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In this study, we develop a numerical method to generate images on an observer’s screen, formed by
radiation from hot spots on any timelike orbits outside a black hole. This method uses the calculation of
fractional numbers, enabling us not only to produce the overall image but also to distinguish between
primary, secondary, and higher-order images. Building upon this, we compute the images of hot spots from
eight potential types of geodesic timelike orbits outside a Kerr black hole, summarizing the properties of
both the overall and individual order images. Furthermore, we calculate the centroid motion and light
curve. Notably, we observe flare phenomena across all orbit types and classify these flares into three
categories based on the Doppler and gravitational redshift effects.
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I. INTRODUCTION

In recent years, there has been a growing body of
observational evidence for the existence of supermassive
black holes at the centers of galaxies. Apart from the black
hole image captured by the Event Horizon Telescope
(EHT) collaboration [1,2], the GRAVITY collaboration
has reported intriguing near-infrared flare events originat-
ing from near the horizon of the black hole Sgr A* at the
center of the MilkyWay [3,4]. While extensive research has
been conducted on the black hole image, as referenced in
[5–11], our current work will focus on these flare events.
Bright flaring from accreting black holes can be

observed across all wavelengths, yet the mechanism driving
near-infrared flares from the accretion onto Sgr A* remains
a significant point of contention [12]. The source of these
flares is commonly linked to the acceleration of electrons
in a localized flaring area that is no larger than a few
gravitational radii, rather than a universal increase in the
accretion rate or jet power [13]. There are four main
methods to study sources that can produce near-infrared
flares: (1) applying general relativistic magnetohydrody-
namic simulations to a confined area around the black hole
[12,14–18], (2) using semianalytic models to analyze the
spectral energy distribution and multiwavelength variabil-
ity of Sgr A* [19–22], (3) running particle-in-cell (PIC)

simulations on a small portion of the accretion flow
[23–27], and (4) performing calculations on hot spots
orbiting the central black hole [28–37].
Each of the methods mentioned above has its strengths

and weaknesses. The first method excels in simulating fluid
dynamics around a black hole, but it is computationally
demanding and its results do not coincide with observa-
tional data. The second method aligns with observational
results, but it does not adequately explain the cause of
flares and the distribution of matter around the black hole.
The third method is superior in understanding the micro-
physical properties of the accretion flow, but its high
computational cost and limited calculation area pose
challenges for studying sources of realistic sizes. The
fourth method, although deemed unable to explain the
flare-causing mechanism or the microphysical properties of
the accretion flow, has a smaller computational cost. This
allows for the study of different black hole parameters and
hot spot orbits, theoretically enhancing our understanding
of flares [38–40]. In previous studies using the fourth
method, semianalytical hot spot imaging models were
commonly employed. These models typically use numeri-
cal methods to calculate photon orbit trajectories, but often
confine the timelike orbits of hot spot motion to analyti-
cally solvable, essentially circular, equatorial orbits. Recog-
nizing that there is no inherent necessity for hot spots to
remain on the equatorial plane, a significant advancement*Corresponding author: minyongguo@bnu.edu.cn
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was made in [41]. The introduction of the NERO code
signified a development in computing images for any
particle orbits outside a Kerr black hole, not just equatorial
circular ones. Furthermore, they took into account flares
produced by hot spots maintaining a constant vertical
component.
Inspired by this pioneering work and in view of a recent

classification of Kerr timelike geodesics [42], we aim to
develop a numerical method capable of calculating images
for any timelike orbits in this work. We intend to compute
the images of all possible timelike hot spots outside a Kerr
black hole. Specifically, we differentiate primary images,
secondary images, and higher-order images by calculating
the fractional number. We not only analyze the centroid
motion of the complete image but also study the character-
istics of different order images. We also calculate the light
curve to investigate the properties of flares. Particularly,
we note that the intensity of the hot spot image is mainly
determined by the motion state of the hot spot and
gravitational redshift, i.e., the Doppler effect and gravita-
tional redshift jointly dominate the intensity. By analyzing,
we ascertain how the Doppler effect and gravitational
redshift play roles when each type of orbit generates a flare.
The structure of this paper is as follows. In Sec. II, we

revisit the classification of timelike geodesics for a Kerr
black hole. Section III introduces the hot spot model and
imaging methods we employ. In Sec. IV, we apply the
model from Sec. III to generate images from various
viewing angles, demonstrating results for all orbit types.
We wrap up with a summary of our results in Sec. V.
Throughout this paper, we use the geometrized unit system
where G ¼ c ¼ 1.

II. REVIEW ON CLASSIFICATION OF RADIAL
KERR GEODESIC MOTION

In this section, we aim to review the classification of
radial Kerr geodesic motion as developed in the paper [42].
The line element of the Kerr metric in Boyer-Lindquist
(BL) coordinates is presented in the following form:

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ
�
r2 þ a2 þ 2Mra2

Σ
sin2θ

�
dϕ2

−
4Mra
Σ

sin2θdtdϕ; ð2:1Þ

where

Δ ¼ r2 − 2Mrþ a2; Σ ¼ r2 þ a2cos2θ: ð2:2Þ

From this point forward, for convenience and without loss
of generality, we setM ¼ 1. The outer event horizon of the
black hole can then be expressed as

rþ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
; ð2:3Þ

which represents the larger root of the equation Δ ¼ 0.
The timelike geodesic equations in Kerr spacetime can

be fully integrated due to the presence of four conserved
quantities along the trajectory of a particle. These quan-
tities include the mass1 μ2 ¼ −gμνpμpν ¼ 1, the energy
E ¼ −u · ∂t, the angular momentum L ¼ u · ∂ϕ, and the
Carter constant Q. By utilizing these conserved quantities,
the equations of motion can be expressed as follows [43]:

ur ¼ �r
1

Σ
ffiffiffiffiffiffiffiffiffiffi
RðrÞ

p
;

uθ ¼ �θ
1

Σ
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
;

uϕ ¼ 1

Σ

�
a
Δ
�
Eðr2 þ a2Þ − aL

�þ L
sin2θ

− aE

�
;

ut ¼ 1

Σ

�
r2 þ a2

Δ
�
Eðr2 þ a2Þ − aL

�þ aðL − aEsin2θÞ
�
;

ð2:4Þ

where

RðrÞ ¼ ½Eðr2 þ a2Þ − aL�2 − Δ½Qþ ðL − aEÞ2 þ r2�;
ð2:5Þ

ΘðθÞ ¼ Qþ a2ðE2 − 1Þcos2θ − L2cot2θ ð2:6Þ

are the radial and angular potentials, respectively, with �r
and �θ denoting the signs of the radial and polar motions.
The classification of timelike geodesics is based on the
root structure of the radial potential RðrÞ. We label the
out-of-horizon roots of RðrÞ as r1, r2, and r3, where
rþ ≤ r1 < r2 < r3. Furthermore, we adopt the notations
from [42]: The symbols j;þ;−; andi denote the outer
horizon rþ, a region where motion is permitted [RðrÞ > 0],
a region where motion is disallowed [RðrÞ < 0] and the
radial infinity. The symbols , , , and used to
represent a single root, a double root, a triple root, and a
root at the outer horizon, respectively.
As indicated in [42], timelike geodesics in the Kerr

exterior are categorized into eight classes with E ≥ 0, as
outlined in Table I. This table can be understood as follows:
the first column represents the types of orbits, which
include plunging orbits P, deflecting orbits D, trapped
orbits T , bounded orbits B, spherical orbits S, homoclinic
orbits H, whirling deflecting orbits WD, and whirling
trapped orbits WT . Specifically, plunging orbits refer to
particles that either plunge into the black hole from infinity

1For the sake of simplifying calculations, we can assume the
mass of the timelike object to be unity, without sacrificing
generality.
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or are emitted near the black hole and fly off to infinity.
Deflecting orbits describe particles that originate from
infinity, reach a turning point, and then rebound back to
infinity. Trapped orbits represent particles that are emitted
near the black hole, reach a turning point at a finite radius,
and subsequently plunge into the black hole. Bounded
orbits refer to particles that oscillate between two radial
turning points. Furthermore, in spherical orbits, a particle
maintains a constant orbital radius r. In homoclinic orbits,
a particle originates from an unstable spherical orbit,
bounces off a turning point, and then approaches the
original unstable spherical orbit again. Whirling deflecting
particles originate from an unstable spherical orbit and fly
off to infinity, or alternatively, they come from infinity
and approach an unstable spherical orbit. Lastly, whirling
trapped particles either emit outward near the black
hole, asymptotically approaching a spherical orbit, or they
originate from a spherical orbit before plunging into the
black hole.
The second column of Table I is relatively easy to

comprehend, as it denotes the range of the corresponding
orbits in the radial coordinate. The third column, on the
other hand, may be slightly confusing. It represents the
complete root structure of the radial function RðrÞ ¼ 0,
corresponding to the orbits outside the horizon. In other
words, the range of the corresponding orbits in the radial
coordinate is a subinterval of the root structure. Other
intervals of the root structure may correspond to different
types of timelike orbits. The fourth column is also easy to

understand; it represents the range of energy that particles
on the orbit can carry. The fifth column N indicates the
number of freely selectable values among the three con-
served quantities E, L, and Q for particles on the corre-
sponding orbit. Given that the expression forRðrÞ includes
the three variable parameters E, Q, and L, aside from r,
these parameters can be freely chosen within permissible
ranges when there are no specific restrictions on the roots of
RðrÞ, leading to three degrees of freedom.2 However, when
the requirement is forRðrÞ ¼ 0 to have a double root r⋆ or
a root at r ¼ rþ, satisfying R0ðr⋆Þ ¼ 0 or RðrþÞ ¼ 0
would impose a constraint, reducing the number of freely
selectable parameters to 2. When RðrÞ ¼ 0 has a triple
root, or a double root with another root precisely on the
horizon, the number of free parameters becomes 1.
Specifically, orbits with N ¼ 3 are referred to as generic
orbits in [42], while those with N ¼ 2 and N ¼ 1 are
respectively termed codimension 1 and codimension 2
orbits. We would like to emphasize that the values of
the free parameters are not arbitrary. For a specific type of
orbit, they must fall within a certain range. While the
expressions that describe these ranges are quite complex,
we will only provide the formulas for some key para-
meters immediately. For a more detailed understanding,

TABLE I. Classification of timelike geodesics in the Kerr exterior.

Type Radial range Root structure Energy range N (of free parameters)

P rþ ≤ r < ∞ jþi E ≥ 1 3
D r2 ≤ r < ∞ E ≥ 1 3

E ≥ 1 2
T rþ ≤ r ≤ r1 0 ≤ E < 1 3

EISCOþ < E < 1 3
E ≥ 1 3

EISCOþ < E < 1 2
B r2 ≤ r ≤ r3 EISCOþ < E < 1 3

Ec < E < 1 2
S r ¼ r1 ¼ r2 EISCOþ < E < 1 2

E ≥ 1 2
r ¼ r2 ¼ r3 EISCOþ < E < 1 2

Ec ≤ E < 1 1
r ¼ r1 ¼ r2 ¼ r3 EISCOþ < E < EISCO− 1

H r1 < r ≤ r2 EISCOþ < E < 1 2
WD r1 < r < ∞ E ≥ 1 2
WT rþ ≤ r < r1 EISCOþ < E < 1 2

E ≥ 1 2

EISCOþ < E < EISCO− 1

2For a specific black hole, the spin parameter a is fixed.
Furthermore, we have set the mass μ ¼ 1. If we retain μ in the
calculations, the free parameters should be scaled as E=μ, L=μ,
and Q=μ2, which is equivalent to choosing μ ¼ 1.
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interested readers are encouraged to refer to [42] for more
information.
For the double root r⋆, the conditions Rðr⋆Þ ¼

R0ðr⋆Þ ¼ 0 hold true. By manipulating these equations,
we can also express Q and L as functions of r⋆ and E,

Q⋆ ¼ r2⋆
a2ðr⋆ − 1Þ2

	
−r3⋆ þ 3r2⋆ þ ða2 − 4Þr⋆ þ a2

þ r⋆ð1 − E2Þ
r3⋆ − 4r2⋆ þ 5r⋆ − 2a2
�

þ 2EΔðr⋆Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r⋆ð1þ ðE2 − 1Þr⋆Þ

q �
; ð2:7Þ

L⋆ ¼ Eðr2⋆ − a2Þ − Δðr⋆Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r⋆ð1þ ðE2 − 1Þr⋆Þ

p
aðr⋆ − 1Þ : ð2:8Þ

Take note that in this case r⋆ is not fixed and has a lower
limit, which is its minimum value. When r⋆ reaches this
minimum, the corresponding expression for energy Ec can
be represented as follows:

Ec ¼
rþ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ − 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ


rþ þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ − 1

p þ 2
�q : ð2:9Þ

On the other hand, if the orbit r ¼ r⋆ is confined to the
equatorial plane, we have Q⋆ ¼ 0. In this case, the particle
follows a circular trajectory. The corresponding energy can
be calculated and expressed as

E�ðr⋆Þ ¼
r⋆ðr⋆ − 2Þ � ar1=2⋆ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3⋆ðr⋆ − 3Þ � 2ar5=2⋆

q ; ð2:10Þ

where the symbols � represent whether the particle is
moving in a prograde or retrograde direction. If we further
require the particle to move in the innermost stable circular
orbit (ISCO), i.e., where R00ðrÞ ¼ 0 is satisfied, then the
radius of the ISCO can be determined as

rISCO� ¼ 3þ Z2 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
; ð2:11Þ

where

Z1 ¼ 1þ ð1 − a2Þ1=3½ð1þ aÞ1=3 þ ð1 − aÞ1=3�;
Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ Z2

1

q
: ð2:12Þ

Similarly, the symbols � here represent prograde and
retrograde motion, respectively. Consequently, the energy
for the corresponding prograde and retrograde orbits is
given by

EISCOþ ¼ EþðrISCOþÞ; ð2:13Þ

EISCO− ¼ E−ðrISCO−Þ: ð2:14Þ

By now, we have provided clear explanations for all the
parameters mentioned in Table I. One should have a
sufficient understanding of the orbit classifications and
the corresponding energy conditions outlined in the Table.
We will also provide examples of each class later in Sec. IV.

III. HOT SPOT MODEL AND IMAGING
METHOD

In this section, we introduce our hot spot model and the
associated imaging method. Our work primarily focuses on
the kinematic flare phenomena brought about by gravita-
tional redshift (blueshift) and Doppler shift. As such, we
dismiss relativistic magnetohydrodynamic effects. We re-
present the hot spot as an opaque object traversing various
types of geodesic paths outside a Kerr black hole. For ease
of computation, we model the shape of the hot spot as a
sphere with a small, fixed radius b in the BL coordinates.
Since the minimum event horizon radius of the Kerr black
hole can be 1, the size of the hot spot should be smaller than
the scale of the black hole’s event horizon. Therefore, for
convenience, we will designate b ¼ 0.25. We do not aim to
investigate the influence of the radiation mechanism on
imaging and flares. Therefore, our model does not account
for the detailed radiation spectrum of the hot spot’s
emission. We thus assume that the hot spot’s emission is
isotropic and frequency independent, implying a broadband
source with a flat spectrum.
To image the moving hot spot, we need to understand

both the trajectory of the light source and the radiation
transfer from the source. We determine the trajectory of
the source by numerically solving the geodesic equation in
the Hamilton-Jacobi form. For the radiation transfer, we
employ the numerical backward ray-tracing method and the
fisheye camera mode for imaging. The specific technical
details can be found in Appendix B of [44]. The camera is
set as a zero-angular-momentum observer, whose tetrads
take the following form:

êð0Þ ¼
gϕϕ∂t − gϕt∂ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕ


g2ϕt − gϕϕgtt

�q ; êð1Þ ¼ −
∂rffiffiffiffiffiffi
grr

p ;

êð2Þ ¼
∂θffiffiffiffiffiffi
gθθ

p ; êð3Þ ¼ −
∂ϕffiffiffiffiffiffiffigϕϕ

p : ð3:1Þ

We consider that the intensity of light emitted from
the source and reaching the observer is not absorbed by the
medium during its journey. The intensity divided by the
frequency cubed, denoted as Iν=ν3, is conserved along a
light ray [45]. Thus, the observed and emitted specific
intensities Iνo and Iνs are related by radiative transport as

Iνo
ν3o

¼ Iνs
ν3s

; ð3:2Þ
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where νo ¼ −kμê
μ
ð0Þ0 is the observed frequency on the

screen, with kμ representing the four-momentum of the
photon. Meanwhile, νs ¼ −kμuμ is the frequency measured
by an observer comoving with the source. After introducing
the redshift factor g ¼ νo=νs, Eq. (3.2) can be rewritten as

Iνo ¼ g3Iνs : ð3:3Þ

Note that in our hot spot model, Iνs is a constant. Therefore,
the observed intensity is solely dependent on the redshift
factor, g.
It is important to highlight a subtle issue that arises when

handling the imaging of a moving hot spot. The light that is
emitted from the hot spot and reaches the observer is not an
instant reflection of the hot spot’s position. Given that the
hot spot is in motion, it will have moved to a new location
by the time the light reaches the observer, resulting in a
delayed image. Given the substantial distance between the
observer and the hot spot, this time delay is significant
and cannot be overlooked. To tackle this issue, we have
implemented a specific strategy, illustrated in Fig. 1, which
is consistent with the one presented in the paper [41].
Let S represent the starting point of the hot spot and O
denote the observer. As the hot spot moves to point A and
intersects with the photon traced backward from the
observer, we define the coordinate time for the hot spot’s
journey from S to A as ths, and the coordinate time for the
photon’s journey from O to A as tph, all within the
BL coordinate system. The total time of interest to us is
simply the sum of these two times, ths þ tph. It is crucial
to note that we assume the observer’s proper time is
equivalent to the coordinate time, rendering this method
effective only for observers sufficiently distant from the
black hole.
In addition, due to the strong gravitational lensing effects

caused by black holes, the imaging of the hot spot yields
not just a primary image, but also secondary and higher-
order images. As a result, it becomes necessary for us to
distinguish between these different levels of images. To
achieve this, we employ a specific method that involves
calculating two angular integrals over the entire light path,
stretching from the hot spot to the observer. The definitions
of these integrals are

Gθ ¼
Z
�

θo

θs

1

�θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ; Ĝθ ¼

Z
θþ

θ−

1ffiffiffiffi
Θ

p dθ: ð3:4Þ

The integral symbol
R� denotes the integration along the

trajectory of a photon trajectory, while θo and θs are the
angular coordinates of the observer and the hot spot,
respectively. Furthermore, θ� represents the larger and
smaller angular turning points, respectively. Next, we
calculate the fractional number n using the formula

n ¼ Gθ

2Ĝθ

: ð3:5Þ

When n ≤ 1=2, it corresponds to the primary image. If
1=2 < n ≤ 1, it corresponds to the secondary image, and
for n > 1, it corresponds to higher-order images.
Furthermore, despite the assumption that the emission

rate of the hot spot is constant within its local coordinate
system, due to gravitational redshift (blueshift) and the
Doppler effect, the intensity of the image seen by the
observer varies at different times. To present the images
more effectively, we utilize the definition of T as pro-
posed in [46]:

T ¼
�
log2

�
1þ Imax

o

Io

��
−1
; ð3:6Þ

This definition is based on the expression for the brightness
temperature [47]. Here, Imax

o is defined as the maximum
value of Io, ensuring that T ranges between 0 and 1.
Additionally, at each moment, we can compute the centroid
position x⃗c of the flux across the camera plane. Given the
definition of the camera we have adopted [44], the flux
Fði; jÞ of pixels ði; jÞ observed at the screen can be
calculated by

Fði; jÞ ¼ IoS0 cos

"
2 arctan

 
1

N
tan

�
αfov
2

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
i −

N þ 1

2

�
2

þ
�
j −

N þ 1

2

�
2

s !#
; ð3:7Þ

where S0 is the pixel size, N is the number of horizontal or
vertical pixels, i and j are chosen in a range from 1 to N,
and αfov is the camera’s field of view. Once we have this
information, the centroid position for each image can be
calculated using the formula

x⃗cðtÞ ¼
P

i;j x⃗ði; jÞFði; jÞP
i;j Fði; jÞ

; ð3:8Þ

where x⃗ði; jÞ represent the coordinates of pixel ði; jÞ, and
the total flux of the snapshot, denoted as

P
i;j Fði; jÞ can be

regarded as the flux for x⃗cðtÞ. The images we obtained of

FIG. 1. A diagram to illustrate the method to calculate the time.
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the moving hot spot are a series of snapshots. To conven-
iently identify the brighter snapshots, i.e., flares, we
introduce the rescaled flux of x⃗cðtÞ as

F̄ðx⃗cÞ ¼
P

i;j Fði; jÞ�P
i;j Fði; jÞ

�
max

: ð3:9Þ

In the context of our model and the methodology we have
implemented, we ultimately determine the time evolution
of both the centroid position and its corresponding flux.

IV. RESULTS

In this section, we will display images of a hot spot
orbiting around the Kerr black hole with a ¼ 0.94, utilizing
the orbit classifications discussed in the previous section.
Considering that the black hole (BH) is located a significant
distance from us in the Universe, we set ro ¼ 300 ≫ rþ in
our numerical calculations. We are specifically examining
two scenarios for observational angles: one with θo ¼ 25°
and another with θo ¼ 80°. Initially, we will investigate the
characteristics of hot spot imaging at the observational
angle of θo ¼ 25°. Afterwards, wewill shift our focus to the
observations made at θo ¼ 80°. In the following calcula-
tions, we set the azimuthal angle ϕo ¼ 0°.
For simplicity, we standardize the initial position to

ðts; θs;ϕsÞ ¼ ð0; 60°; 0Þ when selecting parameters for
each orbit type. In addition, we use rs to signify the radial
coordinate at which the hot spot commences, and its selec-
tion must adhere to the radial range specified for the
corresponding orbit in Table I. Suitable values for rs for
each type of orbit are given in Table II. We opt for θs ¼ 60°
because our established observation angles fall below 60°
and above 80°. As a result, at the initial moment, the images
of the hot spot will manifest in the northern and southern
hemispheres of the image plane, respectively, providing
a highly representative view. Additionally, we set ϕs ¼
ϕo ¼ 0° to position the hot spot between the observer and
the black hole at the onset. We must underscore that
different types of orbits often correspond to more than a
single root structure. Indeed, as illustrated in Table I, only
the P,H, andWD orbits are associated with a singular root

structure, while all other orbit types are not. However, as
presented in Table II, for each orbit type, we have
selectively chosen one parameter set for in-depth study.
Our strategy for selecting parameters involves opting for
the scenario where N is the largest for a given orbit type.
This is because scenarios with smaller N values corre-
spond to orbits with repeated roots or roots that fall on the
horizon in a peculiar manner. Conversely, scenarios with
the largest N correspond to more common orbits.
Additionally, for the T , S, and WT orbits, the root
structure is still not unique when N is at its maximum.
For the T orbit, given that its characteristic is being
confined between rþ and r1, we would like to choose
orbits with E < 1. Considering that the
orbit requires more stringent energy conditions than the

orbit, we opt for the latter. For the S orbit, we
naturally desire this orbit to be a stable one, so we select the

orbit. For the WT orbit, similar to the T
orbit and considering that this orbit is confined between
rþ and r1, we choose the case with E < 1, i.e., the

orbit. In summary, the eight types of orbits
we select can be divided into two categories based on the
value of N . The first category includes P, D, T , and B
orbits, where N ¼ 3. The second category includes S, H,
WD, and WT orbits, with N ¼ 2. For orbits that can
extend to infinite distance, such as P, D, WD, we set the
energy E ¼ 1.2 for these specific orbit types. For all other
orbit types, we fix the energy at E ¼ 0.95. Additional
specific parameters can be referenced in Table II. Notably,
within the “Root structure” column, regions of the orbit’s
existence are marked in blue. In the “Root” column, the
black and blue designations align with those in the root
structure column.

A. N = 3

In this subsection, we aim to investigate the imaging
characteristics of orbits where N ¼ 3.

1. Plunging orbits

We initiate our study with plunging orbits, denoted as P.
In Fig. 2, the upper panel displays the trajectory and image

TABLE II. Parameters of different types of timelike geodesics.

Type E L Q rs Root structure Root

P 1.2 1 12 40 jþi n
D 1.2 3 5 40 1.38, 2.38
T 0.95 −1 5 15 17.51
B 0.95 2 5 14 1.53, 3.66, 14.78
S 0.95 −0.743 12.82 8 4.07, 8, 8
H 0.95 0.172 11.86 4.05 4, 4, 11.95
WD 1.2 −4.035 22.47 4.01 4, 4
WT 0.95 −1.256 12.10 5.99 6, 6, 8.14
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of a plunging orbit, while the lower panel illustrates the
centroid motion and the light curve for a plunging particle.
This scenario represents a particle plunging into the
black hole from infinity, observed at an inclination angle
of θo ¼ 25°.
In the left plot of the upper panel of Fig. 2, we observe a

hot spot beginning its journey from a position distant from
the black hole and spiraling towards it. Initially, when the
hot spot is still far from the black hole, its orbital speed is
relatively slow. However, as it gets closer to the black hole,
its rotational speed dramatically increases. The correspond-
ing image of this orbit is illustrated in the middle plot of
the upper panel. The primary image, represented by the
red line, shows the hot spot entering from the southern
hemisphere, spiraling, and eventually plunging into the
black hole. Additionally, the secondary image, marked by
the blue line, is distinctly visible in the northern hemi-
sphere, while the higher order images, indicated by the

orange line, are barely noticeable around the shadow
curve. The corresponding intensities of these images are
displayed in the right plot of the upper panel. For the
primary image, we note that as the hot spot moves away
from the observer and towards the black hole, its speed
increases due to the black hole’s gravitational attraction.
Consequently, the brightness of the hot spot’s image
gradually decreases due to the Doppler redshift effect.
As it nears the black hole, the brightness of the spiraling
image also decreases due to the strong gravitational redshift
effect. In contrast, for the secondary image, the light is
emitted in a direction roughly parallel to the hot spot’s
motion as it moves away from the observer and approaches
very close to the black hole. After circumnavigating the
black hole due to the gravitational lensing effect, the light
finally reaches the observer. This scenario, due to the
Doppler blueshift effect, results in regions of significantly
enhanced brightness.

FIG. 2. The upper row presents the trajectory and image of a plunging orbit, while the lower row illustrates the centroid motion and the
light curve of the plunging particle. On the upper row, from left to right, we display the following. Left: the trajectory in 3D Cartesian
coordinates, defined as x ¼ r sin θ cosϕ, y ¼ r sin θ sinϕ, z ¼ r cos θ. The red dot represents the starting point of the trajectory. Middle:
the image of the hot spot as observed by an observer. In this representation, the direct, second, and higher order images are color coded as
red, blue, and orange, respectively. Right: the intensity map of the image, which offers a visualization of the distribution of light intensity
across the image. For the lower row: Left: the panel depicts the motion of the emission centroid. The accompanying color bar indicates
the time progression in units of minutes. The time interval between two adjacent dots in the diagram is ten minutes and the first dot is
0 min. Right: the panel presents the flux evolution corresponding to the motion, providing a visual representation of how the rescaled
flux changes over time.
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In the lower panel of Fig. 2, we observe that the
trajectory of the hot spot persists for more than 40 minutes
on the observer’s screen. In the initial phase, when the hot
spot is positioned far from the black hole, the centroid is
predominantly determined by the primary image. How-
ever, as the hot spot approaches the black hole, roughly
20 minutes into the observation, both the primary and
secondary images contribute to determining the centroid.
At approximately 28 minutes, there is a noticeable flare,
characterized by a sudden surge in the rescaled flux.
Comparing this with the results from the upper panel,
we can ascertain that this flare is triggered by the Doppler
blueshift of the secondary image. Note that although the
hot spot emits the light forming the flare right at the onset of
its motion, due to the lensing effect, a substantial delay
occurs before the flare manifests on the screen. For ease of
reference, we term this type of flare as a “lensed Doppler
blueshift flare” (LDBF).

2. Deflecting orbits

Next, we turn our attention to the study of deflecting
orbits, denoted as D. In Fig. 3, similar to Fig. 2, the upper

row displays the trajectory and image of a deflecting hot
spot. The lower row, on the other hand, delineates the
motion of the emission centroid and its associated light
curve for the deflecting orbit. The observation is made at an
inclination angle of θo ¼ 25°.
From Fig. 3, it is observed that the hot spot initiates its

journey from a position far from the black hole, reaches a
turning point, and then returns to infinity. On the observer’s
screen, the primary image of the hot spot departs from the
northern hemisphere towards the black shadow, circles
within the shadow, then flies into the southern hemisphere.
The secondary images are primarily distributed in the
northern hemisphere near the shadow curve, while the
higher-order images clinging to the shadow curve are quite
inconspicuous. From the bottom-left graph, it can be
deduced that the centroid motion is determined by the
primary image. The bottom-right graph reveals that the
light curve can be essentially divided into three segments.
In the first segment, the flux of the centroid decreases
slightly. The second segment presents a distinct flare, while
the third segment is relatively stable, yet with a higher flux
than at the start. This phenomenon can be explained by the
Doppler effect. During the first segment, the hot spot is

FIG. 3. The upper row in the illustration presents the trajectory and image of a deflecting hot spot. Conversely, the lower row provides
a depiction of the centroid motion and its corresponding light curve for the deflecting orbit. The interpretation of the points and lines in
this figure aligns with those outlined in Fig. 2.
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moving away from the observer, causing a Doppler red-
shift. In contrast, during the third segment, the hot spot is
moving towards the observer, causing a Doppler blueshift.
However, as it is not directly facing the observer, the flux is
only slightly higher than in the first segment. The appear-
ance of the flare is due to the hot spot passing the turning
point at this time. Its speed rapidly increases, and due to its
proximity to the black hole, the strong gravitational force
can cause a significant change in direction. Therefore, there
is a moment when the speed is directly or nearly directly
facing the observer, causing a Doppler blueshift that
appears as a flare. In this paper, we refer to this type of
flare as a “turning Doppler blueshift flare” (TDBF).

3. Trapped orbits

Then, we will turn our attention to the exploration of
trapped orbits, denoted as T . In Fig. 4, akin to Fig. 2, the
upper row illustrates the trajectory and image of a hot spot
trapped in orbit. Conversely, the lower row outlines the
movement of the emission centroid, along with its corre-
sponding light curve for this trapped orbit. All observations
are made at an inclination angle of θo ¼ 25°.

From Fig. 4, we observe that the hot spot embarks on its
journey from rs, subsequently moving outward to reach r1.
After this, it changes direction, circles the black hole
several times, and ultimately falls into the black hole.
On the observer’s screen, the primary image of the hot spot
starts in the southern hemisphere, then moves downward.
After reaching a turning point, it changes direction and
finally spirals into the black hole’s shadow. The starting
point of the secondary image, marked in blue, is near the
equatorial plane and close to the black hole’s shadow,
and then it spirals and falls into the black hole’s shadow.
From the light intensity plot at the top right and the light
curve graph at the bottom right, we can see that the flux
of the hot spot’s image is highest when it starts moving,
then decreases, rises again after more than 20 minutes, and
presents a noticeable flare at 60 minutes. The reason for this
phenomenon is that initially, the hot spot is moving away
from both the black hole and the observer, and the angle
between the direction of the hot spot’s velocity and the
direction pointing towards the observer is increasing,
leading to a gradual decrease in light intensity. As the
hot spot is captured and flies towards the black hole, the
angle between the direction of the hot spot’s velocity and

FIG. 4. The upper row of the illustration showcases the trajectory and image of a hot spot trapped in orbit. In contrast, the lower row
visually represents the centroid motion and the corresponding light curve for this trapped orbit. The symbolism and interpretation of
points and lines in this figure are consistent with those defined in Fig. 2.
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the direction pointing towards the observer decreases.
During this process, the hot spot is far from the black
hole, so the effect of gravitational redshift is small, and the
received light intensity gradually increases. As the hot spot
nears the black hole, despite the increasing gravitational
redshift, the impact of the Doppler effect on the secondary
image exceeds the effect of gravitational redshift, resulting
in a flare. This flare is similar to those observed in plunging
orbits and is characterized as a LDBF. Correspondingly, the
centroid motion graph at the bottom left can also be under-
stood. Initially, the centroid is dominated by the primary
image. Subsequently, it is dominated by the secondary
image, and finally, it returns to being dominated by the
primary image.

4. Bounded orbits

Next, we turn our attention to the images of bounded
orbits, represented as B. As shown in Fig. 5 and similar to
Fig. 2, the top row depicts the trajectory and image of a
bounded hot spot. The bottom row, on the other hand,
shows the path of the emission centroid and its correspond-
ing light curve for the same orbit. All these observations are
conducted at an inclination angle of θo ¼ 25°.

For the bounded orbit we have chosen, as outlined in
Table II, where r2 < rs < r3, the hot spot oscillates
between the two turning points at r2 and r3. Figure 5
depicts the hot spot’s motion path as rs → r3 → r2 → r3 →
r2 → re < r3. Here, re represents the end point of the
trajectory in the radial direction. Because of the extensive
trajectory of the hot spot’s motion, both the primary (red)
and secondary (blue) images on the observer’s screen are
relatively complex. Instead of detailing their intricate
changes, we will focus on the motion of the centroid
and causes of flares. For the emission centroid, we observe
it moving back and forth within a finite radius, forming
multiple rings. When the hot spot is far from the black hole,
the brightness of the primary image far exceeds that of
the secondary image, contributing more significantly to the
emission centroid. Therefore, the motion of the centroid
mainly reflects the trajectory of the primary image. As
the hot spot approaches the vicinity of the black hole, the
positions of the primary and secondary images are roughly
symmetrically distributed about the black hole’s shadow
(for instance, when the primary image is above the shadow,
the secondary image appears below it), and their bright-
ness is approximately equal. This results in the emission

FIG. 5. The upper row of the illustration showcases the trajectory and image of a bounded hot spot. In contrast, the lower row visually
represents the centroid motion and the corresponding light curve for this bounded orbit. The symbolism and interpretation of points and
lines in this figure are consistent with those defined in Fig. 2.
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centroid lingering within the black hole shadow. In terms
of flux variation, we observe two distinct flares around the
35 and 130 min marks. Additionally, there are two minor
peaks noticeable around the 62 and 100 min marks,
connected by a concave line in between. The flares
observed at the 35 and 130 min points share a common
origin, akin to the flare formation mechanism in deflecting
orbits. These flares emerge when the hot spot navigates past
the inner turning point, which is in close proximity to the
black hole. Consequently, the strong gravitational force
induces a dramatic shift in direction, and the hot spot’s
speed escalates rapidly post this turning point. Hence, we
refer to these flares as TDBFs in our paper. The two minor
peaks and the intervening trough occur between the
two flares, corresponding to the hot spot’s motion from
r2 → r3 → r2. Within this range, and not far from r3, the
radial motion direction of the hot spot forms an angle less
than 90° with the direction towards the observer. Hence, it
can be essentially considered as moving towards the
observer. Given that r3 is relatively distant from the black
hole, the gravitational influence is minor, and there is
minimal change in the direction of velocity. Consequently,
the primary factor affecting the flux is the magnitude of
the velocity. In the r2 → r3 → r2 process, the hot spot’s

velocity first increases, then decreases, and then increases
and decreases again.

B. N = 2

In this subsection, we will explore the features of images
of orbits with N ¼ 2, as presented in Table II.

1. Spherical orbits

First, we focus on the spherical orbits, denoted as S. For
these orbits, the hot spot is fixed at r ¼ rs ¼ 8. Therefore,
the aspects that change in the trajectory are the polar and
azimuthal coordinates. In Fig. 6, we present an orbit with an
azimuthal angle variation of Δφ ¼ 4π. The top row of the
illustration displays the trajectory and image of a spherical
hot spot, while the bottom row visually represents the
centroid motion and the corresponding light curve for this
spherical orbit. The symbols and interpretations of points
and lines in this figure are consistent with those defined
in Fig. 2. The observation is conducted at an inclination
angle of θo ¼ 25°.
From the middle image in the first row of Fig. 6, it can

be observed that the primary image of the hot spot takes
the form of a precessing cap, while the secondary image

FIG. 6. The upper row of the illustration showcases the trajectory and image of a spherical hot spot. In contrast, the lower row visually
represents the centroid motion and the corresponding light curve for this spherical orbit. The symbolism and interpretation of points and
lines in this figure are consistent with those defined in Fig. 2.
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appears on the opposite side of the primary image and has a
fuller shape. From the intensity map on the right side of the
first row in Fig. 6, it can be seen that although the overall
brightness of the secondary image is lower than that of the
primary image, its brightness is still significant and should
not be overlooked. Hence, the centroid of the hot spot
image is influenced by both the primary and secondary
images, resulting in an irregular trajectory of the centroid
motion. The right plot in the second row of Fig. 6 displays a
light curve with two prominent flares, each showing a split.
These flares arise from the angular motion of the hot spot,
which has a fixed radial position. When the hot spot moves
to a certain angle, the Doppler blue shift peaks, leading to a
flare in the primary image. This is swiftly followed by the
blueshift signal from the secondary image. The brief
interval between these two signals gives the impression
of a broad flare split. Indeed, when the time interval is
reduced, the flare fully splits into two peaks, though this
result has not been further explored in the paper. Given the
spherical orbit’s periodic angular motion, a flare corre-
sponding to the first one around the 30 min mark is
anticipated to appear around the 80 min mark, also showing
a split. However, due to the precession in the hot spot’s
motion, the second flare’s behavior does not entirely mirror

that of the first. This type of flare is determined by both the
angular Doppler blueshift and lensed Doppler blueshift.
Therefore, we can conveniently refer to it as “mixed
Doppler blueshift flares” (MDBF).

2. Other orbits for N = 2

Next, we shift our focus to other orbits when N ¼ 2,
namely, the homoclinic orbits H, the whirling deflecting
orbits WD, and the whirling trapped orbits WT . We
discuss the results of these three types of orbits collectively
because they can be viewed as combinations of the
previously mentioned orbits. The hot spot imaging and
flares can also be explained accordingly using the con-
clusions drawn earlier.

Homoclinic orbits. We know that in homoclinic orbits, a
particle starts from an unstable spherical orbit, deflects at a
turning point, and then returns to the original unstable
spherical orbit. Clearly, the imaging characteristics during
the unstable spherical orbit phase should resemble those of
S. Considering the turning point is relatively distant from
the black hole, its imaging characteristics should be similar
to those near the outer turning point of B. In Fig. 7,

FIG. 7. In the illustration, the top row highlights the trajectory and image of a homoclinic hot spot. On the other hand, the bottom row
graphically illustrates the centroid motion and the associated light curve for this same orbit. The symbols, points, and lines in this figure
maintain consistency with those defined in Fig. 2.
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the imaging outcomes for homoclinic orbits are displayed,
encompassing light intensity maps, graphs of centroid
motion, and light curves. In comparing Fig. 7 to Figs. 6
and 5, it is evident that aspects of both the light intensity
maps and light curves from Figs. 6 and 5 are mirrored in
Fig. 7. The flares in Fig. 7 align with those in Fig. 6, and the
dual minor peaks along with the intermediate trough in
Fig. 7 bear significant resemblance to their counterparts
in Fig. 5. However, there are some subtle discrepancies
when Fig. 7 is juxtaposed with Figs. 6 and 5. For example,
the flare in Fig. 7 does not display any splitting, and the
second minor peak in Fig. 7 is discernibly smaller than the
first. Despite these minor variations, they do not alter
the underlying cause of the flare, confirming that for H,
these are also instances of MDBFs.

Whirling deflecting orbits. In Fig. 8, we present the results
for a hot spot following a whirling deflecting orbit. This
particular trajectory is selected because the hot spot origi-
nates from an unstable spherical orbit and then diverges
toward infinity. As such, it can be considered a combination
of spherical and deflecting orbits. Consequently, its imaging
characteristics are a combination of the features found in

spherical and deflecting orbits. Upon examining the light
intensity plot in Fig. 8, it becomes evident that the hot
spot mimics a spherical motion before it separates from the
black hole. The intensity variation closely mirrors that of
the spherical orbit represented in Fig. 6. The phase of the
hot spot’s departure from the black hole aligns with the
corresponding phase in Fig. 6. Looking at the changes
in the light curve, we notice two minor flares and one
significantly larger flare. When these observations are
compared with the imaging results from spherical and
deflecting orbits, we find that the origins of the first two
minor flares coincide with the results from the spherical
orbit, characterized as MDBFs. The final and most sub-
stantial flare aligns with the results from the deflecting
orbit, identified as a TDBF.

Whirling trapped orbits. Finally, we present the imaging
results for whirling trapped orbits in Fig. 9. The whirling
trapped orbit we chose for our work originates from a
spherical orbit and then plunges into the black hole. Based
on the characteristics of this orbit, we can consider it as a
combination of spherical orbits and trapped orbits. The first
stage is an approximate spherical orbit, and the second

FIG. 8. The top row of the illustration demonstrates the trajectory and image of a whirling deflecting hot spot, whereas the bottom row
provides a visual representation of the centroid motion and the associated light curve for this whirling deflecting orbit. The symbolism
and interpretation of points and lines in this figure align with those established in Fig. 2.
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stage is a trapped orbit, which can be easily seen from the
light intensity map in Fig. 9. We can see a total of three cap
rings, and the last one has a noticeable deformation due to
the hot spot deviating from the spherical orbit significantly.
Eventually, it falls into the black hole shadow, consistent
with the final stage of the light intensity map in Fig. 4.
From the light curve in Fig. 9, we can see three significant
flares, corresponding to the three cap rings generated by the
approximate spherical orbit. Therefore, the cause of these
flares is consistent with the results from the spherical orbit,
which are MDBFs. The last small flare matches the flare in
Fig. 4, so it is a LDBF.

C. Results at θo = 80°

In this subsection, we also present the results for
plunging orbits P, deflecting orbits D, trapped orbits T ,
bounded orbits B, spherical orbits S, homoclinic orbits H,
whirling deflecting orbitsWD, and whirling trapped orbits
WT at θo ¼ 80° in Fig. 10.

We will not elaborate on the details of the image in
Fig. 10. By comparing Fig. 10 with the previous figures
from Fig. 2 through to Fig. 9, we can see that the main
features of the light intensity and flares of the hot spot
image at an observation angle of θo ¼ 25° still exist at an
observation angle of θo ¼ 80°. This suggests that the
characteristics of the hot spot image and flares we sum-
marized earlier are not sensitive to the observation angle
and can be observed at different angles.

D. Einstein ring

Interestingly, during our investigation of the imaging of a
hot spot moving in a spherical orbit, we discover that at
specific instances, the hot spot aligns directly opposite the
observer on the line connecting with the black hole,
resulting in the appearance of an Einstein ring, as depicted
in Fig. 11. However, as this situation is not the primary
focus of our study, we will not delve into the details of this
hot spot imaging, but merely present it here for reference.

FIG. 9. In the illustration, the upper section presents the trajectory and image of a whirling trapped hot spot, while the lower section
visually delineates the centroid motion and its corresponding light curve for this whirling trapped orbit. The symbology and
interpretation of points and lines in this figure are in accordance with those specified in Fig. 2.
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FIG. 10. The results at θo ¼ 80° are presented, with the following order from top to bottom: plunging orbits P, deflecting orbits D,
trapped orbits T , bounded orbits B, spherical orbits S, homoclinic orbitsH, whirling deflecting orbitsWD, and whirling trapped orbits
WT . From left to right, they respectively represent the image of the hot spot, light intensity map, centroid motion, and light curve.
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V. SUMMARY

In our research, we explored the imaging of hot spots
surrounding Kerr black holes. The hot spot, characterized
as a luminous sphere with a radius of b ¼ 0.25, emits light
uniformly and isotropically, independent of frequency. We
incorporated the hot spot’s movement along the geodesics
outside a Kerr black hole into our analysis. Building on the
conclusions of [42], we identified eight types of timelike
geodesic orbits outside the Kerr black hole: plunging orbits
P, deflecting orbits D, trapped orbits T , bounded orbits B,
spherical orbits S, homoclinic orbitsH, whirling deflecting
orbits WD, and whirling trapped orbits WT . Importantly,
our study extended beyond the equatorial plane. Using
numerical backward ray tracing, we generated images of
various orbital types. By calculating the fractional number,
we differentiated between primary, secondary, and higher-
order images and analyzed their distinct properties. We also
tracked the temporal flux variation received by each pixel
on the observer’s image plane, allowing us to determine and
analyze the motion of the centroid position across different
orbits. Specifically, we computed the light curve of the hot
spot image, observed flaring phenomena, and performed a
detailed examination of these events.
Specifically, we observed flare phenomena across all

orbit types. We categorized flares into three types based on
their origins: LDBFs, TDBFs, and MDBFs. The potential
for each orbit to produce these flare types is summarized in
Table III. Note that the numbers marked with � represent

the count of flares within a specific period of interest in our
study, not the total flare occurrences throughout the entire
history of the hot spot. It is worth noting that for these
orbit types, the majority of the motion characteristics
remain consistent throughout the entire history of the hot
spot. For bounded orbits B, the hot spot oscillates between
two turning points along the radial direction; thus, analyz-
ing one motion cycle suffices. For spherical orbits S, the
hot spot continuously follows a spherical path, but only a
single complete cycle in the polar coordinate θ needs to
be analyzed. Similarly, for homoclinic orbits H, whirling
deflecting orbitsWD, and whirling trapped orbitsWT , they
all involve numerous near-spherical movements. Therefore,
a clear analysis of a single cycle of near-spherical motion
suffices.
We noted that LDBFs occur in orbits descending into the

black hole, TDBFs in orbits with turning points near the
black hole, and MDBFs in orbits traversing near the sphere.
Furthermore, by comparing imaging results at 25° and 80°,
we determined that the flare phenomena we observed and
the categorizations we established are not significantly
influenced by the observation angle. Our findings provide
further insights into the causes of flare formation and
suggest that these common flare signals are likely detect-
able in astronomical observations.
We conclude our paper by outlining several future

perspectives. First, our hot spot model has not yet accoun-
ted for the emission rates of the hot spot across various

FIG. 11. The Einstein ring in the spherical case is shown. On the left is the image of the hot spot, in the middle is the light intensity
map, and on the right is the plot of the centroid motion.

TABLE III. The number of flares and their causes for various types of orbits, including plunging orbits P, deflecting orbitsD, trapped
orbits T , bounded orbits B, spherical orbits S, homoclinic orbitsH, whirling deflecting orbitsWD, and whirling trapped orbitsWT are
discussed here. The “�” denote that these numbers represent the number of flares occurring within a particular period of interest in our
study, rather than the total number of flares throughout the entire history of the hot spot.

Type P D T B S H WD WT

Flare number 1 1 1 2� 2� 2� 3� 4�

Causes of flare LDBF TDBF LDBF TDBF MDBFs MDBFs
TDBF LDBF
MDBFs MDBFs
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frequency bands—an aspect that necessitates further inves-
tigation. Second, considering the complex astronomical
environment around black holes, the hot spot’s trajec-
tory might deviate from geodesics. Hence, it could be
beneficial to delve deeper into the imaging characteristics
of nongeodesic motion. Third, the existence of accretion
disks and jets around the black hole could potentially
influence the flare signals produced by the hot spot, a
factor that deserves additional attention in future research.
Lastly, it is important to note that the flares observed
by the GRAVITY collaboration also carry polarization

information. As such, the theoretical exploration of this
polarization information is of substantial importance and
warrants further study.
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