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We present a formalism to study linear perturbations of bimetric gravity on any spherically symmetric
background, including dynamical spacetimes. The setup is based on the Gerlach-Sengupta formalism for
general relativity. Each of the two background metrics is written as a warped product between a two-
dimensional Lorentzian metric and the round metric of the two-sphere. The different perturbations are then
decomposed in terms of tensor spherical harmonics, which makes the two polarity (axial and polar) sectors
decouple. In addition, a covariant notation on the Lorentzian manifold is used so that all expressions are
valid for any coordinates. In this theory, there are seven physical propagating degrees of freedom, which, as
compared to the 2 degrees of freedom of general relativity, makes the dynamics much more intricate. In
particular, we discuss the amount of gauge and physical degrees of freedom for different polarities and
multipoles. Finally, as an interesting application, we analyze static nonbidiagonal backgrounds and derive
the corresponding perturbative equations.
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I. INTRODUCTION

Bimetric theory, as formulated in Refs. [1,2], is a
modified gravity theory that extends general relativity
(GR) by considering the existence of two coupled dynami-
cal metrics. In particular, the corresponding interaction
potential has a certain specific form in order to ensure the
absence of the Boulware-Deser ghost. In this context, it has
been shown that bimetric gravity is stable and well behaved
in certain regions of parameter space [3]. The relevance of
this theory lies in its potential to address cosmological
questions, such as the accelerated expansion of the
Universe and the nature of dark matter. In this sense, it
is known that viable cosmological solutions that fit the
expansion history of the accelerating Universe exist [4–7]
and that the massive spin-two field can play the role of dark
matter [8–11]. Moreover, constraints on the parameters of
the theory have been derived through observational [12–15]
and analytical [16] methods.
The stability and viability of black-hole solutions within

bimetric gravity have been widely addressed in the liter-
ature [17,18]. Static and spherically symmetric black-hole
solutions split into two different branches [19]. In the first
branch, a coordinate system exists in which the two metrics

can be simultaneously diagonalized. These types of sol-
utions are known as bidiagonal solutions. However, this is
not possible in general, and therefore there exists a second
branch of nonbidiagonal solutions. For bidiagonal solu-
tions, the corresponding equations of motion cannot, in
general, be solved analytically. Nevertheless, some exact
black-hole solutions have been found in spherical sym-
metry [20,21], all of them corresponding to the standard
GR solutions (i.e., Schwarzschild, Schwarzschild-de Sitter,
and Schwarzschild-anti-de Sitter). In fact, using analytical
and numerical techniques, in Ref. [18] it was shown that,
within the bidiagonal ansatz, all black-hole solutions with
flat or de Sitter asymptotics correspond to GR solutions,
with both metrics being conformal (see also Ref. [22]).
This, together with the fact that it is known that bidiagonal
solutions where both metrics are Schwarzschild are
dynamically unstable [18,23–25], suggests that static and
spherically symmetric bidiagonal solutions cannot re-
present the end point of gravitational collapse [18]. In
contrast, with a nonbidiagonal ansatz, both metrics obey
the Einstein equations and thus correspond to standard GR
solutions [19]. However, the correspondence with black
holes in GR only holds at the background level, and it is
broken by perturbations. In particular, previous work [26]
proved the stability of a particular subclass of nonbidiag-
onal static black-hole solutions against generic linear
perturbations, although not for general nonbidiagonal
black holes.
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In this work, we present the equations for linear pertur-
bations around a completely general (including dynamical)
spherically symmetric background within bimetric theory.
To this end, we use the Gerlach-Sengupta formalism
[27–29], based on a 2þ 2 decomposition of the spacetime
separating the spherical symmetry orbits from a general two-
dimensional Lorentzian manifold. Making use of the tensor
spherical harmonics, this allows us to use a compact and
covariant description of the perturbative equations both on
the Lorentzian manifold and on the two-sphere, which is
valid for any coordinate choice. As noted, the formalism
describes the evolution of the perturbations on any spherical
static black-hole or star [30] backgrounds, but could also
be used in the dynamical case to study, for instance, the
stability during a spherically symmetric gravitational col-
lapse [31,32]. Here, as an interesting application, we
specialize the obtained equations to a general nonbidiagonal
background with a static physical metric. In this case, the
analytical form of the background can be solved up to a
function that satisfies a nonlinear partial differential equa-
tion [22,33]. In order to perform the computations of the
present paper, we have made extensive use of the different
packages of the xAct project [34] for WolframMathematica,
and particularly of xPert [35].
The remainder of this paper is organized as follows. In

Sec. II we present the formulation of linear perturbations
of bimetric gravity. In Sec. III we take spherically
symmetric background spacetimes and introduce the
2þ 2 decomposition characteristic of the Gerlach-
Sengupta formalism. Then, in Sec. IV, we decompose
the metric perturbations in tensor spherical harmonics. In
Sec. V we discuss the gauge freedom of the theory, and
obtain the equations for the linear perturbations for any
two spherically symmetric background metrics, both for
the axial and the polar sectors. We specialize these
expressions to nonbidiagonal backgrounds in Sec. VI.
Finally, in Sec. VII, we review and discuss the main results
of the paper.

A. Notations and conventions

We assume the metric signature ð−þþþÞ and units with
the speed of light c ¼ 1. The symmetrization of indices is
denoted by round brackets and includes a factor of 1=2, that
is, TðabÞ ≔ 1

2
ðTab þ TbaÞ.

II. LINEAR PERTURBATIONS
OF BIMETRIC GRAVITY

The bimetric gravity theory proposed by Hassan and
Rosen [36] is based on the existence of two dynamical and
nonlinearly interacting metrics, g̃μν and f̃μν, on the four-
dimensional spacetime manifold. The action is given by the
linear combination of the Einstein-Hilbert term for each
metric, complemented with a coupling term

SHR ¼ M2
g

2

Z
d4x

ffiffiffiffiffiffi
−g̃

p
Rðg̃Þ þM2

f

2

Z
d4x

ffiffiffiffiffiffi
−f̃

q
Rðf̃Þ

−m2M2
g

Z
d4x

ffiffiffiffiffiffi
−g̃

p X4
n¼0

βnenðS̃Þ; ð2:1Þ

whereRðg̃Þ andRðf̃Þ are the Ricci scalars of the metrics g̃μν
and f̃μν, respectively. The coupling constants Mg, Mf, and
m have dimensions of mass, while the βn are dimension-
less. Finally, the en are symmetric polynomials of scalar
combinations of the matrix [37]

S̃μ
ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g̃μαf̃αν

q
; ð2:2Þ

and are explicitly defined as [38,39]

e0ðS̃Þ ¼ 1; ð2:3aÞ

e1ðS̃Þ ¼ Tr½S̃�; ð2:3bÞ

e2ðS̃Þ ¼
1

2
ðTr½S̃�2 − Tr½S̃2�Þ; ð2:3cÞ

e3ðS̃Þ ¼
1

6
ðTr½S̃�3 − 3Tr½S̃�Tr½S̃2� þ 2Tr½S̃3�Þ; ð2:3dÞ

e4ðS̃Þ ¼
1

24
ðTr½S̃�4 − 6Tr½S̃�2Tr½S̃2� þ 3Tr½S̃2�2

þ 8Tr½S̃�Tr½S̃�3 − 6Tr½S̃4�Þ; ð2:3eÞ

with Tr½S̃� ¼ S̃μ
μ. For a d × d matrix S̃, enðS̃Þ ¼ 0 for any

n > d and edðS̃Þ ¼ detðS̃Þ. Therefore, one could also write
e4ðS̃Þ ¼ detðS̃Þ. By the relation

ffiffiffiffiffiffi
−g̃

p
enðS̃Þ ¼

ffiffiffiffiffiffi
−f̃

q
e4−nðS̃−1Þ; ð2:4Þ

it is straightforward to see that the bimetric action (2.1) is
invariant under the simultaneous replacements

g̃↔ f̃; βn↔β4−n; Mg↔Mf; m2↔m2M2
g=M2

f; ð2:5Þ

which means that both metrics are treated on the same
footing in the pure gravity theory. However, such a
symmetry is broken by matter fields, which typically are
only coupled to a single metric [40,41] (see also the review
[42]). Therefore, here we will also assume that matter
sources couple only to the metric gμν, and are described by
the corresponding stress-energy tensor T μν. This leads to
the equations of motion
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Gðg̃Þ
μν þm2Vðg̃Þ

μν ¼ 1

M2
g
T μν; ð2:6aÞ

Gðf̃Þ
μν þm2

α2
Vðf̃Þ
μν ¼ 0; ð2:6bÞ

where Gðg̃Þ
μν and Gðf̃Þ

μν are the Einstein tensors of the
corresponding metrics, while α ≔ Mf=Mg measures the
ratio between the gravitational couplings. The interaction
between the two metrics is encoded in the potential

Vðg̃Þ
μν ≔

1

2

X3
i¼0

ð−1Þiβi½g̃μρðYðiÞÞρνðS̃Þ þ g̃νρðYðiÞÞρμðS̃Þ�;

ð2:7aÞ

Vðf̃Þ
μν ≔

1

2

X3
i¼0

ð−1Þiβ4−i½f̃μρðYðiÞÞρνðS̃−1Þþ f̃νρðYðiÞÞρμðS̃−1Þ�;

ð2:7bÞ

where the matrices YðiÞ read as

ðYðiÞÞρνðS̃Þ ≔
Xi

k¼0

ð−1ÞkðS̃i−kÞρνekðS̃Þ: ð2:8Þ

In the following we will consider the effective stress-
energy tensors

tðg̃Þμν ≔
1

8πM2
g
T μν −

m2

8π
Vðg̃Þ
μν ; ð2:9Þ

tðf̃Þμν ≔ −
m2

8πα2
Vðf̃Þ
μν ; ð2:10Þ

so that the equations of motion (2.6) formally take the same
form as the Einstein equations,

Gðg̃Þ
μν ¼ 8πtðg̃Þμν ; ð2:11aÞ

Gðf̃Þ
μν ¼ 8πtðf̃Þμν : ð2:11bÞ

Now, in order to perform a perturbative analysis of the
theory, we write

g̃μν ¼ gμν þ hðgÞμν ; ð2:12aÞ

f̃μν ¼ fμν þ hðfÞμν ; ð2:12bÞ

where the metrics gμν and fμν are exact solutions of the
equations (2.11) and will be referred to as the background.

In turn, hðgÞμν and hðfÞμν encode the perturbations and will be
assumed to be small. That is, in order to obtain their

equations of motion, one simply substitutes the ansatz
(2.12) into (2.11), and regards any term quadratic in the
perturbations as negligible.
Let us define the operatorΔ as providing the linear term in

hðgÞμν and hðfÞμν of any object; for instance, tðg̃Þμν ¼ tðgÞμν þ Δ½tðgÞμν �.
In this way, the linear equations of motion for hðgÞμν and hðfÞμν

can be written as

Δ½GðgÞ
μν � ¼ 8πΔ½tðgÞμν �; ð2:13aÞ

Δ½GðfÞ
μν � ¼ 8πΔ½tðfÞμν �: ð2:13bÞ

The left-hand side are the perturbations of the Einstein tensor
of each metric, whose form is well known,

2Δ½GðgÞ
μν � ¼ hðgÞαμ ;να þ hðgÞαν ;μα − hðgÞ;αμν α − hðgÞαα ;μν − hðgÞμν RðgÞ

− gμν
�
hðgÞαβ ;αβ − hðgÞα;βα β − hðgÞαβRðgÞ

αβ

�
; ð2:14Þ

where the semicolon “;” denotes the covariant derivative

associated to gμν, and RðgÞ
αβ is its Ricci tensor. The perturba-

tion of the Einstein tensor of the metric f̃μν can be computed
analogously. Therefore, the nontrivial part of the present
computation will be to obtain the linear version of the

effective stress-energy tensors tðg̃Þμν and tðf̃Þμν . In particular,
this requires us to compute the perturbation of thematrix S̃μ

ν.
By definition, we have

S̃μ
αS̃

α
ν ¼ g̃μαf̃αν: ð2:15Þ

Replacing the expansions (2.12) and S̃μ
α ¼ Sμ

α þ Δ½Sμ
α� in

this expression, the term linear in perturbations yields

Sμ
αΔ½Sα

ν� þ Δ½Sμ
α�Sα

ν ¼ gμαhðfÞαν − gμαhðgÞαβ g
βσfσν; ð2:16Þ

which can be rewritten as

ðSμ
αδαρδ

σ
ν þ Sα

νδ
μ
ρδσαÞΔ½Sρ

σ� ¼ gμαhðfÞαν − gμαhðgÞαβ g
βσfσν:

ð2:17Þ

Hence, in order to obtainΔ½Sρ
σ� explicitly in terms ofhðgÞμν and

hðfÞμν , onewould need to compute the inverse of the expression
in brackets above. Although this does not seem feasible for
generic backgrounds, on a spherically symmetric back-
ground the problem can be simplified by decomposing
Δ½Sρ

σ� in a basis of tensor spherical harmonics, as we will
show in Sec. IV B 1.
Before we move on to analyze perturbations around

specific backgrounds, let us comment on the gauge free-
dom and the number of propagating degrees of freedom. In
vacuum GR the only dynamical field is the metric, which,
being a rank-two symmetric tensor field, in principle
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encodes ten independent local degrees of freedom.
However, there are eight first-class constraints: four cor-
responding to the generators of diffeomorphisms (the so-
called Hamiltonian and diffeomorphism constraints), and
four more corresponding to the vanishing of the conjugate
momenta of lapse and shift. Each of these constraints
removes 1 degree of freedom (i.e., two phase-space
dimensions per spacetime point), which leaves a total of
2 propagating degrees of freedom, corresponding to two
independent polarizations for the graviton. Considering
two decoupled copies of GR, hence with two independent
groups of diffeomorphisms (each acting independently on a
single metric sector), both the number of degrees of
freedom and constraints would double, and one would
have four propagating degrees of freedom. However, when
the two metrics are coupled, a set of four first-class
constraints of the system is removed, due to the now
common diffeomorphism invariance. For generic choices
of the potential describing the interaction between the two
metrics, this would lead to eight propagating degrees of
freedom in total. In the Hassan-Rosen theory though, given
by the action (2.1), the coupling term is chosen in such a
way that there appears a couple of second-class constraints
[2,38,43] that remove one degree of freedom, the so-called
Boulware-Deser ghost, leaving 7 propagating degrees of
freedom [44–46].

III. SPHERICALLY SYMMETRIC BACKGROUND

Any four-dimensional spherically symmetric manifold is
given as a direct product M2 × S2, where M2 is a two-
dimensional Lorentzian manifold and S2 is the two-sphere.
The background metric tensors can then be written in
block-diagonal form,

gμνðxλÞdxμdxν ¼ gABðxDÞdxAdxB þ r2gðxDÞγabðxdÞdxadxb;
ð3:1Þ

fμνðxλÞdxμdxν ¼ fABðxDÞdxAdxB þ r2fðxDÞγabðxdÞdxadxb;
ð3:2Þ

where Greek indices take values from 0 to 3, capital Latin
indices from 0 to 1, and lowercase Latin indices run from 2
to 3. The tensor

γabðxdÞdxadxb ¼ dθ2 þ sin2 θdφ2 ð3:3Þ

is the unit metric on the two-sphere, while gAB and fAB are
Lorentzian metrics in M2. With this decomposition, the
matrix Sμ

ν defined by Eq. (2.2) is also diagonal by blocks
with Sa

b ¼ rf
rg
δab. For future convenience, we define the

determinant of the block in theM2 sector asD ≔ detðSA
BÞ

and the ratio between the two area radii as ω ≔ rf=rg.
The nonvanishing components of the bimetric

equations (2.11) for any general spherically symmetric
spacetimes, which define our gravitational background,
read as

GðiÞ
AB ¼

�
1

r2i
þ 3vðiÞDvðiÞD þ 2∇

ðiÞ
DvðiÞD

�
gðiÞAB

− 2
�
vðiÞAvðiÞB þ ∇

ðiÞ
BvðiÞA

� ¼ 8πtðiÞAB; ð3:4Þ

γabGðiÞ
ab

r2i
¼ −RðiÞ þ 2vðiÞAvðiÞA þ 2∇

ðiÞ
AvðiÞA ¼ 8πQi; ð3:5Þ

where we have introduced the label i∈ fg; fg to write

collectively the two metric sectors, with gðgÞAB ¼ gAB and

gðfÞAB ¼ fAB. In addition, we have defined the vector fields

vðiÞA ¼ ∂Ari
ri

; ð3:6Þ

and Qi ≔
γab

r2i
tðiÞab on M2, while RðiÞ stands for the Ricci

scalar of the corresponding two-dimensional metrics gAB

and fAB. We have also introduced ∇
ðgÞ

and ∇
ðfÞ

as the covariant
derivatives of the metrics gAB and fAB, respectively. This
notation will be used throughout the paper. Moreover, in
expressions with a label i, and wherever repeated capital
Latin indices appear, the ensuing contraction should be
understood as being performed with the corresponding

metric gðiÞAB.
Finally, the components of the effective stress-energy

tensors on M2 are explicitly given by

tðgÞAB ¼ −
m2

8π
½ðβ0 þ 2ωβ1 þ ω2β2 þ ðβ1 þ 2ωβ2 þ ω2β3ÞSB

B þ ðβ2 þ 2ωβ3ÞDÞgAB
− ððβ1 þ 2ωβ2 þ ω2β3 þ ðβ2 þ 2ωβ3ÞSE

E þ β3DÞδCD − ðβ2 þ 2ωβ3 þ β3SF
FÞSC

D

þ β3SC
ES

E
DÞgCðASD

BÞ� þ
T AB

8πM2
g
; ð3:7Þ
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tðfÞAB ¼ −
m2

8πα2ω2
½ðω2β4 þ 2ωβ3 þ β2 þ ðω2β3 þ 2ωβ2 þ β1ÞðS−1ÞBB þ ðω2β2 þ 2ωβ1ÞD−1ÞfAB

− ððω2β3 þ 2ωβ2 þ β1 þ ðω2β2 þ 2ωβ1ÞðS−1ÞEE þ ω2β1D−1ÞδCD
− ðω2β2 þ 2ωβ1 þ ω2β1ðS−1ÞFFÞðS−1ÞCD þ ω2β1ðS−1ÞCEðS−1ÞEDÞfCðAðS−1ÞDBÞ�; ð3:8Þ

while the traces of the angular components read as

Qg ¼ −
m2

4π
½ðβ0 þ ωβ1Þ þ ðβ1 þ ωβ2ÞSA

A þ ðβ2 þ ωβ3ÞD� þQm; ð3:9Þ

Qf ¼ −
m2

4πα2ω2
½ðω2β4 þ ωβ3Þ þ ðω2β3 þ ωβ2ÞðS−1ÞAA þ ðω2β2 þ ωβ1ÞD−1�; ð3:10Þ

where we have defined the contribution from the matter
sector as Qm ≔ γabT ab

8πM2
gr2g
.

IV. HARMONIC DECOMPOSITION

A. Tensor spherical harmonics

The usual scalar spherical harmonics Ym
l ¼ Ym

l ðxaÞ are
defined as the eigenfunctions of the Laplacian operator
acting on scalars,

γabYm
l ∶ab ¼ −lðlþ 1ÞYm

l ; ð4:1Þ
where “∶” is the covariant derivative associated with γab,
while l and m are integers such that l ≥ jmj. These special
functions form a basis on the sphere, and thus any scalar
function F ¼ FðxaÞ can be written as a linear combination

FðxaÞ ¼
X∞
l¼0

Xl

m¼−l
Fm
l Y

m
l ðxaÞ; ð4:2Þ

with certain complex constants Fm
l .

Making use of the metric γab, its covariant derivative,
and the antisymmetric tensor1 ϵab on S2, it is possible to
generalize this basis to tensors of any rank (see Ref. [47]
for more details). For instance, a basis for vectors on the
sphere is given by the two vectors Zm

l a ≔ ∂aYm
l and

Xm
l a ≔ ϵa

bZm
l b, which are irrotational and divergence-free,

respectively. Thus, any vectorFaðxbÞ can be decomposed as

FaðxbÞ ¼
X∞
l¼1

Xl

m¼−l
F̃m
l Z

m
l aðxbÞ þ F̂m

l X
m
l aðxbÞ; ð4:3Þ

where F̃m
l and F̂m

l are constants. In the theory under
consideration there are also rank-two tensors, for which
we will use the basis fZm

l ab; X
m
l ab; γabY

m
l ; ϵabY

m
l g, with

Zm
l ab≔Ym

l abþ lðlþ1Þ
2

γabYm
l and Xm

l ab ≔
1
2
ðXm

l a∶b þ Xm
l b∶aÞ

being symmetric and trace-free.

The tensor harmonics have different polarity properties,
and they are divided into polar (or even) and axial (or odd)
polarities. In the case of scalar functions, only polar
components appear, and, in order to have a more uniform
notation, wewill denote Zm

l ≔ Ym
l . In this way, all the terms

multiplying a Z are polar, while those multiplying an X are
axial. It is a well-known result in GR that different
polarities decouple at the linear level, so long as the
background is spherically symmetric. This holds true also
in bimetric gravity, as explicitly shown below.
Finally, we note that different harmonics are defined for a

different range of values of l. More precisely, while scalar
harmonics are defined for l ≥ 0, vector harmonics Zm

l a and
Xm
l a are exactly vanishing for l ¼ 0, and thus only

contribute for l ≥ 1, while tensor harmonics Zm
l ab and

Xm
l ab are nonvanishing only for l ≥ 2.

B. Decomposition of the perturbations into tensor
spherical harmonics

The components of the metric perturbations hðiÞμν have
different tensorial rank in S2, which can be easily identified

in terms of their indices. Namely, hðiÞAB is a scalar, hðiÞAb is a

vector, and hðiÞab is a symmetric rank-two tensor. Therefore,
one needs to use a suitable basis, given by tensor spherical
harmonics of the appropriate rank, as explained above. In
this way, we introduce the following decompositions:

hðiÞABðxD; xdÞ ≔
X∞
l¼0

Xl

m¼−l
HðiÞ m

l ABZ
m
l ; ð4:4Þ

hðiÞAbðxD; xdÞ ≔
X∞
l¼1

Xl

m¼−l
½HðiÞ m

l AZ
m
l b þ hðiÞ ml AX

m
l b�; ð4:5Þ

hðiÞabðxD; xdÞ ≔
X∞
l¼0

Xl

m¼−l
KðiÞ m

l r
2
i γabZ

m
l

þ
X∞
l¼2

Xl

m¼−l
½GðiÞ m

l r
2
i Z

m
l ab þ hðiÞ ml X

m
l ab�;

ð4:6Þ
1The antisymmetric tensor ϵab is defined as ϵab ≔ ffiffiffi

γ
p

ηab,
where γ is the determinant of γab and ηab the antisymmetric
symbol with η23 ¼ −η32 ¼ 1.
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for i∈ ff; gg. For each set of labels ððiÞ; l; mÞ with l ≥ 2
there are ten new independent functions: these are
encoded in a symmetric two-tensor HðiÞ m

l AB, two vectors
fHðiÞ m

l A; h
ðiÞ m

l Ag, and three scalars fKðiÞ m
l ; G

ðiÞ m
l ; h

ðiÞ m
l g,

all of which only depend on coordinates ofM2. From these,
seven are polar fHðiÞ m

l AB;H
ðiÞ m

l A; K
ðiÞ m

l ; G
ðiÞ m

l g, and three
are axial fhðiÞ ml A; h

ðiÞ m
l g. Note that for l ¼ 0 we only have

the four polar components HðiÞ 0
0AB and KðiÞ 0

0, whereas, for
l ¼ 1, in addition to HðiÞ m

1 AB and KðiÞ m
1 , two polar compo-

nents HðiÞ m
1 A and two axial components hðiÞ m1 A are also

present.
Similarly, linear perturbations of the effective stress-

energy tensors read as

Δ½tðiÞAB�ðxD; xdÞ ≔
X∞
l¼0

Xl

m¼−l
TðiÞ m

l ABZ
m
l ; ð4:7Þ

Δ½tðiÞAb�ðxD;xdÞ≔
X∞
l¼1

Xl

m¼−l
½TðiÞm

l AZ
m
l bþtðiÞml AX

m
l b�; ð4:8Þ

Δ½tðiÞab�ðxD;xdÞ≔
X∞
l¼0

Xl

m¼−l
T̃ðiÞm

l r
2
i γabZ

m
l

þ
X∞
l¼2

Xl

m¼−l
½TðiÞm

l Z
m
l abþtðiÞml X

m
l ab�: ð4:9Þ

Note that, in the g sector, according to the definition of the
effective stress-energy tensors (2.9), besides the perturba-

tions of the bigravity interaction term Vðg̃Þ
μν , the harmonic

components defined above also include the contribution of
the perturbations of the matter stress-energy tensor T μν.
Hence, for future convenience, we also introduce the
following decompositions:

Δ½T AB�ðxD; xdÞ ≔
X∞
l¼0

Xl

m¼−l
Ψm

l ABZ
m
l ; ð4:10Þ

Δ½T Ab�ðxD; xdÞ ≔
X∞
l¼1

Xl

m¼−l
½Ψm

l AZ
m
l b þ ψm

l AX
m
l b�; ð4:11Þ

Δ½T ab�ðxD;xdÞ≔
X∞
l¼0

Xl

m¼−l
Ψ̃m

l r
2
gγabZm

l

þ
X∞
l¼2

Xl

m¼−l
½Ψm

l Z
m
l abþψm

l X
m
l ab�: ð4:12Þ

Finally, we will also need the decomposition into
spherical harmonics of the components of the perturbation
Δ½Sμ

ν� of the matrix S,

Δ½SA
B�ðxD; xdÞ ≔

X∞
l¼0

Xl

m¼−l
SmA
l BZ

m
l ; ð4:13Þ

Δ½SA
b�ðxD; xdÞ ≔

X∞
l¼1

Xl

m¼−l
½SmA

l Zm
l b þ smA

l Xm
l b�; ð4:14Þ

Δ½Sa
B�ðxD; xdÞ ≔

1

r2g
γac

X∞
l¼1

Xl

m¼−l
½S̃ml BZ

m
l c þ s̃ml BX

m
l c�;

ð4:15Þ

Δ½Sa
b�ðxD; xdÞ ≔ γac

X∞
l¼0

Xl

m¼−l
S̃ml γcbZ

m
l

þ γac
X∞
l¼2

Xl

m¼−l

�
Sml Z

m
l cb þ Šml ϵcbZ

m
l

þ 1

r2g
sml X

m
l cb

�
: ð4:16Þ

Note that, in general, neither S nor its perturbations are
symmetric. This is why the harmonic coefficients SmA

l and
S̃ml B, and also smA

l and s̃ml A, are in principle different, and
Šml is in general nonvanishing. In the following, we
remove the harmonic labels l and m to make the notation
lighter.

1. The expression of Δ½Sμ
ν� in terms

of metric perturbations

As explained in Sec. II, in order to obtain the perturbed
components of the matrix S in terms of the perturbations of
g and f, we need to solve Eq. (2.17). Projecting this
equation on the two-sphere, the scalar components of
Δ½Sμ

ν� can be solved explicitly, and read as

S̃ ¼ 1

2ω
ðKðfÞ − ω2KðgÞÞ; ð4:17Þ

S ¼ 1

2ω
ðGðfÞ − ω2GðgÞÞ; ð4:18Þ

Š ¼ 0; ð4:19Þ

s ¼ 1

2ω
ðhðfÞ − ω2hðgÞÞ: ð4:20Þ

However, this is no longer the case for the vector and tensor
harmonic components. In general, we have

sA ¼ ðM−1ÞACgCBðhðfÞB − ω2hðgÞB Þ; ð4:21Þ

SA ¼ ðM−1ÞACgCBðHðfÞ
B − ω2HðgÞ

B Þ; ð4:22Þ
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where ðM−1ÞAB is the inverse of the matrixMA
B¼ωδABþSA

B.
Note that such inverse is well defined because SA

B cannot
have real negative eigenvalues [37]. Analogously, we
obtain

s̃A ¼ ðhðfÞB − hðgÞE gEDfDBÞðM−1ÞBA; ð4:23Þ

S̃A ¼ ðHðfÞ
B −HðgÞ

E gEDfDBÞðM−1ÞBA; ð4:24Þ

whereas, for the two-tensor SAB, we can just write

ðSA
Cδ

C
Dδ

E
B þ SC

Bδ
A
Dδ

E
CÞSDE ¼ gACðHðfÞ

CB −HðgÞ
CDg

DEfEBÞ:
ð4:25Þ

V. DYNAMICS OF LINEAR PERTURBATIONS
ON A GENERAL SPHERICALLY
SYMMETRIC BACKGROUND

A. Gauge and physical degrees of freedom

At linear level, the perturbative gauge freedom can be
parametrized in a vector field ξμ, which defines the gauge
transformation of the perturbation Δ½T� of any background
tensor field T as

Δ½T� ¼ ΔT þ LξT: ð5:1Þ

In this sense, for any vector field ξμ, Δ½T� and Δ½T�
physically represent the same perturbation of T. If we
perform the corresponding harmonic decomposition of the
vector field,

ξμdxμ ¼
X∞
l¼0

Xl

m¼−l
Ξm
l AZ

m
l dx

A

þ
X∞
l¼1

Xl

m¼−l
½Ξm

l Z
m
l a þ ξml X

m
l a�dxa; ð5:2Þ

we observe that, for l ≥ 1, there are three polar fΞm
lA;Ξm

l g
and one axial fξml g gauge degrees of freedom, while, for
l ¼ 0, there are only two polar components encoded in Ξ0

0A.
Applying the above transformation to the metric pertur-

bations hðiÞμν ,

h̄ðgÞμν ¼ hðgÞμν þ Lξgμν; ð5:3Þ

h̄ðfÞμν ¼ hðfÞμν þ Lξfμν; ð5:4Þ

it is straightforward to obtain the gauge transformation of
the different harmonic coefficients,

H̄ðiÞ
AB ¼ HðiÞ

AB þ ∇
ðiÞ

BΞA þ ∇
ðiÞ

AΞB; l ≥ 0; ð5:5aÞ

H̄ðiÞ
A ¼ HðiÞ

A þ ΞA − 2vðiÞA Ξþ ∇
ðiÞ

AΞ; l ≥ 1; ð5:5bÞ

K̄ðiÞ ¼ KðiÞ þ 2vðiÞAΞA −
lðlþ 1Þ

r2i
Ξ; l ≥ 0; ð5:5cÞ

ḠðiÞ ¼ GðiÞ þ 2

r2i
Ξ; l ≥ 2; ð5:5dÞ

h̄ðiÞA ¼ hðiÞA − 2vðiÞA ξþ ∇
ðiÞ

Aξ; l ≥ 1; ð5:5eÞ

h̄ðiÞ ¼ hðiÞ þ 2ξ; l ≥ 2; ð5:5fÞ

where the barred objects are the harmonic coefficients of

h̄ðiÞμν . Note, in particular, that the transformation (5.5c) is
defined for all l ≥ 0, but, for l ¼ 0, one should understand
Ξ ¼ 0. For l ≥ 2 a standard choice in GR, where only one
metric is present, say gμν, is the Regge-Wheeler gauge,

which corresponds to H̄ðgÞ
A ¼ 0, ḠðgÞ ¼ 0, and h̄ðgÞ ¼ 0. One

can also construct gauge-invariant variables associated to
this particular gauge [48]: these are defined by Eqs. (5.5)

with ξ¼−hðgÞ=2, Ξ¼−r2gGðgÞ=2, and ΞA¼−HðgÞ
A þGðgÞ

jA =2,

which are the components of the generator of the infini-
tesimal transformation from a generic gauge to the Regge-
Wheeler one. However, in the vacuum bimetric theory there
are twice as many perturbative variables as in GR, but the
same amount of gauge degrees of freedom. Therefore, it is
not possible to simultaneously choose the Regge-Wheeler
gauge for the perturbations of both metrics. In fact, since it
is not clear a priori what gauge might be the most
convenient one for the different applications of the for-
malism, we will refrain from imposing a specific gauge
choice at the outset, and we will present the equations of
motion for any generic gauge.
Concerning the number of physical propagating degrees

of freedom, one needs to take into account that, for l ≥ 2,
there are 12 first-class constraints in the theory, which can
be classified in 3 four-vectors and thus contain 9 polar and

3 axial components. The two rank-two tensors hðfÞμν and hðgÞμν

have a total of 20 (14 polar and 6 axial) components. Each
first-class constraint removes 1 degree of freedom. In
addition, the pair of second-class constraints characteristic
of bimetric theory kills the scalar (Boulware-Deser) ghost,
which is polar. In this way, for l ≥ 2, the theory contains 7
(4 polar and 3 axial) physical propagating degrees of
freedom.
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Lower values of l need separate consideration. Since
tensor spherical harmonics are not defined for l ¼ 1, the
above numbers differ, and, while the amount of first-class
constraints remains as for l ≥ 2 (9 polar and 3 axial), there
are only 16 (12 polar and 4 axial) metric perturbations.
Therefore, for l ¼ 1, there are 2 polar and 1 axial
propagating degrees of freedom. Finally, for l ¼ 0, neither
tensor nor vector harmonics are defined, and there are no
axial degrees of freedom. In this case, the 6 polar first-
class constraints and a couple of second-class constraints
remove 7 degrees of freedom from the 8 possible, which
leaves just 1 propagating physical degree of freedom.

B. Perturbative equations of motion

As commented above, except for matter couplings,
the action of the theory is invariant under the trans-
formation (2.5). Making use of such a symmetry, it is
straightforward to obtain the quantities associated to one
metric from the quantities associated to the other. In this
perturbative setup, it is clear how to implement (2.5)
both for background objects and the harmonic coefficients

of metric perturbations hðiÞμν . Concerning the interaction
terms, since (2.5) maps the matrix S to its inverse S−1, the
perturbations of S will be mapped to those of S−1. From
perturbing the relation S̃μ

νðS̃−1Þνα ¼ δμα, one obtains

Δ½ðS−1Þμν�¼−ðS−1ÞμαΔ½Sα
ρ�ðS−1Þρν; ð5:6Þ

and from this expression one can read the harmonic
coefficients of Δ½ðS−1Þμν� from those of Δ½Sμ

ν�.
In this section we will explicitly provide the equations of

motion for the perturbations of the metric gμν, whereas the
equations for the f sector can be readily obtained using the
symmetry (2.5) discussed above and removing matter
variables. More precisely, apart from obvious changes in
the labels g → f, in order to obtain the equations for the
perturbations of fμν, one should perform the changes

gAB → fAB; βn → β4−n; m2→m2=α2; SA
B → ðS−1ÞAB;

ω→ω−1; D→D−1; Qm→ 0 ð5:7Þ

of background objects, while the harmonic coefficients of
Δ½Sμν� must be changed as follows:

SAB → −ðS−1ÞACSCDðS−1ÞDB;

SA → −
1

ω
ðS−1ÞABSB;

S̃A → −ωS̃BðS−1ÞBA;

sA → −
1

ω
ðS−1ÞABsB;

s̃A → −ωs̃BðS−1ÞBA;

S̃ → −
1

ω2
S̃;

S → −
1

ω2
S;

s → −s: ð5:8Þ

In addition, since we are assuming matter coupled only to
the g sector, the perturbations of the matter stress-energy
tensor Δ½T μν� must be taken to be identically zero to
reproduce the equations for the f sector,

ΨAB → 0; ΨA → 0; ψA → 0;

Ψ → 0; Ψ̃ → 0; ψ → 0: ð5:9Þ

The rest of the section is divided in two subsections where
we analyze the axial (Sec. V B 1) and polar (Sec. V B 2)
sectors separately. We recall that the differential part of the
perturbative equations (2.13) corresponds to the usual first-
order perturbed Einstein tensor in spherical symmetry,
whereas bimetric effects are encoded in the linearized
effective stress-energy tensor.

1. Axial sector

For l ¼ 0, all axial tensor spherical harmonics are
identically zero, and the axial equations of motion are
trivial. For l ≥ 1, the axial part of the ðAbÞ component of

Eq. (2.13), that is the equation for Δ½GðiÞ
Ab�, gives

∇
ðiÞ

B∇
ðiÞ

Ah
ðiÞ
B −∇

ðiÞ
B∇
ðiÞ

Bh
ðiÞ
A −2ð∇

ðiÞ
BhðiÞB ÞvðiÞA þ2ð∇

ðiÞ
Ah

ðiÞ
B ÞvðiÞB

−2hðiÞB ∇
ðiÞ

BvðiÞA −4hðiÞB vðiÞA vðiÞB−2hðiÞA

�
RðiÞ

2
−VðiÞ

l

�

þðl−1Þðlþ2Þ
r2i

�
hðiÞvðiÞA −

1

2
∇
ðiÞ

AhðiÞ
�
¼ 16πtðiÞA ; ð5:10Þ

where the potential VðiÞ
l reads as

VðiÞ
l ≔ −

1

r2i
þ 2∇

ðiÞ
AvðiÞA þ 3vðiÞA vðiÞA þ lðlþ 1Þ

2r2i
: ð5:11Þ

The source term for the g sector is
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tðgÞA ¼ −
m2

16π
f½β0 þ 2ωβ1 þ ω2β2 þ ðβ1 þ 2ωβ2 þ ω2β3ÞSB

B þ ðβ2 þ 2ωβ3ÞD�hðgÞA − ½ðβ1 þ 2ωβ2

þ ω2β3 þ ðβ2 þ 2ωβ3ÞSD
D þ β3DÞδBC − ðβ2 þ 2ωβ3 þ β3SF

FÞSB
C þ β3SB

ES
E
C�SC

Ah
ðgÞ
B

− ½ðβ1 þ ωβ2 þ ðβ2 þ ωβ3ÞSD
D þ β3DÞδCA − ðβ2 þ ωβ3 þ β3SD

DÞSC
A þ β3SC

DS
D
A�s̃C

− ½ðβ1 þ ωβ2 þ ðβ2 þ ωβ3ÞSD
D þ β3DÞδCB − ðβ2 þ ωβ3 þ β3SD

DÞSC
B þ β3SC

DS
D
B�gACsBg

þ 1

4
ðQg −QmÞhðgÞA þ 1

8πM2
g
ψA; ð5:12Þ

while the source tðfÞA can be obtained directly applying the
rules (5.7)–(5.9) to the expression (5.12).
For l ¼ 1, the axial part of the equation for Δ½GðiÞ

ab� is not
defined, whereas for l ≥ 2, using the background equa-
tion (3.5), it reads as

2∇
ðiÞ

AhðiÞA − ∇
ðiÞ

A∇
ðiÞ

AhðiÞ þ 2∇
ðiÞ

AðhðiÞvðiÞAÞ

¼ 16π

�
tðiÞ −

Qi

2
hðiÞ

�
; ð5:13Þ

with

tðgÞ ¼ 1

4
ðQg −QmÞhðgÞ þ

m2

16π
½β1 þ β2SA

A þ β3D�s

þ 1

8πM2
g
ψ; ð5:14Þ

and tðfÞ can be derived using (5.7)–(5.9).
Therefore, the evolution of the axial sector is completely

determined by Eqs. (5.10) and (5.13). As commented in the
previous section, there is 1 gauge degree of freedom, which
one can fix. With the equations at hand, we can analyze
more explicitly the number of propagating degrees of
freedom in this sector. For l ¼ 1, there are four equations,
all of them contained in the relation (5.10). Making explicit
the second-order derivative terms and expanding in a
generic chart xA ¼ ðx0; x1Þ, they can be combined to give,
schematically

▪∂0∂1h
ðiÞ
1 − ▪∂1∂1h

ðiÞ
0 ¼ …; ð5:15aÞ

▪∂0∂1h
ðiÞ
0 − ▪∂0∂0h

ðiÞ
1 ¼ …; ð5:15bÞ

for i ¼ ff; gg, where ▪ stands for background terms, while
the dots encode first-order derivatives and terms with no
derivatives. Since there are no second-order time derivatives,
Eqs. (5.15a) are constraint equations, while Eqs. (5.15b) can
be understood as evolution equations for the two functions

hðfÞ1 and hðgÞ1 . However, the remaining axial gauge degree of

freedomkills one of those, for instance by choosinghðfÞ1 ¼ 0,

which leaves one single propagating axial degree of freedom
for l ¼ 1.
Now, for l ≥ 2, in addition to the four equations (5.15),

one also has (5.13), with principal part

▪∂0∂0hðiÞ þ ▪∂1∂1hðiÞ ¼ …: ð5:16Þ

These can be understood as two evolution equations for hðgÞ

and hðfÞ. There is the same amount of gauge freedom as for
l ¼ 1, and thus one ends up with three propagating axial
degrees of freedom for l ≥ 2.
Nonetheless, it is highly nontrivial to obtain the corre-

sponding master variables that would obey unconstrained
hyperbolic equations and would thus encode complete
physical information on the problem. Following the pro-
cedure presented by Gerlach-Sengupta [27], one can define
the following scalar functions2:

ΠðiÞ ¼ r3i ϵ
AB∇

ðiÞ
Bðr−2i hðiÞA Þ; ð5:17Þ

so that, taking then the curl of Eq. (5.10), yields

∇
ðiÞ

A∇
ðiÞ

AΠðiÞ − ṼðiÞΠðiÞ

þ ðl − 1Þðlþ 2Þ
2

r3i ϵ
AB∇

ðiÞ
B

�
hðiÞvðiÞA −

1

2
∇
ðiÞ

AhðiÞ
�

¼ 8πr3i ϵ
AB∇

ðiÞ
B

�
tðiÞA −

Qi

2
hðiÞA

�
; ð5:18Þ

for l ≥ 1, where

ṼðiÞ ¼ lðlþ 1Þ − 3

r2i
þ 3vðiÞAvðiÞA : ð5:19Þ

Since in GR there is only one copy of equation (5.18),

say for i ¼ g, introducing the new matter invariant ϕA ¼
tðgÞA − Qg

2
hðgÞA [27], one can use the remaining gauge freedom

2In fact, here we are using a rescaled variable since it leads to a
simpler form of the evolution equation. The variable introduced
by Gerlach-Sengupta reads as ΠðiÞ

GS ¼ ΠðiÞ=r3i .
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to set hðgÞ ¼ 0 (for l ≥ 2). In this way, in GR this equation
is uncoupled to the rest of the metric perturbations, and thus
ΠðgÞ follows an unconstrained evolution equation, which,
for vacuum, reduces to the Regge-Wheeler equation [49].
However, in bimetric gravity there is not enough gauge
freedom to set both hðiÞ to zero, and, in addition, the sources
tðiÞA do not only correspond to matter perturbations, but
they are complicated functions [cf. Eq. (5.12)] of the
metric perturbations. Therefore, the variables ΠðiÞ defined

by (5.17) do not obey unconstrained master equations
uncoupled to other metric perturbations.

2. Polar sector

In this subsection, we provide the set of equations for the
polar perturbations of the g sector, while the equations
corresponding to the f sector can be obtained by applying
the rules (5.7)–(5.9). On the one hand, the equation for

Δ½GðiÞ
AB� gives, for l ≥ 0,

2
	
∇
ðiÞ

BH
ðiÞ
CA þ ∇

ðiÞ
AH

ðiÞ
CB − 2gðiÞAB∇

ðiÞ
DHðiÞ

DC þ gðiÞAB∇
ðiÞ

CH
ðiÞD
D



vðiÞC þ 2HðiÞ

ABV
ðiÞ
l − gðiÞAB

�
lðlþ 1Þ

r2i
HðiÞC

C

þ 6HðiÞ
DCv

ðiÞDvðiÞC þ 4HðiÞ
DCðiÞ

∇
CvðiÞD

�
−
lðlþ 1Þ

r2i

h
∇
ðiÞ

BH
ðiÞ
A þ ∇

ðiÞ
AH

ðiÞ
B − 2gðiÞAB

	
∇
ðiÞ

CHðiÞ
C þHðiÞ

C vðiÞC

i

þ gðiÞAB

�
6∇
ðiÞ

CKðiÞvðiÞC þ 2∇
ðiÞ

C∇
ðiÞ

CKðiÞ −
ðl − 1Þðlþ 2Þ

r2i

�
KðiÞ þ lðlþ 1Þ

2
GðiÞ

��

− 2
	
∇
ðiÞ

B∇
ðiÞ

AKðiÞ þ ∇
ðiÞ

AKðiÞvðiÞB þ ∇
ðiÞ

BKðiÞvðiÞA


¼ 16πTðiÞ

AB; ð5:20Þ

with

TðgÞ
AB ¼ −

m2

16π
f½ð2β0 þ 4ωβ1 þ 2ω2β2Þ þ ð2β1 þ 4ωβ2 þ 2ω2β3ÞSC

C þ ð2β2 þ 4ωβ3ÞD�HðgÞ
AB

− 2½ðβ1 þ 2ωβ2 þ ω2β3 þ ðβ2 þ 2ωβ3ÞSD
D þ β3DÞSC

ðAδ
E
BÞ − ððβ2 þ 2ωβ3 þ β3SF

FÞSC
D

− β3SF
DS

C
FÞSD

ðAδ
E
BÞ�HðgÞ

EC − 2½ðβ1 þ 2ωβ2 þ ω2β3 þ ðβ2 þ 2ωβ3ÞSD
D þ β3DÞδEC

− ðβ2 þ 2ωβ3 þ β3SF
FÞSE

C þ β3SE
DS

D
C�gEðBSCAÞ þ 2½ðβ1 þ 2ωβ2 þ ω2β3

þ ðβ2 þ 2ωβ3ÞSD
D þ β3DÞgAB − ððβ2 þ 2ωβ3 þ β3SF

FÞδED − β3SE
DÞgEðBSD

AÞ�SCC
þ 2½ððβ2 þ 2ωβ3 þ β3SF

FÞδDE − β3SD
EÞgCðBSE

AÞ þ β3gEðBSE
AÞS

D
C − β3gEðBSD

AÞS
E
C

− ððβ2 þ 2ωβ3 þ β3SF
FÞSD

C − β3SD
ES

E
CÞgAB�SCD þ 4½ðβ1 þ ωβ2 þ ðβ2 þ ωβ3ÞSC

C

þ β3DÞgAB − ððβ2 þ ωβ3 þ β3SD
DÞδEC − β3SE

CÞgEðBSC
AÞ�S̃g þ

1

8πM2
g
ΨAB: ð5:21Þ

On the other hand, from the equation for Δ½GðiÞ
Ab�, and for l ≥ 1, one obtains

∇
ðiÞ

BHðiÞ
AB −∇

ðiÞ
AH

ðiÞB
B þHðiÞB

B vðiÞA þ ∇
ðiÞ

B∇
ðiÞ

AH
ðgÞ
B − ∇

ðiÞ
B∇
ðiÞ

BH
ðiÞ
A − 2vðiÞA ∇

ðiÞ
BHðiÞ

B þ 2vðiÞB∇
ðiÞ

AH
ðiÞ
B

− 2HðiÞ
B ∇

ðiÞ
BvðiÞA − 4HðiÞ

B vðiÞBvðiÞA − 2HðiÞ
A

�
RðiÞ

2
− VðiÞ

0

�
− ∇

ðiÞ
AKðiÞ −

ðl − 1Þðlþ 2Þ
2

∇
ðiÞ

AGðiÞ ¼ 16πTðiÞ
A ; ð5:22Þ

with
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TðgÞ
A ¼ −

m2

16π
f½β0 þ 2ωβ1 þ ω2β2 þ ðβ1 þ 2ωβ2 þ ω2β3ÞSB

B þ ðβ2 þ 2ωβ3ÞD�HðgÞ
A − ½ðβ1 þ 2ωβ2

þ ω2β3 þ ðβ2 þ 2ωβ3ÞSD
D þ β3DÞδCA − ðβ2 þ 2ωβ3 þ β3SD

DÞSC
A þ β3SC

DS
D
AÞ�SB

CH
ðgÞ
B

− ½ðβ1 þ ωβ2 þ ðβ2 þ ωβ3ÞSD
D þ β3DÞδBA − ðβ2 þ ωβ3 þ β3SD

DÞSB
A þ β3SB

DS
D
A�S̃B

− ½ðβ1 þ ωβ2 þ ðβ2 þ ωβ3ÞSD
D þ β3DÞδCB − ðβ2 þ ωβ3 þ β3SD

DÞSC
B þ β3SC

DS
D
B�gACSBg

þ 1

4
ðQg −QmÞHðgÞ

A þ 1

8πM2
g
ΨA: ð5:23Þ

Finally, Δ½GðiÞ
ab� gives, for l ≥ 2,

−HðiÞA
A þ 2∇

ðiÞ
AHðiÞ

A − r2i∇
ðiÞ

A∇
ðiÞ

AGðiÞ − 2r2i∇
ðiÞ

AGðiÞvðiÞA ¼ 16π

�
TðiÞ −

r2i Qi

2
GðiÞ

�
; ð5:24Þ

with

TðgÞ ¼ 1

4
ðQg −QmÞr2gGðgÞ þm2r2g

16π
½β1 þ β2SA

A þ β3D�Sþ 1

8πM2
g
Ψ; ð5:25Þ

and, for l ≥ 0,

− ∇
ðiÞ

B∇
ðiÞ

AHðiÞAB þ ∇
ðiÞ

B∇
ðiÞ

BH
ðiÞA
A − 2∇

ðiÞ
AHðiÞABvðiÞB þ ∇

ðiÞ
BH

ðiÞA
A vðiÞB − 2HðiÞABð∇

ðiÞ
Bv

ðiÞ
A þ vðiÞA vðiÞB Þ

þ
�
RðiÞ

2
−
lðlþ 1Þ
2r2i

�
HðiÞA

A þ lðlþ 1Þ
r2i

∇
ðiÞ

AHðiÞ
A þ ∇

ðiÞ
A∇
ðiÞ

AKðiÞ þ 2∇
ðiÞ

AKðiÞvðiÞA ¼ 16π

�
T̃ðiÞ −

Qi

2
KðiÞ

�
; ð5:26Þ

where

T̃ðgÞ ¼ −
m2

16π
f½β1 þ β2SA

A þ β3D�S̃ − ½ðβ2 þ ωβ3 þ β3SD
DÞδCA − β3SC

AÞ�SB
CS

A
B

þ ½β1 þ ωβ2 þ ðβ2 þ ωβ3ÞSB
B þ β3D�SAAg þ

1

4
ðQg −QmÞKðgÞ þ 1

8πM2
g
Ψ̃: ð5:27Þ

Again, the polar components ofΔ½tðfÞμν � can be derived using
(5.7)–(5.9).
The number of propagating degrees of freedom in this

sector can be analyzed following the same rationale as used
in the axial sector. However, the polar case is much more
involved, due to the greater number of equations and
variables. Concerning master equations, we would like
to note that the construction of a polar master variable for a
generic background is an open question even in GR, and
there are results only for certain specific backgrounds, like
the Zerilli variable for vacuum [50].

VI. STATIC BACKGROUNDS

Next, we proceed to apply the formalism developed in
previous sections to specific backgrounds of interest. In this
section we will assume that the background metric gμν is

static, that is, it contains a hypersurface-orthogonal Killing
field ∂t. Since exact bidiagonal solutions have been shown
to lead to instabilities [18,23–25], such backgrounds will
not be treated. Here we will focus instead exclusively on
nonbidiagonal backgrounds, thus assuming that there does
not exist a chart such that the metrics fμν and gμν are both
diagonal. As it is well known [22,33], imposing a staticity
condition on gμν implies that fμν is also static, and has a
Killing vector field ∂T ¼ 1

Ṫ ∂t that is collinear with ∂t. (Here
and in the following an overdot is used to denote a
derivative with respect to t.) We exhibit the general
equations of motion for perturbations around such a static
nonbidiagonal background in vacuo, obtained as a particu-
lar case of the equations derived in Sec. V. Finally, we
discuss the special case where the Killing vector fields of
both metrics coincide, that is for Ṫ ¼ constant.
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A. Nonbidiagonal background metrics
with a static gμν

Following Ref. [33], let us thus begin with the most
general nonbidiagonal ansatz with a static form for gμν:

gμνdxμdxν ¼ −UðrÞdt2 þ VðrÞdr2
þ r2ðdθ2 þ sin2 θdφ2Þ; ð6:1Þ

fμνdxμdxν ¼ −Aðt; rÞdt2 þ Bðt; rÞdr2 þ Cðt; rÞdtdr
þ r2fðt; rÞðdθ2 þ sin2 θdφ2Þ; ð6:2Þ

where rf is positive, C ≠ 0, and the chart is valid for U ≠ 0

and V ≠ 0. Since gμν is diagonal and independent of t, its
Einstein tensorGðgÞμ

ν is also diagonal. Moreover, it follows
from the equations of motion (2.6a) (with T μν ¼ 0) that
VðgÞμ

ν must also be diagonal on solutions. This implies the
following algebraic constraint:

VðgÞt
r ∝ VðgÞr

t ∝ Cðr2β1 þ 2rβ2rf þ β3r2fÞ ¼ 0: ð6:3Þ

Since we are considering nonbidiagonal solutions with
C ≠ 0, this equation translates into the condition rf ¼ ωr,
with ω a positive root of

β1 þ 2β2ωþ β3ω
2 ¼ 0: ð6:4Þ

Moreover, the Bianchi constraint ∇ðgÞμVðgÞ
μν ¼ 0 implies

ðβ2 þ ωβ3Þ½ðω − St
tÞðω − Sr

rÞ − St
rSr

t� ¼ 0: ð6:5Þ

Thus, leaving aside the particular choice of parameters
ðβ2 þ ωβ3Þ ¼ 0, the combination of terms in square brack-
ets must vanish.3 This leads us to the following relation in
terms of the metric functions:

C2 ¼ −4ðB − ω2VÞðA − ω2UÞ: ð6:6Þ

Note, in particular, that the reality of the metric restricts the
right-hand side of this expression to be strictly non-
negative.
Next, imposing (6.4) and (6.6), it can be shown that the

equations of motion (2.6a) for the background at hand boil
down to the Einstein equations,

GðgÞ
μν þm2Λggμν ¼ 0; ð6:7Þ

with the effective cosmological constant Λg≔β0þ2ωβ1þ
ω2β2 defined in terms of the parameters of the theory.

Therefore, the standard Birkhoff theorem with cosmologi-
cal constant applies, and the solution for the metric
coefficients is

U ¼ 1

V
¼ Σg; with Σg ≔ 1 −

2μg
r

−
m2Λg

3
r2; ð6:8Þ

which completely determines gμν as the Schwarzschild-
(anti)de Sitter metric, depending on the sign of Λg.
Now, under the above assumptions, the equations of

motion for fμν (2.6b) are decoupled from gμν, and they also
reduce to the Einstein equations,

GðfÞ
μν þm2

α2
Λffμν ¼ 0; ð6:9Þ

with the corresponding cosmological constant given by
Λf ≔ 1

ω2 ðβ2 þ 2ωβ3 þ ω2β4Þ. In addition, the metric func-
tions must also obey the nonbidiagonal condition (6.6). In
order to solve these equations, it is convenient to change to
new coordinates ðT; rfÞ, with T ¼ Tðt; rÞ, where the metric
fμν becomes diagonal,

fμνdxμdxν ¼ −fTTðT; rfÞdT2 þ frfrfðT; rfÞdr2f
þ r2fðdθ2 þ sin2 θdφ2Þ: ð6:10Þ

The solution of Eq. (6.9) in these new coordinates is once
again the diagonal form of the Schwarzschild-(anti)de
Sitter metric

fμνdxμdxν ¼ −ΣfdT2 þ 1

Σf
dr2f

þ r2fðdθ2 þ sin2 θdφ2Þ; ð6:11Þ

with Σf ¼ 1 − 2μf
rf

− m2Λf

3α2
r2f. Transforming back to the

original ðt; rÞ coordinates, one finds the relations

Aðt; rÞ ¼ ΣfṪ2; Bðt; rÞ ¼ −ΣfT 02 þ Σ−1
f ω2;

Cðt; rÞ ¼ −2ΣfṪT 0; ð6:12Þ

which, upon substitution into Eq. (6.6), yield the following
partial differential equation for the unknown function
T ¼ Tðt; rÞ,

T 02 ¼
�
1

Σg
−

1

Σf

��
Ṫ2

Σg
−
ω2

Σf

�
: ð6:13Þ

Here we have defined Ṫ ≔ ∂T=∂t and T 0 ≔ ∂T=∂r. Note
that, in general, the function T will depend on both ðt; rÞ. In
fact, for C to be nonvanishing, so as to ensure a non-
bidiagonal form of the metrics, neither Ṫ nor T 0 can vanish.
In particular, this excludes the case where the two metrics
describe black holes with the same mass and cosmological

3If β2 þ ωβ3 ¼ 0, the condition (6.4) implies β1 þ ωβ2 ¼ 0.
As we will see below, in this special case, the metrics decouple
even at linear level, reducing the perturbation equations to the
linearized Einstein equations.
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constant, since that would imply Σg ¼ Σf and thus,
following (6.13), T 0 ¼ 0. Since (6.13) is a nonlinear partial
differential equation, there is no systematic procedure to
obtain its general solution T ¼ Tðt; rÞ. In addition, the
reality conditions imply that the right-hand side of (6.13)
must be non-negative, which, in general, will impose
certain restrictions on Ṫ (or, if one had a general solution
at hand, on the corresponding integration constants).
Interestingly, in regions where ΣfΣg < 0, the right-hand
side of (6.13) is positive definite, and thus Ṫ is unrestricted
by this condition. Note also that, in terms of the function T,
for this nonbidiagonal ansatz, the matrix S can be written in
the following compact form:

St
t ¼

ΣfṪ2 þ ΣgωjṪj
Σgðωþ jṪjÞ ; ð6:14aÞ

Sr
r ¼

ðω2 þ Ṫ2 þ ωjṪjÞΣg − Ṫ2Σf

Σgðωþ jṪjÞ ; ð6:14bÞ

St
r ¼ −Σ2

gSr
t ¼

ΣfT 0Ṫ
Σgðωþ jṪjÞ : ð6:14cÞ

From these expressions, it is straightforward to conclude
that the matrix S will be real as long as T is real.
There is, however, one specific interesting case where

Eq. (6.13) can be solved. Namely, if one assumes that the
Killing vector field of both metrics coincide, and thus Ṫ is
constant, the equation can then be reduced to the quadrature,

T ¼ ctþ
Z

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

Σg
−

1

Σf

��
c2

Σg
−
ω2

Σf

�s
; ð6:15Þ

with c an integration constant. Owing to the reality conditions
discussed above, this integration constant is not completely
free in general, and it is constrained so that the argument of the
square root is positive, a condition that will depend on the
specific parameters (mass and cosmological constant) of the
black holes and on the range of r. Remarkably, the choice
c2 ¼ ω2 is the only one that reduces the argument of the
square root to a perfect square, and therefore it is valid for any
parameter of the black holes and any range of r. Furthermore,
we note that the backgroundgeometry considered inRef. [26]
can be obtained as a particular case of ourmore general (6.15)
with c ¼ ω and Λg ¼ Λf ¼ 0.
At background level, the interaction between the two

metric sectors only manifests itself through the cosmologi-
cal constants Λg and Λf, so that the two metrics are
effectively decoupled. Therefore, one could treat both
metrics as independent and take a different coordinate
frame for each, for instance, such that both are diagonal
[i.e., ðt; rÞ for gμν and ðT; rfÞ for fμν]. In this sense, c does
not have a physical impact on the background geometry,

and, in particular, no curvature invariant depends on c.
Hence, at the background level, this constant only appears
when one relates the two metrics. For instance, it affects the
relative tilt of the light-cones of gμν and fμν (for an analysis
of the causal structure in the general case see Refs. [32,37]).
However, at a perturbative level the two sectors are indeed
coupled, and the constant c appears in the equations of
motion in a nontrivial way.

B. Linear perturbations on a static
nonbidiagonal background

Here we compute the source terms in the equations of
motion for linear perturbations around nonbidiagonal static
backgrounds. The Killing vector field of gμν is ∂t. Then,
under these conditions, fμν is also static, though its Killing
vector field ∂T generically does not coincide with ∂t, but is
instead defined in terms of the function T ¼ Tðt; rÞ that
solves Eq. (6.13).
For a general static nonbidiagonal spherically symmetric

ansatz, the expressions for the axial harmonic components
of the perturbed effective stress-energy tensor for the metric
gμν, Eqs. (5.12) and (5.14), imposing T μν ¼ Δ½T μν� ¼ 0,
take the form

tðgÞA ¼ −
m2

16π

�
2Λgh

ðgÞ
A −

ðβ1 þ ωβ2ÞðhðfÞB − ω2hðgÞB ÞQB
A

ω2ΣgðjṪj þ ωÞ
�
;

ð6:16Þ

tðgÞ ¼−
m2

16π

�
ΛghðgÞþ

ðβ1þωβ2ÞðhðfÞ−ω2hðgÞÞðjṪj−ωÞ
2ω2

�
;

ð6:17Þ

where we have introduced the two-by-two matrix

QA
B ≔

�
Ṫ2ðΣf − ΣgÞ ΣfṪT 0

−ΣfṪT 0Σ2
g ω2Σg − Ṫ2Σf

�
: ð6:18Þ

At this point, it is clear that when the Killing vector fields of
both metrics coincide (and therefore Ṫ ¼ c), the constant c
will appear explicitly in the equations of motion through
the source terms. Similarly, for the axial harmonic compo-

nents of Δ½tðfÞμν �, we have

tðfÞA ¼−
m2

16πα2

�
2Λfh

ðfÞ
A þðβ1þωβ2ÞðhðfÞB −ω2hðgÞB ÞQB

A

ω3ΣgjṪjðjṪjþωÞ
�
;

ð6:19Þ

tðfÞ ¼ −
m2

16πα2

�
ΛfhðfÞ

−
ðβ1 þ ωβ2ÞðhðfÞ − ω2hðgÞÞðjṪj − ωÞ

2ω3jṪj
�
: ð6:20Þ
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As for the polar components, Eqs. (5.21), (5.23), (5.25), and (5.27), boil down to

TðgÞ
AB ¼ −

m2

8π

�
ΛgH

ðgÞ
AB −

ðβ1 þ ωβ2ÞðKðfÞ − ω2KðgÞÞPAB

ω2ðjṪj þ ωÞ
�
; ð6:21Þ

TðgÞ
A ¼ −

m2

16π

�
2ΛgH

ðgÞ
A −

ðβ1 þ ωβ2ÞðHðfÞ
B − ω2HðgÞ

B ÞQB
A

ω2ΣgðjṪj þ ωÞ
�
; ð6:22Þ

TðgÞ ¼ −
m2r2

16π

�
ΛgGðgÞ þ ðβ1 þ ωβ2ÞðGðfÞ − ω2GðgÞÞðjṪj − ωÞ

2ω2

�
; ð6:23Þ

T̃ðgÞ ¼ −
m2

16π

�
ΛgKðgÞ −

ðβ1 þ ωβ2Þ
2ω2

�
ðKðfÞ − ω2KðgÞÞðjṪj − ωÞ þ ðHðfÞ

AB − ω2HðgÞ
ABÞRBA

jṪj þ ω

��
; ð6:24Þ

with the following two matrices:

PAB ≔

0
@ Ṫ2ðΣf − ΣgÞ ΣfṪT 0

ΣfṪT 0 Ṫ2Σf−ω2Σg

Σ2
g

1
A; ð6:25Þ

RAB ≔

0
@ Ṫ2 Σf−Σg

Σ2
g

−ΣfṪT 0

−ΣfṪT 0 Ṫ2Σf − ω2Σg

1
A: ð6:26Þ

The corresponding source terms for the f sector read as

TðfÞ
AB ¼ −

m2

8πα2

�
ΛfH

ðfÞ
AB þ ðβ1 þ ωβ2ÞðKðfÞ − ω2KðgÞÞPAB

ω3jṪjðjṪj þ ωÞ
�
; ð6:27Þ

TðfÞ
A ¼ −

m2

16πα2

�
2ΛfH

ðfÞ
A þ ðβ1 þ ωβ2ÞðHðfÞ

B − ω2HðgÞ
B ÞQB

A

ω3ΣgjṪjðjṪj þ ωÞ
�
; ð6:28Þ

TðfÞ ¼ −
m2ω2r2

16πα2

�
ΛfGðfÞ −

ðβ1 þ ωβ2ÞðGðfÞ − ω2GðgÞÞðjṪj − ωÞ
2ω5jṪj

�
; ð6:29Þ

T̃ðfÞ ¼ −
m2

16πα2

�
ΛfKðfÞ þ ðβ1 þ ωβ2Þ

2ω5jṪj
�
ðKðfÞ − ω2KðgÞÞðjṪj − ωÞ þ ðHðfÞ

AB − ω2HðgÞ
ABÞRBA

jṪj þ ω

��
: ð6:30Þ

In the above expressions one can explicitly check that, as
commented previously, for the particular case β1þωβ2¼0,
the metric sectors are decoupled also at the linear level.
Finally, we would like to remark that the case jṪj ¼ ω
analyzed in Ref. [26] is, at first sight, a very particular
choice that considerably simplifies the source terms. Even
more, as shown in the mentioned reference, for this choice
both metrics can be conveniently written in the advanced
Eddington-Finkelstein form, simplifying even more the
expressions above.

VII. CONCLUSION

We have presented the equations to describe the evolu-
tion of linear perturbations of bimetric gravity on a

completely general spherically symmetric background
spacetime. In order to obtain a covariant setup, valid for
any coordinate choice, we have followed the formalism by
Gerlach-Sengupta. More precisely, we have performed a
2þ 2 decomposition of the manifold, so that the back-
ground metric is written as a warped product between a
two-dimensional metric on a Lorentzian manifold and the
metric of the two-sphere. Then we have decomposed all
perturbative variables in the natural basis given by tensor
spherical harmonics. This removes the dependence on the
angles from the different equations and defines two polarity
sectors (axial and polar), which evolve independently at the
linear level.
In the bimetric theory, there are two sets of equations for

linear perturbations, one set for each metric, that couple
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through effective stress-energy tensors determined by
the bimetric interaction potentials. That is, in addition to
the contribution of ordinary matter fields, each metric
sees the other effectively behaving as a source in the field
equations. Hence, the difference with respect to GR, where
the matter stress-energy tensor is independently prescribed
and matter perturbations are defined independently of the
geometry, lies in the fact that here one needs to obtain the
explicit expressions for the perturbed effective stress-
energy tensors in terms of the perturbations of the two
metrics. Such expressions are presented in Sec. V, and
represent one of the main results of this paper.
Owing to the fact that there are twice as many variables

as in GR, the dynamical content of the theory is much more
intricate and, instead of 2, there are 7 propagating degrees
of freedom. In particular, we have discussed the number of
propagating degrees of freedom for each polarity sector and
for each multipole l ¼ 0, l ¼ 1, and l ≥ 2. However, the
construction of explicit master equations to describe these
physical degrees of freedom in the general case is far from
trivial. In GR, for a general spherical background, only the
Gerlach-Sengupta master equation is known in the axial
sector, but there is no such result for the polar one. For the
bimetric theory, we have followed the construction by
Gerlach-Sengupta for the axial sector and shown that the
obstruction to obtain an unconstrained independent equa-
tion for the Gerlach-Sengupta master variable lies, on the
one hand, in the coupling between the perturbations of the
two metrics, and, on the other hand, in the fact that, unlike
in GR, there is not enough gauge freedom to remove certain
variables.

This formalism is valid for any spherically symmetric
background,which, in general,might be dynamical. Even so,
as an interesting application, in the last section we have
considered the case of a nonbidiagonal static background.
More precisely, we have assumed that one of the background
metrics (gμν) contains a hypersurface-orthogonal Killing
field, and that there is no chart where both metrics are
simultaneously diagonal. These assumptions imply that both
background geometries are solutions of the Einstein equa-
tions, and thus they correspond to the Schwarzschild-(anti)de
Sitter geometry with collinear Killing vector fields, while
deviations from GR become manifest at the perturbative
level. In addition to the twomasses and the two cosmological
constants, the only freedom at the background level corre-
sponds to the norm of the Killing field of fμν, which is
encoded in the function T ¼ Tðt; rÞ that obeys Eq. (6.13). It
is not possible to obtain the general analytic solution for this
equation, and thus we have left Tðt; rÞ unspecified in the
evolution equations for the perturbations, so as to ensure that
our results are valid for any static nonbidiagonal solution and
are presented in a form suitable for future studies.
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