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Ultracompact objects (UCOs) are horizonless compact objects that present light rings (LRs): circular
photon orbits. As a result, they could be black hole mimickers. Some years ago, Cunha et al. established a
theorem stating that, under general assumptions, UCOs formed from smooth, quasi-Minkowski initial data,
must have at least a pair of LRs, one of which must be stable. These stable LRs are supposed to trigger a
nonlinear instability in spacetime, potentially weakening UCOs’ ability to replicate black hole phenom-
enology. However, this LR theorem does not extend to wormholes, which represent topologically nontrivial
spacetimes. We address the wormhole case by proving the following theorem: a stationary, axisymmetric,
asymptotically flat, traversable wormhole in 1þ 3 dimensions, connecting two different asymptotic
regions, has at least one standard LR for each rotation sense. Thus, any (such) wormhole is an UCO. By
filling this gap, our results not only broaden the horizon of knowledge on UCOs but also highlight their
potential to closely mimic black hole phenomenology.
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I. INTRODUCTION

Over the last decade, research on the strong gravity regime
has entered a golden age. Observational channels—mainly
gravitational waves and shadow images of compact objects
[1–5]—have begun to provide horizon-scale data with
remarkable detail. These technological advancements allow
rigorous tests of the Kerr hypothesis [6], which states that all
astrophysical black holes (BHs) are uniformly described by
the Kerr solution, characterized by only two parameters:
mass and angular momentum. Underpinning this hypothesis
is a series of theorems suggesting that gravitational collapse
results in stationary, axisymmetric rotating BHs [7,8], which
holds over several mass scales. The Nobel laureate
Subrahmanyan Chandrasekhar elegantly captured the
essence of such an idea when he termed the realization of
this unified description a ‘shattering experience’ [9].
The challenge of the BH picture is driven by both

theoretical puzzles, such as the information loss paradox
[10], and phenomenological observations, including gravi-
tational wave detections that leave room for the existence of
other compact entities [11–13]. Consequently, it becomes
crucial to explore the landscape of horizonless compact
alternatives, often referred to as exotic compact objects
(ECOs) [14]. The realm of ECOs is vast, covering entities
such as gravastars [15], boson stars [16,17], fuzzballs

[18–20], and wormholes [21–23]. Within this diverse class,
certain candidates, dubbed ultracompact objects (UCOs)
[14], exhibit a very special family of light trajectories known
as light rings (LRs). The ability of UCOs to host LRs endows
them with the capability to mimic, to some extent, phenom-
ena associated with BH physics, such as shadows and the
initial signatures of gravitational wave signals [24–26].
LRs represent an extreme form of light bending, mani-

festing as planar closed light orbits around BHs. A powerful
theorem established their existence in asymptotically flat BH
spacetimes, provided that some reasonable assumptions are
satisfied [27]. It pioneered a topological approach to the
problem, by assigning a topological charge to the critical
points of the effective geodesic potential, which correspond
to the locations of the LRs. This method revealed that at least
one unstable LR is always present in stationary, axisym-
metric and asymptotically flat BH spacetimes. Such result
has since been extended to other asymptotic conditions and
inspired subsequent research [28–38].
In a related work, Cunha et al. showed that UCOs

emerging from smooth, quasi-Minkowski initial conditions
invariably have at least two LRs, one of which is stable [39].
The presence of a stable LR introduces a potential for
nonlinear spacetime instability, as it can trap and accumu-
late massless perturbations [40]. Recently, the study in
Ref. [41] demonstrated that such stable LRs can induce
instabilities within a moderate timeframe, leading either to
the collapse into BHs or a shift away from the UCO regime.
This result challenges the viability of certain UCOs as
BH foils, especially those formed from quasi-Minkowski
initial data.
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While the pioneering results of Refs. [39,41] offer
profound insights about LRs in UCOs formed from quasi-
Minkowski initial data, the theorem does not include entities
with nontrivial topology, such as wormholes. This limitation
invites a dedicated examination of wormholes, which stand
apart due to their distinctive topological features.Wormholes
have been a subject of interest in both physics and science
fiction because they can connect different regions of the same
universe (intrauniverse wormholes) or different universes
(interuniverse wormholes), providing a theoretical concep-
tion of interstellar or time travel [21,42,43]. Their unique
feature of nontrivial topology has made wormholes a
compelling object of study. In general relativity (GR), the
wormhole throat is usuallymaintained by a negative pressure
that violates the energy conditions imposed on regular
baryonic matter [21,22,44,45]. There have been various
proposals to overcome this issue, such as constraining the
energy condition violation to a small region of spacetime
[46–48] or studying solutions from other gravity theories
[49–52]. Recently, the first asymptotically flat and travers-
able1 wormhole in GR without the need of exotic matter to
keep the throat open was found [53,54].
In recent years, the field of wormhole physics has

garnered increasing attention [55–82]. Nevertheless, inves-
tigations of the LR structure in spacetimes with nontrivial
topology remain remarkably scarce [83–85]. Indeed, a
careful analysis of the LR structure of a general wormhole
spacetime is lacking in the literature. Wormholes can offer
unique gravitational lensing characteristics that could
unveil novel observational signatures, such as the existence
of multiple critical curves [66]. Identifying these features is
crucial for distinguishing between BHs and wormholes,
thus providing a novel way to test the Kerr hypothesis.
We aim to fill this gap by addressing the question of how

many LRs a traversable, axisymmetric, asymptotically flat,
interuniverse wormhole geometry can support. Using the
topological technique developed in Ref. [27], our analysis
spans a broad range of wormhole spacetimes, independent
of the gravitational theory. Our findings reveal that a
general class of wormholes shares the same LR topological
division as BHs, positioning them—at least from this point
of view—as viable candidates for BH mimickers. This
result remains true across both static and rotating worm-
holes, whether symmetric or asymmetric relative to the
throat. Furthermore, for the symmetric case, we demon-
strate that a LR invariably exists at the throat itself.
The remainder of this paper is organized as follows. In

Sec. II, we introduce the asymptotically flat wormhole
spacetime analyzed in this work, in a coordinate system
appropriate to describe both sides of the throat. In Sec. III,
we discuss the definition of LR in the potential framework

and how to assign a topological charge from it. We show
that the topological charge of traversable wormhole space-
time, under the conditions assumed in this work, has the
same value as asymptotically flat BHs, implying the
existence of at least one unstable LR. In Sec. IV, we show
that wormholes symmetric with respect to the throat will
always have a LR at the throat location. We present our
final remarks in Sec. V. Throughout the paper, we use
natural units (c ¼ G ¼ ℏ ¼ 1) and the metric signa-
ture (−;þ;þ;þ).

II. WORMHOLES SPACETIME

We are interested in stationary, axisymmetric, asymp-
totically flat spacetimes. These geometries are character-
ized by having two Killing vectors, denoted as ξ and η,
which correspond to the properties of stationarity and
axisymmetry, respectively. The concept of asymptotic
flatness demands that these vectors must commute. As a
result of these properties, it becomes possible to select
coordinates (t;φ) that are aligned with these Killing
vectors, such that ξ corresponds to ∂t and η to ∂φ.
Furthermore, we assume that the spacetime’s metric is at

least C2 smooth and that it has a circular nature. These
assumptions lead to the emergence of a discrete symmetry
in the spacetime, represented by the transformation
ðt;φÞ → ð−t;−φÞ. This symmetry is a direct consequence
of the spacetime admitting a two-dimensional subspace that
is orthogonal to the vectors ∂t and ∂φ.
Since we are interested in the global properties of the

spacetime of a traversable interuniverse wormhole, it is
essential to choose a coordinate patch adequate to analyze
the entire manifold. Therefore, the coordinate ranges used
here are defined as follows:

t;l∈R; θ∈ ½0; π�; φ∈ ½0; 2π�: ð1Þ

This coordinate system is designed to cover the full extent
of the wormhole spacetime. It stretches from one asymp-
totic region, where l ¼ −∞ to the opposite asymptotic
region at l ¼ þ∞.
According to Ref. [68], a general class of stationary and

axisymmetric interuniverse wormholes, under the metric
assumptions described previously, can be given by

ds2 ¼ −Ñ ðl; θÞ2dt2 þ Bðl; θÞ2dl2

þ R̃ðl; θÞ2½dθ2 þ sin2θðdφ − ωðl; θÞdtÞ2�: ð2Þ

This metric is a generalization of rotating wormholes
described by Teo in Ref. [86].
Given our focus on null geodesics, which are invariant

under conformal transformations, we will henceforth use
the metric presented below

1The traversability condition means that massive and massless
particles can travel from one asymptotic region to the other
without encountering either event horizons or singularities.
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ds2 ¼ −N ðl; θÞ2dt2 þ dl2

þRðl; θÞ2½dθ2 þ sin2θðdφ − ωðl; θÞdtÞ2�; ð3Þ

where we have defined

N ≔
Ñ
B
; R ≔

R̃
B
: ð4Þ

The functions N and R are defined to be strictly positive.
Furthermore, the condition for asymptotic flatness pre-
scribes distinct asymptotic behaviors:

N ¼ 1þOð1=jljÞ; ð5Þ

R ¼ jljð1þOð1=jljÞÞ; ð6Þ

ω ¼ Oð1=jlj2Þ: ð7Þ

The asymptotic behavior of these functions, mainly RðlÞ,
will be important for further analysis in this paper.
Our analysis does not assume any reflection symmetry

along the radial coordinate (l → −l) or along the equa-
torial plane (θ → π − θ); thus, it is applicable to both
symmetric and asymmetric wormholes. Symmetric worm-
holes exhibit reflective symmetry concerning the throat,
which results in identical geometrical structures on either
side of the throat. In contrast, asymmetric wormholes do
not possess such reflective symmetry, leading to distinct
geometrical features on each side of the throat.

III. LIGHT RINGS AND TOPOLOGICAL CHARGE

Building on the wormhole spacetime discussed in the
preceding section, we now turn to the study of the null
geodesic flow, with a particular focus on the characteriza-
tion of LRs. These circular photon orbits, pivotal to
understanding the optical properties and stability of such
spacetimes, offer a window into the strong gravitational
regime near compact objects. Following the approach of
Refs. [27,39], we identify LRs as critical points of the
effective geodesic potentials H�ðl; θÞ, defined in the
orthogonal 2-space spanned by (l; θ). These potentials,
expressed in terms of the metric components, are

H�ðl; θÞ≡
gtφ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tφ − gttgφφ

q
gφφ

: ð8Þ

Therefore, a LR is obtained whenever ∂iHþ ¼ 0 or
∂iH− ¼ 0, or both conditions are met simultaneously,
where i ¼ l; θ. In general, the sign of the Hðl; θÞ potential
is associated with the rotation sense of the LR [27].
Itwas established inRefs. [27,39] that a topological charge

can be assigned to LRs by introducing a vector field v
constructed from the normalized gradient of the Hðl; θÞ�:

v ¼ ðvl; vθÞ ¼
�
∂lH�ffiffiffiffiffiffiffi
gll

p ;
∂θH�ffiffiffiffiffiffi
gθθ

p
�

¼
�
∂lH�;

∂θH�
R

�
: ð9Þ

Hence, LRs are characterized by the condition v ¼ 0.
To assign a topological charge to LRs, we first delineate

a contour, denoted as C, within the ðl; θÞ plane. This
contour is designed to be simple, closed, and piecewise
smooth. We also introduce an auxiliary two-dimensional
Cartesian space, represented by coordinates ðvl; vθÞ and
referred to as V. As we trace C in a positive direction—
meaning in a counterclockwise manner—it maps onto a
corresponding curve, C̃, within V. Due to the continuous
nature of C, the curve C̃ similarly forms a closed path in V.
When the curve C encloses a LR in the physical 2-space
ðl; θÞ, the loop C̃ circumscribes the origin v ¼ 0 in the
auxiliary space V.
In this auxiliary space V, the vector field v can be

expressed in polar coordinates:

vl ¼ v cosΩ; ð10Þ

vθ ¼ v sinΩ; ð11Þ

where v represents the magnitude of the vector field v, and
Ω denotes the angle that v makes with the vl axis.
By traversing a simple closed curve C that encircles a LR,

we can assign a topological charge wC to the LR based on
the total variation of the angle Ω:

I
C
dΩ ¼ 2πwC: ð12Þ

Each region bounded by the curve C contributes to the
topological charge wC, with its value increasing or decreas-
ing by precisely �1. This ensures that the topological
charge wC remains constant as long as the enclosed number
of LRs does not change. LRs with a topological charge of
wC ¼ −1 are saddle points of the potential and called
standard, while those with wC ¼ 1 are extrema of the
potential and called exotic. According to the theorem in
Refs. [27,39], the topological charge w derived from the
winding number is w ¼ 0 for UCOs with trivial topology
and w ¼ −1 for asymptotically flat, stationary and axisym-
metric BHs.
We selected a contour C such that the wormhole throat is

inside the subregion I enclosed by the curve C, as
illustrated in Fig. 1. The contour C is defined as

C ¼ ⋃
i¼4

i¼1

Ci; ð13Þ

with
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Ci ¼

8>>><
>>>:

i ¼ 1∶ l ¼ þR; δ ≤ θ ≤ π − δ;

i ¼ 2∶ θ ¼ π − δ;−R ≤ l ≤ R;

i ¼ 3∶ l ¼ −R; δ ≤ θ ≤ π − δ;

i ¼ 4∶ θ ¼ δ;−R ≤ l ≤ R;

ð14Þ

where R and δ are positive parameters that delimit
each path.
The topological charge wC can be computed, then, from

the sum of the integrals along each curve:

2πwC ¼
X4
i¼1

Ii; ð15Þ

where

I1 ¼
�Z

π−δ

δ

dΩ
dθ

dθ

�
r¼R

; ð16Þ

I2 ¼
�Z

−R

R

dΩ
dl

dl
�
θ¼π−δ

; ð17Þ

I3 ¼
�Z

δ

π−δ

dΩ
dθ

dθ

�
r¼−R

; ð18Þ

I4 ¼
�Z

R

−R

dΩ
dl

dl
�
θ¼δ

: ð19Þ

The total topological charge for the wormhole spacetime,
which connects two distinct universes, is derived by
evaluating these integrals at both the asymptotic boundaries
and the axis limits:

w ¼ lim
R→∞

ðlim
δ→0

wCÞ: ð20Þ

A. Axis limit

The axis of symmetry is defined as the set of points
where the Killing vector η vanishes, which implies
gφφ ¼ gtφ ¼ 0. In the axis limit, it is convenient to
introduce the coordinate ρ≡ ffiffiffiffiffiffiffigφφ

p . As was discussed in
Ref. [27], at this limit, one can consider a small ρ expansion
obtaining that the potential H� behave as

H� ∼�
ffiffiffiffiffiffiffiffi
−g0tt

p
ρ

; ð21Þ

with g0tt being the first term of the expansion of the metric
component gtt.
From Eq. (9) we can compute the θ component of the

vector field v, which will have the following behavior:

vθ∼ ∓ sign

�
dρ
dθ

�
1

ρ2
: ð22Þ

With this information, the angle Ω can be computed,
yielding

Ω ¼ arcsin

�
vθ
v

�����
0;π

→

� �π=2; for θ → π;

∓ π=2; for θ → 0:
ð23Þ

As in the BH case of Ref. [27], the angle Ω is constant
along the integration paths C2 and C4, which implies that
fI2; I4g have a null contribution to the topological
charge wC.

B. Asymptotic limits

Using the asymptotic limit of the metric components
given by Eqs. (5)–(7), we can infer the behavior of the
potential H� when R → ∞. At this limit, which corre-
sponds to l → �∞, we have

H�ðl; θÞ ∼
�� 1

l sin θ ; when l → þ∞;

∓ 1
l sin θ ; when l → −∞:

ð24Þ

Consequently, one can conclude that the radial compo-
nent of the vector v will have the following asymptotic
behavior:

vl ≃
�l → þ∞; ∓ 1

l2 sin θ ⇒ signðvlÞj∞ ¼∓ 1;

l → −∞; � 1
l2 sin θ ⇒ signðvlÞj∞ ¼ �1:

ð25Þ

From Eq. (25), it is possible to establish that the vector v
has a negative (positive) radial component along C1 for Hþ
(H−). As v approaches the intersection of the path C1 with
C2, the direction of the vector field continuously shifts from
inwards to upwards. Similarly, the direction of v changes
from inwards to downwards as the vector field approaches
the intersection of C1 with C4. This means that v winds in

FIG. 1. Diagram illustrating the integration contour C, boun-
dary of the region I , which spans across both sides of the
wormhole throat (l ¼ 0). The goal is to extend this integration
curve comprehensively throughout the entire spacetime after
taking the appropriate asymptotic limits.
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the negative direction along C1 when C is circulated in the
positive direction, resulting in half of a full winding.
Therefore,

Ω∞
θ¼π − Ω∞

θ¼0 ¼ −π: ð26Þ

A similar reasoning can be applied to the path C3, yielding

Ω−∞
θ¼0 −Ω−∞

θ¼π ¼ −π: ð27Þ

Hence, both asymptotic limits contributes by the same
amount to the total topological charge.

C. Total topological charge

Summing all the contributions in the appropriate limits,
we obtain that the total topological charge for a stationary,
axisymmetric, traversable and interuniverse wormhole is

w ¼ 1

2π
lim
R→∞

½lim
δ→0

ðI1 þ I2 þ I3 þ I4Þ� ¼ −1: ð28Þ

It is important to remark that since we do not assume any
evenness of the metric components with respect to the
throat, our result is valid either to symmetric or asymmetric
wormholes. Additionally, we note that the total topological
charge is not affected by a smooth deformation of the
throat. Therefore, our findings still hold even in cases of
wormholes featuring a deformed throat with multiple
bellies [87–89].
The observation that wormholes yield similar outcomes

to BHs suggests that they could potentially mimic some BH
phenomenology. The unique topological characteristics of
wormholes, however, may lead to observable signatures
that are absent in BHs cases [57,66,67].
Additionally, the finding that these wormholes will

always host at least one LR can be derived using the
optical metric approach, particularly in the context of static
and spherically symmetric cases, as detailed in Novo et al.
[36]. Further elaboration on this topic can be found in
Appendix A.
An illustration of the vector field v for some well-known

wormhole solutions is presented in Appendix B, where we
can see how this vector field changes around standard and
exotic LRs. We also show how the asymmetry with respect
to the throat can affect the LR position.

IV. LR AT THE THROAT OF THE WORMHOLE

It can be demonstrated that for symmetric wormholes, a
LR is always present at l ¼ 0, that is, at the wormhole’s
throat. This result is due to the symmetrical nature of the
geodesic potential HðlÞ,2 ensuring that its derivative is

equal to zero at the origin l ¼ 0. In the discussion that
follows, we provide a proof of this assertion.
Let HðlÞ be a continuous and differentiable even

function defined on the interval (−∞;þ∞). Since HðlÞ
is an even function, it satisfies the propertyHðlÞ ¼ Hð−lÞ
for all lwithin its domain. The even nature ofHðlÞ implies
that its derivative H0ðlÞ is an odd function, fulfilling the
condition H0ð−lÞ ¼ −H0ðlÞ. Consequently, at l ¼ 0, we
have

dH
dl

����
l¼0

¼ −
dH
dl

����
l¼0

: ð29Þ

Equation (29) holds true only if H0ð0Þ ¼ 0. Consequently,
HðlÞ has a critical point at l ¼ 0, the midpoint of the
interval (−∞;þ∞). From these observations, it follows
that for any stationary, axisymmetric, asymptotically flat
wormhole, symmetric with respect to the throat, there
always exists one LR located at the throat. A similar
conclusion for the static case has been previously discussed
in Ref. [84].
Based on the contrapositive of the previously stated

proposition, one can infer that a lack of a LR at the throat
suggests asymmetry in the wormhole’s structure relative to
the throat. However, it is essential to acknowledge that the
presence of a LR at the throat in asymmetric wormholes is
still possible; asymmetry does not necessarily prevent the
existence of a LR at the throat.
Employing a similar reasoning, it can be demonstrated

that in any stationary, axisymmetric single BH spacetime
with Z2 symmetry3 there is invariably a LR located on the
equatorial plane. This finding was recently demonstrated
in Ref. [32].

V. FINAL REMARKS

In order to test the Kerr hypothesis, several alternatives to
BH foils were proposed in the literature. The current and
future observational evidence from gravitational waves and
shadow images is expected to provide continuous data to
investigate the nature of astrophysical compact objects. It is
well understood that the shadow cast by astrophysical
compact objects, a key observable feature in these inves-
tigations, is intimately connected to the properties of LRs.
Given this intrinsic connection, our work generalized the

LR theorems of Ref. [39] to the case of UCOs with
nontrivial topology. By applying the technique developed
in Ref. [27] to a general class of interuniverses wormholes,
we demonstrated that these entities will always have at least
one standard LR.
We have also shown that wormholes symmetric con-

cerning the throat will always present a LR at the throat.
2In this section we omit the subscript � and the θ dependence,

since the following discussion will be valid for both potentials
H�, regardless of the value of θ.

3Spacetimes whose metric components are symmetric with
respect to the equatorial plane.
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This is a consequence of the even symmetry of the effective
null geodesic potential H�ðl; θÞ.
We would like to remark that although wormholes are in

the same topological class as BHs (concerning LR physics),
the former lacks a known dynamic formation mechanism.
Topological nontriviality requires new physics, since gravi-
tational collapse within GR is not expected to change the
topology of spacelike sections unless causality is vio-
lated [90].
Exploring intrauniverse wormholes, which could theo-

retically connect different locations within the same asymp-
totic region, presents an interesting and natural follow-up of
our work. However, the absence of exact solutions for such
objectsmarks a significant challenge.Although local physics
near the throat is independent of the topology of the
spacetime, which means that observers close to the throat
cannot distinguish if they are in an interuniverse or in an
intrauniverse wormhole, the multiconnectedness character-
istics of such geometry will have an impact on the global
properties of the spacetime. Therefore, the LR structure
could be different.
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APPENDIX A: LIGHT RINGS AND THE
OPTICAL METRIC

Recent studies have used the optical metric—a two-
dimensional Riemannian metric perceived by massless
particles—to investigate LRs in BH spacetimes [36,91].
These works effectively recover and extend the findings of
Refs. [27,39]. In this Appendix, we demonstrate that the
optical metric method is equally applicable to asymptoti-
cally flat, static, and spherically symmetric wormholes, as
described by the line element

ds2 ¼ −fðlÞdt2 þ hðlÞdl2 þRðlÞ2dΩ2; ðA1Þ

where dΩ2 denotes the metric on the unit 2-sphere, and the
functions fðlÞ, hðlÞ, andRðlÞ are guaranteed to be at least
C2 smooth.
From Eq. (A1), the optical metric is derived by setting

ds2 ¼ 0 and solving for dt, which yields

dt2 ¼ 1

fðlÞ ðhðlÞdl
2 þRðlÞ2dϕ2Þ: ðA2Þ

We restricted our analysis to the equatorial plane θ ¼ π=2,
without any loss of generality.
In this approach, LRs are identified as the roots of the

geodesic curvature κg of circular orbits:

κg ¼
ffiffiffiffiffiffiffiffiffiffi
hðlÞ
fðlÞ

s
ð2fðlÞR0ðlÞ −RðlÞf0ðlÞÞ

2RðlÞ : ðA3Þ

Given that LRs satisfy κg ¼ 0, the number of LRs can be
determined by examining the asymptotic behavior of
Eq. (A3). The condition of asymptotic flatness (6) implies:

lim
l→�∞

κgðlÞ ¼ lim
l→�∞

R0ðlÞ
RðlÞ ∼

�− 1
l as l → −∞;

1
l as l → þ∞;

ðA4Þ

indicating that κg approaches zero asymptotically from
positive (negative) values, as l goes to þ∞ (−∞). This
follows directly from Eq. (6).
The intermediate value theorem asserts that if a con-

tinuous function changes sign over an interval ½a; b�, there
must be at least one point within that interval where the
function vanishes. Applying this principle, the sign change
of the geodesic curvature κgðlÞ from negative to positive, as
lmoves from −∞ toþ∞, requires that κgðlÞ intersects the
l-axis at least once, indicating the presence of an odd
number of LRs.
It is important to note that this analysis does not rely on

any symmetry regarding the wormhole’s throat, making the
result applicable across a wide range of wormhole geom-
etries, whether symmetric or asymmetric.

APPENDIX B: VECTOR FIELD OF
TRAVERSABLE WORMHOLES

In this Appendix, we exhibit the behavior of the vector
field v for two different wormhole solutions. The chosen
solutions exemplify spacetimes that are symmetric or
asymmetric with respect to the throat. The symmetric case
presents multiple LRs, and the total topological charge does
not change.

1. Symmetric wormhole: Simpson-Visser wormhole

The Simpson-Visser solution [56] is a static and spheri-
cally symmetric spacetime given by Eq. (A1), where the
metric functions are
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fðlÞ ¼ hðlÞ−1 ¼
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ a2

p
�
; ðB1Þ

RðlÞ2 ¼ l2 þ a2: ðB2Þ

When a > 2M, we have a traversable symmetric worm-
hole geometry. The effective geodesic potentials H�ðl; θÞ
for this spacetime are given by

H�ðl; θÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − 2Mffiffiffiffiffiffiffiffiffiffi

l2þa2
p

�
ðl2 þ a2Þ

s

ða2 þ l2Þ sin θ ; ðB3Þ

and the components of the vector field v are

vl ¼∓ l csc θð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ l2

p
− 3MÞ

ða2 þ l2Þ2 ; ðB4Þ

vθ ¼∓ cot θ csc θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Mffiffiffiffiffiffiffiffiffiffi

l2þa2
pq

ða2 þ l2Þ3=2 : ðB5Þ

Depending of the value of parameter a, this geometry can
present more than one LR. For instance, Fig. 2 exhibit the
case for a ¼ 2.5M, where we notice the presence of two
unstable LRs on each side of the throat and one stable LR at
the throat. Note that the behavior of the vector field around
the stable LR changes, indicating that this LR has a
different value of topological charge (wstable LR ¼ þ1).
Nevertheless, the total topological charge of the spacetime
remains unchanged.
The impact of the LR structure of the Simpson-Visser

wormhole on the ringdown signal was investigated in
Ref. [92], were a different radial coordinate from the
one used in Eq. (A1) is adopted, covering only one side
of the wormhole’s throat.

2. Asymmetric wormhole: Ellis-Bronnikov wormhole

The Ellis-Bronnikov spacetime is a static and spherically
symmetric solution of GR coupled to a free phantom scalar
field [72,93,94]. The metric functions are

fðlÞ ¼ hðlÞ−1 ¼ e−
M
qΦðlÞ; RðlÞ2 ¼ l2 þ q2 −M2

hðlÞ ;

ðB6Þ

ΦðlÞ ¼ 2qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 −M2

p arctan

�
lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 −M2
p �

: ðB7Þ

This solution is described by two parameters: the mass M
and the scalar charge q. WhenM ¼ 0, the solution reduces
to the well-known Ellis wormhole [95]. For M ≠ 0, the

Ellis-Bronnikov solution describes an asymmetric worm-
hole spacetime, which is our focus here.
The effective geodesic potentials H�ðl; θÞ for this

geometry are given by

H�ðl; θÞ ¼ � hðlÞ
sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ q2 −M2

p ; ðB8Þ

and the components of the vector field v for the
Ellis-Bronnikov wormhole are

FIG. 2. Vector field v for the Simpson-Visser wormhole with
a ¼ 2.5M. The red dots represent the locations of the LRs.

FIG. 3. Vector field v for the Ellis-Bronnikov wormhole with
q ¼ 4.4M. The red dot shows the location of the LR.

TRAVERSABLE WORMHOLES AND LIGHT RINGS PHYS. REV. D 109, 124065 (2024)

124065-7



vl ¼∓ csc θð2mþ lÞ ffiffiffiffiffiffiffiffiffiffi
hðlÞp

ðl2 þ q2 −m2Þ3=2 ; ðB9Þ

vθ ¼∓ cot θ csc θð2mþ lÞ ffiffiffiffiffiffiffiffiffiffi
hðlÞp

ðl2 þ q2 −m2Þ3=2 : ðB10Þ

From Fig. 3, we observe the presence of only one
unstable LR, which lies outside the throat in one of the
universes. This happens due to the asymmetry nature of the
Ellis-Bronnikov spacetime.

[1] B. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GWTC-1: A gravitational-wave transient catalog of com-
pact binary mergers observed by LIGO and Virgo during the
first and second observing runs, Phys. Rev. X 9, 031040
(2019).

[2] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GWTC-2: Compact binary coalescences observed by LIGO
and Virgo during the first half of the third observing run,
Phys. Rev. X 11, 021053 (2021).

[3] R. Abbott et al. (KAGRA, VIRGO, and LIGO Scientific
Collaborations), GWTC-3: Compact binary coalescences
observed by LIGO and Virgo during the second part of the
third observing run, Phys. Rev. X 13, 041039 (2023).

[4] The Event Horizon Telescope Collaboration, First M87
event horizon telescope results. I. The shadow of the super-
massive black hole, Astrophys. J. Lett. 875, L1 (2019).

[5] The Event Horizon Telescope Collaboration, First Sagit-
tarius A� Event Horizon Telescope results. I. The shadow of
the supermassive black hole in the center of the Milky Way,
Astrophys. J. Lett. 930, L12 (2022).

[6] C. A. R. Herdeiro, Black holes: On the universality of the
Kerr hypothesis, Lect. Notes Phys. 1017, 315 (2023).

[7] B. Carter, Axisymmetric black hole has only two degrees of
freedom, Phys. Rev. Lett. 26, 331 (1971).

[8] D. C. Robinson, Uniqueness of the Kerr black hole, Phys.
Rev. Lett. 34, 905 (1975).

[9] S. Chandrasekhar, Shakespeare, Newton, and Beethoven:
Or, Patterns of Creativity (University of Chicago, Center for
Policy Study, 1975).

[10] S. D. Mathur, The information paradox: A Pedagogical
introduction, Classical Quantum Gravity 26, 224001 (2009).

[11] E. Maggio, P. Pani, and G. Raposo, Testing the nature of dark
compact objectswith gravitationalwaves, arXiv:2105.06410.

[12] R. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Properties and astrophysical implications of the 150M⊙
binary black hole merger GW190521, Astrophys. J. Lett.
900, L13 (2020).

[13] J. Calderón Bustillo, N. Sanchis-Gual, A. Torres-Forné,
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