate squared. Although it is difficult to
compute ai in terms of Ji of Eq. (25), the squared quantities
are easier to handle:

J2 ¼ Λ2
1a

2 þ Λ2
2ða2Þ3 − 2Λ1Λ2ða2Þ2: ð28Þ

We can now invert the equation by treating the equation
as a classical cubic polynomial in a2. Before solving the
equation, it will prove useful to analyze the polynomial a
bit before doing so. Let us write

yðxÞ ¼ Λ2
2x

3 − 2Λ1Λ2x2 þ Λ2
1x − J2; x ≔ a2: ð29Þ

We find the saddle points straightforwardly as y0ðxÞ ¼ 0:

x� ¼
�
2

3
� 1

3

�
Λ1

Λ2

; ð30Þ

which are both positive. The values of the polynomial
function yðx�Þ at the saddle points determine the number
and kind of roots the polynomial possesses. In particular,
we get

yðx−Þ ¼
4Λ3

1

27Λ2

− J2; yðxþÞ ¼ −J2: ð31Þ

The first (in the x-direction) saddle point value can change
sign depending on the values of the integrals Λ1 and Λ2.
Since Λ1 is an increasing function with η and Λ2 is a
decreasing function with η, the ratio Λ3

1=Λ2 is an increasing
function with η, that diverges at η ¼ 1. This means that for
large η ∼ 1, yðx−Þ is positive and yðxþÞ is negative. In this
case, there are 3 real roots of y, which is physically
puzzling. It turns out that the 3 roots exists in most of
the model’s parameter space, but only 1 of the roots gives a
positive spin contribution to the energy—this root connects
to the Skyrme model limit and we will denote it the
physical root [40].
In order to reach the form for which Cardano’s result

applies, we shift the variable as x ¼ ξþ 2
3
l, for which the

polynomial reads

y
Λ2
2

¼ ξ3 −
1

3
l2ξþ 2

27
ðl3 − ς2Þ; ð32Þ

where we have defined

l ¼ Λ1

Λ2

; ς ¼
ffiffiffiffiffi
27

2

r
J
Λ2

; ð33Þ

forwhichwehave three roots of y (assuming that 2l3>ς2) as

ξ0;� ¼ 2l
3
cos

�
θ−π�2π

3

�
; θ¼ arccos

�
1−

ς2

l3

�
; ð34Þ

where the index 0 means that �2π in the cosine is replaced
by 0 and

x0;� ¼ ξ0;� þ 2

3
l; ð35Þ

with x− being the smallest positive root.
Writing the kinetic quantum energy in terms of J2, we

get

T ¼ 1

2
Λ1xa −

3

4
Λ2x2a; ð36Þ

with xa, a ¼ 0;� being one of the roots. Near the Skyrme
model limit (η close to unity), it is safe to assume that
ς2 ≪ l3, since Λ1 is maximal and Λ2 tends to zero. In this
case, we can expand in 1=l, obtaining

Tðx−Þ¼
J2

2Λ1

þΛ2J4

4Λ4
1

þΛ2
2J

6

2Λ7
1

þ3Λ3
2J

8

2Λ10
1

þO
�
J10Λ4

2

Λ13
1

�
; ð37Þ

Tðx0;þÞ ¼ −
Λ2
1

4Λ2

∓
ffiffiffiffiffiffi
Λ1

Λ2

s
jJj − J2

4Λ1

� Λ1=2
2 jJj3
8Λ5=2

1

−
Λ2J4

8Λ4
1

þO
�jJj5Λ3=2

2

Λ11=2
1

�
; ð38Þ

yielding the order-Λ2 correction to the usual Skyrme
model’s spin energy for the case of the smallest (physical)
root, Tðx−Þ, plus higher-order corrections. Notice that
Tðx−Þ only increases once a nonvanishing Λ2 is introduced.
The only possibility of lowering the spin correction to the
mass, would be if the change in η would increase Λ1 much
faster than it would increase Λ2.
The term −Λ2

1=4Λ2 in Tðx0;þÞ signals that the two cases
of x0 and xþ are unphysical; first, these roots do not connect
to the Skyrme model limit, and second, they give a negative
contribution to the energy (that diverges in the Skyrme
model limit). This fact and also the Nc counting leads one
to discard the two roots x0 and xþ, see Ref. [40].
Returning to the physical root, x−, it will prove con-

venient for numerical computations to rewrite the spin
contribution to the energy as

T ¼ Λ2
1

3Λ2

cos
θ

3

�
1 − cos

θ

3

�
; ð39Þ

with θ given by Eq. (34), which can also be written as [40]

θ ¼ arccos
�
1 −

ς2

l3

�
¼ arccos

�
1 −

27Λ2J2

2Λ3
1

�
: ð40Þ

The spin contribution (39) is positive definite and given in
Ref. [40], but it is more difficult to see whether turning on
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Λ2 increases (or decreases) the spin contribution, which
however can easily be seen from Eq. (37).
In order to restore the units, we have to substitute

Λ1 → μλ2Λ1 and Λ2 → μλ4Λ2. Inserting these into the
spin contribution (39), we obtain

T ¼ μΛ2
1

3Λ2

cos
θ

3

�
1 − cos

θ

3

�
;

θ ¼ arccos

�
1 −

27ℏ2Λ2J2

2Λ3
1

�
; ð41Þ

where we have set ℏ ≔ 1=ðμλÞ ¼ 2α−2 and we have used
the energy and length units of Eq. (11). The spin con-
tribution is thus directly proportional to the energy unit, as
one would expect and we can also see that the angle θ
depends on ℏ or rather the model parameter α, which needs
to be calibrated.

A. Calibration

In order to compare the quantum spin energy (41) to the
classical mass of the Skyrmion μV, we must calibrate the
model. The overall scale is simply μ [of Eq. (11)] for both
energies, but their ratio depends also on α, as can be seen
from Eq. (41) where ℏ ¼ 2α−2. In order to fix α, we need to
perform a calibration that entails fitting one energy quantity
and one length scale, which we will do next.
We choose to fit the nucleon mass (MN) to the classical

Skyrmion mass V and the size of the Skyrmion R to the
electric charge radius of the nucleon (RN), so we obtain the
following equations

μV ¼ MN; λR ¼ RN; ð42Þ

where V is given by Eq. (14), the radius is computed as a
weighted integral

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 1

24π2

R
d3xjxj2ϵijktrðRiRjRkÞ

B

s
; ð43Þ

and the energy scale μ and the length scale λ are given in
Eq. (11). We use the experimental values 939 MeV and
0.8783 fm for the nucleon mass and radius, respectively.
Solving for the pion decay constant and α, we have

Fπ ¼
2R
RN

α; α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MNRN

VR

r
: ð44Þ

We choose to fit to the classical Skyrmion mass, since
including the spin correction is complicated by the fact that
the nontrivial and nonlinear α dependence makes an
analytic formula unavailable. If one were to choose to fit
the total Skyrmion mass to the physical mass, only
numerical methods would be able to do so. Since we
know that there are further corrections to the Skyrmion
energy, e.g., from vibrational modes [53], we simplify the
problem and fit just to the classical Skyrmion mass here.

B. Numerical results

We solve the equation of motion (19) for the static
Skyrmion, and use it to compute the two moments of
inertia, Λ1;2 of Eqs. (26) and (27). We use simple gradient
flow as the numerical method. Then we use Eq. (44) to
calibrate the model, which in turn determines the energy
and length scales (11). With these at hand, and using the
appropriate spin of the nucleon j ¼ 1=2 yielding J2 ¼ 3=4,
we can compute the spin correction to the energy using
Eq. (41) and other observables of the model.
In Fig. 1, the moments of inertia Λ1;2 are shown.

Λ1=Λ2 > 1 holds for η∈ ð−1; 1�, which is necessary for
the expansion in 1=l to be valid, but the ratio becomes ill
defined in the limit η → −1. In this limit, the stability of the
Skyrmion also becomes questionable.

FIG. 1. (a) The moments of inertia Λ1, Λ2 as functions of η for a range of the pion mass parameterm1 ¼ 0.5; 1; 2 with and without the
loosely bound potential turned on m2 ¼ 0; 1. (b) The moments of inertia after restoring physical units: μλ2Λ1 and ðμλ4Λ2Þ1=3.

NONLINEAR RIGID-BODY QUANTIZATION OF SKYRMIONS PHYS. REV. D 109, 125001 (2024)

125001-7



In Fig. 2(a) we show the spin correction to the energy as
a function of η for various pion mass and loosely bound
potential parameters, whereas in Fig. 2(b) is shown the
corresponding angles θ of Eq. (34). We notice that the angle
θ tends to π before η reaches η → −1 and hence the
physical root becomes complex. There is still a real root of
Eq. (32), but it is not connected to the physical root and it
gives rise to a very large and negative spin contribution (it is
one of the unphysical roots). This is also consistent with the
results of Ref. [40].
The fit (44) employed here amounts to the classical mass

of the Skyrmion always being at the experimental face
value and so the spin correction should be as small as
possible. Re-calibration could of course get the nucleon
mass right, but as discussed in the introduction, the larger
the spin energy is, the larger the binding energies are. Since
they should physically be around 8 MeV per nucleon for
larger nuclei, a spin correction to the energy much larger
than that creates tension and warrants other (extended)
quantization methods to provide physical spectra, see,
e.g., Ref. [20]. We note that the dependence of the spin

correction on the pion mass parameter m1 is quite large,
whereas the dependence on the loosely bound potential
parameter m2 is only mild.
Figure 3 shows the static classical mass and radius of the

Skyrmion in dimensionless (model) units. We plot the
figures only in the range η∈ ½−0.98; 1�, since we are unable
to obtain trustable solutions in the limit η → −1, where the
Skyrmion size is also seen to shrink to zero [Fig. 3(b)],
which is also anticipated in appendices A 1 and B 1. In the
latter appendix, we also note that the topological energy
bound goes to zero in the η → −1 limit.
In physical units, the classical mass and radius are

exactly equal to their experimental values, 939 MeV and
0.8783 fm, respectively, due to the calibration of the
model (44).
Having the classical mass and radius of the Skyrmion in

hand, we thus readily calibrate the model according to
Eq. (44), yielding the pion decay constant in Fig. 4(a), the
four-derivative term coupling constant α in Fig. 4(b) or
equivalently the energy scale μ in Fig. 5(a) and the length
scale λ in Fig. 5(b). For completeness, we plot the pion

FIG. 2. (a) The physical spin correction to the energy T and (b) the angle θ of Eq. (34), both as functions of η for a range of the pion
mass parameter m1 ¼ 0.5; 1; 2 with and without the loosely bound potential turned on m2 ¼ 0; 1.

FIG. 3. (a) The static energy of the Skyrmion in Skyrme units and (b) the (charge) radius of the Skyrmion, both as functions of η for a
range of the pion mass parameter m1 ¼ 0.5; 1; 2 with and without the loosely bound potential turned on m2 ¼ 0; 1.
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mass in Fig. 6, from which we can see that the pion mass
parameter should be taken somewhere between 0.75 and 1,
depending on the values of η in its physical regime (see
Fig. 2) andm2, in order to reproduce the experimental value
of roughly 139 MeV.

III. HIGHER-ORDER SKYRME MODELS

We now consider the cases of the higher-order models
introduced in Ref. [54], i.e., higher-order derivative theories
with four time derivatives and with eight to twelve
derivatives in total. The Lagrangian reads

L ¼ F2
π

16
trðRμRμÞ þ 1

32e2
trð½Rμ; Rν�½Rμ; Rν�Þ þ L0

−
F2
πm2

π

8
trð12 −UÞ − F2

πM2

32
½trð12 −UÞ�2; ð45Þ

FIG. 4. (a) The pion decay constant and (b) the four-derivative coupling constant α, both as functions of η for a range of the pion mass
parameter m1 ¼ 0.5; 1; 2 with and without the loosely bound potential turned on m2 ¼ 0; 1. The physical value of the pion decay
constant in the normalization used in this paper is 186 MeV.

FIG. 5. The calibrated (a) energy scale and (b) length scale of the model, both as functions of η for a range of the pion mass parameter
m1 ¼ 0.5; 1; 2 with and without the loosely bound potential turned on m2 ¼ 0; 1.

FIG. 6. The pion mass as a function of η for a range of the pion
mass parameter m1 ¼ 0.5; 1; 2 with and without the loosely
bound potential turned on m2 ¼ 0; 1. The physical value of
the pion mass is around 139 MeV (ignoring isospin breaking
effects) and is shown with a dotted horizontal black line.
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with the new higher-derivative termL0 being one of the four
possibilities:

L8a ¼ −
β8

1024F4
π
ðtrð½Rμ; Rν�½Rμ; Rν�ÞÞ2; ð46Þ

L8b ¼ −
β8

768F4
π
trðRσRσÞtrð½Rμ; Rν�½Rν; Rρ�½Rρ; Rμ�Þ; ð47Þ

L10 ¼ −
β10

3072F6
π
trð½Rσ; Rδ�½Rσ; Rδ�Þ

× trð½Rμ; Rν�½Rν; Rρ�½Rρ; Rμ�Þ; ð48Þ

L12 ¼ −
β12

9216F8
π
ðtrð½Rμ; Rν�½Rν; Rρ�½Rρ; Rμ�ÞÞ2: ð49Þ

We first define the relations to the coupling η:

1

e2
¼ α2η; βn ¼ ð

ffiffiffi
2

p
αÞn−2ð1 − ηÞ; ð50Þ

with η∈ ½0; 1�. For the analysis of the positivity of the static
energy leading to the viable range of the parameter η, see

Appendix A 2. Rescaling the Lagrangians to the energy and
length units (11) yields the dimensionless Lagrangian

L ¼ 1

2
trðRμRμÞ þ η

16
trð½Rμ; Rν�½Rμ; Rν�Þ þ L0

−m2
1trð12 −UÞ −m2

2

4
½trð12 − UÞ�2; ð51Þ

with the dimensionless higher-order term L0 being one of
the following four terms:

L8a ¼ −
1 − η

1024
ðtrð½Rμ; Rν�½Rμ; Rν�ÞÞ2; ð52Þ

L8b ¼ −
1 − η

768
trðRσRσÞtrð½Rμ; Rν�½Rν; Rρ�½Rρ; Rμ�Þ; ð53Þ

L10¼−
1−η

6144
trð½Rσ;Rδ�½Rσ;Rδ�Þtrð½Rμ;Rν�½Rν;Rρ�½Rρ;Rμ�Þ;

ð54Þ

L12 ¼ −
1 − η

36864
ðtrð½Rμ; Rν�½Rν; Rρ�½Rρ; Rμ�ÞÞ2: ð55Þ

FIG. 7. The (a) spin correction to the energy, (b) the dimensional coupling constant of the Skyrme and higher-order terms, (c) the pion
decay constant and (d) the pion mass, all as functions of η∈ ½0; 1� which interpolates between the Skyrme model (η ¼ 1) and the higher-
order model (η ¼ 0) L8a.
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Splitting the Lagrangians up into potential and kinetic
terms, we get

L ¼ TL − V; ð56Þ

V ¼
Z

d3x

�
−
1

2
trðR2

i Þ −
η

16
trð½Ri; Rj�2Þ þm2

1trð12 −UÞ

þm2
2

4
½trð12 − UÞ�2

�
þ V 0; ð57Þ

TL ¼
Z

d3x

�
−
1

2
trðTiTjÞ −

η

8
trð½Ti; Rk�½Tj; Rk�Þ

�
aiaj

þ TL0; ð58Þ

with potential terms

V8a ¼
1 − η

1024

Z
d3xðtrð½Ri; Rj�2ÞÞ2; ð59Þ

V8b ¼
1 − η

768

Z
d3x trðR2

l Þtrð½Ri; Rj�½Rj; Rk�½Rk; Ri�Þ; ð60Þ

V10 ¼
1 − η

6144

Z
d3x trð½Rk; Rl�2Þtrð½Ri; Rj�½Rj; Rk�½Rk; Ri�Þ;

ð61Þ

V12 ¼
1 − η

36864

Z
d3xðtrð½Ri; Rj�½Rj; Rk�½Rk; Ri�ÞÞ2; ð62Þ

and kinetic terms

TL
8a ¼

1− η

256

Z
d3x trð½Ti; Rk�½Tj;Rk�Þtrð½Rl;Rm�2Þaiaj

−
1− η

256

Z
d3x trð½Ti; Rm�½Tj; Rm�Þtrð½Tk;Rn�½Tl; Rn�Þ

× aiajakal; ð63Þ

TL
8b ¼

1 − η

768

Z
d3x½trðTiTjÞtrð½Rk; Rl�½Rl; Rm�½Rm; Rk�Þ

þ 3trðR2
mÞtrð½Ti; Rk�½Rk; Rl�½Rl; Tj�Þ�aiaj

−
1 − η

256

Z
d3x trðTiTjÞtrð½Tk; Rm�½Rm; Rn�½Rn; Tl�Þ

× aiajakal; ð64Þ

FIG. 8. The (a) spin correction to the energy, (b) the dimensional coupling constant of the Skyrme and higher-order terms, (c) the pion
decay constant and (d) the pion mass, all as functions of η∈ ½0; 1� which interpolates between the Skyrme model (η ¼ 1) and the higher-
order model (η ¼ 0) L8b.
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TL
10 ¼

1 − η

6144

Z
d3x½2trð½Ti; Rk�½Tj; Rk�Þ

× trð½Rl; Rm�½Rm; Rn�½Rn; Rl�Þ
þ 3trð½Rm; Rn�2Þtrð½Ti; Rk�½Rk; Rl�½Rl; Tj�Þ�aiaj
−
1 − η

1024

Z
d3x trð½Ti; Ro�½Tj; Ro�Þ

× trð½Tk; Rm�½Rm; Rn�½Rn; Tl�Þaiajakal; ð65Þ

TL
12 ¼

1 − η

6144

Z
d3x trð½Ti; Rk�½Rk; Rl�½Rl; Tj�Þ

× trð½Rm; Rn�½Ro; Rp�½Rp; Rm�Þaiaj
−
1 − η

4096

Z
d3x trð½Ti; Rm�½Rm; Rn�½Rn; Tj�Þ

× trð½Tk; Ro�½Ro; Rp�½Rp; Tl�Þaiajakal; ð66Þ

and Ti ¼ i
2
½τi; U�U† as always. Inserting the hedgehog

ansatz (16), we obtain the potential term

V ¼
Z

d3x

�
ðf0Þ2 þ 2sin2f

r2
þ η

sin2f
r4

ðsin2f þ 2r2ðf0Þ2Þ

þ 2m2
1ð1 − cos fÞ þm2

2ð1 − cos fÞ2
�
þ V 0 ð67Þ

with

V8a ¼
1 − η

4

Z
d3x

sin4f
r8

ðsin2f þ 2r2ðf0Þ2Þ2; ð68Þ

V8b ¼
1 − η

4

Z
d3x

sin4ðfÞðf0Þ2
r6

ð2 sin2f þ r2ðf0Þ2Þ; ð69Þ

V10 ¼
1 − η

4

Z
d3x

sin6ðfÞðf0Þ2
r8

ðsin2f þ 2r2ðf0Þ2Þ; ð70Þ

V12 ¼
1 − η

4

Z
d3x

sin8ðfÞðf0Þ4
r8

; ð71Þ

whereas for the kinetic term we get

TL ¼ 1

2
Λ1a2i −

1

4
Λ0
2a

2
i a

2
j ; ð72Þ

FIG. 9. The (a) spin correction to the energy, (b) the dimensional coupling constant of the Skyrme and higher-order terms, (c) the pion
decay constant and (d) the pion mass, all as functions of η∈ ½0; 1� which interpolates between the Skyrme model (η ¼ 1) and the higher-
order model (η ¼ 0) L10.
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with

Λ1 ¼
16π

3

Z
dr r2

�
sin2fþ η sin2f

�
sin2f
r2

þ ðf0Þ2
��

þΛ0
1;

ð73Þ

and

Λð8aÞ
1 ¼ 8πð1 − ηÞ

3

Z
dr

sin4f
r4

ðsin2f þ r2ðf0Þ2Þ

× ðsin2f þ 2r2ðf0Þ2Þ; ð74Þ

Λð8bÞ
1 ¼ 4πð1 − ηÞ

3

Z
dr

sin4ðfÞðf0Þ2
r2

ð3 sin2f þ r2ðf0Þ2Þ;

ð75Þ

Λð10Þ
1 ¼ 4πð1 − ηÞ

3

Z
dr

sin6ðfÞðf0Þ2
r4

ð2 sin2f þ 3r2ðf0Þ2Þ;

ð76Þ

Λð10Þ
1 ¼ 8πð1 − ηÞ

3

Z
dr

sin8ðfÞðf0Þ4
r4

; ð77Þ

as well as

Λð8aÞ
2 ¼ 32πð1 − ηÞ

15

Z
dr

sin4f
r2

ðsin2f þ r2ðf0Þ2Þ2; ð78Þ

Λð8bÞ
2 ¼ 32πð1 − ηÞ

15

Z
dr sin6ðfÞðf0Þ2; ð79Þ

Λð10Þ
2 ¼ 32πð1 − ηÞ

15

Z
dr

sin6ðfÞðf0Þ2
r2

ðsin2f þ r2ðf0Þ2Þ;

ð80Þ

Λð12Þ
2 ¼ 32πð1 − ηÞ

15

Z
dr

sin8ðfÞðf0Þ4
r2

: ð81Þ

The quantum kinetic energy is then given by Eq. (24) and
using the Λ1;2 of the higher-order model of this section, we
can readily use the result for the spin correction to the
energy (41). This result follows through because both the
PR model and the higher-order models have exactly 4 time
derivatives. We will again calibrate the model in the same
way using Eq. (44), but with the energy given by the
potential (57) and the size computed from the solutions to
the higher-order model, see Sec. II A.

FIG. 10. The (a) spin correction to the energy, (b) the dimensional coupling constant of the Skyrme and higher-order terms, (c) the pion
decay constant and (d) the pion mass, all as functions of η∈ ½0; 1� which interpolates between the Skyrme model (η ¼ 1) and the higher-
order model (η ¼ 0) L12.

NONLINEAR RIGID-BODY QUANTIZATION OF SKYRMIONS PHYS. REV. D 109, 125001 (2024)

125001-13



We are now ready to present the numerical results for the
higher-order Skyrme models (52)–(55), which are shown in
Figs. 7–10. In the figures, the spin corrections to the energy
is shown in panels (a), the dimensionless coupling constant
α in panels (b), the pion decay constant in panels (c) and
finally, the pion mass in panels (d). It is seen also for all the
higher-order models, that the spin correction to the energy
is smallest in the Skyrme model limit, i.e., for η ¼ 1. We
also notice that all the models have viable (calculable) spin
contributions to the energy in the entire parameter space,
i.e. η∈ ½0; 1�, except in the case of the 12th-order model
(55), where the spin contribution to the energy disappears
for η≲ 0.12 for m1 ¼ 2 (very large pion mass), since the
root in Eq. (32) turns complex and hence unphysical. This
should not be too worrisome, since m1 so large in this
model gives a physical pion mass above 450 MeV.

IV. DISCUSSION AND OUTLOOK

In this paper, we have studied the Skyrme model with
the addition of the other possible fourth-order derivative
term—the kinetic term squared, which however gives rise
to more than two time derivatives in the model; this model
has been considered previously in the literature (e.g.,
[36–39]) and studied in detail by Pottinger and Rathske
[40], who performed exact collective coordinate quantiza-
tion using Cardano’s formula.
We parametrized the model with a parameter η that

interpolates between the Skyrme model (η ¼ 1), the pure
kinetic term squared model (η ¼ 1=2) and a new model
with a negative Skyrme term that completely cancels off the
kinetic term squared part (η ¼ 0) and all the way down to a
limit where there is no Skyrme term left (η ¼ −1), but only
a term that vanishes for spherically symmetric solitons. Our
result is that the spin contribution only increases once a
four-time derivative term is taken into account, independ-
ently of how many derivatives the term has in total. This
statement holds under the condition of Lorentz-invariant
terms that have a positive definite static energy. We show
this is true by expanding the spin contribution to the energy
in a power series (37), where every term is positive. We
further illustrate that this holds for any kind of theory, by
computing the spin contribution to the energy for 4
different higher-order models.
We further establish topological energy bounds for the

models under consideration in this paper. In particular, we
extend the topological energy bound for the PR model to
include two (nonderivative) potentials, being the pion mass
term and the pion mass term squared or loosely bound
potential and we compute new bounds for the higher-order
models. These results are given in Appendix B.
Unfortunately, it turns out that the ambition of being able

to reduce the spin contribution to the energy in the class of
generalized Skyrme models with four time derivatives, is
not possible. Hence, the Skyrme model in the class
of theories studied in this paper, is the model with

the smallest spin contribution to the energy and hence
the model giving rise to the smallest lower bound on the
binding energy.
The result can have two opposite implications for future

work on achieving physical binding energies. In one
direction, one could go the BPS way and try to reduce
the classical binding energies as well as the spin correction
to the energy as much as possible. This is in the spirit of the
assumption that the main contribution to the nucleon
energy is the classical Skyrmion energy, and quantum
corrections are small. If one chooses to go in another
direction of acknowledging that the classical binding
energies should not be small, but only the total binding
energies must sum up to values that are at the percent level
of the mass scale in question, then one could look at this
extra degree of freedom of increasing the spin energy, if
needed, as a tuning parameter. This latter approach to
quantization of Skyrmions is discussed in Ref. [20] for the
standard Skyrme model.
An issue with the current model, which we have not

solved in this work, is to perform the quantization for
Skyrmions that do not enjoy spherical symmetry. This
becomes complicated because the moment of inertia tensor
will no longer be proportional to the unit matrix; this
implies that the cubic equation that we solve becomes a
cubic matrix equation, that presumably is harder to solve.
One may consider, as a first step, to solve the problem with
axial symmetry, for which two eigenvalues of the tensors
are equal. Nevertheless, if the complete model of quanti-
zation of Skyrmions requires the smallest possible spin
contribution, then the Skyrme model is the best option, to
the fourth order in the derivative expansion. We will leave
for future work, a possible investigation of the spin
contribution for nonspherically symmetric inertia tensors
in this model or other models with more than two time
derivatives. Although more complicated, we believe that
the smallest root(s) of the cubic matrix equation can be
found with numerical methods, if it is not possible to write
down analytic expressions.
Another comment in store about theories with four or

more time derivatives, is the problem of the Ostrogradsky
instability [55]. In the formulation of Woodard [56], the
dynamics of the Hamiltonian is generally described by two
or more conjugate momenta, but only if the Lagrangian is
nondegenerate in the double time derivative of some field.
Luckily, although we have four time derivatives, they each
act on their own field, making the theory highly nonlinear
but not inducing the Ostrogradsky instability. One may
wonder why there is no term like trðU†

□UÞ2 in the
most general Lagrangian of pions, but as shown in the
literature such term can be eliminated by a field redefinition
and it will be described at the four-derivative level just by
the two terms included in the Lagrangian (5) plus higher-
order terms in the derivative expansion [28–32]. The
Ostrogradsky instability, which exists for nondegenerate
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double time derivatives, is due to the fact that the
corresponding Hamiltonian will depend only linearly on
one of the two conjugate momenta—this makes it possible
to drive the theory into larger and larger energies with either
sign. The theory thus has no lower or upper bound on the
energy.5 In the case of the Ostrogradsky instability, argu-
ments have been made that it is not an issue for EFTs, since
the energy needed to excite a mode that possesses a
runaway behavior is larger than the (cutoff) scale of the
EFTand hence anyway beyond the validity of the EFT [57].
It has also been argued that in a certain class of asymp-
totically free theories, the effective mass of the unstable
modes becomes infinitely heavy in the UV limit [58]. At
some higher order in the derivative expansion, it will no
longer be possible to eliminate all d’Alembertian operators
from the EFT Lagrangian even using field redefinitions
and integration-by-parts relations; at such order the
Ostrogradsky instability is inevitable, although it is pos-
sible that it will not cause problems for the EFTobservables
at sufficiently small energies.
Finally, one may consider the possibility of going to a

higher order in the derivative expansion. In the literature,
the sextic term has been studied extensively [9,10,59–62],
which however, like the Skyrme term, contains only 2 time
derivatives. A natural generalization of the PR model
would be to consider models with 6 or more time
derivatives, which however would give rise to a higher-
order polynomial equation than the cubic equation (32). In
particular, in the case of theories with 6 time derivatives, the
corresponding order of the polynomial equation is of 5th
order. For a theory with 2n time derivatives, the corre-
sponding polynomial equation for the squared spin operator
would then be of order 2n − 1. In such cases, it is probably
necessary to turn to numerical methods for finding the
(smallest/physical) roots. We leave such problems for
future work.
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APPENDIX A: POSITIVITY OF STATIC ENERGY

1. The Pottinger-Rathske model

In order to prove the entire suitable range of the
couplings while retaining a positive definite static
energy, we rewrite the derivative part of the static part of
the Lagrangian (14) in terms of the 4-vector field
n ¼ ðn0; n1; n2; n3Þ:

U ¼ n012 þ iτana; a ¼ 1; 2; 3; ðA1Þ

yielding

E ¼ ð∂in · ∂inÞ þ
2η − 1

2
ð∂in · ∂inÞ2 −

2η − 1

2
ð∂in · ∂jnÞ2

þ 1 − η

2
ð∂in · ∂inÞ2: ðA2Þ

Using the eigenvalues, fλig, of the strain tensor [63]

Dij ¼ −
1

2
tr½RiRj� ¼ ð∂in · ∂jnÞ

¼

2
64V

0
B@

λ21
λ22

λ23

1
CAVT

3
75
ij

; V ∈SOð3Þ; ðA3Þ

we obtain

E ¼ ðλ21 þ λ22 þ λ23Þ þ ηðλ21λ22 þ λ21λ
2
3 þ λ22λ

2
3Þ

þ 1 − η

2
ðλ41 þ λ42 þ λ43Þ

¼ ðλ21 þ λ22 þ λ23Þ

þ 1 − η

4
½ðλ21 − λ22Þ2 þ ðλ21 − λ23Þ2 þ ðλ22 − λ23Þ2�

þ 1þ η

2
ðλ21λ22 þ λ21λ

2
3 þ λ22λ

2
3Þ: ðA4Þ

This (derivative part) of the static energy density is
thus positive definite for η∈ ½−1; 1�. We expect, however,
that the spherically symmetric Skyrmion, which has
λ1 ¼ λ2 ¼ λ3, to be unstable at the point η ¼ −1.

2. The higher-order models

In the higher-order models, the static energy is given in
Eq. (57) with V 0 of Eq. (59) for the 8a term, Eq. (60) for the
8b term, Eq. (61) for the 10 term and Eq. (62) for the 12
term. Using the relations in Ref. [54], we can write the
derivative part of the static energy density as

5This runaway of the energy is different from the dynamical
instability of the PR model. That is, in the PR model the
instability comes from a negative contribution to the energy
from the four time derivatives, whereas the Ostrogradsky insta-
bility has a linear dependence on one of the conjugate momenta
that can classically cause a runaway at any values of the kinetic
energy.
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E248a ¼ ðλ21 þ λ22 þ λ23Þ þ ηðλ21λ22 þ λ21λ
2
3 þ λ22λ

2
3Þ

þ 1 − η

4
ðλ21λ22 þ λ21λ

2
3 þ λ22λ

2
3Þ2;

E248b ¼ ðλ21 þ λ22 þ λ23Þ þ ηðλ21λ22 þ λ21λ
2
3 þ λ22λ

2
3Þ

þ 1 − η

4
ðλ21 þ λ22 þ λ23Þðλ21λ22λ23Þ;

E24ð10Þ ¼ ðλ21 þ λ22 þ λ23Þ þ ηðλ21λ22 þ λ21λ
2
3 þ λ22λ

2
3Þ

þ 1 − η

4
ðλ21λ22 þ λ21λ

2
3 þ λ22λ

2
3Þðλ21λ22λ23Þ;

E24ð12Þ ¼ ðλ21 þ λ22 þ λ23Þ þ ηðλ21λ22 þ λ21λ
2
3 þ λ22λ

2
3Þ

þ 1 − η

4
ðλ41λ42λ43Þ: ðA5Þ

Positivity of all these static energy functionals can only be
guaranteed if η∈ ½0; 1�.

For the 8a case, we can see this by considering a very
small Skyrme-energy contribution, for which the last term
is negligible. This requires η ≥ 0. For regions with a large
Skyrme-energy contribution, the last term is dominant and
we need 1 − η ≥ 0.
For the 8b, 10, and 12 cases, one can consider regions in

space where the baryon density vanishes, but two of the
strain tensor eigenvalues do not (i.e., λ1 ≠ 0, λ2 ≠ 0 and
λ3 ¼ 0). In this case, the last term vanishes and η ≥ 0 is a
necessity, hence in general it is.

APPENDIX B: TOPOLOGICAL ENERGY BOUND

1. The Pottinger-Rathske model

Let us consider the topological energy bound for the
derivative terms of the static energy (14). Using the second
line of Eq. (A4), we can write the topological bound on the
static energy [40]

E ¼
Z

d3x

�
ðλ21 þ λ22 þ λ23Þ þ

1 − η

4

h
ðλ21 − λ22Þ2 þ ðλ21 − λ23Þ2 þ ðλ22 − λ23Þ2

i
þ 1þ η

2
ðλ21λ22 þ λ21λ

2
3 þ λ22λ

2
3Þ
�

¼
Z

d3x

��
λ1 ∓

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r
λ2λ3

�
2

þ
�
λ2 ∓

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r
λ3λ1

�
2

þ
�
λ3 ∓

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r
λ1λ2

�
2

þ 1 − η

4

h
ðλ21 − λ22Þ2 þ ðλ21 − λ23Þ2 þ ðλ22 − λ23Þ2

i
� 6

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r
λ1λ2λ3

�

≥ 6

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r Z
d3xjλ1λ2λ3j

≥ 12π2
ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r
jBj; ðB1Þ

where B is the baryon number of Eq. (8) and we have used
the fact that

R
d3xλ1λ2λ3 ¼ 2π2B. We can see that the

Skyrme bound on the energy (12π2jBj) [2] is recovered for
η ¼ 1 and that the bound goes to zero for η → −1, signaling
a possible instability for the spherically symmetric case.
Taking into account the nonderivative part of the

potential energy can be done following Harland [11], see
also Refs. [25,64]. We define the following functions

E2 ¼
Z

d3xðλ21 þ λ22 þ λ23Þ; ðB2Þ

E4 ¼
Z

d3xðλ21λ22 þ λ21λ
2
3 þ λ22λ

2
3Þ; ðB3Þ

E01 ¼
1

2

Z
d3xtrð12 − UÞ; ðB4Þ

E02 ¼
1

4

Z
d3x½trð12 −UÞ�2: ðB5Þ

We write the maximization problem as

E ¼
�
E2 þ α

1þ η

2
E4

�
þ
�
2m2

1E01 þ βð1− αÞ1þ η

2
E4

�

þ
�
m2

2E02 þ ð1− βÞð1− αÞ1þ η

2
E4

�

≥ 12π2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αð1þ ηÞ
2

r
þ
128

ffiffiffiffiffiffi
m1

p
β

3
4ð1− αÞ34ð1þ ηÞ34Γ2

�
3
4

�
45× 2

3
4π

3
2

þ 64
ffiffiffiffiffiffi
m2

p ð1− βÞ34ð1− αÞ34ð1þ ηÞ34
45π

�
jBj; ðB6Þ

with α∈ ½0; 1� and β∈ ½0; 1�, which is a maximization
problem in two real variables on the unit interval, where
we have used the bound [11]:

2m2
1

Z
d3xvðtrUÞ þ μE4

≥ 16π × 2
1
4

ffiffiffiffiffiffi
m1

p
μ

3
4jBj

Z
π

0

sin2ðfÞ½vð2 cos fÞ�14 df: ðB7Þ
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The result of the maximization of Eq. (B6) does not only depend on the massesm1 andm2, but also on the chosen value of η.
First we extremize with respect to β, obtaining

E ≥ 12π2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αð1þ ηÞ
2

r
þ 64ð1 − αÞ34ð1þ ηÞ34

45π

�
2
1
4

ffiffiffiffiffiffi
m1

π

r
Γ2

�
3

4

�
FðζÞ þ ffiffiffiffiffiffi

m2

p
Fðζ−1Þ

��
jBj; ðB8Þ

with

FðζÞ ¼
�

1

1þ ζ

�3
4

; ζ ¼ π2m2
2

2m2
1Γ8

�
3
4

� : ðB9Þ

On the other hand, maximization with respect to α yields

α ¼ a2

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

a2

r
− 1

�
; a ¼ 225π2ð1þ ηÞ

2048ð1þ ηÞ32
�
2
1
4

ffiffiffiffiffim1

π

p
Γ2
�
3
4

�
FðζÞ þ ffiffiffiffiffiffi

m2

p
Fðζ−1Þ

�
2
; ðB10Þ

which is valid for η∈ ð−1; 1�.

2. The higher-order models

We start by considering the derivative part of the higher-order models, which have the terms (59)–(62). We start by
determining new bounds on higher-order terms, that have not been derived earlier, to the best of our knowledge. Starting
with the term (59), we write

E ¼
Z

d3x½μðλ21λ22 þ λ21λ
2
3 þ λ22λ

2
3Þ2 þ 2m2

1vðtrUÞ�

¼ 3

8

�
8

3
μ

Z
d3xðλ21λ22 þ λ21λ

2
3 þ λ22λ

2
3Þ2

�
þ 5

8

�
8

5

Z
d3x 2m2

1vðtrUÞ
�

≥
�
8

3
μ

Z
d3xðλ21λ22 þ λ21λ

2
3 þ λ22λ

2
3Þ2

�3
8

�
8

5

Z
d3x 2m2

1vðtrUÞ
�5

8

; ðB11Þ

where we have used the inequality of the arithmetic and
geometric means

Xn
a¼1

waxa ≥
Yn
a¼1

xwa
a ; ðB12Þ

which holds for non-negative xa and w1þw2þ���wn¼1,
all positive as well. Using the same inequality again, we
have [11]

1

3
ðλ21λ22 þ λ21λ

2
3 þ λ22λ

2
3Þ ≥ jλ1λ2λ2j43; ðB13Þ

and consequently

1

9
ðλ21λ22 þ λ21λ

2
3 þ λ22λ

2
3Þ2 ≥ jλ1λ2λ2j83: ðB14Þ

We can now write

E≥ 8

�
3μ

Z
d3xjλ1λ2λ3j83

�3
8

�
1

5

Z
d3x2m2

1vðtrUÞ
�5

8

; ðB15Þ

where everything has been chosen carefully such that the
power 3

8
is the inverse of 8

3
.

At this point, it will prove convenient to write the
expression with a positive integer n as

E ≥ n

�
μ0

3

Z
d3xjλ1λ2λ3jn3

�3
n
�

1

n − 3

Z
d3x 2m2

1vðtrUÞ
�n−3

n

;

n > 3: ðB16Þ

Now we utilize the Hölder’s inequality (1p þ 1
q ¼ 1, p > 0,

q > 0):

�Z
d3xjf1jp

�1
p
�Z

d3xjf2jq
�1

q

≥
Z

d3xjf1f2j; ðB17Þ
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to obtain

E ≥ n

�
μ0

3

�3
n
�
2m2

1

n − 3

�n−3
n
Z

d3xjvðtrUÞjn−3n jλ1λ2λ3j; ðB18Þ

which can be written in terms of the topological degree B as

E ≥ 4nπ

�
μ0

3

�3
n
�
2m2

1

n − 3

�n−3
n jBj

Z
π

0

sin2ðfÞjvð2 cos fÞjn−3n df: ðB19Þ

In particular, for the case of Eq. (B15) with n ¼ 8 and μ0 ¼ 9μ, we have for the pion mass term

Z
d3x½μðλ21λ22 þ λ21λ

2
3 þ λ22λ

2
3Þ2 þm2

1trð12 −UÞ� ≥ 12π2
256

ffiffiffi
π

p
2

1
4ð3μÞ38

�
m2

1

5

�5
8

455 sin
�
π
8

�
Γ
�
5
8

�
Γ
�
7
8

� jBj: ðB20Þ

We will now turn to the term (60):

E ¼
Z

d3x½μðλ21 þ λ22 þ λ23Þðλ21λ22λ23Þ þ 2m2
1vðtrUÞ�

≥ 8

�
μ

3

Z
d3xðλ21 þ λ22 þ λ23Þðλ21λ22λ23Þ

�3
8

�
1

5

Z
d3x 2m2

1vðtrUÞ
�5

8

≥ 8

�
μ

Z
d3xjλ1λ2λ3j83

�3
8

�
1

5

Z
d3x 2m2

1vðtrUÞ
�5

8

≥ 32πμ
3
8

�
2m2

1

5

�5
8jBj

Z
π

0

sin2ðfÞjvð2 cos fÞj58df; ðB21Þ

where we have used the step of Eq. (B11), the inequality

1

3
ðλ21 þ λ22 þ λ23Þ ≥ jλ1λ2λ3j23; ðB22Þ

as well as Eq. (B19). Using the pion mass term as the nonderivative potential, we get

Z
d3x½μðλ21 þ λ22 þ λ23Þðλ21λ22λ23Þ þm2

1 trð12 −UÞ� ≥ 12π2
256

ffiffiffi
π

p
2
1
4μ

3
8

�
m2

1

5

�5
8

455 sin
�
π
8

�
Γ
�
5
8

�
Γ
�

7
8

� jBj: ðB23Þ

The next higher-order term is (61), which is a 10th order derivative term:

E ¼
Z

d3x½μðλ21λ22 þ λ21λ
2
3 þ λ22λ

2
3Þðλ21λ22λ23Þ þ 2m2

1vðtrUÞ�

≥ 10

�
μ

3

Z
d3xðλ21λ22 þ λ21λ

2
3 þ λ22λ

2
3Þðλ21λ22λ23Þ

� 3
10

�
1

7

Z
d3x 2m2

1vðtrUÞ
� 7

10

≥ 10

�
μ

Z
d3xjλ1λ2λ3j103

� 3
10

�
1

7

Z
d3x 2m2

1vðtrUÞ
� 7

10

≥ 40πμ
3
10

�
2m2

1

7

� 7
10jBj

Z
π

0

sin2ðfÞjvð2 cos fÞj 710df; ðB24Þ
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where we have used the step of Eq. (B11), the inequality (B13) as well as Eq. (B19). Using the pion mass term as the
nonderivative potential, we get

Z
d3x½μðλ21λ22 þ λ21λ

2
3 þ λ22λ

2
3Þðλ21λ22λ23Þ þm2

1trð12 −UÞ� ≥ 12π2
640

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð5þ ffiffiffi

5
p Þπ

q
ð8μÞ 3

10

�
m2

1

7

� 7
10

3213Γ
�

7
10

�
Γ
�
4
5

� jBj: ðB25Þ

The last higher-order term is (62), which is a 12th order derivative term:

E ¼
Z

d3x½μðλ41λ42λ43Þ þ 2m2
1vðtrUÞ�

≥ 4

�
μ

Z
d3xjλ1λ2λ3j4

�1
4

�
1

3

Z
d3x 2m2

1vðtrUÞ
�3

4

≥ 16πμ
1
4

�
2m2

1

3

�3
4jBj

Z
π

0

sin2ðfÞjvð2 cos fÞj34df; ðB26Þ

where we have used the step of Eqs. (B11) and (B19). Using the pion mass term as the nonderivative potential,
we get

Z
d3x½μðλ41λ42λ43Þ þm2

1trð12 −UÞ� ≥ 12π2
1280μ

1
4

�
m2

1

3

�3
4K

�
1
2

�
693π

jBj; ðB27Þ

where KðmÞ is the complete elliptic integral of the first kind and Kð0.5Þ ≈ 1.85407.
We will now write the complete topological energy bounds for the higher-order models, using the new results for

the subbounds that involve the higher-order derivative term and a potential term. For simplicity, we will turn on only
the pion mass term here, and switch off the other nonderivative potential, i.e., setting m2 ≔ 0. Writing the higher-order
model (57) as

EðXÞ
HO ¼ ðE2 þ αηE4Þ þ ð2βm2

1E01 þ ð1 − αÞηE4Þ þ
�
2ð1 − βÞm2

1E01 þ
1 − η

4
EX

�
; ðB28Þ

where E01, E2 and E4 are given by Eqs. (B4), (B2) and (B3), respectively, and EX is the static energy of a higher-order
derivative term. We can now write the full topological energy bounds for all the higher-order models as

Eð8aÞ
HO ≥ 12π2

" ffiffiffiffiffi
αη

p þ
128β

1
4

ffiffiffiffiffiffi
m1

p ðð1 − αÞηÞ34Γ2
�
3
4

�
45π

3
2

þ
128

ffiffiffiffiffiffi
2π

p ð3ð1 − ηÞÞ38
�ð1−βÞm2

1

5

�5
8

455 sin
�
π
8

�
Γ
�
5
8

�
Γ
�
7
8

�
#
jBj;

Eð8bÞ
HO ≥ 12π2

" ffiffiffiffiffi
αη

p þ
128β

1
4

ffiffiffiffiffiffi
m1

p ðð1 − αÞηÞ34Γ2
�
3
4

�
45π

3
2

þ
128

ffiffiffiffiffiffi
2π

p ðð1 − ηÞÞ38
�ð1−βÞm2

1

5

�5
8

455 sin
�
π
8

�
Γ
�
5
8

�
Γ
�
7
8

�
#
jBj;

Eð10Þ
HO ≥ 12π2

" ffiffiffiffiffi
αη

p þ
128β

1
4

ffiffiffiffiffiffi
m1

p ðð1 − αÞηÞ34Γ2
�
3
4

�
45π

3
2

þ
640

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð5þ ffiffiffi

5
p Þπ

q
ð2ð1 − ηÞÞ 3

10

�ð1−βÞm2
1

7

� 7
10

3213Γ
�

7
10

�
Γ
�
4
5

�
#
jBj;

Eð12Þ
HO ≥ 12π2

" ffiffiffiffiffi
αη

p þ
128β

1
4

ffiffiffiffiffiffi
m1

p ðð1 − αÞηÞ34Γ2
�
3
4

�
45π

3
2

þ
640ð1 − ηÞ14

�ð1−βÞm2
1

3

�3
4

693π

#
jBj; ðB29Þ
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and we have defined

E8a ¼
Z

d3xðλ21λ22 þ λ21λ
2
3 þ λ22λ

2
3Þ2;

E8b ¼
Z

d3xðλ21 þ λ22 þ λ23Þðλ21λ22λ23Þ;

E10 ¼
Z

d3xðλ21λ22 þ λ21λ
2
3 þ λ22λ

2
3Þðλ21λ22λ23Þ;

E12 ¼
Z

d3xðλ41λ42λ43Þ: ðB30Þ

The maximization of the bounds (B29) with respect to α
can be carried out easily as in the Pottinger-Rathske model
[see Appendix B 1] if it is done first, but since the (1 − α)-
dependence is only included in the Skyrme term and not in
the higher-order term, the extremization with respect to α is
changed and possibly becomes more difficult after maxi-
mization has been done with respect to β.
Starting with the 8a and 8b cases, extremization with

respect to β can be carried out as:

β ¼ 2

25

�
2

5

�2
3

ξ
8
3
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We are, however, unable to perform the maximization with
respect to α analytically at this point. For the 10 case, the
extremization with respect to β requires the root to 5th order
polynomial equation, that we do not know in closed form.
For the 12 case, maximization with respect to β is given by
a real root to a 3rd order polynomial equation, which can be
found by Cardano’s formula. However, we are also in this
case unable to perform the analytic maximization with
respect to α after having maximized with respect to β.
We are thus not able to find analytic expressions for both

α and β in the cases of the higher-order models that
maximize their respective bounds, but the maximization
in the two variables α and β on the unit interval can for fixed
values of m1 and η easily be done numerically.
Taking into account both nonderivative potentials

(m1 > 0 and m2 > 0) can straightforwardly be done as
in the Pottinger-Rathske model by introducing a third
parameter (see Appendix B 1), which we will leave as
an exercise. Again only a numerical solution to the three
parameters will be possible.
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