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Current gravitational wave (GW) detections rely on the existence of libraries of theoretical waveforms.
Consequently, finding new physics with GWs requires libraries of nonstandard models, which are
computationally demanding. We discuss how deep learning frameworks can be used to generate new
waveforms “learned” from a simulation dataset obtained, say, from numerical relativity simulations.
Concretely, we use the WaveGAN architecture of a generative adversarial network (GAN). As a proof of
concept we provide this neural network (NN) with a sample of (>500) waveforms from the collisions of
exotic compact objects (Proca stars), obtained from numerical relativity simulations. Dividing the sample
into a training and a validation set, we show that after a sufficiently large number of training epochs the NN
can produce from 12% to 25% of the synthetic waveforms with an overlapping match of at least 95% with
the ones from the validation set. We also demonstrate that a NN can be used to predict the overlapping
match score, with 90% accuracy, of new synthetic samples. These are encouraging results for using GANs
for data augmentation and interpolation in the context of GWs, to cover the full parameter space of, say,
exotic compact binaries, without the need for intensive numerical relativity simulations.

DOI: 10.1103/PhysRevD.109.124059

I. INTRODUCTION

The advent of the gravitational wave (GW) era [1–3]
opens new possibilities not only for relativistic astrophys-
ics, cosmology, and strong gravity, but also for fundamental
physics. Alongside the unveiling of the population of black
holes and neutron stars in the Universe (see, e.g., [4]), it is
possible that smoking guns about the nature of dark energy,

dark matter, and even quantum gravity will emerge from
this new channel. In fact, particular events have already
established concrete illustrations of how dark energy
models can be constrained (see, e.g., [5–7]) and dark
matter could be identified (see, e.g., [8]).
The interpretation (and parameter estimation) of GW

signals relies on matched filtering [9]. Therefore, libraries
of theoretical templates are mandatory. The construction of
such libraries is a nontrivial, time-consuming process. For
the vanilla black hole binary problem in (vacuum) general
relativity, the construction of full waveforms, including
inspiral, merger, and ringdown, became under control after
the numerical relativity breakthroughs of 2005—see the
review in [10]. However, a dense scanning of the full
parameter space (of the black hole binary problem) only
with numerical relativity simulations is computationally
impossible. Thus, a community effort drove the scanning of
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the parameter space using state of the art numerical
relativity simulations, patched together with approximation
methods for both the inspiral and the ringdown—see, e.g.,
[11–14], building approximants for the theoretical wave-
forms with generic parameters.
An underemphasized caveat of current GW interpreta-

tions is the degeneracy problem: can nonstandard wave-
forms fit the data better? Nonstandard means waveforms
from exotic compact objects, which could either be non-
Kerr black holes or horizonless compact objects. Moreover,
such exotic compact objects could originate either from
general relativity with matter sources or from modified
gravity. The difficulty in tackling the above question is,
however, the almost complete lack of alternative waveform
libraries that can be compared with real events to determine
whether the vanilla (that is, Kerr black holes and neutron
star binaries) waveforms are indeed the ones selected
within a larger library, when employing matched filtering
and Bayesian analysis.
At the time of writing, the one nonstandard model of

compact binaries for which there has been a more con-
sistent and successful effort to produce waveforms is the
case of bosonic (i.e., scalar [15–17] or vector [18–20])
stars. The dynamical evolution of these models is theo-
retically and technically under control [21] and presents a
variety of motivations: bosonic stars emerge in sound
physical models, can be dynamically robust [21,22], and
have been put forward as “fuzzy” dark matter [23] lumps
and black hole imitators, e.g., [24–26]. In the context of
GWs, several studies of waveforms from collisions and
binaries of bosonic stars have been reported, e.g., [27–30].
As an application to the ongoing detections, the massive
GWevent GW190521 [31] was shown to fit well a collision
of two vector bosonic (also known as Proca) stars [8]. This
effort relied on scanning a library of 89 Proca star collision
waveforms (in the meantime enlarged to nearly 800 wave-
forms) [32]. Still, this only scratches the surface of the full
parameter space of the model. As such, looking for efficient
computational methodologies that can transform a coarse
sampling of the parameter space into a dense coverage is of
paramount importance.
The goal of this paper is to start an exploration of such a

methodology using deep learning techniques.Moreover, the
method can, in principle, be used for waveforms produced
from generic nonstandard compact binaries. Thus, the Proca
model explicitly discussed herein can be taken both as
interesting in its own right, but simultaneously as a proof of
concept of the application of the method, illustrating it but
not exhausting it. To be concrete, we shall be making use of
generative adversarial networks (GANs) [33], a particular
class of deep learning frameworks.
GANs can be described as unsupervised methods for

mapping low-dimensional latent vectors to high-dimensional
data. In our case, this means mapping known waveforms,
corresponding to a prior distribution, pmodel, to a larger space

of waveforms, the generated data distribution, pdata. In a
nutshell, GANs are based on a game-theoretic scenariowhere
we have two networks competing against each other. On the
one hand,we have thegenerator, responsible formapping the
low dimensional vector z into the high dimensional samples
wewant to reproducex ¼ gðz; θgÞ (i.e., thewaveforms in our
case). Here, θg are the parameters from the generator network
to be adjusted during the training phase. Competing against
the generator we have, on the other hand, the discriminator
network, whose sole purpose is to distinguish between
samples drawn from the original dataset and samples drawn
from the generator. The discriminator provides a probability,
dðx; θdÞ∈ ½0.0; 1.0�, of a given sample x being real, as
opposed to a fake one drawn from the generator model.
Here, θd are the parameters from the discriminator network to
be adjusted during the training phase.
The simplest way to describe the learning process of a

GAN is a zero-sum game, in which a function Lðθg; θdÞ
determines the payoff of the discriminator. The generator
receives −Lðθg; θdÞ as its own payoff. During the training
phase, each player attempts to maximize its own payoff, so
that the generator is trained to maximize Lðθg; θdÞ, whereas
the discriminator is trained to minimize it.
The original proposal [33] for the function Lðθg; θdÞ is

arg min
g

max
d

Lðθg;θdÞ¼Ex∼pdata
½logdðxÞ�

þEz∼pmodel
½logð1−dðgðzÞÞ�; ð1:1Þ

where Ex∼pdata
and Ez∼pmodel

are the expected values for a
sample to be drawn from the data and the generator,
respectively.
This drives the discriminator to learn to correctly classify

samples as real or fake. Meanwhile, the generator attempts
to fool the discriminator by producing fake samples with
features as close as possible to the features from real
samples. At convergence, the generator’s samples are
indistinguishable from the real ones, and the discriminator
outputs a probability of 50% for every sample. The
discriminator may be discarded or its parameters can be
reused for other purposes later on.
GANs have shown great success in generating high-

quality synthetic images [34–36] indistinguishable from
real images. This has encouraged the use of GANs for
synthetic data generation in broader contexts, in particular
in high-energy physics, where in some instances the data
generation can be a computational intensive task [37–40].
In this regard, while GANs were developed for image
generation [33], there have been attempts to adapt this
approach for other formats, such as tabular data [34], time
series [41], video content augmentation [42], and audio
synthesis [43–45].
In this article, we shall examine the potential of GANs to

produce a larger waveform catalog from a limited dataset of
the corresponding waveforms. We shall focus on the case of
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waveforms produced by Proca star binaries. For this
purpose, we shall modify WaveGAN [45], a GAN initially
designed to provide an unsupervised synthesis of raw-
waveform audio, such that it could learn and produce Proca
waveforms from an initial dataset obtained from numerical
relativity simulations, i.e., standard audio. Dividing the
sample into a training and a validation set, we show that
after a sufficiently large number of training epochs the
neural network (NN) can generate from 12% to 25% of the
synthetic data with at least 95% overlapping match with
reference samples from the validation set.1

This article is organized as follows. In Sec. II, we briefly
review the Proca model of bosonic stars and describe the
dataset and methodology explored in this study. We also
discuss the issue of waveform normalization. In Sec. III, we
describe the WaveGAN architecture and the training
methodology. Then, in Sec. IV we discuss the evaluation
methodology, i.e., how to assess the quality of the gen-
erated waveforms and use the trained discriminator archi-
tectures to predict the match score for new synthetic
samples. Section V presents our results after applying
the chosen architecture, training, and evaluation to the
initial dataset. Finally, Sec. VI provides a final discussion
on the approach proposed herein.

II. THE PROCA MODEL AND THE DATASET

The Proca stars, their dynamics, and the corresponding
GWs will be considered in the simplest model: a complex,
massive Proca field minimally coupled to Einstein’s grav-
ity. The action reads (with c ¼ 1 ¼ G)

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

4
F αβF̄ αβ −

μ2

2
AαĀ

α

�
; ð2:1Þ

where R is the Ricci scalar of the spacetime metric g, A is
a complex four-potential, with the field strength F αβ ¼
∂αAβ − ∂βAα, μ > 0 corresponds to the mass of the Proca
field, and the overbar denotes complex conjugation.
Spinning Proca stars (the fundamental solutions, in the

stable branch [22]) can be labeled by their Arnowitt-Deser-
Misner (ADM) mass, Mμ or, alternatively, by their oscil-
lating frequency ω=μ, both in units of the Proca field mass.
In the following, for simplicity, we shall set μ ¼ 1 and label
the solutions viaM. The fundamental solutions in the stable
branch have M and ω in the interval(s) [20]:

ðM;ωÞ∈ ð½0; 1.125�; ½0.469; 1�Þ: ð2:2Þ

Note that the upper (lower) limit in the M interval
corresponds to the lower (upper) limit in the ω interval.

The angular momentum of the solutions is determined by
M. For the considered solutions the total angular momen-
tum is in the range [20] J∈ ½0; 1.259�.
The collision of two Proca stars generates GWs. These

are extracted via the Newman-Penrose (complex) scalarΨ4.
Both the real [RðΨ4Þ] and imaginary parts of this scalar
(corresponding to the two GW polarizations) can be
decomposed into harmonics. The dominant GW modes,
i.e., with higher amplitude, have harmonic indices ðl; mÞ ¼
ð2; 2Þ and ðl; mÞ ¼ ð2; 0Þ. For simplicity, we shall consider
only the ðl; mÞ ¼ ð2; 2Þ waveforms for each collision,
focusing on the real part of the scalar (the “+” polarization).
Each waveform is a time series for rRðΨ4Þ, since Ψ4 falls
as 1=r, with r being the distance to the source.
Our dataset consists of waveforms generated from the

merger of two spinning Proca stars with aligned spin axes.
These sorts of collisions were recently studied in [8,47].
Although the stars start from rest, due to frame dragging the
binary describes an eccentric (rather than precisely head
on) trajectory. The end point depends on the progenitor
Proca stars. In the region of the parameter space explored
here, the Proca star progenitors are sufficiently massive to
trigger black hole formation after the merger.
The waveforms are generated from numerical evolutions

using the Einstein Toolkit infrastructure [48–50], together
with the CARPET package [51,52] for mesh refinement.
The Proca evolution equations are solved via a modified
Proca thorn [22,30,53,54] to include a complex field. We
have performed numerical simulations of equal and
unequal mass Proca stars. The initial data consists in the
superposition of two equilibrium solutions separated by
D ¼ 40=μ [8], in geometrized units. This guarantees an
admissible initial constraint violation. The equilibrium
spinning Proca stars are numerically constructed using
the solver FIDISOL/CADSOL for nonlinear partial differential
equations of elliptic type, via a Newton Raphson method—
see [18–20] for more details.
We divide our data into two sets:
(i) One set contains 98 waveforms generated from the

merger of two equal mass Proca stars (M1 ¼ M2).
For each collision, we consider waveforms of the
ðl; mÞ ¼ ð2; 2Þ mode.

(ii) The other dataset consists of 457waveforms from the
merger of two unequal mass Proca stars (M1 ≠ M2),
with the same ðl; mÞ ¼ ð2; 2Þ mode.

In Figs. 1 and 2, some samples for both datasets are
illustrated, for the dominant quadrupolar mode ðl; mÞ ¼
ð2; 2Þ.2 In Fig. 3 we display the mass distribution for both
datasets [equal mass case in Fig. 3(a) and different mass in
Fig. 3(b)]. Both datasets are preprocessed to be sampled at

1We remark that using other data-driven methods like surro-
gate models can produce better matches for 1D spaces—see,
e.g., [46]; but GANs offer a novel methodology with substantial
room to improve.

2We remark that the junk radiation in these simulations is small
and it is not causally connected to the physical gravitational-wave
burst emitted during the collision. They are both separated by a
retarded time interval of Δu ∼ 200—see Fig. 16 in [55].
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2048 Hz. Because of the feature that the dataset have
different y ranges we need to normalize them. Having the
samples scaled to a similar range helps to prevent or at least
mitigate bias and to speed up the optimization process by
preventing the model parameter weights to either vanish or
explode [56]. We have tested different methods of scaling,
including standard scaling,3 Robust Scaler,4 the min-max
scaler,5 and max-absolute scaler6 which scale the features
into the ½−1.0; 1.0� range without breaking the sparsity of
the dataset. We have chosen to scale the datasets according

to the max-absolute, since we want to preserve the sparsity
of our dataset. It is important to mention that all features are
scaled only after the train/validation split happens, to avoid
any bias in the training procedure, and their true amplitude
ranges are stored for a later use to transform back the
normalized samples into their original values. Then each
dataset is shuffled and split into training (80% of the total
dataset) and validation (20% of the total dataset) datasets;
these are then fed into the NN model, as further explained
in the next section.
Each sample consist of a time series representing the

real part of the Newman-Penrose scalar Ψl¼2;m¼2
4 , together

with the value of the mass—as shown in Fig. 1—and the
feature scale.

III. MODEL ARCHITECTURE AND TRAINING
METHODOLOGY

Inspired by the use GANs for audio generation, we
employ WaveGAN [45] to generate new waveforms
“learned” from our simulations dataset. Our purpose is

FIG. 1. Samples of rRðΨl¼2;m¼2
4 Þ for the equal mass dataset (M ¼ M1 ¼ M2). The amplitude of rRðΨl¼2;m¼2

4 Þ is normalized to be
within the range of ½−1.0; 1.0�.

FIG. 2. Samples of rRðΨl¼2;m¼2
4 Þ for the unequal mass dataset (M1 ≠ M2). The amplitude of rRðΨl¼2;m¼2

4 Þ is normalized to be within
the range of ½−1.0; 1.0�.

3x0 ¼ x−μ
σ , where x0 is the transformed feature, μ and σ are the

features’ average and standard deviation from the dataset,
respectively.

4x0 ¼ x−μ1=2
p75−p25, where x0 is the transformed feature, μ1=2 is the

median, and ðp75 − p25Þ is the interquartile range which is the
difference between the 75th and 25th percentiles.

5x0½a; b� ¼ aþ ðx−min xÞðb−aÞ
max x−min x , where x0 is the transformed fea-

ture, a and b determine an arbitrary desired interval for the final
feature range.

6x0 ¼ x
max jxj.
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to test whether this method is useful for data augmenta-
tion and data interpolation to cover the full parameter
space without the need for intensive computational
simulations.
The WaveGAN architecture (see Table I) is based on

deep convolutional GAN (DCGAN) [57] which popular-
ized the usage of GANs for image synthesis. The DCGAN
generator uses the transposed convolution operation to
iteratively upsample low-resolution feature maps into high-
resolution images. The WaveGAN uses a modified trans-
posed convolution operation to widen its receptive fields.7

We keep the longer one-dimensional filters of 25, as
proposed in [45], however we set the number of layers
to 4 and channels to 1 at first, and upsample by a factor of 4
at each layer. The discriminator network is modified in a
similar fashion, using length-25 filters. The output length
from the generator, as well as the input length to the
discriminator, is set to 2048, to be the same length as the
waveform samples.

The usual GANs generate samples similar to the ones
learned in the training. However, this approach is not the
most practical if one wants to produce synthetic samples
from particular classes present in the dataset, i.e., augment

FIG. 3. Mass distribution for the equal (a) and unequal (b) mass dataset with one (red) and two (blue) sigmas. (a) The green and red
crosses at the bottom show the sample values for the training and validation datasets, respectively. (b) The green and black dots display
the sample values for the training and validation datasets, respectively, while the red and blue ellipses display the one and two sigmas
regions for M1 and M2 distributions. (a) M1 ¼ M2 dataset. The green (red) crosses represent the samples for the training (validation)
set. (b) M1 ≠ M2 dataset. The green (black) points represent the samples for the training (validation) set.

TABLE I. WaveGAN generator architecture.

Operation Kernel size Output shape

Input z ∼ uniformð−1; 1Þ (n, 100)
Dense 1 (100, 256d) (n, 256d)
Reshape (n, 16, 16d)
ReLU (n, 16, 16d)
Trans Conv1D (stride ¼ 4) (25, 16d, 8d) (n, 64, 8d)
ReLU (n, 64, 8d)
Trans Conv1D (stride ¼ 4) (25, 8d, 4d) (n, 256, 4d)
ReLU (n, 256, 4d)
Trans Conv1D (stride ¼ 4) (25, 4d, 2d) (n, 1024, 2d)
ReLU (n, 1024, 2d)
Trans Conv1D (stride ¼ 4) (25, 2d, d) (n, 4096, d)
ReLU (n, 4096, d)
Trans Conv1D (stride ¼ 4) (25, d, c) (n, 2048, c)
Tanh (n, 2048, c)

7The receptive field in convolutional neural networks is the
region of the input space that affects a particular unit of the
network.

GENERATING GRAVITATIONAL WAVEFORM LIBRARIES OF … PHYS. REV. D 109, 124059 (2024)

124059-5



classes or generate samples to interpolate missing regions
from the dataset. One way to overcome such a problem is to
condition our generator and discriminator models. To
promote a generator and discriminator to its conditional
model forms, one must provide additional information
about the training samples, which can be any kind of
auxiliary information, such as class labels or, in our case,
the mass value M for each sample waveform. We con-
ditioned our WaveGAN using the values of the mass M as
labels y and the feature scale max jxij used to normalize the
sample with the intent to restrict the model to generate
samples within these parameter constraints. We can per-
form the conditioning by feeding y and max jxij into both
the discriminator and the generator. We use a similar
approach as in [58]. To include the label y and max jxij,
we scale the feature maps output from each hidden layer
based on the conditioning representation; in our case we
scale the feature maps by the mass and feature scale values
provided by the sample labels. It is important to mention
that this approach is applicable in our case due to the low
variance of our labels. In order to deal with high variance
labels the best approach is to either normalize them or
encode it using a linear layer. Meanwhile, the scale factors
max jxij help us to constrain the amplitude scale of the
synthetic samples, in a sense that when we produce the new
samples their amplitude values will be within a region
allowed by their physical parameters in the dataset. This is
required in order to avoid producing samples which are not

permitted by physics or artifacts that can be produced
by such methods8 [59].
Our WaveGAN is implemented in PyTorch [60], and we

train our model for 1050 epochs using WGAN-GP [61]
strategy, with Adam [62] as an optimizer, for both generator
and discriminator, with learning rate of 10−4 for the
generator and 3 × 10−4 for the discriminator. We train
our networks using batches of size 32, while the validation
set has batches of size 16, on a single GPU NVIDIATesla
V100. As a first task, we set the generators and discrim-
inators to one channel in order to generate the synthetic
rΨl¼2;m¼2 modes for the equal and different masses data-
sets. The results for equal and unequal mass datasets are
presented in Sec. V.

IV. EVALUATION METHODOLOGY

The evaluation of generative models is an ongoing topic
in the community [63]. Just as important as choosing the
right strategy to train a generative model is selecting the
right metric to evaluate the quality of the generated

FIG. 4. Equal mass dataset, epoch 0. Evaluation of the quality of the generated samples compared to the real samples of rRðΨl¼2;m¼2
4 Þ

and probabilities to generate good quality samples. (a) Real (yellow) and generated (blue) Newman-Penrose scalar rRðΨl¼2;m¼2
4 Þ.

(b) Probabilities of generating samples for a given match accuracy for different mass parameters.

8We used the rescaling factor during the training to make the
final neural network output give the results in the same scale as in
the simulations (training data). For the new synthetic data, the
model outputs a distribution around a credible region of expected
value for the mass of the objects, leading to predictions for the
scaling of new synthetic data. This is certainly an important point
that deserves future refinement.
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FIG. 5. Evaluation of the quality of the generated samples compared to the real samples of the Newman-Penrose scalar Ψl¼2;m¼2
4 and

probabilities to generate good quality samples at epoch 0 with a different mass dataset. (a) Real (yellow) and generated (blue) Newman-
Penrose scalar Ψl¼2;m¼2

4 . (b) Probabilities of generating samples for a given match accuracy, for different mass parameters.

FIG. 6. Evaluation of the quality of the generated samples compared to the real samples of the Newman-Penrose scalar Ψl¼2;m¼2
4 and

probabilities to generate good quality samples at epoch 500. (a) Real (yellow) and generated (blue) Newman-Penrose scalar Ψl¼2;m¼2
4 .

(b) Probabilities of generating samples for a given match accuracy for different mass parameters.
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FIG. 7. Evaluation of the quality of the generated samples compared to the real samples of the Newman-Penrose scalar Ψl¼2;m¼2
4 and

probabilities to generate good quality samples at epoch 500 with the different mass dataset. (a) Real (yellow) and generated (blue)
Newman-Penrose scalar Ψl¼2;m¼2

4 . (b) Probabilities of generating samples for a given match accuracy for different mass parameters.

FIG. 8. Evaluation of the quality of the generated samples compared to the real samples of the Newman-Penrose scalar Ψl¼2;m¼2
4 and

probabilities to generate good quality samples at epoch 1050. (a) Real (yellow) and generated (blue) Newman-Penrose scalar Ψl¼2;m¼2
4 .

(b) Probabilities of generating samples for a given match accuracy for different mass parameters.
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samples. A direct comparison between the synthetic sam-
ples and the real ones can be a useful diagnostic, often
allowing us to build intuition of how the generative model
is working, how it is failing and how it can be improved.
However, qualitative as well quantitative analysis based on
this approach can be misleading about the performance of
the generator. In order to evaluate the quality, and therefore
how trustworthy our generator is, we shall employ the
following strategy. Using the PyCBC [64] matched filtering
module, we estimate the overlap over time and phase
between the synthetic and real samples for a given value of
the parameters. We generate a set of 1000 synthetic samples
for a given set of parameters, (M) for equal mass dataset or
(M1, M2) for unequal mass dataset, and compute the
overlapping match for each sample to the real equivalent
samples. The overlapping match is computed with the real
and synthetic normalized samples, so we can ensure that
features generated for the synthetic samples are as close as
possible to the expected real features. With these values, we
estimate the probability of a generated sample to be above a
certain threshold of match. In Figs. 4–9 we show the
evolution of the match between synthetic and original
samples throughout the training epochs of our NN model.
To visualize the overlapping between the real and synthetic
samples, we plot various samples from the equal and
different mass datasets and select synthetic samples accord-
ing to their overlapping matches to check against the real
ones; these plots are shown in Figs. 10 and 11.

Using the overlapping match we build a separate dataset
with synthetic samples and their respective match score.
This dataset is further used to train another NN with the
intent of predicting the match score for a given waveform
sample. This new dataset consists of 85000 synthetic
samples, and their matched scores are evaluated using
the validation dataset for the equal and unequal mass

FIG. 9. Evaluation of the quality of the generated samples compared to the real samples of the Newman-Penrose scalar Ψl¼2;m¼2
4 and

probabilities to generate good quality samples at epoch 1050 with the different mass dataset. (a) Real (yellow) and generated (blue)
Newman-Penrose scalar Ψl¼2;m¼2

4 . (b) Probabilities of generating samples for a given match accuracy for different mass parameters.

TABLE II. WaveGAN discriminator architecture.

Operation Kernel size Output shape

Input x or GðzÞ (n, 2048, c)
Conv1D (stride ¼ 4) (25, c, d) (n, 4096, d)
LReLU (α ¼ 0.2) (n, 4096, d)
Phase shuffle (n ¼ 2) (n, 4096, d)
Conv1D (stride ¼ 4) (25, d, 2d) (n, 1024, 2d)
LReLU (α ¼ 0.2) (n, 1024, 2d)
Phase shuffle (n ¼ 2) (n, 1024, 2d)
Conv1D (stride ¼ 4) (25, 2d, 4d) (n, 256, 4d)
LReLU (α ¼ 0.2) (n, 256, 4d)
Phase shuffle (n ¼ 2) (n, 256, 4d)
Conv1D (stride ¼ 4) (25, 4d, 8d) (n, 64, 8d)
LReLU (α ¼ 0.2) (n, 64, 8d)
Phase shuffle (n ¼ 2) (n, 64, 8d)
Conv1D (stride ¼ 4) (25, 8d, 16d) (n, 16, 16d)
LReLU (α ¼ 0.2) (n, 16, 16d)
Reshape (n, 256d)
Dense (256d, 1) (n, 1)
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FIG. 10. Real (dotted blue) and generated (continuous yellow) rRðΨl¼2;m¼2
4 Þ for overlapping matches in the regions 0.8 ≤ match ≤

0.85 (left column), 0.9 ≤ match ≤ 0.95 (middle column) and match > 0.95 (right column) of the equal mass dataset.
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FIG. 11. Same as Fig. 11 but for the unequal mass dataset.
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dataset, each sample consisting of the normalized
rΨl¼2;m¼2

4 time series, the value of the match score for
the synthetic sample when compared to the real one and the
mass M parameter value. This dataset is again randomly
shuffled and divided by 80% for training and 20% for
validation dataset.
We use the discriminator architecture as in Table II, with

the inclusion of dropout layers, with 0.2 probability of an
element to be zeroed, in between each convolution layer;
the dropout layers are included so we can further use the
Monte Carlo dropout method [65] to estimate the predic-
tions’ uncertainties. We train this modified discriminator
using the mean squared loss since the new task now—to
predict the match score for a given sample—is similar to a
regression problem. We also take advantage of the transfer
learning method and use the weights from the trained
discriminators to speed up the training of the new NN. We
use the Adam optimizer and this time we train the model
using the OneCycle [65] learning rate policy; the model is
trained for 11 epochs with an initial learning rate 2e−3 and
uses the root mean squared error as the main metric. The
final model can predict the match values for a sample with
an accuracy around 90%. Using the Monte Carlo dropout

scheme we can further estimate the uncertainty of the
model and determine the minimum and maximum pre-
dicted values of matches. Figures 12 and 13 display three
synthetic samples generated from our model using M
values which are not present in the original dataset, but
within the one sigma range from the mean M value, and
their minimum and maximum predicted match values.

V. RESULTS AND DISCUSSIONS

The results of our evaluation are shown in Tables III and
IV. In Figs. 10 and 11 we sample waveforms and rank them
according to their respective matches to their waveform
reference, from the validation dataset. We are able to
generate waveforms with a 95% to 99% match with the
reference waveforms, despite the model never having had
access to the samples from the validation dataset. From
Tables III and IV, we see an interesting and understandable
pattern: our model has a higher chance of producing
samples which are closer to the expected ones whenever
the sample parameters desired are close to the mean of the
mass M parameters of the dataset, i.e., the region where
we have more samples and, by and large, the model is

FIG. 12. Synthetic samples and their predicted matched samples for parameter values ofM not present, but within the one sigma range
from the mean, in the current equal mass dataset.

FIG. 13. Synthetic samples and their predicted matched samples for parameter values of M1 and M2 not present, but within the one
sigma range from the mean, in the current unequal mass dataset.
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“learning” the underlying features which appear more often
in the data. Nevertheless, in the parameter region away
from the expected mean we still have a relatively high
chance of producing samples with, at least, 90%match with

the expected real samples. Such results show the potential
of the method presented in this work. Moreover, one key
aspect of such methodology that should be emphasized is
the speed of generation of the samples. By using this
technique we can generate 1000 synthetic samples in
188 ms,9 assuming that we can have from 16% to 25%
(depending on the mass parameter values) samples which
are 95% similar to the expected real waveforms. In other
words, we can quickly build a catalog of waveforms, to
bridge the gaps within the parameter space. Such numbers
show a clear advantage of the method to help the task of
exploring the parameter space for the case of Proca star
waveforms, or more generically, gravitational waveform
generation in any model.
Although the methodology put forward here shows

promising results, one should consider this proposal as a
proof of concept, with necessary improvements yet to be
done. The evaluation methodology using a NN can be
improved by experimenting with different architectures for
this task, and using Bayesian methods to estimate the error
on the predicted match score. Additionally, the number of
samples is a factor that heavily influences the quality of the
synthetic sample; a rich dataset with not only more samples
but samples with different sample rates can greatly improve
the quality of the synthetic samples. New architecture
models are already being tested and the Transformer
[66] based architectures are showing promising results that
will be explored in a future project.

VI. CONCLUSIONS

In this work, we have presented a unique application of a
particular GAN architecture—WaveGan—in the context of
unsupervised gravitational waveforms generation. The
model presented here can generate hundreds of thousands
ofwaveformswithinvery short time intervals, labeled by the
physical parameters of the Proca stars that sourced them—
with equal (M) or different (M1, M2) masses—with a high
probability that from12% to 25%of such “fake” samples are
95%, or higher, similar to the expected real ones.
We have also explored the use of the trained discrimi-

nator architectures to assist in the task of estimating the
overlap score of synthetic samples, which can be used to
select the synthetic waveforms which show closer features
to the expected real ones. The methods presented here show
that it is possible to use such techniques to accelerate the
generation of the waveforms, in particular for the case of
binaries of exotic compact objects.
In a future work we plan to extend and refine the method

to produce samples with higher quality and automatically
assign the overlapping match factor. We are also working
on applying such methods in the generation of waveforms
from core-collapse supernovae.

TABLE III. Probabilities for a generator to produce
rRðΨl¼2;m¼2

4 Þ with an overlapping match to the original one
above 0.8 (second column), 0.9 (third column), and 0.95 (last
column) for each mass ðM ¼ M1 ¼ M2Þ and ω values of the
validation equal mass dataset. The colors show where the values
fall into the 1 and 2σ mass distribution in Fig. 3(a).

ðM1 ¼ M2 ¼ MÞ Pð0.8Þ Pð0.9Þ Pð0.95Þ
0.62 0.82 0.38 0.16
0.65 0.67 0.28 0.12
0.67 0.70 0.31 0.13
0.67 0.67 0.29 0.12
0.68 0.66 0.28 0.11
0.70 0.70 0.32 0.13
0.76 0.89 0.47 0.20
0.77 0.93 0.52 0.22
0.79 0.96 0.57 0.24
0.81 0.97 0.60 0.24
0.82 0.97 0.55 0.21
0.84 0.97 0.54 0.20
0.85 0.90 0.44 0.17
0.87 0.79 0.34 0.13
0.90 0.61 0.23 0.09
0.91 0.59 0.22 0.09
0.92 0.52 0.19 0.07

TABLE IV. Same as Table III but for the unequal mass case
providing each mass ðM1 ≠ M2Þ and values of the validation
dataset. The colors show where the values fall into the 1 and 2σ
mass distribution in Fig. 3(b).

M1 M2 Pð0.8Þ Pð0.9Þ Pð0.95Þ
0.62 0.65 0.57 0.24 0.10
0.62 0.69 0.59 0.24 0.10
0.62 0.81 0.57 0.25 0.11
0.62 0.95 0.69 0.32 0.14
0.70 0.83 0.50 0.21 0.09
0.70 0.90 0.60 0.19 0.06
0.74 0.67 0.49 0.22 0.10
0.74 0.69 0.46 0.20 0.09
0.74 0.88 0.83 0.32 0.11
0.76 0.68 0.62 0.28 0.12
0.76 0.69 0.53 0.23 0.10
0.79 0.64 0.46 0.18 0.07
0.79 0.72 0.70 0.33 0.15
0.79 0.93 0.66 0.22 0.08
0.81 0.65 0.52 0.24 0.11
0.81 0.79 0.61 0.25 0.10
0.87 0.80 0.84 0.35 0.12
0.87 0.81 0.81 0.30 0.10
0.87 0.94 0.37 0.11 0.04
0.87 0.94 0.43 0.13 0.04

9The Benchmark was obtained in a Intel®Core™ i7-8750H
CPU with an NVIDIA GeForce GTX 1070.
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