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We consider the classic problem of a compact fluid source that behaves nonrelativistically and that
radiates gravitational waves. The problem consists of determining the metric close to the source as well as
far away from it. The nonrelativistic nature of the source leads to a separation of scales resulting in an
overlap region where both the 1=c and (multipolar) G expansions are valid. Standard approaches to this
problem (the Blanchet-Damour and the DIRE approach) use the harmonic gauge. We define a “post-
Newtonian” class of gauges that admit a Newtonian regime in inertial coordinates. In this paper we set up a
formalism to solve for the metric for any post-Newtonian gauge choice. Our methods are based on previous
work on the covariant theory of nonrelativistic gravity (a 1=c expansion of general relativity that uses post-
Newton-Cartan variables). At the order of interest in the 1=c and G expansions we split the variables into
two sets: transverse and longitudinal. We show that for the transverse variables the problem can be reduced
to inverting Laplacian and d’Alembertian operators on their respective domains subject to appropriate
boundary conditions. The latter are regularity in the interior and asymptotic flatness with a Sommerfeld no-
incoming radiation condition imposed at past null infinity. The longitudinal variables follow from the gauge
choice. The full solution is then obtained by the method of matched asymptotic expansion. We show that
our methods reproduce existing results in harmonic gauge to 2.5PN order.
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I. INTRODUCTION

The post-Newtonian expansion is an expansion of general
relativity (GR) assuming weak fields and slow motion. The
expansion is almost as old as general relativity itself and has
played a key role in our understanding of gravity. Its
applications go as far back as the precession of the perihelion
of Mercury. Currently, it plays a key role in gravitational
wave physics. In fact, one can argue that the demand for
high accuracy predictions in gravitational wave physics has
drivenmodern developments in post-Newtonian theory.One
of the hurdles that had to be overcome was finding a way to
glue together the physics of the slowly evolving system (for
example, some fluid with compact support) with that
of the relativistic phenomenon of gravitational radiation
that one observes far away from the source. The objective is
to compute the metric both close to and far away from the
source. This problem has led to two different but equivalent
approaches, namely the Blanchet-Damour approach (for a
review see [1]) and the direct integration of the relaxed

Einstein equations (DIRE) approach (for a review see [2]).1

Both approachesmake use of the relaxed Einstein equations,
which is a clever rewriting of Einstein gravity adapted to the
harmonic gauge. Then through a separation of scales one is
able to split spacetime into separate but overlapping regions
for which different approximations are valid.
In recent times there has been a revival of work done in

developing covariant nonrelativistic expansions of gravity
described in terms of Newton-Cartan-type geometries plus
relativistic corrections [7–12]. For a review see [13]. In this
covariant approach the nonrelativistic expansion of gravity
essentially takes place in tangent space in the limit in which
the tangent space light cones flatten (1=c → ∞). This
expansion is more general than the post-Newtonian expan-
sion for two reasons. The first reason is that being “post-
Newtonian” already presupposes that one is working in a
gauge in which there is a Newtonian regime (this is not true
in all gauge choices2). Second, the covariant 1=c expansion
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1Other important approaches to post-Newtonian gravity in-
clude the effective field theory methods reviewed in [3], the
celestial mechanics for N-body systems [4], and the Hamiltonian
approach for compact binary systems [5,6].

2The covariant formulation of Newtonian gravity is Newton-
Cartan gravity of which Newtonian gravity is a gauge-fixed
version.
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is not necessarily a weak field expansion. There is a regime
called strong nonrelativistic gravity that includes solutions
such as a nonrelativistic Schwarzchild geometry [8,10,14].
It depends on what assumptions are made regarding
the nonrelativistic expansion of the matter fields whether
one ends up with a weak or strong nonrelativistic gravity
regime [11]. One of the purposes of this paper is to use
the covariant nonrelativistic gravity approach to find a
systematic framework that allows us to perform post-
Newtonian calculations in a more covariant manner.
There are in some sense three increasingly challenging
generalizations of the current state of the art (reviewed
below) regarding post-Newtonian methods. The first layer
(the scope of this paper) is to find a framework in which we
can perform post-Newtonian calculations in any gauge that
admits a Newtonian regime. The second layer of sophis-
tication is to generalize this further to a framework that is
properly covariant in the sense of some yet to be con-
structed post-Newton-Cartan theory, but still assumes weak
fields. Finally, the ultimate aim is to develop methods that
are based on post-Newtonian ideas but where the leading
order theory is not Newtonian gravity but rather the strong
nonrelativistic gravity regime3 alluded to above.
With this work we intend to build a clear bridge between

the covariant nonrelativistic expansion and the post-
Newtonian expansion that will serve multiple purposes.
First, it gives us a better understanding of the covariant 1=c
expansion and what its capabilities as well as its limitations
are. Second, this will provide us with a new framework for
the post-Newtonian expansion that is able to improve upon
certain aspects of the otherwise very well-developed theory.
In our endeavor to construct a more covariant approach to
the post-Newtonian expansion we will also have to develop
a more covariant framework for the post-Minkowskian
expansion outside the source, which is necessary to
describe radiating systems. We will set up a formalism
that allows us to compute the metric close to and far away
from a radiating source for any gauge choice that admits a
Newtonian regime and for which the vacuum is described
in inertial coordinates.
This framework is, of course, not going to compete with

the Blanchet-Damour or DIRE approach when it comes to
the accuracy with which calculations have been performed
in the harmonic gauge. However, a more covariant frame-
work might make it easier to identify gauge-independent
physics and develop intuition about the expansion.
Furthermore, there might be advantages to working in
other gauges, depending on the problem at hand.
Apart from developing the ingredients of a more covar-

iant framework we also show how our approach works in
the standard harmonic gauge (to show that the method
works and to facilitate comparison with the literature) as

well as in another gauge that we refer to as the transverse
gauge [see Eq. (4.69)]. The latter can be thought of as the
GR version of the Coulomb gauge familiar from electro-
magnetism. In the companion paper [15] we will report in
more detail on how the post-Newtonian expansion works in
that case.

A. State of the art

Here we give a very brief review of the Blanchet-Damour
approach [16–26] as well as the DIRE approach [27–32]
which themselves build on a lot of previous work (see, for
example, [33–39] or for a much more comprehensive list of
references see [1]) that helped bridge the gap between
the classic approach4 and modern day post-Newtonian
theory. The basic post-Newtonian setup goes as follows.
One assumes that the matter source is compact with some
characteristic length scale, lc, and characteristic timescale,
tc. Then one assumes slow motion vc

c ≪ 1 where
vc ≔ lc=tc, and through the virial theorem it then follows
that the gravitational field strength is weak as well,
GM
c2lc

∼ v2c
c2 ≪ 1 where M is the total mass. The post-

Newtonian expansion has a limited region of validity,
called the near zone, which is the part of the spacetime
where retardation effects can be treated perturbatively, i.e.,
r ≪ λc ¼ ctc. Outside of the near zone one has to rely on
post-Minkowskian techniques, i.e., expansions in Newton’s
constant G.
Both approaches are reliant on the harmonic gauge that

can be expressed as

∂νhμν ¼ 0; ð1:1Þ

where hμν ¼ ημν − ffiffiffiffiffiffi−gp
gμν and μ ¼ 0, 1, 2, 3. In this gauge

Einstein’s equations can be rewritten as

□hμν ¼ −
16πG
c4

τμν; ð1:2Þ

where □≡ − 1
c2

∂
2

∂t2 þ∇2 is the flat-spacetime
d’Alembertian and τμν depends on nonlinear combinations
of hμν and its derivatives as well as the energy-momentum
tensor Tμν of the matter source. Once hμν is determined,
one can derive the metric by simply solving hμν ¼ ημν −ffiffiffiffiffiffi−gp

gμν for gμν. One can then derive the matter equations of
motion (EOM) from the near zone metric or the waveform
from the asymptotic behavior of the metric. Equation (1.2)
is the starting point for both approaches but they differ in
how they solve this equation.
The Blanchet-Damour approach relies on the method

of matched asymptotic expansions. One solves Eq. (1.2) in
the exterior (lc < r) of the source using a multipolar

3To be clear, this aim can be achieved independently from the
second layer/aim.

4In the classic approach the 1=c expansion is assumed to be
valid everywhere, i.e., all the way up to infinity.
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post-Minkowskian (MPM) expansion, and one solves the
equation in the near zone (r ≪ λc) using a post-Newtonian
expansion. The two solutions are matched in the overlap
region, fixing undetermined functions on both sides. The
near zone solution takes the following form:

hμν ¼ 16πG
c4

□
−1
ret ½τ̄μν� −

4G
c4

X∞
l¼0

ð−Þl
l!

∂L

×

�
Rμν

L ðt − r=cÞ −Rμν
L ðtþ r=cÞ

2r

�
; ð1:3aÞ

□
−1
ret ½τ̄μν� ≔ −

1

4π

X∞
m¼0

ð−Þm
m!

�
∂

c∂t

�
m

× FP
Z

d3x0jx − x0jm−1τ̄μνðx0; tÞ; ð1:3bÞ

where the bar over τμν indicates that the source τμν has been
1=c expanded. The index L is a multi-index i1 � � � il.
Meanwhile, FP denotes a regularization procedure to find
the finite part of the integral. The functions Rμν

L ðt − r=cÞ

are fixed in the matching and are in general not analytic in
1=c. However, to 2.5PN order these terms will be zero. The
source τμν, of course, depends on hμν as well but only
nonlinearly, and so (1.3) can be computed iteratively.
In the exterior zone Tμν ¼ 0, and therefore τμν simply

consists of nonlinear combinations of hμν and its deriva-
tives. So, for the G expansion

hμν ¼ Ghμνð1Þ þG2hμνð2Þ þ G3hμνð3Þ þOðG4Þ; ð1:4Þ

τμν ¼ G2τμνð2Þ þ G3τμνð3Þ þOðG4Þ; ð1:5Þ

the leading order equation is simply□hμνð1Þ ¼ 0. This is then

solved making use of the past-stationarity condition
f∂thμν ¼ 0jt ≤ −T0g for some finite positive number T0.
The solution can be expressed as

h00ð1Þ ¼ −
4

c2
X
l≥0

ð−Þl
l!

∂L

�
1

r
ILðuÞ

�
þ ∂kϕ

k −
1

c
∂tϕ

0; ð1:6Þ

h0ið1Þ ¼
4

c3
X
l≥1

ð−Þl
l!

∂L−1

�
1

r
İiL−1ðuÞ þ

l
lþ 1

ϵiab∂a

�
1

r
JbL−1ðuÞ

��
þ ∂iϕ

0 −
1

c
∂tϕ

i; ð1:7Þ

hijð1Þ ¼ −
4

c4
X
l≥2

ð−Þl
l!

∂L−2

�
1

r
̈IijL−2ðuÞ þ

2l
lþ 1

∂a

�
1

r
ϵabðiJ̇jÞbL−2ðuÞ

��
þ 2∂ðiϕjÞ − δij∂αϕ

α; ð1:8Þ

with

ϕ0 ¼ 4

c3
X
l≥0

ð−Þl
l!

∂L

�
1

r
WLðuÞ

�
; ð1:9Þ

ϕi ¼ −
4

c4
X
l≥0

ð−Þl
l!

∂iL

�
XLðuÞ

r

�
−

4

c4
X
l≥1

ð−1Þl
l!

∂L−1

�
YiL−1ðuÞ

r
þ l
lþ 1

ϵiab∂a

�
1

r
ZbL−1ðuÞ

��
; ð1:10Þ

where IL, JL,WL, XL, YL, ZL are undetermined symmetric
trace-free (STF) tensors that will be fixed in the matching
procedure in terms of multipole moments of the matter
source. The resulting expression for hμνð1Þ will then deter-

mine the source term τμνð2Þ in the wave equation for hμνð2Þ,
which itself enters in τμνð3Þ and so on.
The full nth order solution can then be written as

hμν ¼ Ghμνhom þ
X∞
n¼1

GnðuμνðnÞ þ vμνðnÞÞ; ð1:11Þ

uμνðnÞ ¼ FP
Z

d3x0
τμνðnÞðt − jx − x0j=c; x0Þ

jx − x0j ; ð1:12Þ

where vμνðnÞ is a specific homogeneous solution that is

determined through ∂μv
μν
ðnÞ ¼ −∂μu

μν
ðnÞ. This is to ensure

that uμνðnÞ þ vμνðnÞ forms a particular solution that fulfills the

harmonic gauge condition. Finally, hμνhom is the general
solution to the homogeneous equation, which is given by
taking hμνð1Þ and adding corrections to IL;…; ZL up to the

desired order in G. For more details and in-depth analysis
we refer the reader to the review paper [1].
In the DIRE approach the first step is to formally

integrate (1.2) using the retarded Green function

hμν ¼
Z

d3x0
τμνðt − jx − x0j=c; x0Þ

jx − x0j : ð1:13Þ
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Then one splits up the integration domain in a
near zone N ¼ fx⃗∈R3jr < Rg and a wave zone
W ¼ fx⃗∈R3jr > Rg, where by definition R is the boun-
dary of the near zone. One then gets

hμν ¼ hμνN þ hμνW ; ð1:14Þ

hμνN ¼
Z
N
d3x0

τμνðt − jx − x0j=c; x0Þ
jx − x0j ;

hμνW ¼
Z
W
d3x0

τμνðt − jx − x0j=c; x0Þ
jx − x0j : ð1:15Þ

In here hμνN and hμνW are each subject to different approx-
imations depending on whether one is evaluating at a field
point x∈N or x∈W. This leads to four different integral
equations that one solves iteratively. At leading order
τμν ¼ Tμν and thus hμνW ¼ 0. For the near zone integrations
the following approximations are used:

hμνN ¼
X∞
l¼0

ð−Þl
l!cl

�
∂

∂t

�
l
Z
N
d3x0τμνðt;x0Þjx−x0jl−1 for x∈N ;

ð1:16Þ

hμνN ¼
X∞
l¼0

ð−Þl
l!

∂L

�
1

r

Z
N
d3x0τμνðt−r=c;x0Þx0L

�
for x∈W;

ð1:17Þ

where the expression in (1.16) has been 1=c expanded and
the expression (1.17) has been multipole expanded using
that the field points are in the near and wave zones,
respectively. Equation (1.17) then gives rise to the source
terms for hμνW at the second iteration. It follows from this
that the source term, for x∈W, is going to be a sum over
terms of the generic form

1

4π

fμνL ðuÞnhLi
rm

; ð1:18Þ

where m is a positive integer. Using this the wave zone
integrals can be written as follows [given here for just one
generic term in (1.18), but in actuality one would have to
sum over multiple contributions of this type]:

hμνW ¼ nhLi

r

�Z
R

0

dsfμνL ðu − 2s=cÞAðs; rÞ þ
Z

∞

R
dsfμνL ðu − 2s=cÞBðs; rÞ

�
for x∈W; ð1:19Þ

hμνW ¼ nhLi

r

�Z
R

R−r
dsfμνL ðu − 2s=cÞAðs; rÞ þ

Z
∞

R
dsfμνL ðu − 2s=cÞBðs; rÞ

�
for x∈N ; ð1:20Þ

where u ¼ t − r=c and

Aðs;rÞ≔
Z

rþs

lc

dr0
PlðξÞ
r0ðm−1Þ ; Bðs;rÞ≔

Z
rþs

s
dr0

PlðξÞ
r0ðm−1Þ :

ð1:21Þ

In here Pl denotes the Legendre polynomial of degree
l and ξ ¼ ðrþ 2sÞ=r − 2sðrþ sÞ=ðrr0Þ. The functions
Aðs; rÞ and Bðs; rÞ can be computed explicitly for a
given l and m. The integrals over s are done by making
continual use of integration by parts while throwing away
terms that depend explicitly on the cutoff [these will be
canceled by similar boundary terms coming from (1.17)
and (1.16)].
Going beyond the second iteration the source term in the

wave zone, τμν, will be constructed out of a nonlinear
combination of both (1.19) and (1.17) as well as their
derivatives. Most of these terms will be on the form of
(1.18); but if one goes to high enough order log r-terms will
appear, then (1.19) and (1.20) no longer hold and one has to

return to (1.15). For a slightly different form of (1.19) and
(1.20), and a more in-depth description, see [28].

B. Statement of the problem

Given a perfect fluid source with compact support the
goal is to devise a computational scheme that is able to
perturbatively compute the metric both near the source as
well as far away from it (and in principle in the inter-
mediate region). The source is assumed to behave non-
relativistically so that the characteristic velocity is much
smaller than the speed of light leading to a separation
of scales lc ≪ λc ¼ tcc. The method should allow us to
compute the metric in any gauge that admits a Newtonian
regime for the near zone metric. Furthermore, we assume
that the metric is asymptotically flat in inertial coordinates
with Sommerfeld no-incoming radiation conditions
imposed at past null infinity. This framework must include
a suitably covariant framework for the multipolar post-
Minkowskian expansion as this is necessary to capture the
radiative effects. In this paper we construct this framework

JELLE HARTONG and JØRGEN MUSAEUS PHYS. REV. D 109, 124058 (2024)

124058-4



and test that it produces the correct results for the metric in
harmonic gauge to 2.5PN order. In [15] we show how the
method works in transverse gauge.
We restrict ourselves to solving the post-Newtonian

metric for a compact perfect fluid source. However, there
exists a method of extracting the equations of a compact
binary system from those of the perfect fluid [29]. This
involves treating the bodies as small (compared to their
separation), spherical, nonrotating balls of fluid. Doing this,
of course, adds a whole extra layer of complication that is
beyond the scope of this paper.
Additionally, Since we restrict ourselves to 2.5PN order

we do not have to deal with tail terms that will eventually
show up in the near zone and that signal a breakdown of the
1=c Taylor expansion. To fix this one needs to include
log c-terms [17,40]. We leave their incorporation for
future work.

C. Summary of results

In this paper we present a 1=c expansion approach to the
post-Newtonian expansion that applies to any post-
Newtonian gauge. By a post-Newtonian gauge we mean
a gauge choice for which the metric admits a Newtonian
regime. More concretely, these are gauge choices for which
we can write the metric as gμν ¼ ημν þ hμν where ημν
corresponds to the Minkowski metric in inertial coordinates
and where there is a region of spacetime where the metric is
Newtonian plus corrections.
We start by working out the metric in the near zone,

defined by r ≪ λc, using the covariant 1=c expansion. Then
we solve the metric in the exterior zone r > lc using a
multipolar G expansion that works for the same class of
post-Newtonian gauge choices as used for the 1=c expan-
sion. Finally, we match the two expansions in the overlap
region. In both cases the general principle is to first expand
the equations, split the variables into transverse and
longitudinal variables, solve for the former, and fix the
latter by applying a gauge condition. We then integrate the
1=c and G expanded Einstein equations subject to appro-
priate boundary conditions and match them in the overlap
region.
The covariant 1=c expansion starts by expressing the

metric in pre-nonrelativistic variables Tμ and Πμν as

gμν ¼ −c2TμTν þ Πμν; ð1:22Þ

where Πμν has signature (0, 1, 1, 1). The choice of Tμ

and Πμν is, however, not unique and is subject to local
Lorentz boost transformations. We use this freedom to set
Πit ¼ 0 (where i ¼ 1, 2, 3 is a spatial index), in which case
we get

ds2 ¼ −c2ðTμdxμÞ2 þ Πijdxidxj: ð1:23Þ

The fields Tμ and Πij are assumed to be analytic in 1=c,
which is valid to the order we are interested in5 which is
2.5PN. The 1=c expansions of Tμ and Πij are then given by

Tμ ¼ τμ þ
1

c2
τð2Þt þ

X∞
n¼4

1

cn
τðnÞμ ; Πij ¼ hij þ

X∞
n¼2

1

cn
hðnÞij ;

ð1:24Þ

where we used that the 0.5PN metric (and the term in Tμ at
order 1=c) can always be gauged away. Since we use
inertial coordinates for the vacuum we have

hμν ¼ δijδ
i
μδ

j
μ; τμ ¼ δtμ: ð1:25Þ

It then follows that τð2Þμ ¼ −Uδtμ with U being the
Newtonian potential. To construct the n

2
PN metric one

needs to determine Tμ to τðnþ2Þ
μ and Πij to hðnÞij . We expand

Einstein’s equation in 1=c, and apply the following
decomposition of the post-Newtonian variables:

hðnÞij ¼ hðnÞij ðTTÞ þ ∂iL
ðnÞ
j þ ∂jL

ðnÞ
i þ 1

3
δijHðnÞ; ð1:26Þ

τðnþ2Þ
i ¼ MðnÞ

i ðTÞ − ∂tL
ðnÞ
i − ∂iNðnÞ; ð1:27Þ

τðnþ2Þ
t ¼ MðnÞ

t − ∂tNðnÞ; ð1:28Þ

where HðnÞ ¼ hðnÞkk − 2∂kL
ðnÞ
k and where T denotes that the

field is transverse and TT that it is transverse traceless. This
leads to

∂
2HðnÞ ¼ 3

4
SðnÞii ; ð1:29Þ

∂
2hðnÞij ðTTÞ ¼ SðnÞij −

1

4
δijS

ðnÞ
kk −

1

3
∂i∂jHðnÞ; ð1:30Þ

∂
2MðnÞ

i ðTÞ ¼ SðnÞi þ 2

3
∂t∂iHðnÞ; ð1:31Þ

∂
2MðnÞ

t ¼ SðnÞ þ 1

2
∂
2
t HðnÞ þ ∂

2LðnÞ
i ∂iτ

ð2Þ
t

−
1

6
∂iHðnÞ

∂iτ
ð2Þ
t þ hðnÞij ∂i∂jτ

ð2Þ
t ; ð1:32Þ

where S½n�; S½n�i , and S½n�ij depend only on the fluid matter
variables (which are also 1=c expanded) and lower-order

fields hðkÞij and τðkþ2Þ
μ with k < n. These equations can be

rewritten in the form of simple Poisson-type equations.

5This will eventually break down at higher order, but it can be
fixed by including log c-terms in the expansion.
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∂
2HðnÞ ¼ 3

4
SðnÞii ; ð1:33Þ

∂
2

�
MðnÞ

i ðTÞ − 1

3
xi∂tHðnÞ

�
¼ SðnÞi −

1

4
xi∂tS

ðnÞ
jj ; ð1:34Þ

∂
2

�
hðnÞij ðTTÞþ 1

12

�
xi∂jHðnÞ þxj∂iHðnÞ−

2

3
δijxk∂kHðnÞ

��

¼SðnÞij −
1

3
δijS

ðnÞ
kk þ 1

16

�
xi∂jS

ðnÞ
ll þxi∂jS

ðnÞ
ll −

2

3
δijxk∂kS

ðnÞ
ll

�
;

ð1:35Þ

∂
2

�
MðnÞ

t −
1

12
r2∂2t HðnÞ þ 1

2
xi∂tM

ðnÞ
i ðTÞ

�

¼ SðnÞ −
1

16
r2∂2t S

ðnÞ
ii þ 1

2
xi∂tS

ðnÞ
i −

1

6
∂iHðnÞ

∂iτ
ð2Þ
t

þ ∂
2LðnÞ

i ∂iτ
ð2Þ
t þ hðnÞij ∂i∂jτ

ð2Þ
t : ð1:36Þ

At this point we still have not applied any gauge
condition, except for what we assumed in (1.24) to get
Newtonian gravity. Thus, we see that for any post-
Newtonian gauge the field equations all reduce to
Poisson-type equations and the gauge freedom is stored
in the longitudinal fields LðnÞ

i and NðnÞ, which are deter-
mined through an appropriate gauge choice. The latter is an
important addition to the list of equations because the

source terms depend on LðkÞ
i and NðkÞ for k < n.

The Poisson equations are formally solved using a
regularized Poisson integral to which we add the most
general harmonic function that is regular in the near zone.
Take, for example, Eq. (1.33), where the solution to this
would be given by

H½n� ¼ −
3

16π

Z
ΩR⋆

d3x0
SðnÞii ðt; x0Þ
jx − x0j þ

X∞
l¼0

FLxL; ð1:37Þ

where L ¼ i1;…; il and where FL is completely symmet-
ric and trace-free in all its indices. The coefficients FL
characterize our ignorance about boundary conditions
imposed outside the near zone, and they will be fixed in
the matching process.
For the exterior zone metric we perform a post-

Minkowskian or G expansion

gμν ¼ ημν þ Gh½1�μν þ G2h½2�μν þ � � � ; ð1:38Þ

and wewill use x0 ¼ ct. The vacuum Einstein equations for

h½n�μν can be written as

−□h½n�μν þ ηρσð2∂ρ∂ðμh½n�νÞσ − ∂μ∂νh
½n�
ρσÞ ¼ τ½n�μν ; ð1:39Þ

where τ½n�μν depends only on products of lower-order fields

h½n−1�μν ;…; h½1�μν and their derivatives. Similar to what we did

in the near zone, we then make a decomposition of h½n�μν in
terms of transverse and longitudinal fields:

h½n�ij ¼ h½n�ij ðTTÞ þ ∂iL
½n�
j þ ∂jL

½n�
i þ 1

3
δijH½n�; ð1:40Þ

h½n�0i ¼ −M½n�
i ðTÞ þ ∂0L

½n�
i þ ∂iN½n�; ð1:41Þ

h½n�00 ¼ −2M½n�
0 þ 2∂0N½n�; ð1:42Þ

where

H½n� ¼ h½n�ii − 2∂iL
½n�
i : ð1:43Þ

Equations (1.39) are then given by

∂
2H½n� ¼ −

3

4
ðτ½n�00 þ τ½n�kk Þ; ð1:44Þ

∂
2M½n�

0 ¼ 1

2
∂
2
0H

½n� þ 1

2
τ½n�00 ; ð1:45Þ

∂
2M½n�

i ðTÞ ¼ 2

3
∂0∂iH½n� þ τ½n�0i ; ð1:46Þ

−□h½n�ij ðTTÞ ¼ −2∂0∂ðiM
½n�
jÞ ðTÞ þ 2∂hi∂jiM

½n�
0

þ 1

3
∂i∂jH½n� þ τ½n�hiji; ð1:47Þ

which can be rewritten as

∂
2H½n� ¼ −

3

4
ðτ½n�00 þ τ½n�kk Þ; ð1:48Þ

∂
2

�
M½n�

0 −
r2

12
∂
2
0H

½n� þ xi

2
∂0M

½n�
i ðTÞ

�

¼ 1

2
τ½n�00 þ

r2

16
∂
2
0ðτ½n�00 þ τ½n�kk Þ þ

xi

2
∂0τ

½n�
0i ; ð1:49Þ

∂
2

�
M½n�

i ðTÞ−1

3
xi∂0H½n�

�
¼ τ½n�0i þ

xi

4
∂0ðτ½n�00 þτ½n�kk Þ; ð1:50Þ

−□h½n�ij ðTTÞ ¼ −2∂0∂ðiM
½n�
jÞ ðTÞ þ 2∂hi∂jiM

½n�
0

þ 1

3
∂hi∂jiH½n� þ τ½n�hiji: ð1:51Þ

If we differentiate the latter equation with respect to x0

twice, we can rewrite it further to
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□

�
∂
2
0h

½n�
ij ðTTÞ þ ∂i∂0M

½n�
j ðTÞ þ ∂j∂0M

½n�
i ðTÞ − 2∂i∂jM

½n�
0 þ 1

3
δij∂

2
0H

½n�
�

¼ −∂20τ
½n�
ij þ ∂0∂iτ

½n�
0j þ ∂0∂jτ

½n�
0i − ∂i∂jτ

½n�
00 : ð1:52Þ

Thus, we see that the problem boils down to inverting the
d’Alembertian and the Laplacian operators in the exterior
zone. Again this holds for any post-Newtonian gauge. In
solving for these equations we, of course, also need to
apply boundary conditions. These are asymptotic flatness
as well as Sommerfeld’s no-incoming radiation condition at
past null infinity.
More concretely, the homogeneous solution to these

equations can be found in Eqs. (E8)–(E10) and (E28). For
the particular solution to the sourced equations we need to
invert the Laplacian and the d’Alembertian in the exterior
zone. The boundary conditions are such thatH½n�,M½n�

0 , and

M½n�
i ðTÞ are Oðr−1Þ for large r and h½n�ij ðTTÞ obeys the

Sommerfeld no-incoming radiation condition at past null
infinity, which is the statement that

lim
r→∞
v¼cst

∂vðrh½n�ij ðTTÞÞ ¼ 0; ð1:53Þ

where v ¼ tþ r=c (advanced time).
The particular solution for h½n�ij ðTTÞ can be obtained

by using a retarded Green function that is well-defined in
the exterior zone. Again the longitudinal fields are fixed by
an appropriate post-Newtonian gauge choice. These are
important as they are part of the matching process with the
near zone solution and because they appear in the sources
for the higher-order G equations of motion.
Once we have obtained the most general solution in both

the near zone and in the exterior zone, we apply the
matching condition that is very reminiscent of what is done
in the Blanchet-Damour approach in harmonic gauge; i.e.,
we require that in the overlap region we have

MðgNμνÞ ¼ CðgEμνÞ; ð1:54Þ

where C indicates the operation of 1=c expanding the
exterior zone metric, gEμν, and M indicates the operation of
multipole expanding the near zone metric, gNμν.

D. Outline of the paper

This paper is organized as follows. In Sec. II we review
the covariant 1=c expansion of GR. This leads to a
formulation of Einstein’s equations in terms of what are
called pre-nonrelativistic variables. In Sec. III we continue
our review of nonrelativistic gravity by spelling out the
conditions under which the theory has a Newtonian gravity
description that informs us later about the class of gauge
choices we can make. Sections IVand V constitute the first
main part of the paper. In Sec. IV we outline the general
structure of the 1=c expansion of the Einstein equations to

any order in 1=c, and we give the explicit equations to
2.5PN order in any post-Newtonian gauge. The details of
the latter result are discussed in Appendix B. In Sec. V we
essentially do the same for theG expansion. We decompose
the metric at a certain order in G into transverse and
longitudinal components. We then show how the G
expanded Einstein equations can be solved for the trans-
verse components at any order in G and how the gauge
choice fixes the longitudinal components. We furthermore
discuss the issue of asymptotic boundary conditions for the
different components of the metric. In the case of the
transverse gauge we solve for the homogeneous part of
the G expanded Einstein equations explicitly and we derive
a useful parametrization of the homogeneous part of the
harmonic gauge metric. In Secs. VI and VII as well as
Appendix D we then focus our attention entirely on the
harmonic gauge and show that our methods lead to the
known 2.5PN near zone metric. In Appendix F we discuss
the solution for the exterior zone metric and its matching
onto the 2.5PN near zone metric. In Appendix Awe collect
our conventions. Appendix C is a review of the multipole
expansion of solutions to the free wave equation in
Cartesian coordinates (for the sake of keeping the paper
as self-contained as possible).

II. THE COVARIANT 1=c EXPANSION

In this sectionwe begin our exposition of the covariant 1=c
expansion of GR also known as nonrelativistic gravity (for a
reviewsee [13]).Ultimately,wewant tomakecontactwith the
post-Newtonian approximation, but before doing so we will
briefly recap some results from [11] (which was based in part
on the earlier works6 [8,9,45]). We will deviate from this
reference in two important ways. First of all, in [11] they
consider a 1=c2 expansion of Einstein gravity. However, to
reproduce the half-integer post-Newtonian (PN) orders we
will need to include odd powers in 1=c for our nonrelativistic
expansion. The second deviation comes from the fact that we
will be doing an expansion of Einstein’s field equations rather
than the Einstein-Hilbert action. We choose to do this, as it
reduces the amount of computation needed, which is very
valuable when going to high orders.

A. Pre-nonrelativistic variables

We state our conventions in Appendix A. The first task
will be to formulate Einstein’s field equations in terms of
what are known as pre-nonrelativistic (PNR) variables. We
can always write the metric gμν in terms of vielbeine Tμ and
Ea
μ as

6For other works on nonrelativistic gravity see [7,10,14,41–44].
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gμν ¼ −c2TμTν þ δabEa
μEb

ν ; ð2:1Þ

where a, b ¼ 1, 2, 3 are spatial tangent space indices. We
have introduced a speed of light so that Tμdxμ has
dimensions of time, and we will denote xμ ¼ ðt; xiÞ (only
in Sec. V will we use the notation x0 ¼ ct). This helps with
the covariant formulation in the nonrelativistic domain. The
PNR variables are Tμ and Πμν ¼ δabEa

μEb
ν , which is a

symmetric tensor with signature (0, 1, 1, 1). The variables
ðTμ; Ea

μÞ form an invertible square matrix whose inverse
ðTμ; Eμ

aÞ follows from the completeness and orthogonality
conditions given by

TμE
μ
a ¼ 0; TμEa

μ ¼ 0; TμTμ ¼ −1;

Eμ
aEb

μ ¼ δba; Eμ
aEa

μ ¼ δμν þ TμTν: ð2:2Þ

The metric and its inverse are thus

gμν ¼ −c2TμTν þ Πμν; ð2:3Þ

gμν ¼ −
1

c2
TμTν þ Πμν; ð2:4Þ

where Πμν ¼ Eμ
aEν

bδ
ab.

So far everything is fully general. The theory of non-
relativistic gravity (i.e., the 1=c expansion of GR) relies on
the following important assumption: Tμ and Πμν admit
Taylor series expansions in 1=c. This assumption is known
to break down in post-Newtonian calculations when tail
terms start appearing, in which case we need to consider
expansions in c−nðlog cÞm. This happens at higher post-
Newtonian orders than considered in this work (we restrict
our attention to 2.5PN order), and so we will not consider
this important possibility. We refer to [1] for more details.
Next, we will formulate Einstein’s field equations in

terms of the variables Tμ and Πμν. We are specifically
interested in the PNR version of the trace-reversed Einstein
equations

Rμν ¼
8πG
c4

Sμν; ð2:5Þ

where we defined

Sμν ¼ T μν −
1

2
gμνT ; ð2:6Þ

with T μν the energy-momentum tensor (and T its trace).
Therefore, the main task is to rewrite the Ricci tensor, Rμν,
in terms of PNR variables.
We know that the Ricci tensor can be expressed in terms

of the Levi-Civita connection as

Rμν ¼ ∂σΓσ
μν − ∂μΓσ

σν þ Γσ
σλΓλ

μν − Γσ
μλΓλ

σν: ð2:7Þ

So, first of all, we will have to work out the PNR version of
the Levi-Civita connection. We know that

Γρ
μν ¼ 1

2
gρσð∂νgμσ þ ∂μgνσ − ∂σgμνÞ; ð2:8Þ

so from Eqs. (2.3) and (2.4) we find that

Γρ
μν ¼ c2Wρ

μν þ Cρ
μν þ Sρμν þ c−2Vρ

μν; ð2:9Þ

where we have defined

Wρ
μν ≔

1

2
TμΠρσð∂σTν − ∂νTσÞ þ

1

2
TνΠρσð∂σTμ − ∂μTσÞ;

ð2:10Þ

Cρ
μν≔−Tρ

∂μTνþ
1

2
Πρσð∂νΠμσþ∂μΠνσ−∂σΠμνÞ; ð2:11Þ

Sρμν ≔
1

2
Tρð∂μTν − ∂νTμ − TμLTTν − TνLTTμÞ; ð2:12Þ

Vρ
μν ≔

1

2
TρLTΠμν: ð2:13Þ

In hereLT denotes the Lie derivative along Tμ. We note that
with the exception of (2.11) all objects are tensorial. We
refer to (2.11) as the C connection. Its leading order (LO)
expansion in 1=c gives us a useful connection that can be
used in the covariant formulation of Newtonian gravity
[11,13]. We note that the C connection is not symmetric
and so contains torsion. We stress that this is merely a
reformulation of GR in terms of a torsionful and non-GR
metric compatible connection whose features are chosen
such that it gives us a useful Newton-Cartan connection
when expanding in 1=c.
We now insert the expression for the PNR Levi-Civita

connection into Eq. (2.7) and find that

Rμν ¼ c4R½−4�
μν þ c2R½−2�

μν þ R½0�
μν þ c−2R½2�

μν; ð2:14Þ

with

R½−4�
μν ¼ 1

4
TμTνΠαβΠρσTαρTβσ; ð2:15Þ

R½−2�
μν ¼ ∇

ðCÞ
σWσ

μν þWσ
μνSλλσ −Wσ

μλS
λ
σν −Wσ

νλS
λ
σμ; ð2:16Þ

R½0�
μν ¼ R

ðCÞ
μν −Wσ

μλV
λ
σν −Wσ

νλV
λ
σμ − ∇

ðCÞ
μSσσν

þ ∇
ðCÞ

σSσμν − 2Cλ
½μσ�S

σ
λν; ð2:17Þ

R½2�
μν ¼ ∇

ðCÞ
σVσ

μν; ð2:18Þ
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where we defined

Tμν ¼ ∂μTν − ∂νTμ; ð2:19Þ

and where the overscript (C) means that the object in
question has been computed with respect to the C con-

nection (2.11). The expression for R
ðCÞ

μν is given by

R
ðCÞ

μν ¼ ∂σCσ
μν − ∂μCσ

σν þ Cσ
σλC

λ
μν − Cσ

μλC
λ
σν; ð2:20Þ

which is not symmetric in μ and ν due to the fact that Cρ
μν

has torsion.
We have now dealt with the left-hand side (LHS) of

Eq. (2.5). However, it will be convenient to rewrite the
right-hand side (RHS) (2.5) as well, since we are generally

going to be working with T μν rather than T μν. For example,
for the trace T ¼ Tμ

μ we find that

T ¼ −c2TαTβT αβ þ ΠαβT αβ: ð2:21Þ

We can also express T μν in terms of T μν in which case
we get

T μν ¼ c4TμTαTνTβT αβ

− c2ðTμTαΠνβ þ TνTβΠμαÞT αβ

þ ΠμαΠνβT αβ: ð2:22Þ

This leads us to our final expression for the PNR version of
Einstein’s equations

X3
n¼0

cð4−2nÞR½−4þ2n�
μν ¼4πG

�
TμTνTαTβ−

1

c2
ð2TμTαΠνβþ2TνTβΠμα−TμTνΠαβ−TαTβΠμνÞþ

2

c4
ΠμαΠνβ−

1

c4
ΠμνΠαβ

�
T αβ:

ð2:23Þ

This equation may seem daunting but it is the 1=c
expansion we are interested in; when performing that
expansion this will prove to be a useful starting point.

B. Notation and basic identities

The basics objects we are going to be expanding are Tμ,
Πμν, Tμ, andΠμν. Since we are planning to go to high orders
in the long run, we introduce the following notation for the
expansion of the PNR fields:

Tμ ¼ τμ þ
X∞
n¼1

1

cn
τðnÞμ ; Tμ ¼ vμ þ

X∞
n¼1

1

cn
vμðnÞ; ð2:24Þ

Πμν ¼ hμν þ
X∞
n¼1

1

cn
hðnÞμν ; Πμν ¼ hμν þ

X∞
n¼1

1

cn
hμνðnÞ:

ð2:25Þ

The LO geometry is of Newton-Cartan-type and is
described by τμ and hμν. For ease of notation in some
expressions below we will sometimes denote the LO

objects τμ with a (0) superscript, i.e., τμ ¼ τð0Þμ , and
similarly for hμν, vμ, and hμν.
Now, the variables above are not all independent. They

are related through the completeness/orthogonality rela-
tions that we know from GR, Eq. (2.2). These relations
given in terms of Tμ and Πμν read

TμTμ¼−1; TμΠμν¼TμΠμν¼0; ΠμρΠρν¼δμνþTμTν:

ð2:26Þ

These hold order by order in the 1=c expansion. At leading
order we simply get

τμvμ¼−1; τμhμν¼vμhμν¼0; hμρhρν¼ δμνþvμτν:

ð2:27Þ

For every subsequent order we get a new set of
constraints from Eq. (2.26). At the Nth order in 1=c (for
N ≥ 1) we get

XN
n¼0

vμðnÞτ
ðN−nÞ
μ ¼ 0;

XN
n¼0

vνðnÞh
ðN−nÞ
νμ ¼ 0; ð2:28Þ

XN
n¼0

hμνðnÞτ
ðN−nÞ
ν ¼0;

XN
n¼0

hμρðnÞh
ðN−nÞ
ρν −

XN
n¼0

vμðnÞτ
ðN−nÞ
ν ¼0:

ð2:29Þ

We can use these equations to express hμνðNÞ and vμðNÞ in

terms of hμν, vμ, hðnÞμν , and τ
ðnÞ
μ (for n ≤ N). From Eqs. (2.28)

and (2.29) we can derive the following expressions for hμνðNÞ
and vμðNÞ:

vμðNÞ ¼ vμ
XN−1

n¼0

vσðnÞτ
ðN−nÞ
σ − hμσ

XN−1

n¼0

vνðnÞh
ðN−nÞ
νσ ; ð2:30Þ
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hμνðNÞ ¼hμσ
XN−1

n¼0

ðvνðnÞτðN−nÞ
σ −hνρðnÞh

ðN−nÞ
ρσ Þþvμ

XN−1

n¼0

hνσðnÞτ
ðN−nÞ
σ :

ð2:31Þ

We can solve these equations iteratively, starting from
N ¼ 1 and working our way up to the desired order.
It is clear that these expressions get messy very quickly.

In practice, however, one determines the metric at a certain
order in 1=c before going to the next order. It then often
happens (especially at low orders) that certain components
at a given order in 1=c will be zero, which simplifies the
expressions for the inverse objects at higher orders con-
siderably compared to the general result. It is therefore not
very useful to compute the higher-order contributions to the

inverse objects without knowing anything about τðnÞμ and

hðnÞμν at lower orders.

C. Gauge transformations

Since we are working with a covariant theory of non-
relativistic gravity, gauge transformations are going to play
a crucial role. To describe the most general nonrelativistic
gauge transformation, we must first study the gauge
transformations of our PNR variables Tμ and Πμν.
Because we have split the metric into Tμ and Πμν, we
are allowed to perform local Lorentz boosts that transform
Tμ and Πμν into each other while leaving the metric
invariant. Apart from that the only other gauge trans-
formations that act on Tμ and Πμν are diffeomorphisms.
The action of the gauge transformations on Tμ and Πμν

are thus given by

δTμ ¼ LΞTμ þ c−2Λμ; ð2:32Þ

δΠμν ¼ LΞΠμν þ TμΛν þ TνΛμ; ð2:33Þ

where Ξμ is a vector field generating diffeomorphisms and
where Λμ ¼ ΛbEb

μ is any one-form for which TμΛμ ¼ 0.
The transformations with local parameter Λb correspond to
local Lorentz boost transformations.
The next step is to expand both sides of Eqs. (2.32) and

(2.33). We will assume that the gauge parameters are real
analytic in 1=c in order that the gauge transformed objects
Tμ and Πμν admit a Taylor series in 1=c. We thus consider
the following expansions:

Ξμ ¼ ξμð0Þ þ
1

c
ξμð1Þ þ

1

c2
ξμð2Þ þ � � � ; ð2:34Þ

Λμ ¼ λð0Þμ þ 1

c
λð1Þμ þ 1

c2
λð2Þμ þ � � � : ð2:35Þ

For the LO gauge transformations we will write ξμ ¼ ξμð0Þ
and λμ ¼ λð0Þμ .

Starting with Eq. (2.32), we find that the most general

gauge transformations for τμ, τ
ð1Þ
μ , τð2Þμ , τð3Þμ , and τðNÞ

μ are
given by

δτμ ¼ Lξτμ; ð2:36Þ

δτð1Þμ ¼ Lξð1Þτμ þ Lξτ
ð1Þ
μ ; ð2:37Þ

δτð2Þμ ¼ Lξð2Þτμ þ Lξð1Þτ
ð1Þ
μ þ Lξτ

ð2Þ
μ þ λμ; ð2:38Þ

δτð3Þμ ¼Lξð3ÞτμþLξð2Þτ
ð1Þ
μ þLξð1Þτ

ð2Þ
μ þLξτ

ð3Þ
μ þλð1Þμ ; ð2:39Þ

δτðNÞ
μ ¼

XN
n¼0

LξðnÞτ
ðN−nÞ
μ þ λðN−2Þ

μ ; ð2:40Þ

where the condition TμΛμ ¼ 0 implies that λðNÞ
μ obeys

XN
n¼0

vμðnÞλ
ðN−nÞ
μ ¼ 0: ð2:41Þ

In the case of (2.33) we find that the gauge transformations

of hμν, h
ð1Þ
μν , and hðNÞ

μν are given by

δhμν ¼ Lξhμν þ 2τðμλνÞ; ð2:42Þ

δhð1Þμν ¼ Lξð1Þhμν þ Lξh
ð1Þ
μν þ 2τðμλ

ð1Þ
νÞ þ 2τð1Þðμ λνÞ; ð2:43Þ

δhðNÞ
μν ¼

XN
n¼0

LξðnÞh
ðN−nÞ
μν þ 2

XN
n¼0

τðnÞðμ λ
ðN−nÞ
νÞ : ð2:44Þ

Ifwegoback to (2.32) and (2.33),we see thatwe can fix the
local Lorentz transformations entirely by setting Πit ¼ 0. In
this gaugewe haveΠtt ¼ 0 for otherwise the signaturewould
not be (0, 1, 1, 1); i.e., the determinant of Πμν is zero while
detΠij is nonzero. In this gauge we also have that Ti ¼ 0,
which follows from TμΠμν ¼ 0 for ν ¼ j. Hence, the con-
dition TμΛμ ¼ 0 implies that Λt ¼ 0. The condition TμTμ ¼
−1 with Ti ¼ 0 tells us that Tt must be nonzero since Tμ is
nonvanishing and thus that Tt ≠ 0. Explicitly, when we take
Πit ¼ 0, we obtain for the inverse objects

Tt¼−
1

Tt
; Ti¼0; Πti¼−

1

Tt
TjΠij; Πtt¼ 1

T2
t
TiTjΠij;

ð2:45Þ

where Πij follows from

ΠikΠkj ¼ δij: ð2:46Þ

The residual gauge transformations of the gauge choice
Πti ¼ 0 follow from setting δΠti ¼ 0 ¼ LΞΠti þ TtΛi
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which tells us that Λi is entirely fixed and given by

Λi ¼ −
1

Tt
Πij∂tΞj: ð2:47Þ

Using this result together with (2.32) and (2.32) we see that
the residual gauge transformations act on Tμ and Πij as
follows:

δTt ¼ Ξρ
∂ρTt þ Tρ∂tΞρ; ð2:48Þ

δTi ¼ Ξρ
∂ρTi þ Tρ∂iΞρ −

1

c2
1

Tt
Πij∂tΞj; ð2:49Þ

δΠij ¼ Ξρ
∂ρΠij þ Πkj∂iΞk þ Πik∂jΞk

−
1

Tt
TiΠjk∂tΞk −

1

Tt
TjΠik∂tΞk: ð2:50Þ

In this gauge the metric is parametrized as

ds2 ¼ −c2ðTtdtþ TidxiÞ2 þ Πijdxidxj: ð2:51Þ

This is the metric in Kol-Smolkin (KS) parametrization
[46,47]. We will refer to the choice Πit ¼ 0 as the KS
gauge. Alternatively, we could have fixed the local Lorentz
transformations by setting Ti ¼ 0. This would have led to
the metric in Arnowitt-Deser-Misner (ADM) parametriza-
tion. See [48] for more information about these two choices
in relation to 1=c and c expansions of GR.We prefer the KS
parametrization because then the nonzero components of
Πμν form a three-dimensional invertible tensor Πij. We will
henceforth always take Πti ¼ 0.

D. The perfect fluid in nonrelativistic gravity

In this paper we are going to work with a perfect fluid
(with compact support) as our matter source. The energy-
momentum tensor for a perfect fluid is given by

T μν ¼ Eþ P
c2

UμUν þ PΠμν −
1

c2
PTμTν; ð2:52Þ

where E is the relativistic internal energy density, P is the
pressure, andUμ is the four-velocity that is normalized such
that

gμνUμUν ¼ −c2: ð2:53Þ

Using (2.3) this can be solved for TμUμ by writing this as

ðTμUμÞ2 ¼ 1þ 1

c2
ΠμνUμUν: ð2:54Þ

Since we expand the metric in even and odd powers of
1=c, it is inevitable that we also have to include even and
odd powers in the expansion of the fluid variables. The

even powers are, of course, the dominant ones that
correspond to the 0PN, 1PN, etc., sources. It turns out
that at low orders the odd powers in 1=c in the metric are
either zero or pure gauge. Our approach to expanding the
fluid variables in 1=c is to assume this to be an even power
series expansion until that assumption breaks down. This
breakdown can be seen by studying the fluid conservation
equations (the 1=c expansion of the covariant constancy of
the fluid’s energy-momentum tensor) at each PN order and
to ensure that each nontrivial PN order has its own set of
fluid variables to avoid unphysical constraints on the
solution.7 In this way it turns out that we need odd powers
in 1=c in the expansion of the fluid variables for the first
time at 2.5PN in the expansion of the fluid equation. Odd
terms break time-reversal symmetry, and this is related to
the well-known fact that the fluid starts to dissipate at
2.5PN due to the emission of gravitational waves.
We expand the energy density E, pressure P, and three-

velocity Ui in powers of 1=c2, until we get to 2.5PN. To
recover the Newtonian limit we need to assume that E starts
at order c2 and that P starts at order c0. We therefore have
the following expansion:

E ¼ c2Eð−2Þ þ Eð0Þ þ
1

c2
Eð2Þ þ

1

c3
Eð3Þ þOðc−4Þ; ð2:55Þ

P ¼ Pð0Þ þ
1

c2
Pð2Þ þOðc−4Þ; ð2:56Þ

Ui ¼ vi þ 1

c2
við2Þ þOðc−4Þ: ð2:57Þ

Wewill always assume that Eð−2Þ > 0. At 0PN, i.e., order c0

in the expansion of the fluid conservation equations, the fluid
variables are Eð−2Þ, Pð0Þ, and vi. However, at 0PN the metric
only features Eð−2Þ. The 2.5PN fluid variables are Eð3Þ; Pð5Þ,
andvið5Þ. However, since our goal is towork up to 2.5PN in the

metric, we will only need Eð3Þ of these variables.
The four-velocity Uμ is a constrained variable. The time

component Ut follows from (2.54) which in the KS gauge
becomes

ðTμUμÞ2 ¼ 1þ 1

c2
ΠijUiUj: ð2:58Þ

Hence, the expansion of Ut follows from the expansion of
the PNR variables and Ui. At LO we have

7If we have a nontrivial equation at a given order in the
expansion of the fluid conservation equations and the fields
appearing in said equation are all lower order fields that have
already been determined at previous orders, that equation would
appear as a constraint on these lower-order fields. This would be
unwanted and simply a consequence of not having introduced
the appropriate coefficients in the 1=c expansion of the fluid
variables.
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Uμ ¼ uμ þOðc−1Þ; ð2:59Þ

and (2.58) tells us that

τμuμ ¼ 1: ð2:60Þ

III. THE NEWTONIAN ORDER

In this section, we set the stage for the post-Newtonian
expansion by discussing how the Newtonian limit of GR
comes about in the nonrelativistic gravity framework
reviewed in the previous section.
The general covariant framework that describes

Newtonian gravity is Newton-Cartan gravity. Newtonian
gravity is a gauge-fixed version of that setting (for details
see, for example, the review paper [13]).8 A post-
Newtonian framework therefore necessarily has to be
consistent with the same gauge fixing that is done in
Newton-Cartan gravity to obtain the Newtonian descrip-
tion. In this section we will show how this gauge fixing
works in the framework of nonrelativistic gravity that was
introduced in the previous section. One of the main
purposes of this paper is to set up a framework for post-
Newtonian calculations that is not tied to a particular gauge
choice such as the harmonic gauge. However, the very fact
that we want to be post-Newtonian means that we inevi-
tably have to restrict ourselves to those gauge choices that
are compatible with a Newtonian viewpoint. It would be
interesting to develop techniques to study what one might
call post-Newton-Cartan gravity which would then have to
be a fully covariant version of what we present here and of
what has been done elsewhere.
Finally, we end this section by discussing the 0.5PN

order (which is trivial) in this nonrelativistic gravity
framework.

A. Absolute time and Newtonian gravity

We start our discussion by showing how a perfect fluid
with E ¼ Oðc2Þ and P ¼ Oðc0Þ gives rise to a nonrela-
tivistic spacetime with absolute time at leading order in
1=c. We start with Einstein’s field equations, which we
have written in PNR form in Eq. (2.23). To leading order
Eq. (2.23) becomes

1

4
τμτνhαβhρσταρτβσ ¼ 0; ð3:1Þ

where we defined

τμν ¼ ∂μτν − ∂ντμ: ð3:2Þ

Equation (3.1) is simply the leading order expansion ofR½−4�
μν

which is set to zero because there is no term on the RHS of
(2.23) that is of order c4.We see that the factor in front of τμτν
is a sum of squares, and so Eq. (3.1) implies that

hαβhρστβσ ¼ 0; ð3:3Þ

which in the Newton-Cartan literature is known as the
twistless torsional Newton-Cartan (TTNC) condition which
is equivalent to τ ∧ dτ ¼ 0 [50]. This condition tells us that
the spacetime admits a foliation since by Frobenius’ theorem
this is equivalent to τ ¼ NdT where N and T are two scalar
fields. The functionN is like a nonrelativistic lapse function
that describes time dilation.
In this work we will always assume that we can make a

weak field approximation which corresponds to absolute
time in the NC setting, but it is perhaps interesting that in
principle NC geometry can also describe what is called
strong NR gravity. This simply means that dN ∧ dτ ≠ 0 so
that N describes time dilation. In [8,10] it has been shown
that the Schwarzschild geometry admits a strong NR
approximation, and that this regime of NR gravity can
describe perihelion of mercury, and effects due to gravi-
tational time dilation (in agreement with GR) [14]. It would
be interesting to study this regime as a potential starting
point for an approximation scheme that does not start with
flat space (and a Newtonian potential).
To arrive at absolute time we must turn to the con-

servation of the energy-momentum tensor, given by

∇νT μν ¼ 0: ð3:4Þ

Using the 1=c expansions of the previous section the LO
term of the expansion of this equation is given by [11],

0 ¼ Eð−2Þhμσuντσν; ð3:5Þ

where uμ is defined in Eq. (2.59). From Eq. (2.60) it follows
that we can write the fluid velocity field as

uν ¼ −vν þ hνρXρ; ð3:6Þ

for some field Xρ. Using this along with the TTNC
condition, Eq. (3.5) reduces to

0 ¼ hμσvντσν: ð3:7Þ

If we contract this with hμρ, we get

0 ¼ vντρν: ð3:8Þ

This along with the TTNC condition (3.3) means that
τρν ¼ 0 which is the condition for absolute time, and so we
set τ ¼ dT for some scalar field T. We can and will always
choose coordinates such that T ¼ t.

8In Newton-Cartan gravity it is perfectly possible to choose a
gauge in which the Newtonian potential is zero while still being
able to describe the same physics as we observe in Newtonian
gravity [49].
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We want to arrive at Newtonian gravity, which means
that we need to compute the metric up to order c0 (i.e., up to

τð2Þμ and hμν). So, we continue to expand Einstein’s field
equations until we have solved the metric up to
order c0.
The next nontrivial part of Einstein’s field equa-

tions (2.23) comes at order c2 in which case we get

R½−4�
μν

ð−2Þ
þ R½−2�

μν

ð0Þ
¼ 0; ð3:9Þ

where R½−4�
μν

ð−2Þ
denotes the order c2 term in the 1=c expansion

of R½−4�
μν . Likewise, R½−2�

μν

ð0Þ
denotes the order c0 term in the

expansion of R½−2�
μν . Using that dτ ¼ 0 this becomes

1

4
τμτνhαβhρστ

ð1Þ
αρ τ

ð1Þ
βσ ¼ 0; ð3:10Þ

and so we conclude that τð1Þ ∧ dτð1Þ ¼ 0.
We then turn to the NLO equation in the expansion of

(3.4). Using again that dτ ¼ 0we end up with the following
expression:

0 ¼ Eð−2Þhμσuντ
ð1Þ
σν : ð3:11Þ

Using a similar argument as was used at LO, we conclude

that dτð1Þ ¼ 0, so that τð1Þμ ¼ ∂μTð1Þ. The gauge trans-

formation acting on τð1Þμ is given in Eq. (2.37). We can

use ξtð1Þ to set τð1Þμ ¼ 0. We will always assume this gauge

choice.
The next nonzero order in the expansion of Einstein’s

field equations is at order c0, which is the Newtonian order
and is given by

R½−4�
μν

ð4Þ
þ R½−2�

μν

ð2Þ
þ R½0�

μν

ð0Þ
¼ 4πGτμτνEð−2Þ: ð3:12Þ

Using Eqs. (2.15)–(2.17) we have that

R½−4�
μν

ð4Þ
¼ 1

4
τμτνhαβhρστ

ð2Þ
αρ τ

ð2Þ
βσ ; ð3:13Þ

R½−2�
μν

ð2Þ
¼ ∇̌σWσ

μν

ð2Þ
¼ ∂σWσ

μν

ð2Þ
þ Γ̌σ

σαWα
μν

ð2Þ
− Γ̌α

σμWσ
αν

ð2Þ
− Γ̌α

σνWσ
μα

ð2Þ
;

ð3:14Þ

R½0�
μν

ð0Þ
¼ Řμν; ð3:15Þ

where we used that dτ ¼ 0 and where Γ̌ρ
μν is the Newton-

Cartan connection that is obtained as the LO term in

the 1=c expansion of the C connection. Explicitly, it is
given by

Cρ
μνjOðc0Þ ¼ Γ̌ρ

μν¼−vρ∂μτνþ
1

2
hρσð∂μhνσþ∂νhμσ−∂σhμνÞ:

ð3:16Þ

Quantities such as ∇̌μ and Řμν are computed using the Γ̌ρ
μν

connection. We furthermore have that

Wρ
μν

ð2Þ
¼ 1

2
τμhρστ

ð2Þ
σν þ 1

2
τνhρστ

ð2Þ
σμ : ð3:17Þ

To solve (3.12) we start with the ij component. This
simply becomes

Řij ¼ 0: ð3:18Þ

Since τμhμν ¼ 0 and τ ¼ dt we have that htμ ¼ 0. We also
fixed the local Lorentz boosts by setting Πti ¼ 0 which
implies at LO that htμ ¼ 0. Hence, the only nonzero
components of Γ̌ρ

μν are the Γ̌k
ij components. These are

given by

Γ̌k
ij ¼

1

2
hklð∂ihjl þ ∂jhil − ∂lhijÞ; ð3:19Þ

where hij is a Riemannian metric on a constant t slice.
Equation (3.18) states that hij is Ricci flat.
Since we are working in three spatial dimensions we

know that the Weyl tensor of the Riemannian geometry on
the constant t slices is zero. This means that if hij is Ricci
flat it is also Riemann flat. Since the constant time slices are
assumed to be noncompact, there exist coordinates such
that

hμν ¼ δijδ
i
μδ

i
ν: ð3:20Þ

The μ ¼ ν ¼ t and μ ¼ t, ν ¼ i components of (3.12) then
become

1

4
τð2Þij τ

ð2Þ
ij þ ∂iτ

ð2Þ
it ¼ 4πGEð−2Þ; ð3:21Þ

∂jτ
ð2Þ
ji ¼ 0: ð3:22Þ

We use the fact that we are working in three spatial
dimension to write τð2Þij in terms of a (pseudo)vector field
Fk,

τð2Þij ¼ ϵijkFk: ð3:23Þ

Equation (3.22) then becomes
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∂½iFk� ¼ 0: ð3:24Þ

This means that we can write Fk ¼ ∂kF for some unknown

function F. Recall that τð2Þij ¼ 2∂½iτ
ð2Þ
j� so it must satisfy the

Bianchi identity

∂½iτ
ð2Þ
jk� ¼ 0: ð3:25Þ

If we contract this equation with ϵijk and use (3.23), we find
that ∂kFk ¼ 0, and thus that F is harmonic.
Since F is a harmonic function, any nontrivial solution to

∂
2F ¼ 0 will lead to a singularity somewhere in space
(independent of the matter distribution) if we include
infinity. As discussed in the Introduction the 1=c expansion
only has a finite region of validity. Within this region that
contains the matter source we needF to be regular (and thus
in particular we will demand that F is regular at origin). For
this harmonic function to be nonzero we need to match this
onto a solution in the exterior region that is an order G
solution to the source-free Einstein equations. It turns out
that by matching onto such a solution the harmonic function
F has to be zero. Another viewpoint is that we insist that in
the NR regime Newtonian gravity is a good approximation,
and so we should be able to demand that the metric to order
c0 is asymptotically flat. This means that F cannot be a
nontrivial harmonic function and the only allowed solution

for F is F ¼ FðtÞ. This means that τð2Þij ¼ 0, and therefore
Eq. (3.21), reduces to the Poisson equationwhose solution is
found by the use of Green’s function

τð2Þt ðx; tÞ ¼ −G
Z

Eð−2Þðt; x0Þ
jx − x0j d3x0 ¼ −U: ð3:26Þ

This is the Newtonian gravitational potential, as expected.
The integration is over the matter source.

B. The Newtonian matter equations

Having computed the Newtonian metric, we turn to the
matter EOMs to see if we get the correct fluid equations.
The Newtonian term in the expansion of (3.4) is at order c0,
which evaluates to be

uμuν∂νEð−2Þ þ 2Eð−2Þuðμ∂νuνÞ þ Eð−2Þhμστ
ð2Þ
σν uν

þ ∂νPð0Þhμν ¼ 0: ð3:27Þ

This equation describes both mass conservation as well as
momentum conservation. To see this we consider the μ ¼ t,
i components separately. For μ ¼ t we obtain

0 ¼ ∂νðEð−2ÞuνÞ: ð3:28Þ

This equation corresponds to conservation of mass since
Eð−2Þ > 0 is the nonzero mass density. Then if we take

μ ¼ i we get the Euler equation in a Newtonian
potential

∂tvi þ vj∂jvi ¼ −
1

Eð−2Þ
∂iPð0Þ − ∂iτ

ð2Þ
t : ð3:29Þ

The latter equation together with (3.28) forms four
equations for five unknowns. The unknowns are velocity
vi, mass density Eð−2Þ, and the temperature that enters Pð0Þ.
Normally, the fifth equation is the energy conservation
equation. However, this comes from the NLO correction to
(3.28), which also depends on subleading fields, such as
við2Þ, that appear in the expansion of the fluid variables.

Hence, we do not get a closed system of equations for just
the LO fluid variables (see [11] for more details).

C. Gauging away the 0.5PN metric

In this section we want to solve for the 0.5PN metric,
which requires knowing τð3Þμ and hð1Þμν . We begin by
expanding Einstein’s field equations to one order higher
in 1=c than the Newtonian order. Einstein’s field equations
at order c−1 are

R½−4�
μν

ð5Þ
þ R½−2�

μν

ð3Þ
þ R½0�

μν

ð1Þ
¼ 0: ð3:30Þ

We note that there is no source term at this order. Using that

τð2Þij ¼ 0 as well as httð1Þ ¼ 0, which we get from τð1Þμ ¼ 0

and the orthogonality conditions, it can be shown that

R½−4�
μν

ð5Þ
¼ 0. The other two terms in (3.30) can be shown to be

equal to

R½−2�
μν

ð3Þ
¼ ∂σWσ

μν

ð3Þ
þ Cσ

σα

ð1Þ
Wα

μν

ð2Þ
−2Cα

σðμ
ð1Þ

Wσ
νÞα

ð2Þ
; ð3:31Þ

R½0�
μν

ð1Þ
¼ ∂λCλ

νμ

ð1Þ
− ∂νCλ

λμ

ð1Þ
; ð3:32Þ

where we used Sρμν
ð1Þ

¼ 0. Finally, the gauge choice Πit ¼ 0

tells us that hð1Þit ¼ 0.
Using what we have just learned, we find that the μ ¼ i

and ν ¼ j components of (3.30) give us

2∂k∂ðih
ð1Þ
jÞk − ∂k∂kh

ð1Þ
ij − ∂i∂jh

ð1Þ
kk ¼ 0: ð3:33Þ

The μ ¼ t and ν ¼ j components give us

∂k∂th
ð1Þ
ik − ∂i∂th

ð1Þ
kk − ∂kτ

ð3Þ
ik ¼ 0: ð3:34Þ

Finally, for μ ¼ ν ¼ t we find that
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−∂jðhð1Þij τ
ð2Þ
it Þ þ ∂kτ

ð3Þ
kt þ τð2Þkt ∂kh

ð1Þ
ii − ∂t∂th

ð1Þ
kk ¼ 0: ð3:35Þ

We can without loss of generality decompose hð1Þij into a
transverse traceless (TT) part, a longitudinal traceless part,
and a trace part, using

hð1Þij ¼ hð1Þij ðTTÞ þ ∂iL
ð1Þ
j þ ∂jL

ð1Þ
i þ 1

3
δijHð1Þ; ð3:36Þ

where Hð1Þ is given by

Hð1Þ ¼ hð1Þkk − 2∂kL
ð1Þ
k : ð3:37Þ

From Eq. (2.43) we learn that the gauge transformation

acting on hð1Þij is given by

δhð1Þij ¼ ∂iξ
j
ð1Þ þ ∂jξ

i
ð1Þ þ Lξh

ð1Þ
ij ; ð3:38Þ

where we used that τ ¼ dt, τ1 ¼ 0, and h ¼ dxidxi. We can

thus gauge away Lð1Þ
i using ξið1Þ. The trace of Eq. (3.33) tells

us that Hð1Þ is harmonic. We require that hð1Þij is globally
well-defined; and since there are no matter sources, it
follows thatHð1Þ must be a function of time only. However,
we also require that the solution is asymptotically flat so

that hð1Þij goes to zero at infinity. Hence, we find that Hð1Þ is

zero. The LHS of Eq. (3.33) then reduces to ∂
2hð1Þij ðTTÞ,

and by similar arguments we conclude that hð1Þij ðTTÞ ¼ 0,

so that, in fact, hð1Þij ¼ 0. The remaining Eqs. (3.34) and
(3.35) then simplify to

∂kτ
ð3Þ
ik ¼ 0; ∂kτ

ð3Þ
tk ¼ 0: ð3:39Þ

Using similar arguments as in the case of (3.22) we find that

we can choose a gauge (by using ξtð3Þ) to set τð3Þi ¼ 0.

Finally, this implies that τð3Þt is harmonic without a source

so that asymptotic flatness tells us that τð3Þt ¼ 0. Hence, we
conclude that we can always choose a gauge such that

τð3Þμ ¼ 0 and hð1Þμν ¼ 0.
We emphasize that the above arguments used the

assumptions that the metric up to and including 0.5PN
terms is globally well-defined, that the spacetime is
asymptotically flat and four-dimensional, and that constant
time slices are topologically R3.
To summarize, we have found that we can always choose

a gauge such that

τ ¼ dt; h ¼ dxidxi; τð1Þ ¼ 0;

hð1Þ ¼ 0; τð2Þ ¼ −Udt; τð3Þ ¼ 0; ð3:40Þ

where U is given in (3.26). The residual gauge trans-
formations are obtained by setting Eqs. (2.36)–(2.39) as
well as (2.42) and (2.43), in which we substitute (3.40),

equal to zero with the exception of δτð2Þt , which is simply
equal to −δU. This leads to

ξt ¼ cst; ξi ¼ aiðtÞ þ λijxj; ξtð1Þ ¼ cst; ξið1Þ ¼ aið1ÞðtÞ þ λið1Þjx
j;

ξtð2Þ ¼ xiȧi þ fð2ÞðtÞ; ξtð3Þ ¼ xiȧið1Þ þ fð3ÞðtÞ; λt ¼ 0;

λi ¼ −ȧi; λð1Þt ¼ 0; λð1Þi ¼ −ȧið1Þ; ð3:41Þ

where λij ¼ −λji corresponds to a rotation, aiðtÞ is any
vector that only depends on t, and fð2Þ is any function that
only depends on t. The Newtonian potential U transforms
under the residual gauge transformations as

δU ¼ ξμ∂μU − xiäi − ∂tfð2Þ; ð3:42Þ
which agrees with the results of [51]. The ξμ∂μ generate
the acceleration extended Galilei symmetries. Finally, the
λð1Þij ¼ −λð1Þji are constant, and ξμð1Þ and fð3Þ have to

correspond to a symmetry of U; i.e., they have to obey
δU ¼ 0 or what is the same, they should solve the equation

ξμð1Þ∂μU ¼ xiäið1Þ þ ∂tfð3Þ: ð3:43Þ

The arguments above assumed asymptotic flatness
which means that we assume the 1=c expansion to be a

good approximation all the way up to infinity. In actual
fact we need to perform matched asymptotic expansion by
matching with an order G solution9 to the source-free
Einstein equations (in the overlap region). That perspective,
as we will see, leads to the same conclusion, namely that
there is nothing at order 0.5PN. More concretely, if we had
left the 0.5PN harmonic functions as undetermined and had
matched the metric up to 0.5PN with the linear in G
solution, we would have found the same result as what we
just obtained assuming asymptotic flatness. From the
matching perspective the absence of a 0.5PN solution
can be shown to be a consequence of mass conservation.

9Higher orders in G would be too subleading in 1=c. For
example, order G2 is actually G2=c2 compared to G.
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IV. GENERAL STRUCTURE OF THE
POST-NEWTONIAN EXPANSION

Now that we have discussed the general framework of
nonrelativistic gravity and reviewed how it recovers the
Newtonian regime, we will embark on the 1=c expansion of
Einstein’s equation to post-Newtonian orders in earnest. The
framework developed here is valid in any gauge for which
the vacuum is described in inertial coordinates and for which
there is a Newtonian regime, but apart from that, it is fully
general. We will on occasion discuss what happens for the
harmonic gauge choice as well as for the transverse gauge
(about which we will report more in [15]).
We assume weak fields, so we are expanding around flat

spacetime for which we use inertial coordinates denoted by
ðt; xiÞ. The 1=c expansion is a general expansion that works
off shell. The assumption that there exist fields that admit a
Taylor series in 1=c (which is dimensionful) means that in a
specific on shell context the expansion will organize itself
in terms of a dimensionless ratio v=c where the interpre-
tation of v depends on the context. For us the velocity v is
either the characteristic velocity of a bound gravitational

system, i.e., GMc2lc ∼
v2c
c2 where M is the total mass of the fluid

(as follows from the virial theorem), or v is lc=tc where lc
and tc are the system’s characteristic length and time,
respectively. The latter is small compared to c when the
characteristic wavelength of the gravitational radiation
λc ∼ tcc is much larger than lc. The general form of,
say, a metric components’ 1=c expansion is schematically

X∞
n¼1

�
G
c2

�
n
anðc−1; t; x⃗Þ; ð4:1Þ

where the an are independent of G and admit a Taylor
expansion in 1=c including odd powers. The latter assum-
ption can break down, signaling the need for the introduction
of log c-terms. We will not need to consider these terms that
are generically related to gravitational tails [17,40], as they
only appear at higher PN orders. We will restrict our
attention up to and including 2.5PN order. We see that
any order in 1=c will have a finite number of powers of G.
On sufficiently large scales retardation effects will no

longer be perturbative in 1=c, so the 1=c expansion is valid
only in a finite region of space. The standard assumption is
that the matter source behaves nonrelativistically so that it
is fully contained within the region where the 1=c expan-
sion applies.10 The latter will be called the near zone. The

exterior zone will be all of space minus the compact matter
source. These two zones overlap, which is the region where
the matching of the 1=c expansion (this section) and the G
expansion (next section) takes place.

A. Equations of motion

Using the notation of Sec. II [see in particular Eq. (2.51)]
we will expand the metric around flat Galilean spacetime as
follows:

ds2 ¼ −c2ðTμdxμÞ2 þ Πijdxidxj; ð4:2Þ

where we made the choice Πti ¼ 0 (implying Πtt ¼ 0)
which can be done without loss of generality. We have

Tμ¼δtμþ
1

c2
τð2Þt δtμþ

X∞
n¼4

c−nτðnÞμ ; Πij¼δijþ
X∞
n¼2

c−nhðnÞij ;

ð4:3Þ

where we used the results from the previous section
regarding the 0PN and 0.5PN orders in the expansion of
Tμ and Πij.
Following standard terminology the n=2PN order is the

order at which we determine τðnþ2Þ
μ and hðnÞij . For the metric

we have

gtt ¼ � � � þ c−nð−2τðnþ2Þ
t þ � � �Þ þOðc−n−1Þ; ð4:4Þ

gti ¼ � � � þ c−nð−τðnþ2Þ
i þ � � �Þ þOðc−n−1Þ; ð4:5Þ

gij ¼ � � � þ c−nðhðnÞij þ � � �Þ þOðc−n−1Þ; ð4:6Þ

where the dots on the left of c−n denote terms of lower order
of 1=cwhile the dots in parentheses denote terms that are of

order c−n but that depend on τðkþ2Þ
μ and hðkÞij for k < n.

We can expand Einstein’s equations and only make
explicit the appearance of the n=2PN fields. If we do this,
we find that at n=2PN the Einstein equations for n ≥ 2 can
be written as

SðnÞij ¼ ∂
2hðnÞij þ ∂i∂jh

ðnÞ
kk − ∂i∂kh

ðnÞ
kj − ∂j∂kh

ðnÞ
ki ; ð4:7Þ

SðnÞi ¼ ∂
2τðnþ2Þ

i − ∂i∂kτ
ðnþ2Þ
k þ ∂tð∂khðnÞki − ∂ih

ðnÞ
kk Þ; ð4:8Þ

SðnÞ ¼ ∂
2τðnþ2Þ

t − ∂t∂kτ
ðnþ2Þ
k −

1

2
∂
2
t h

ðnÞ
kk

− ∂iτ
ð2Þ
t

�
∂jh

ðnÞ
ij −

1

2
∂ih

ðnÞ
jj

�
− hðnÞij ∂i∂jτ

ð2Þ
t ; ð4:9Þ

where the sources SðnÞ; SðnÞi ; SðnÞij on the left-hand side
depend on the expansion of the matter fields as well as

10The characteristic velocity of the fluid vc will be much
smaller than the speed of light, i.e., vc ≪ c. If we multiply this
with the characteristic timescale of the source, we find lc ≪ λc
where lc is the length scale of the matter source and λc is of the
order of tcc which is the characteristic wavelength of the
gravitational radiation. There is thus a separation of scales which
is why there is an overlap region that allows us to use the method
of matched asymptotic expansions.
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lower-order fields hðkÞij and τðkþ2Þ
μ with k < n. Below wewill

give explicit expressions for these sources to 2.5PN. There is
a natural order inwhich to solve the above partial differential
equation(s) (PDEs) by starting with (4.7), which can be

solved for hðnÞij , and then moving on to (4.9) by solving it for

τðnþ2Þ
i , and ending with (4.9), which can be solved for τðnþ2Þ

t .
It also follows from these equations (upon differentiation
and combining equations) that

1

2
∂tS

ðnÞ
ii þ ∂iS

ðnÞ
i ¼ 0; ð4:10Þ

∂iS
ðnÞ
ij −

1

2
∂jS

ðnÞ
ii ¼ 0: ð4:11Þ

The source SðnÞij contains terms that are linear in lower-
order fields. If we isolate these we can write

SðnÞij ¼ ∂tð∂iτðnÞj þ ∂jτ
ðnÞ
i Þ þ ∂

2
t h

ðn−2Þ
ij − 2∂i∂jτ

ðnÞ
t þ S̃ðnÞij ;

ð4:12Þ

where now S̃ðnÞij contains both the compact source terms as
well as nonlinear terms of lower-order fields. The sources

SðnÞi and SðnÞ do not contain any linear terms in lower-order
fields. If we use (4.12) together with (4.8) and (4.9), then
Eqs. (4.10) and (4.11) become

0 ¼ ∂t

�
Sðn−2Þ þ ∂kτ

ð2Þ
t

�
∂lh

ðn−2Þ
kl −

1

2
∂lh

ðn−2Þ
kk

�
þ hðn−2Þkl ∂k∂lτ

ð2Þ
t −

1

2
S̃ðnÞkk

�
− ∂iS

ðnÞ
i ; ð4:13Þ

0 ¼ ∂tS
ðn−2Þ
j − ∂j

�
Sðn−2Þ þ ∂kτ

ð2Þ
t

�
∂lh

ðn−2Þ
kl −

1

2
∂lh

ðn−2Þ
kk

�
þ hðn−2Þkl ∂k∂lτ

ð2Þ
t

�
þ ∂iS̃

ðnÞ
ij −

1

2
∂jS̃

ðnÞ
ii ; ð4:14Þ

where n ≥ 2 and where Sð0Þ ¼ 0 ¼ Sð0Þi . These lead to the
fluid conservation equations, i.e., the 1=c expansion of
(3.4). We see that the n=2PN Einstein equations determine
the ðn=2 − 1ÞPN fluid equations.
To solve the expanded Einstein equations it will prove

useful to decompose the n=2PN fields as follows:

hðnÞij ¼ hðnÞij ðTTÞ þ ∂iL
ðnÞ
j þ ∂jL

ðnÞ
i þ 1

3
δijHðnÞ; ð4:15Þ

τðnþ2Þ
i ¼ MðnÞ

i ðTÞ − ∂tL
ðnÞ
i − ∂iNðnÞ; ð4:16Þ

τðnþ2Þ
t ¼ MðnÞ

t − ∂tNðnÞ; ð4:17Þ

where

HðnÞ ¼ hðnÞkk − 2∂kL
ðnÞ
k : ð4:18Þ

We will show that one can rewrite Eqs. (4.7)–(4.9)
schematically as ∂2ðfieldÞ ¼ ðknown sourceÞ, so that they
can in principle be solved by integration (we comment on
issues that can arise in the integration step further below).
Once we have solved for the fields appearing in the
decomposition (4.15)–(4.17) we reassemble them to form

the n=2PN fields hðnÞij , τðnþ2Þ
μ , which are then used to write

the source terms in (4.7)–(4.9) at the next order. Put
differently, the decomposition (4.15)–(4.17) is used only

on the right-hand side of (4.7)–(4.9) and not on the left-
hand side.
Using (4.15)–(4.17) the n=2PN Einstein equations

become

∂
2HðnÞ ¼ 3

4
SðnÞii ; ð4:19Þ

∂
2hðnÞij ðTTÞ ¼ SðnÞij −

1

4
δijS

ðnÞ
kk −

1

3
∂i∂jHðnÞ; ð4:20Þ

∂
2MðnÞ

i ðTÞ ¼ SðnÞi þ 2

3
∂t∂iHðnÞ; ð4:21Þ

∂
2MðnÞ

t ¼ SðnÞ þ 1

2
∂
2
t HðnÞ þ ∂

2LðnÞ
i ∂iτ

ð2Þ
t

−
1

6
∂iHðnÞ

∂iτ
ð2Þ
t þ hðnÞij ∂i∂jτ

ð2Þ
t : ð4:22Þ

These equations can be rewritten as

∂
2HðnÞ ¼ 3

4
SðnÞii ; ð4:23Þ

∂
2

�
MðnÞ

i ðTÞ − 1

3
xi∂tHðnÞ

�
¼ SðnÞi −

1

4
xi∂tS

ðnÞ
jj ; ð4:24Þ
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∂
2

�
hðnÞij ðTTÞþ 1

12

�
xi∂jHðnÞ þxj∂iHðnÞ−

2

3
δijxk∂kHðnÞ

��

¼SðnÞij −
1

3
δijS

ðnÞ
kk þ 1

16

�
xi∂jS

ðnÞ
ll þxi∂jS

ðnÞ
ll −

2

3
δijxk∂kS

ðnÞ
ll

�
;

ð4:25Þ

∂
2

�
MðnÞ

t −
1

12
r2∂2t HðnÞ þ 1

2
xi∂tM

ðnÞ
i ðTÞ

�

¼ SðnÞ −
1

16
r2∂2t S

ðnÞ
ii þ 1

2
xi∂tS

ðnÞ
i −

1

6
∂iHðnÞ

∂iτ
ð2Þ
t

þ ∂
2LðnÞ

i ∂iτ
ð2Þ
t þ hðnÞij ∂i∂jτ

ð2Þ
t : ð4:26Þ

We note that NðnÞ and LðnÞ
i do not appear on the left-hand

side and that only LðnÞ
i appears on the right-hand side and

only in the equation for MðnÞ
t . However, the lower-order

longitudinal fields NðkÞ and LðkÞ
i for k < n do appear inside

the source terms. Hence, to have a well-defined set of
equations we need to supplement the above equations with
a gauge fixing condition that provides (solvable) equations

for the longitudinal fields NðnÞ and LðnÞ
i at every order.

The right-hand side of (4.26) depends on the solution for

hðnÞij , so that equation is the last one to be integrated as we

need to know what hðnÞij is first. This can be determined by
solving the other equations, including the ones that
determine the longitudinal fields.

B. The source terms to 2.5PN

In this paper and in [15] we will be interested in the
near zone metric to 2.5PN. The metric up to this order is
given by

gtt ¼ −c2 − 2τð2Þt −
2

c2

�
τð4Þt þ 1

2
ðτð2Þt Þ2

�

−
2

c3
τð5Þt −

2

c4
ðτð6Þt þ τð2Þt τð4Þt Þ

−
2

c5
ðτð7Þt þ τð2Þt τð5Þt Þ þOðc−6Þ; ð4:27Þ

gti ¼ −
1

c2
τð4Þi −

1

c3
τð5Þi −

1

c4
ðτð6Þi þ τð2Þt τð4Þi Þ

−
1

c5
ðτð7Þi þ τð2Þt τð5Þi Þ þOðc−6Þ; ð4:28Þ

gij ¼ δij þ
1

c2
hð2Þij þ 1

c3
hð3Þij þ 1

c4
hð4Þij þ 1

c5
hð5Þij þOðc−6Þ:

ð4:29Þ

In Appendix B we derive the Einstein equations to 2.5PN.
These take the form of Eqs. (4.7)–(4.9). Here we will list
the explicit form the source terms take.
Starting with the ij components, the nonzero sources are

given by

Sð2Þij ¼ −8πGS
ð2Þ

ij − 2∂i∂jτ
ð2Þ
t ; ð4:30Þ

Sð4Þij ¼ −8πGS
ð4Þ

ij þ ∂tð∂iτð4Þj þ ∂jτ
ð4Þ
i Þ þ ∂

2
t h

ð2Þ
ij − 2∂i∂jτ

ð4Þ
t

þ 2τð2Þt ∂i∂jτ
ð2Þ
t þ ∂kτ

ð2Þ
t Cð2Þ

ijk − hð2Þkl ð∂kCð2Þ
ijl − ∂iC

ð2Þ
jklÞ

−
1

2
Cð2Þ
kklC

ð2Þ
ijl þ

1

2
Cð2Þ
iklC

ð2Þ
jkl; ð4:31Þ

Sð5Þij ¼ −8πGS
ð5Þ

ij þ ∂tð∂iτð5Þj þ ∂jτ
ð5Þ
i Þ þ ∂

2
t h

ð3Þ
ij − 2∂i∂jτ

ð5Þ
t

þ ∂kτ
ð2Þ
t Cð3Þ

ijk − hð2Þkl ð∂kCð3Þ
ijl − ∂iC

ð3Þ
jklÞ

− hð3Þkl ð∂kCð2Þ
ijl − ∂iC

ð2Þ
jklÞ −

1

2
Cð2Þ
kklC

ð3Þ
ijl −

1

2
Cð3Þ
kklC

ð2Þ
ijl

þ 1

2
Cð2Þ
ikl C

ð3Þ
jkl þ

1

2
Cð3Þ
iklC

ð2Þ
jkl; ð4:32Þ

where we defined

CðnÞ
ijk ¼ ∂ih

ðnÞ
jk þ ∂jh

ðnÞ
ik − ∂kh

ðnÞ
ij : ð4:33Þ

In here S
ðnÞ

ij is the c−n term in the expansion of the source
that appears in the trace reversed Einstein equations (2.5)
and (2.6). For a perfect fluid this becomes (see Appendix B
for details)

S
ð2Þ

ij ¼ Eð−2Þδij; ð4:34Þ

S
ð4Þ

ij ¼ Eð−2Þh
ð2Þ
ij þ 2Eð−2Þvivj þ ðEð0Þ − Pð0ÞÞδij; ð4:35Þ

S
ð5Þ

ij ¼ Eð−2Þh
ð3Þ
ij : ð4:36Þ

By expanding the ti components of the Einstein equations
we obtain the sources

Sð2Þi ¼ 8πGS
ð2Þ

ti; ð4:37Þ
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Sð4Þi ¼ 8πGS
ð4Þ

ti þ
�
∂kh

ð2Þ
kl −

1

2
∂lh

ð2Þ
kk

�
∂th

ð2Þ
il − hð2Þkl ∂tð∂ihð2Þkl − ∂kh

ð2Þ
il Þ

×

�
∂kh

ð2Þ
kl −

1

2
∂lh

ð2Þ
kk

�
τð4Þli −

1

2
∂ih

ð2Þ
kl ∂th

ð2Þ
kl þ ∂kh

ð2Þ
ij τ

ð4Þ
kj − ∂th

ð2Þ
kk ∂iτ

ð2Þ
t

− ∂kτ
ð4Þ
k ∂iτ

ð2Þ
t − τð4Þk ∂k∂iτ

ð2Þ
t þ 2∂kτ

ð2Þ
t ∂iτ

ð4Þ
k − ∂kτ

ð2Þ
t ∂kτ

ð4Þ
i

− τð4Þi ∂
2τð2Þt þ hð2Þkl ∂kτ

ð4Þ
li − τð2Þt ∂kτ

ð4Þ
ki þ ∂kτ

ð2Þ
t ∂th

ð2Þ
ik ; ð4:38Þ

Sð5Þi ¼ 8πGS
ð5Þ

ti þ terms that follow from the “odd order rule” below: ð4:39Þ

For a perfect fluid the matter sources are

S
ð2Þ

ti ¼ −2Eð−2Þvi; ð4:40Þ

S
ð4Þ

ti ¼ Eð−2Þτ
ð4Þ
i − 2τð2Þt Eð−2Þvi − Eð−2Þv2vi − 2ðEð0Þ þ Pð0ÞÞvi − 2Eð−2Þh

ð2Þ
ij v

j − 2Eð−2Þvið2Þ; ð4:41Þ

S
ð5Þ

ti ¼ −2Eð−2Þh
ð3Þ
ij vj þ Eð−2Þτ

ð5Þ
i : ð4:42Þ

Finally, the expansion of the tt component of the Einstein equations tells us that

Sð2Þ ¼ 4πGS
ð2Þ

tt − τð2Þt ∂
2τð2Þt ; ð4:43Þ

Sð4Þ ¼ 4πGS
ð4Þ

tt −
1

4
τð4Þij τ

ð4Þ
ij þ ∂tτ

ð4Þ
i ∂iτ

ð2Þ
t þ τð4Þi ∂i∂tτ

ð2Þ
t −

1

4
∂th

ð2Þ
ij ∂th

ð2Þ
ij

−
1

2
∂th

ð2Þ
kk ∂tτ

ð2Þ
t − hð2Þij ∂t∂iτ

ð4Þ
j þ τð2Þt ∂t∂iτ

ð4Þ
i −

1

2
Cð2Þ
iij ∂tτ

ð4Þ
j

−
1

2
hð2Þij ∂

2
t h

ð2Þ
ij þ hð2Þij ∂i∂jτ

ð4Þ
t − τð2Þt ∂

2τð4Þt − τð4Þt ∂
2τð2Þt þ 1

2
Cð2Þ
iij ∂jτ

ð4Þ
t

− hð2Þik h
ð2Þ
jk ∂i∂jτ

ð2Þ
t þ τð2Þt hð2Þij ∂i∂jτ

ð2Þ
t −

1

2
hð2Þij C

ð2Þ
kkj∂iτ

ð2Þ
t −

1

2
hð2Þij C

ð2Þ
ijk∂kτ

ð2Þ
t þ 1

2
τð2Þt Cð2Þ

iij ∂jτ
ð2Þ
t ; ð4:44Þ

Sð5Þ ¼ 4πGS
ð5Þ

tt þ terms that follow from the odd order rule below; ð4:45Þ

where in the case of a perfect fluid we have

S
ð2Þ

tt ¼ Eð0Þ þ 3Pð0Þ þ 2Eð−2Þv2 þ 2Eð−2Þτ
ð2Þ
t ; ð4:46Þ

S
ð4Þ

tt ¼ Eð−2Þð2τð4Þt þ ðτð2Þt Þ2 þ 4v2τð2Þt þ 4vivið2Þ þ 2hð2Þij v
ivjÞ þ 2ðEð0Þ þ Pð0ÞÞv2 þ 2ðEð0Þ þ 3Pð0ÞÞτð2Þt þ Eð2Þ þ 3Pð2Þ;

ð4:47Þ

S
ð5Þ

tt ¼ 2Eð−2Þτ
ð5Þ
t þ 2Eð−2Þh

ð3Þ
ij v

ivj þ Eð3Þ: ð4:48Þ

The odd order rule is the following prescription that allows one to write down the 2.5PN source terms Sð5Þij , S
ð5Þ
i , and Sð5Þ

once we know the corresponding terms at 2PN. It also works to obtain the 1.5PN source terms from the 1PN ones, but the
result is always zero. Given the 1PN and 2PN source terms, the 1.5PN and 2.5PN source terms follow from the following
three prescriptions:

(i) If the source term is linear in some field, say XðkÞ, then we take the same term with XðkÞ and replace it by Xðkþ1Þ.
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(ii) If the source term is quadratic in two fields, say
XðkÞYðlÞ, then we take the same term and write it
twice, once as Xðkþ1ÞYðlÞ and once as XðkÞYðlþ1Þ.

(iii) If the source term is cubic in three fields, say
XðkÞYðlÞZðmÞ, then we take the same term and write
it three times, Xðkþ1ÞYðlÞZðmÞ þ XðkÞYðlþ1ÞZðmÞþ
XðkÞYðlÞZðmþ1Þ.

Note that when applying this rule one sometimes runs into

coefficients that are zero such as τð3Þt , so these terms need to
be discarded. To illustrate these rules we give an example.
Let us consider the following two terms that appear on the
first line of (4.44), which we repeat here for convenience,

−
1

4
τð4Þij τ

ð4Þ
ij þ ∂tτ

ð4Þ
i ∂iτ

ð2Þ
t : ð4:49Þ

Applying the second prescription we obtain

−
1

4
τð5Þij τ

ð4Þ
ij −

1

4
τð5Þij τ

ð4Þ
ij þ ∂tτ

ð5Þ
i ∂iτ

ð2Þ
t þ ∂tτ

ð4Þ
i ∂iτ

ð3Þ
t : ð4:50Þ

Since τð3Þt ¼ 0 we drop the final term. It would be
interesting to check whether this rule can be generalized
to apply at higher orders such as 3.5PN.
One of the reasons why we do not write out the 2.5PN

source terms explicitly is because these expressions
become rather unwieldy, but as we shall see many terms
will vanish after matching.

C. Gauge fixing

As we mentioned before, to have a complete set of
equations of motion we need to choose a gauge, i.e., some
equation that determines/constrains the longitudinal fields

NðnÞ and LðnÞ
i . In this paper we aim to set up a formalism

that works for any gauge choice (for which the metric has a
Newtonian limit described using inertial coordinates). We
call this class of gauge choices “post-Newtonian gauges.”
This rules out a gauge choice such as synchronous gauge in
which case we have gtt ¼ −c2 and git ¼ 0 as this has no
Newtonian regime.
From the results of the previous section we have seen

that the source terms contain many nonlinear terms. These
will in general have noncompact support that complicates
the integration step (see below for more details). It would
therefore seem natural to choose a gauge to try to minimize
the number of noncompact source terms at every order.
However, it is not possible to completely remove all of
them at each order [52].
There are other considerations that concern a judicious

choice of gauge that relate to being able to solve the G
expanded vacuum Einstein equations in the exterior zone.
This will be discussed in the next section.
In this paper we aim to formulate the general framework

in any post-Newtonian gauge and illustrate our methods for

two specific gauge choices. The first is the harmonic gauge,
chosen because this is the most common choice made in the
literature, and so this helps to compare and to show that the
methods developed here reproduce existing results. The
second is a gauge choice that is sometimes made for
linearized GR that we call transverse gauge. This gauge has
some interesting properties and illustrates that our frame-
work also works outside the harmonic gauge. We will
discuss the basics of the transverse gauge here and defer
further analysis to the companion paper [15].
We next discuss the 1=c expansion of the harmonic gauge

condition ∂μð ffiffiffiffiffiffi−gp
gμνÞ ¼ 0. Up to 2.5PN this tells us that

∂iτ
ð4Þ
i þ 1

2
∂th

ð2Þ
ii ¼ ∂tτ

ð2Þ
t ; ð4:51Þ

∂ih
ð2Þ
ij −

1

2
∂jh

ð2Þ
ii ¼ ∂jτ

ð2Þ
t ; ð4:52Þ

∂iτ
ð5Þ
i þ 1

2
∂th

ð3Þ
ii ¼ 0; ð4:53Þ

∂ih
ð3Þ
ij −

1

2
∂jh

ð3Þ
ii ¼ 0; ð4:54Þ

∂iτ
ð6Þ
i þ 1

2
∂th

ð4Þ
ii ¼ ∂tτ

ð4Þ
t − τð2Þt ∂tτ

ð2Þ
t þ τð4Þi ∂iτ

ð2Þ
t

− τð2Þt ∂iτ
ð4Þ
i þ 1

2
hð2Þij ∂th

ð2Þ
ij þ hð2Þij ∂iτ

ð4Þ
j ;

ð4:55Þ

∂ih
ð4Þ
ij −

1

2
∂jh

ð4Þ
ii ¼ hð2Þik ∂ih

ð2Þ
jk −

1

2
hð2Þik ∂jh

ð2Þ
ik

þ ∂jτ
ð4Þ
t − ∂tτ

ð4Þ
j − τð2Þt ∂jτ

ð2Þ
t ; ð4:56Þ

∂iτ
ð7Þ
i þ 1

2
∂th

ð5Þ
ii ¼ ∂tτ

ð5Þ
t þ τð5Þi ∂iτ

ð2Þ
t − τð2Þt ∂iτ

ð5Þ
i

þ 1

2
hð2Þij ∂th

ð3Þ
ij þ 1

2
hð3Þij ∂th

ð2Þ
ij

þ hð2Þij ∂iτ
ð5Þ
j þ hð3Þij ∂iτ

ð4Þ
j ; ð4:57Þ

∂ih
ð5Þ
ij −

1

2
∂jh

ð5Þ
ii ¼ hð2Þik ∂ih

ð3Þ
jk þ hð3Þik ∂ih

ð2Þ
jk −

1

2
hð2Þik ∂jh

ð3Þ
ik

−
1

2
hð3Þik ∂jh

ð2Þ
ik þ ∂jτ

ð5Þ
t − ∂tτ

ð5Þ
j : ð4:58Þ

Schematically and in terms of the decompositions (4.15) and
(4.16), this leads to equations of the form

∂
2NðnÞ −

1

2
∂tHðnÞ ¼ KðnÞ; ð4:59Þ

∂
2LðnÞ

i −
1

2
∂iHðnÞ ¼ KðnÞ

i ; ð4:60Þ
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where KðnÞ and KðnÞ
i depend on the lower-order fields. This

can be rewritten as

∂
2

�
NðnÞ −

1

12
r2∂tHðnÞ þ 1

2
xiMðnÞ

i ðTÞ
�

¼ KðnÞ þ 1

2
xiSðnÞi ;

ð4:61Þ

∂
2

�
LðnÞ
i −

1

4
xiHðnÞ

�
¼ KðnÞ

i −
3

16
xiSðnÞjj ; ð4:62Þ

which is again of the form ∂
2ðfieldÞ ¼ ðknown sourceÞ.

We are not necessarily saying that the ideal variables are
the ones used in the decomposition (4.15)–(4.17). The
purpose of these variables is to show that the problem can
be tackled in a rather large class of gauge choices. For a
particular gauge it is perfectly possible that another set of
variables is more convenient. For example in the harmonic
gauge we can just work with τðnþ2Þ

μ and hðnÞμν as in that case
we have

∂iτ
ðnþ2Þ
i þ 1

2
∂th

ðnÞ
ii ¼ −KðnÞ; ð4:63Þ

∂jh
ðnÞ
ji −

1

2
∂ih

ðnÞ
jj ¼ KðnÞ

i ; ð4:64Þ

which allows us to write Eqs. (4.7)–(4.9) as

∂
2hðnÞij ¼ SðnÞij þ ∂iK

ðnÞ
j þ ∂jK

ðnÞ
i ; ð4:65Þ

∂
2τðnþ2Þ

i ¼ SðnÞi − ∂tK
ðnÞ
i − ∂iKðnÞ; ð4:66Þ

∂
2τðnþ2Þ

t ¼SðnÞ þ∂iτ
ð2Þ
t KðnÞ

i −∂tKðnÞ þhðnÞij ∂i∂jτ
ð2Þ
t ; ð4:67Þ

which is also of the form11
∂
2ðfieldÞ ¼ ðknown sourceÞ.

This is the form in which we will solve the 1=c expanded
Einstein equations in harmonic gauge in subsequent

sections. The EOM for τðnþ2Þ
t depends on hðnÞij , which itself

is given by the particular solution to its EOM plus a
homogeneous solution. The latter is fixed by the matching
process, and so it is convenient to first match the ij part of

the metric before integrating the EOM for τðnþ2Þ
t .

To formulate the aforementioned transverse gauge con-
dition we assume a metric that is of the form gμν ¼ ημν þ
hμν where hμν is perturbative and we have chosen inertial
coordinates for the Minkowski metric ημν. This means that
we can write the various components as

gtt ¼ −c2 þ htt; gti ¼ hti; gij ¼ δij þ hij; ð4:68Þ

where ðt; xiÞ are the inertial coordinates. The transverse
gauge condition is then the statement that

∂ihti ¼ 0; ∂i

�
hij −

1

3
δijhkk

�
¼ 0: ð4:69Þ

We stress that this is to all orders in 1=c and G. This gauge
choice is commonly made at the linearized level, i.e., when
hμν is first order in G. There are infinitely many ways to
extend this to a nonlinear gauge choice (see footnote 15 for
more details). We found it convenient to use (4.69) as our
definition of transverse gauge in this work, but we do not
rule out the possibility that allowing for certain nonlinear
terms on the right-hand side of (4.69) would not be more
preferential.12

Up to 2.5PN Eq. (4.69) leads to

∂iτ
ð4Þ
i ¼ 0; ð4:70Þ

∂iτ
ð5Þ
i ¼ 0; ð4:71Þ

∂iτ
ð6Þ
i ¼ −τð4Þi ∂iτ

ð2Þ
t ; ð4:72Þ

∂iτ
ð7Þ
i ¼ −τð5Þi ∂iτ

ð2Þ
t ; ð4:73Þ

∂i

�
hðnÞij −

1

3
δijh

ðnÞ
kk

�
¼ 0; for n ¼ 2; 3; 4; 5: ð4:74Þ

Schematically, and in terms of the decompositions (4.15)
and (4.16), this leads to equations of the form

∂
2NðnÞ þ ∂t∂kL

ðnÞ
k ¼ K̃ðnÞ; ð4:75Þ

∂
2LðnÞ

i þ 1

3
∂i∂kL

ðnÞ
k ¼ K̃ðnÞ

i ; ð4:76Þ

11By the definitions of KðnÞ and KðnÞ
i these equations are

equivalent to (4.7)–(4.9). Using the form of the sources at 1PN,
one can askwhether there exists a choice for theKðnÞ andKðnÞ

i such
that all sources are compact at 1PN. This is, however, not possible.
For example, if we make the right-hand sides of (4.65) and (4.66)
compact, we need to pick Eqs. (4.51) and (4.52), which is the 1PN
harmonic gauge, but then the equation for τð4Þt þ 1

2
ðτð2Þt Þ2, i.e., the

tt component of the metric at order c−2 via (4.67), has a
noncompact source that is ∂tKð2Þ. A weaker requirement, inves-
tigated in [52], is to demand that the sources in (4.65) and (4.66) are
such that we can write down a particular solution on all ofR3 (that
is asymptotically flat) using Green’s function for the Laplacian. It
was found that this is possible up to 2PN for a judicious choice of
the KðnÞ and KðnÞ

i with n ¼ 2, 4. Of course, none of these
requirements are necessary since the 1=c expansion has a finite
regime of validity and so the solutions do not, and in general will
not, be asymptotically flat. They simply need to be matched onto a
G expanded exterior solution that is asymptotically flat.

12In the same spirit one could consider modifying the harmonic
gauge choice order by order by making different choices for the
KðnÞ and KðnÞ

i .
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where K̃ðnÞ and K̃ðnÞ
i depend on lower-order fields. These

equations can be rewritten as

∂
2

�
LðnÞ
i þ 1

6
xi∂kL

ðnÞ
k

�
¼ K̃ðnÞ

i þ 1

8
xi∂kK̃

ðnÞ
k ; ð4:77Þ

∂
2

�
NðnÞ þ 1

30
r2∂t∂kL

ðnÞ
k þ 2

5
xi∂tL

ðnÞ
i

�

¼ K̃ðnÞ þ 2

5
xi∂tK̃

ðnÞ
i þ 1

40
r2∂t∂kK̃

ðnÞ
k ; ð4:78Þ

which are again of the form that allows for integration.

D. Comments on integrating the equations of motion

Both in the harmonic and in the transverse gauge we now
have a complete set of equations that are all schematically
of the form ∂

2ðfieldÞ ¼ ðsourceÞ. The generic way to solve
the equations at order n is as follows. We start with
Eq. (4.23), which can be formally integrated using
Green’s function for the Laplacian. The general solution
is thus a harmonic function plus a Poisson integral over the
source. We then continue solving (4.24) and (4.25) in the
same way. When writing down the solutions forMiðTÞ and
hijðTTÞ in terms of homogeneous solutions and Poisson
integrals we still need to ensure that the solutions are
transverse. We then use the gauge condition to solve for the
longitudinal fields. We then finally use all of the above
solutions to determine the source for (4.26), so that we can
integrate that equation as well. We subsequently impose the
boundary condition that the solutions are all regular for
small r. Once we have found the most general solution, we

reassemble the fields into the fields τðnÞμ and hðnÞμν at order

c−n. This is then used to compute the sources Sðnþ1Þ
μν at the

next order in the 1=c expansion.
However, when performing the above recipe for con-

structing solutions a few issues can arise thatwe now address
in general terms. To aid the discussion, let us consider
Eqs. (4.23) and (4.24). These can be formally solved by
using Green’s function of the Laplacian leading to

HðnÞ ¼ FðnÞ −
1

4π

Z
ΩR⋆

d3x0
3

4

SðnÞii ðt; x0Þ
jx − x0j ; ð4:79Þ

MðnÞ
i ðTÞ ¼ HðnÞ

i þ 1

3
xi∂tHðnÞ

−
1

4π

Z
ΩR⋆

d3x0
SðnÞi ðt; x0Þ − 1

4
x0i∂tS

ðnÞ
jj ðt; x0Þ

jx − x0j ;

ð4:80Þ

whereFðnÞ andHðnÞ
i are harmonic functions (solutions to the

homogeneous equation) that are regular at r ¼ 0. The
domain of integration has been chosen to be ΩR⋆

, which
is a ball of radius R⋆ centered around the origin r ¼ 0. We

are solving the equations within the region of validity of the
PN expansion, i.e., the near zone, so we assume that R⋆ is
large enough that x∈ΩR⋆

. We will introduce the notation

PΩR⋆
½S� ¼ 1

4π

Z
ΩR⋆

d3x0
SðnÞðt; x0Þ
jx − x0j ; ð4:81Þ

for a Poisson integral over a source Swith integration region
ΩR⋆

. The source is in general noncompact. This is due to the
nonlinearities of GR. The actual matter source is assumed to
be compact. As a result the Poisson integrals over the source
when the integration range isR3 become indefinite integrals,
and these can and will eventually lead to divergences. To
regulate these integrals we introduce a cutoff radius R⋆.
There are now four possible scenarios concerning these

Poisson integrals:
(1) The Poisson integral over the source converges for

large R⋆. In this case we can extend the integration
range to R3.

(2) A power-counting argument applied to the integrand
(when the integration measure is d3x0) suggests that
the Poisson integral diverges but the divergent terms
in R⋆ have zero coefficients (the naive divergence
goes away after performing the angular integrations
when expressing d3x0 in spherical coordinates).
Again in this case we can extend the range of
integration to R3.

(3) The integral is divergent for large R⋆. However,
there exists a particular harmonic function (depend-
ing on R⋆) such that when added to the integral the
sum does have a large R⋆ limit. In other words, the
divergence can be removed/absorbed by an appro-
priate harmonic function.

(4) The integral is divergent for large R⋆ and the diver-
gence cannot be removed by adding a harmonic
function.

In the latter case the 1=c expansion has broken down and
we need to add log c-terms. However, this does not happen
at the orders that we are interested in, which is up to and
including 2.5PN (at least not in the harmonic and transverse
gauges). Such log c-terms are associated with the appear-
ance of tail terms [17,40]. We will not have to consider
option 4 here.
Let us consider again the integral in (4.81) where x is a

point in the near zone. The integration region ΩR⋆
is a ball

of radius R⋆ (which is large enough to contain the near
zone) with origin x ¼ 0. This integral will diverge for large
R⋆ if

R
dΩSðt; xÞ ¼ Oðr−nÞ for n ≤ 2 where

R
dΩ are all

the angular integrations when we express the integral in
spherical coordinates with center at x ¼ 0. A simple
diagnostic is to check how the source behaves for
large r. If S goes to zero strictly faster than r−2, the limit
R⋆ → ∞ exists. If S goes to zero as r−2 or slower, then we
need to check what happens to

R
dΩS. If the latter also goes
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to zero as r−2 or slower, then the integral is divergent. We
then need to check whether or not we can add a harmonic
function that is regular close to x ¼ 0 to make the result
finite again.
Finally, we point out that a solution such as (4.80) still

has to obey the transversality condition. For simplicity we
will assume that the Poisson integrals are of type 1 or 2.
Taking the divergence of (4.80) we obtain after some
rewriting13

∂iH
ðnÞ
i þ∂tFðnÞ þ1

3
xi∂i∂tFðnÞ þ 1

4π

Z
R3

d3x0∂0i
SðnÞi ðt;x0Þ
jx−x0j ¼0:

ð4:83Þ

Since, by assumption the integral
R
R3 d3x0 Siðt;x

0Þ
jx−x0j converges,

the falloff of Siðt; x0Þ is such that the boundary term at
infinity, which results from applying Stokes’ theorem to the
last term in the above equation, vanishes. We thus end up
with the condition on the homogeneous part of the solution

∂iH
ðnÞ
i þ ∂tFðnÞ þ 1

3
xi∂i∂tFðnÞ ¼ 0: ð4:84Þ

We can solve this for FðnÞ in terms of ∂iH
ðnÞ
i and substitute

the result into (4.80) via HðnÞ. Similar comments apply to
Eq. (4.25) where we need to ensure that the solution for

hðnÞij ðTTÞ is transverse.

V. THE COVARIANT G EXPANSION

So far we have focused on the near zone of the
spacetime. In this section we will consider the exterior
zone where we have vacuum Einstein’s equations. In this
part of spacetime we will use an expansion in G. Just as
before we will be general concerning the gauge choice. We
start by expanding the metric around Minkowski spacetime
(in inertial coordinates) in powers of G,

gμν ¼ ημν þ Gh½1�μν þ G2h½2�μν þ � � � : ð5:1Þ
We want to approach this in a fashion similar to what we
did in the near zone. This means that, at each order, we
want to first expand the equations, apply the gauge
conditions, and finally solve the PDEs subject to appro-
priate boundary conditions.

A. Equations of motion

We will solve the vacuum Einstein equations in an
expansion in G, outside the source. Hence, the equation
of interest is Rμν ¼ 0. From our knowledge of linearized
gravity (expanding Rμν ¼ 0) we know the form of the
equation at every order is going to be

−□h½n�μν þ ηρσð2∂ρ∂ðμh½n�νÞσ − ∂μ∂νh
½n�
ρσÞ ¼ τ½n�μν ; ð5:2Þ

where ημν ¼ diagð−1; 1; 1; 1Þ (μ ¼ 0; i with x0 ¼ ct) and

where τ½n�μν is a nonlinear object that will only depend on

products of lower-order fields h½n−1�μν ;…; h½1�μν and their
derivatives, and thus can be thought of as a source term.
We stress that in this section we will find it convenient to
use x0 ¼ ct. To second order in G we have

τ½1�μν ¼ 0; ð5:3Þ

τ½2�μν ¼2Γ
½1�

σ
νλΓ
½1�

λ
σμ−2Γ

½1�
σ
σλΓ

½1�
λ
μνþ2∂σðhσ½1� κΓ

½1�
κ
μνÞ−∂νðhρσ½1�∂μh½1�ρσÞ

¼hρσ½1�ð∂σC
½1�

νμρ−∂νC
½1�

σμρÞþ
1

2
C
½1�

σ
σ
ρC
½1�

μν
ρ−

1

2
C
½1�

μ
ρσC

½1�
νρσ;

ð5:4Þ

where Γ
½1�

ρ
μν is the order G term in the expansion of the Levi-

Civita connection, i.e.,

Γ
½1�

ρ
μν¼1

2
ηρσC

½1�
μνσ; C

½1�
μνσ ¼ ∂μh

½1�
νσ þ∂νh

½1�
μσ−∂σh

½1�
μν : ð5:5Þ

B. Gauge transformations

The gauge transformation of gμν is δgμν ¼ LΞgμν where
we expand Ξμ in powers of G as

Ξμ ¼ ξμ½0� þ Gξμ½1� þG2ξμ½2� þOðG3Þ; ð5:6Þ

and where ξμ½0� must be an isometry of ημν to preserve the

form of the expansion of gμν; i.e., ξ
μ
½0� is given by

ξμ½0� ¼ Aμ þ Lμ
νxν; ð5:7Þ

where Aμ and Lμν ¼ −Lνμ are constant (corresponding to
spacetime translations, Lorentz boosts, and spatial rota-
tions). Indices are raised and lowered with the Minkowski

metric. The gauge transformations acting on h½1�μν , hμν;½2� and

h½n�μν are

δh½1�μν ¼ Lξ½0�h
½1�
μν þ ∂μξ

½1�
ν þ ∂νξ

½1�
μ ; ð5:8Þ

13We used that ∂ijx − x0j−1 ¼ −∂0ijx − x0j−1 as well as the
identity

Z
d3x0xi∂i

Sðt; x0Þ
jx − x0j ¼

Z
d3x0x0i∂i

Sðt; x0Þ
jx − x0j −

Z
d3x0

Sðt; x0Þ
jx − x0j ;

ð4:82Þ

where we replaced by xi in the first integral by xi − x0i þ x0i and
used that ðxi − x0iÞ∂ijx − x0j−1 ¼ −jx − x0j−1.
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δh½2�μν ¼ Lξ½0�h
½2�
μν þ Lξ½1�h

½1�
μν þ ∂μξ

½2�
ν þ ∂νξ

½2�
μ ; ð5:9Þ

δh½n�μν ¼
Xn−1
k¼0

Lξ½k�h
½n−k�
μν þ ∂μξ

½n�
ν þ ∂νξ

½n�
μ : ð5:10Þ

We next split the index μ into ð0; iÞ where x0 ¼ ct.
Furthermore, we introduce the following decomposition:

h½n�ij ¼ h½n�ij ðTTÞ þ ∂iL
½n�
j þ ∂jL

½n�
i þ 1

3
δijH½n�; ð5:11Þ

h½n�0i ¼ −M½n�
i ðTÞ þ ∂0L

½n�
i þ ∂iN½n�; ð5:12Þ

h½n�00 ¼ −2M½n�
0 þ 2∂0N½n�; ð5:13Þ

where h½n�ij ðTTÞ is transverse traceless, M½n�
i ðTÞ is trans-

verse, and H½n� is given by

H½n� ¼ h½n�ii − 2∂iL
½n�
i : ð5:14Þ

In terms of these variables theG expanded vacuum Einstein
equations (5.2) can be written as

∂
2H½n� ¼ −

3

4
ðτ½n�00 þ τ½n�kk Þ; ð5:15Þ

∂
2M½n�

0 ¼ 1

2
∂
2
0H

½n� þ 1

2
τ½n�00 ; ð5:16Þ

∂
2M½n�

i ðTÞ ¼ 2

3
∂0∂iH½n� þ τ½n�0i ; ð5:17Þ

−□h½n�ij ðTTÞ ¼ −2∂0∂ðiM
½n�
jÞ ðTÞ þ 2∂hi∂jiM

½n�
0

þ 1

3
∂i∂jH½n� þ τ½n�hiji; ð5:18Þ

where ∂2 ¼ ∂i∂i and where we have split the ij part of (5.2)
into a trace part (first equation) and a traceless part (last
equation). The notation hiji denotes the symmetric trace-
free part of ij. The equations are presented in the order in
which they should be solved.
The longitudinal fields L½n�

i and N½n� do not appear at all
on the left-hand side of these equations. These fields are
fixed by an appropriate gauge fixing condition. The
physical propagating degrees of freedom are described

by h½n�ij ðTTÞ. The right-hand side, through τ½n�μν , does depend

on L½k�
i and N½k� for k < n. For τ½2�μν this can be seen by using

the second equality in (5.4) and the fact that

C
½1�

μνσ ¼ 2∂μ∂νL
½1�
σ þ C̃

½1�
μνσ; ð5:19Þ

where C̃
½1�

μνσ does not depend on the longitudinal fields and

where we defined L½1�
0 ¼ N½1�.

When we are solving (5.15)–(5.18) at order Gn (in a

particular gauge) the object τ½n�μν is known from solving
lower orders and matching the result to the near zone. We

use the variables h½n�ij ðTTÞ, M½n�
i ðTÞ, etc., only on the left-

hand side, i.e., only at order Gn. For the source we use h½k�μν

with k < n, which are known functions obtained after
integration and matching.
Equations (5.15)–(5.18) imply

−
1

2
∂0ðτ½n�00 þ τ½n�kk Þ þ ∂iτ

½n�
0i ¼ 0; ð5:20Þ

−∂0τ
½n�
0j þ ∂i

�
1

2
ðτ½n�00 − τ½n�kk Þδij þ τ½n�ij

�
¼ 0: ð5:21Þ

This is obtained by taking the divergence of Eqs. (5.17) and

(5.18) and using the other equations to eliminate all but τ½n�μν .
This can also be written as

∂μ

�
τ½n�μν −

1

2
δμντ½n�ρρ

�
¼ 0; ð5:22Þ

which follows from the divergence of (5.2).
The decomposition (5.11)–(5.13) suffers from the fol-

lowing ambiguity:

h0½n�ij ðTTÞ ¼ h½n�ij ðTTÞ þ ∂iχ
½n�
j þ ∂jχ

½n�
i −

2

3
δij∂kχ

½n�
k ; ð5:23Þ

L0½n�
i ¼ L½n�

i − χ½n�i ; ð5:24Þ

M0½n�
i ðTÞ ¼ M½n�

i ðTÞ − ∂0χ
½n�
i − ∂iχ

½n�; ð5:25Þ

N0½n� ¼ N½n� − χ½n�; ð5:26Þ

M0½n�
0 ¼ M½n�

0 − ∂0χ
½n�; ð5:27Þ

H0½n� ¼ H½n� þ 2∂iχ
½n�
i ; ð5:28Þ

where χ½n�i and χ½n� satisfy the equations

0 ¼ ∂
2χ½n�i þ 1

3
∂i∂jχ

½n�
j ; ð5:29Þ

0 ¼ ∂0∂iχ
½n�
i þ ∂

2χ½n�: ð5:30Þ

The latter two equations follow from the transversality of

h0½n�ij ðTTÞ and M0½n�
i ðTÞ. These ambiguities are Stückelberg-

like transformations in the sense that they do not act on the

metric h½n�μν , but only on the terms in the decomposition
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(5.11)–(5.13). Equations (5.29) and (5.30) can be written as

0 ¼ ∂
2

�
χ½n�i þ 1

6
xi∂jχ

½n�
j

�
; ð5:31Þ

0 ¼ ∂
2

�
χ½n� þ 2

5
xi∂0χ

½n�
i þ 1

30
r2∂0∂iχ

½n�
i

�
; ð5:32Þ

where we used that ∂2∂iχ
½n�
i ¼ 0, which follows from the

divergence of Eq. (5.29). Hence, the solution for χ½n�i and
χ½n� is

χ½n�i ¼ Σ½n�
i −

1

6
xi∂jχ

½n�
j ; ð5:33Þ

χ½n� ¼ Σ½n� −
2

5
xi∂0Σ

½n�
i þ 1

30
r2∂0∂iχ

½n�
i ; ð5:34Þ

where Σ½n�
i and Σ½n� are harmonic and where we still need to

express ∂iχ
½n�
i in terms of ∂iΣ

½n�
i , which can be achieved by

taking the divergence of (5.33) and solving the subsequent
equation14

3

2
∂iχ

½n�
i þ 1

6
xj∂j∂iχ

½n�
i ¼ ∂iΣ

½n�
i ð5:35Þ

for ∂iχ
½n�
i .

The gauge transformation with parameter ξμ½n� acting on

h½n�μν [see Eq. (5.10)] can be realized entirely on the

longitudinal fields L½n�
i and N½n� via

δξ½n�L
½n�
i ¼ ξ½n�i ; δξ½n�N

½n� ¼ ξ½n�0 : ð5:36Þ

Together with Eqs. (5.23)–(5.28), these are all the gauge
transformations acting on the fields appearing in the
decomposition (5.11)–(5.13) with the exception of
lower-order gauge transformations with parameters ξμ½k�
(k < n) that appear in (5.10). However, once we get to
order Gn these lower-order transformations will not con-
cerns us because the matching of the solution at the
previous orders will have fixed these lower-order gauge
transformations sufficiently for them to no longer be of
interest once we get to the next order in the G expansion.
Finally, we mention that a gauge transformation at the

level of the vacuum exterior solution is not necessarily a
gauge transformation of the whole solution obtained after
matching. This is because in a given gauge the PDEs that
the residual gauge transformation parameters have to obey

need to satisfy different boundary conditions in the near
zone and the exterior zone.

C. Gauge fixing

Our formalism assumes that the full metric gμν can be
written as ημν þ hμν where hμν represents either the 1=c or
G expansion of the metric and where ημν is the Minkowski
metric in inertial coordinates. The class of allowed gauge
choices to which our formalism applies involves conditions
imposed on htt; hti; hij, and requires there to be a
Newtonian regime. As mentioned previously, we will refer
to this class as post-Newtonian gauge choices. This
restriction rules out, for example, a gauge choice such as
Bondi gauge (because it does not describe flat spacetime in
inertial coordinates) or synchronous gauge (because it does
not allow for a Newtonian regime). It would be interesting
to develop similar methods that are more covariant with
regards to the coordinates used to describe Minkowski
spacetime.
To solve (5.15)–(5.18) we need to impose a gauge fixing

condition that tells us what L½n�
i and N½n� are for; otherwise,

the sources τ½nþ1�
μν at the next order depend on the unde-

termined fields L½n�
i and N½n�. Furthermore, at order Gn the

choice for L½n�
i and N½n� influences the matching process.

A common gauge choice is the harmonic gauge. To show
that our methods reproduce existing results, we will employ
the harmonic gauge in this paper. An alternative gauge
choice is what we refer to as a transverse gauge15 in which
case we set

L½n�
i ¼ 0; N½n� ¼ 0; ð5:38Þ

at every order in the G expansion. We will study this gauge
choice in the companion paper [15].
The harmonic gauge choice is the choice

gμνΓρ
μν ¼ 0 ↔ ∂μð

ffiffiffiffiffiffi
−g

p
gμνÞ ¼ 0: ð5:39Þ

If we expand this in powers of G, we find

14If we denote ∂iχ
½n�
i and ∂iΣ

½n�
i as fχ and fΣ, respectively, then

Eq. (5.35) reads 3
2
fχ þ r

6

∂fχ
∂r ¼ gΣ. This equation can be integrated

to give fχ ¼ 6
r9
R
r
c dr

0r08gΣ where c is some constant giving the
homogeneous solution.

15At the linearized level this can be thought of as the GR
analog of the Coulomb gauge used in electromagnetism and is
also known as the Poisson gauge [53]. There are, of course,
infinitely many nonlinear gauge choices that reduce to the
transverse gauge at the linearized level. One common nonlinear
gauge choice is to set ∂iNi ¼ 0 and ∂iðγ1=3γijÞ ¼ 0 where we
used ADM variables to write the metric as

ds2 ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ; ð5:37Þ

with γ the determinant and γij the inverse of γij. The derivative ∂i
is with respect to inertial coordinates of a flat background metric.
The condition ∂iðγ1=3γijÞ ¼ 0 is due to Dirac [54,55].
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ημρ
�
∂μh

½1�
ρν −

1

2
∂νh

½1�
μρ

�
¼ 0; ð5:40Þ

ημρ
�
∂μh

½2�
ρν −

1

2
∂νh

½2�
μρ

�
¼ hμρ½1�∂μh

½1�
ρν −

1

2
hμρ½1�∂νh

½1�
μρ; ð5:41Þ

to first and second order in G, respectively. To order Gn it
takes the form

ημρ
�
∂μh

½n�
ρν −

1

2
∂νh

½n�
μρ

�
¼ K½n�

ν ; ð5:42Þ

where K½n�
ν depends on lower-order fields. If we use the

decomposition (5.11)–(5.13), then we find

□L½n�
i ¼ 1

6
∂iH½n� þ ∂iM

½n�
0 − ∂0M

½n�
i ðTÞ þ K½n�

i ; ð5:43Þ

□N½n� ¼ 1

2
∂0H½n� − ∂0M

½n�
0 þ K½n�

0 : ð5:44Þ

These equations should be added to the list (5.15)–(5.18).
In the formulation (5.2) the Einstein equations

become

□h½n�μν ¼ −τ½n�μν þ ∂μK
½n�
ν þ ∂νK

½n�
μ ; ð5:45Þ

where the right-hand side now only depends on the lower-
order fields, and where at order G2 we have

∂μK
½2�
ν þ ∂νK

½2�
μ ¼ 1

2
hρσ½1�ð∂μC

½1�
ρσν þ ∂νC

½1�
ρσμÞ

þ 1

2
C
½1�

μρσC
½1�

ρσ
ν þ

1

2
C
½1�

νρσC
½1�

ρσ
μ: ð5:46Þ

Wewill show that in any post-Newtonian gauge, for asmuch

as the fields h½n�ij ðTTÞ, M½n�
i ðTÞ, etc., are concerned, we can

reduce the problem of solving the Einstein equations to
inverting Laplacian and d’Alembertian operators.
The residual gauge transformations of the choice (5.39)

are those diffeomorphisms generated by Ξμ for which we
have

gμν∂μ∂νΞρ ¼ 0: ð5:47Þ

The diffeomorphism generator is expanded as in (5.6). We
will ignore the LO term ξμ½0� as this is constrained to be an

isometry of Minkowski spacetime. Hence, setting ξμ½0� ¼ 0

we find the well-known result that the residual gauge
transformations are

□ξρ½1� ¼ 0; ð5:48Þ

□ξρ½2� ¼ hμν½1�∂μ∂νξ
ρ
½1�; ð5:49Þ

to first and second order in G.

D. Asymptotic boundary conditions

The equations of motion that we need to solve are
(5.15)–(5.18) supplemented with a gauge fixing condition
and an appropriate set of asymptotic boundary conditions.
First of all, we will demand that the spacetime is asymp-
totically flat so hμν will go to zero for large r. We will
formulate all boundary conditions for a coordinate system
that is asymptotically inertial; i.e., the metric approaches
flat spacetime described in inertial coordinates ðt; xiÞ. We

will demand that H½n�, M½n�
0 , M½n�

i ðTÞ, and h½n�ij ðTTÞ are all

Oðr−1Þ for large r ¼
ffiffiffiffiffiffiffiffi
xixi

p
.

1. The nonpropagating sector

We start with the fields H½n�, M½n�
0 , M½n�

i ðTÞ that obey
Poisson-type PDEs (5.15)–(5.17), and so do not correspond
to propagating fields. For these fields a Dirichlet boundary
condition will suffice. Equations (5.15)–(5.17) can be
rewritten as follows:

∂
2H½n� ¼ −

3

4
ðτ½n�00 þ τ½n�kk Þ; ð5:50Þ

∂
2

�
M½n�

0 −
r2

12
∂
2
0H

½n� þ xi

2
∂0M

½n�
i ðTÞ

�

¼ 1

2
τ½n�00 þ

r2

16
∂
2
0ðτ½n�00 þ τ½n�kk Þ þ

xi

2
∂0τ

½n�
0i ; ð5:51Þ

∂
2

�
M½n�

i ðTÞ−1

3
xi∂0H½n�

�
¼ τ½n�0i þ

xi

4
∂0ðτ½n�00 þτ½n�kk Þ; ð5:52Þ

turning them into genuine Poisson equations. The right-
hand side can be rewritten using (5.20) and (5.21) but we
will not attempt this as the focus will be on the left-hand
side. The solutions thus take the general form

H½n� ¼ K½n� þ � � � ; ð5:53Þ

M½n�
0 ¼ F½n� −

r2

12
∂
2
0H

½n� −
xi

2
∂0H

½n�
i þ � � � ; ð5:54Þ

M½n�
i ðTÞ ¼ H½n�

i þ xi

3
∂0H½n� þ � � � ; ð5:55Þ

where the dots denote terms resulting from the nonlinear

sources in τ½n�μν and whereK½n�, F½n�, andH½n�
i (for every i) are

all harmonic functions and where H½n�
i obeys

∂iH
½n�
i ¼ −∂0H½n� −

1

3
xi∂i∂0H½n�; ð5:56Þ
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resulting from the fact that M½n�
i ðTÞ is transverse. The

boundary condition that the fields H½n�, M½n�
0 , M½n�

i ðTÞ are
Oðr−1Þ can now be seen to have a number of consequences.

From the fact that K½n�, F½n�, and H½n�
i (for every i) are all

harmonic functions it follows that all the terms on the right-
hand side of (5.53), (5.54), and (5.55) have to separately be
Oðr−1Þ. Hence, we conclude that

∂0H½n� ¼Oðr−2Þ; ∂
2
0H

½n� ¼Oðr−3Þ; ∂0H
½n�
i ¼Oðr−2Þ:

ð5:57Þ
The homogeneous solution to Eqs. (5.50)–(5.52) can be

solved asymptotically (for large r) as follows. We start with
K½n�. Since it is harmonic and decaying for large r we know
that16

K½n� ¼ A½n�

r
þ ∂i

�
A½n�
i

r

�
þ 1

2
∂i∂j

�
A½n�
ij

r

�
þOðr−4Þ; ð5:58Þ

where the coefficients A½n�, A½n�
i , and A½n�

ij (symmetric trace-
free) are in general functions of t. However, the conditions
(5.57) tell us that

Ȧ½n� ¼ 0; Ä½n�
i ¼ 0; ð5:59Þ

where the dots denote x0 derivatives. There are no conditions
on F½n� other than it being a decaying harmonic, so we have

F½n� ¼ B½n�

r
þOðr−2Þ; ð5:60Þ

where B½n� is a function of t. Finally, since H½n�
i obeys

∂
2H½n�

i ¼ 0, we know that we must have the following large
r expansion:

H½n�
i ¼ C½n�

i

r
þ ∂j

�
C½n�
i;j

r

�
þOðr−3Þ; ð5:61Þ

where a priori C½n�
i and C½n�

i;j are functions of t and where the

comma between the indices in C½n�
i;j is to indicate that,

a priori, there is no symmetry between them.
Equation (5.56) then tells us that we must have

C½n�
i ¼ −

1

3
Ȧ½n�
i ; C½n�

i;j ¼
1

3
δijC

½n�
l;l þ C½n�

½i;j�; ð5:62Þ

i.e., the traceless symmetric part of C½n�
i;j is zero. This leads to

the following asymptotic homogeneous solution for H½n�,
M½n�

0 , M½n�
i ðTÞ:

H½n� ¼ A½n�

r
þ ∂i

�
A½n�
i

r

�
þ 1

2
∂i∂j

�
A½n�
ij

r

�
þOðr−4Þ; ð5:63Þ

M½n�
0 ¼ B½n�

r
−
1

6

Ċ½n�
l;l

r
−
1

8

xixj

r3
Ä½n�
ij þOðr−2Þ; ð5:64Þ

M½n�
i ðTÞ ¼ −

1

3

Ȧ½n�
i

r
−
1

3

xixk

r3
Ȧ½n�
k þ 1

2

xi

r5
xkxlȦ½n�

kl

−
1

3

xi

r3
C½n�
l;l −

xk

r3
C½n�
½i;k� þOðr−3Þ; ð5:65Þ

where A½n� and Ȧ½n�
i are constants (as is A½n�

i − x0Ȧ½n�
i since

A½n�
i is linear in x0). The other coefficients B½n�, A½n�

ij , C
½n�
l;l , and

C½n�
½i;j� are at this stage arbitrary functions of time.

Further below we will see that part of the above asymp-
totic solution for H½n�, M½n�

0 , M½n�
i ðTÞ takes the form of an

ambiguity transformation. In other words, parts of the
solution can be shown to correspond to coefficients in the

asymptotic expansion of the parameters χ½n� and χ½n�i that
describe the ambiguities (5.23)–(5.28). These ambiguities
get intertwined with the gauge transformations (5.36) when
specifying the gauge choice.17 We stress that even though
these may appear as gauge artifacts, we cannot set these
ambiguity parameters equal to zero as this would amount to
setting the residual gauge transformations equal to zero, and
these are not actual residual gauge transformations of the
whole matched solution. The process of matching tells us to
find the most general solution to the PDEs on both sides of
the matching, and this most general solution includes what
appear to be residual gauge transformations.18

16In Appendix C we collect some results about multipole
expansions of solutions to the Laplace and the free wave
equation. For the problem at hand see Eq. (C17).

17For example, if we choose the gauge L½n�
i ¼ 0 and N½n� ¼ 0,

thenwe can perform the transformation (5.23)–(5.27) providedwe
also perform a compensating gauge transformation (5.36) with
ξ½n�0 ¼ χ½n� and ξ½n�i ¼ χ½n�i to ensure that the transformed L½n�

i and
N½n� remain zero. More precisely, under the combination of the
ambiguity and an order Gn gauge transformation the longitudinal
fields transform as L0½n�

i ¼ L½n�
i − ξ½n�i þ χ½n�i and N0½n� ¼ N½n�−

ξ½n�0 þ χ½n�. Setting this to zero gives ξ½n�0 ¼ χ½n� and ξ½n�i ¼ χ½n�i .
18For example, if a residual gauge parameter has to be a

harmonic function in the exterior region, then it must be a
decaying harmonic to respect the boundary conditions, but in the
near zone the same equation would have to be solved by a
harmonic function that is regular at the origin. There is no
harmonic function that obeys both these properties at the same
time. Hence, what appears to be a residual gauge transformation
is not a gauge transformation of the whole matched solution. In
fact, for well-chosen gauge conditions and boundary conditions
there are no globally well-defined gauge transformations left to
perform.
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To be more explicit about the nature of the effect of the
ambiguities we solve Eq. (5.35) asymptotically so that we
can apply the transformations (5.23)–(5.28) with χ½n�i and
χ½n� as given in (5.33) and (5.34). To respect the boundary

conditions both χ½n�i and χ½n� need to be Oðr−1Þ.
Equations (5.33) and (5.34) then tell us that the harmonic

functions Σ½n�
i and Σ½n� need to decay for large r and

∂0Σ
½n�
i ¼ Oðr−2Þ as well as ∂0∂iχ

½n�
i ¼ Oðr−3Þ. Using that

∂iχ
½n�
i and Σ½n�

i are harmonic we can write

∂iχ
½n�
i ¼D½n�

r
þ∂i

�
D½n�

i

r

�
þ1

2
∂i∂j

�
D½n�

ij

r

�
þOðr−4Þ; ð5:66Þ

Σ½n�
i ¼ E½n�

i

r
þ ∂j

�
E½n�
i;j

r

�
þOðr−3Þ: ð5:67Þ

From the above boundary conditions we learn thatD½n� ¼ 0

and that D½n�
i and E½n�

i are time-independent. Solving (5.35)
we find that

D½n�
i ¼ 6

7
E½n�
i ; D½n�

ij ¼ 2E½n�
hi;ji: ð5:68Þ

We can use this to determine χ½n�i at the orders r−1 and r−2

and χ½n� at the leading r−1 order. We will denote the leading
order part in the expansion of Σ½n� by E½n�r−1. Using (5.25),
(5.27), and (5.28) we then find the following asymptotic

ambiguities in H½n�, M½n�
0 , and M½n�

i ðTÞ:

H½n�0 ¼ H −
12

7
∂i

�
Ei

r

�
− 2∂i∂j

�
Eij

r

�
þOðr−4Þ; ð5:69Þ

M½n�
0

0 ¼M½n�
0 −

Ė½n�

r
−

2

15

Ë½n�
i;i

r
−
1

2

xixj

r3
Ë½n�
hi;ji þOðr−2Þ; ð5:70Þ

M½n�
i

0ðTÞ ¼ M½n�
i ðTÞ þ xj

r3
Ė½n�
½i;j� þ 2

xixjxk

r5
Ė½n�
hj;ki

þ 7

15

xi

r3
Ė½n�
j;j þ

xi

r3
E½n� þOðr−3Þ: ð5:71Þ

This can be matched with the appearance of the functions

B½n�, A½n�
ij , C

½n�
l;l , and C½n�

½i;j� (as well as the constant A½n�
i −

x0Ȧ½n�
i via E½n�

i ) in the solution (5.63), (5.64), and (5.65).

The ambiguity transformation does not affect A½n� and Ȧ½n�
i .

2. ADM charges

Before we continue our discussion of the boundary
conditions for the remaining fields, we show that our
boundary conditions are such that the homogeneous sol-
utions lead to well-defined ADM charges. The Landau-
Lifshitz (LL) energy-momentum pseudotensor is defined as

Tμν
LL¼−

c4

8πG
Gμνþ c4

16πGð−gÞ∂ρ∂σðð−gÞðg
μνgρσ−gμρgνσÞÞ:

ð5:72Þ

Hence, upon using the Einstein equations we see that T μν ≔
ð−gÞðTμν þ Tμν

LLÞ is conserved, i.e., ∂μT μν ¼ 0. We can thus
define conserved charges (energy-momentum) as follows:

Pν ¼
Z
t¼cst

d3xð−gÞðT0ν þ T0ν
LLÞ: ð5:73Þ

The integrand can be written as

ð−gÞðT0ν þ T0ν
LLÞ ¼

c4

16πG
∂jJjν; ð5:74Þ

where we defined

Jjν ¼ ∂0Iν0j þ ∂0Iνj0 þ ∂kIνjk; ð5:75Þ

Iνρσ ¼ ð−gÞðg0νgρσ − g0ρgνσÞ: ð5:76Þ

The energy-momentum vector Pν can thus be expressed as a
surface integral over the boundary of the constant t slices,
i.e., at spatial infinity as

Pν ¼ c4

16πG

Z
S2∞

dΩr2njJjν; ð5:77Þ

where nj ¼ xj=r and the integral is over the two-sphere at
spatial infinity.
Because of the symmetry of T μν ≔ ð−gÞðTμν þ Tμν

LLÞ we
can build another conserved current Jμνρ given by

Jμνρ ¼ T μνxρ − T μρxν; ð5:78Þ

and hence, we can define the angular momentum and
Lorentz boost charges

Mνρ ¼
Z
t¼cst

d3xJ0νρ: ð5:79Þ

If we work to first order inG, it can be readily shown that

Ji0 ¼ −
2

3
∂iH½1� þOðG2Þ; ð5:80Þ

Jij¼2

3
δij∂0H½1�−∂iM

½1�
j ðTÞ−∂jM

½1�
i ðTÞþOðG2Þ: ð5:81Þ

At higher orders in G we get the above terms but with the
superscript ½1� replaced by [n] as well as new nonlinear

terms. The boundary conditions that H½n�,M½n�
0 ,M½n�

i ðTÞ are
Oðr−1Þ as well as (5.57) ensures that the contribution at
order Gn coming from the linear terms in Jiν, i.e., (5.80)
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and (5.81), is finite. It can be shown that A½n� contributes to
the ADM energy P0 while Ȧ½n�

i contributes to the ADM
momentum. For example, at order G we have that P0 is

proportional to A½1� and Pi is proportional to Ȧ½1�
i .

Furthermore, the angular momentum Mij at order G is

proportional19 to C½1�
½i;j�. Finally, the Lorentz boost M0i is

proportional20 to Ai − x0Ȧi, i.e., the t-independent part
of Ai.

Earlier we said that the coefficients C½n�
½i;j� suffer from the

ambiguity described by the transformations (5.23)–(5.28)
[because of the appearance of E½n�

½i;j� in (5.71)]. Now we see

that the angular momentum at leading order in G is

proportional to C½1�
½i;j�, which therefore suffers from

the ambiguity as well.21 We expect this to be related to
the known ambiguities in defining angular momentum for
asymptotically flat spacetimes. Relatedly, we point out that
the appearance of the constant vector Ei in the ambiguity of
H½n� [see Eq. (5.69)] implies that there is an ambiguity in
the Lorentz boost charge as well.

3. The propagating sector

We next turn to the field h½n�ij ðTTÞwhich solves Eq. (5.18)
and hence describes propagating degrees of freedom. In
Appendix E we derive the solution of the homogeneous
equation

□h½n�ij ðTTÞ − 2∂0∂ðiM
½n�
jÞ ðTÞ þ 2∂hi∂jiM

½n�
0 þ 1

3
∂i∂jH½n� ¼ 0:

ð5:82Þ

Restating the solution here we have

h½n�ij ðTTÞ ¼ W½n�
ij ðTTÞ þ 2∂hiC

½n�
ji þ Â½n�

ij þ x0H½n�
ij

−
1

6
r2∂i∂jH½n� −

2

3

�
∂iðxjH½n�Þ

þ ∂jðxiH½n�Þ − 2

3
δij∂kðxkH½n�Þ

�
; ð5:83Þ

where H½n�
ij is traceless and harmonic and obeys the

following two conditions22:

∂0H
½n�
ij ¼ 2∂i∂jF½n�; ð5:84Þ

∂iH
½n�
ij ¼ −

�
δij∂

2 þ 1

3
∂j∂i

�
∂0C

½n�
i : ð5:85Þ

Furthermore, Â½n�
ij is traceless and obeys

∂
2Â½n�

ij ¼ 2∂i∂j

�
H½n� þ 1

3
xk∂kH½n�

�
; ð5:86Þ

∂0Â
½n�
ij ¼ −2x0∂i∂jF½n� − ∂i∂jðxkH½n�

k Þ

− ∂iH
½n�
j − ∂jH

½n�
i þ 4

3
δij∂kH

½n�
k ; ð5:87Þ

∂iÂ
½n�
ij ¼ 5

3
∂j

�
H½n� þ 1

3
xk∂kH½n�

�
−
�
δij∂

2 þ 1

3
∂j∂i

�

× ðC½n�
i − x0∂0C

½n�
i Þ: ð5:88Þ

Last, we have that C½n�
i is a solution to the free wave

equation as well as

∂
2
0

�
∂
2C½n�

j þ 1

3
∂j∂iC

½n�
i

�
¼ 0; ð5:89Þ

where due to (5.89) we see that the C-dependent terms in
(5.88) and (5.85) are time-independent.
Having solved the homogeneous equation, we move on

to boundary conditions. The field h½n�ij ðTTÞ obeys a wave

equation, and we will demand that h½n�ij ðTTÞ obeys the
Sommerfeld no-incoming radiation condition at past null
infinity I−. If we write the Minkowski line element in
spherical coordinates and define retarded and advanced
time as u ¼ t − r=c and v ¼ tþ r=c, respectively, then this
means that we will require that

lim
r→∞
v¼cst

∂vðrh½n�ij ðTTÞÞ ¼ 0: ð5:90Þ

Apart from W½n�
ij ðTTÞ and C½n�

i the only terms on the right-

hand side of the solution for h½n�ij ðTTÞ in Eq. (E28) that are

Oðr−1Þ come from the terms withH½n�, Â½n�
ij , andH

½n�
ij . Using

their asymptotic solutions, which for Â½n�
ij follows from

solving (E30), tells us that the Sommerfeld condition on

h½n�ij ðTTÞ translates into a Sommerfeld condition on

19This can be shown by using that J0ij ¼ c4
16πG ∂kðxjJki−

xiJkjÞ.
20This follows from J00i ¼ T 00xi − x0T 0i ¼ c4

16πG ∂kðxiJk0−
x0Jki þ 2

3
δikH½1�Þ.

21One might wonder where the ambiguity in the angular
momentum comes from since the Landau-Lifshitz energy-
momentum pseudotensor depends on gμν, which is free from
these ambiguities. The step where this happens is when we write
Jij in Eq. (5.81). The integrand ofMij when written as an integral
over three-space is the divergence ∂iJij that can be written in
terms of H½n� which does not suffer from the ambiguities, but
when we apply Stokes’ theorem, the object Jij contains MiðTÞ,
which does suffer from it at order r−2.

22The functions F and Hi are harmonic and appeared for the
first time in (5.54) and (5.55).
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W½n�
ij ðTTÞ and the symmetric trace-free derivative of C½n�

i .
Hence, we need to require that

lim
v¼cst
r→∞

∂vðrW½n�
ij ðTTÞÞ ¼ 0; ð5:91Þ

and similarly for ∂hiC
½n�
ji .

We are, however, not done yet. To determine the
homogeneous part of the metric at order Gn we need to

include the longitudinal fields L½n�
i and N½n�.

Equations (5.15)–(5.18) for n ≥ 2 do not form a closed

set of equations. The reason is that the source terms τ½n�μν

depend on the longitudinal fields L½k�
i and N½k� for k < n.

The fields L½n�
i and N½n� are fixed by imposing a gauge

fixing condition, and if the latter take the form of a PDE,

then we need boundary conditions for the L½n�
i and N½n�

fields as well. This is furthermore relevant since these fields
will be part of the matching process. In order that the metric
satisfies gμν ¼ ημν þOðr−1Þ we will need to impose that

L½n�
i and N½n� are at most Oð1Þ and that both their ∂0 and ∂i

derivatives are Oðr−1Þ. This is because the metric only

depends on the ∂0 and ∂i derivatives of L
½n�
i and N½n�.

E. Parametrizing the harmonic gauge metric

In harmonic gauge the homogeneous part of h½n�μν obeys
the free wave equation. However, the gauge condition

relates the various components of h½n�μν . In this section we

show that we can parametrize h½n�μν into a number of
independent solutions to the free wave equation. The final
result is given in Eqs. (5.121)–(5.123).
In the harmonic gauge the longitudinal fields obey the

wave equations (5.43) and (5.44). The time derivative of the
homogeneous part of these latter two equations is equiv-
alent to □h½n�0i ¼ 0 ¼ □h½n�00 . Using Eqs. (5.54) and (5.55)

(as well as the properties of χ̂½n� and χ̂½n�i ) we can rewrite (the
homogeneous part of) Eqs. (5.43) and (5.44) as follows:

□ðN½n� þ χ̂½n�Þ ¼ −∂0∂2U½n�; ð5:92Þ

□ðL½n�
i þ χ̂½n�i Þ ¼ −∂iŨ½n� − ∂

2U½n�
i þ ∂i∂

2U½n�

−
1

2
∂iðxj∂2U½n�

j Þ: ð5:93Þ

Using that ∂20U
½n� ¼ F½n� is harmonic we can differentiate

the first of these two equations to get ∂0□ðN½n� þ χ̂½n�Þ ¼ 0

whose solution is of the form N½n� þ χ̂½n� ¼ W½n� þ A½n�

whereW½n� obeys□W½n� ¼ 0 and where A½n� is independent
of x0. Substituting this into (5.92) we find that
∂
2ðA½n� þ ∂0U½n�Þ ¼ 0 so that A½n� ¼ H̃½n� − ∂0U½n� with
H̃½n� harmonic. Since A½n� is time-independent, we learn
that ∂0H̃½n� ¼ F½n�. We thus conclude that

N½n� ¼ W½n� − χ̂½n� þ H̃½n� − ∂0U½n�

¼ W½n� −
1

12
r2∂0H½n� −

1

2
xiH½n�

i þ H̃½n�: ð5:94Þ

Next we consider Eq. (5.93). We start by observing that

∂
2
0□ðL½n�

i þ χ̂½n�i Þ ¼ 0, so that

L½n�
i þ χ̂½n�i ¼ W½n�

i þ A½n�
i þ x0B½n�

i ; ð5:95Þ

where A½n�
i and B½n�

i are time-independent. Substituting this
into (5.93) we obtain

∂
2A½n�

i þ x0∂2B½n�
i ¼ −∂iŨ½n� − ∂

2U½n�
i þ ∂i∂

2U½n�

−
1

2
∂iðxj∂2U½n�

j Þ: ð5:96Þ

If we differentiate this with respect to x0, we find

∂
2ðB½n�

i − ∂i∂0U½n�Þ ¼ 0 so that we obtain

B½n�
i ¼ H̃½n�

i þ ∂i∂0U½n�; ð5:97Þ

where H̃½n�
i is harmonic and for which ∂0H̃

½n�
i ¼ −∂iF½n�.

Equation (5.96) now reduces to an equation for A½n�
i that can

be simplified by defining Â½n�
i as

Â½n�
i ¼ A½n�

i þ U½n�
i þ 1

2
∂iðxkU½n�

k Þ − ∂iðU½n� − x0∂0U½n�Þ:
ð5:98Þ

This object then obeys the following two equations:

∂
2Â½n�

i ¼ −∂i
�
H½n� þ 1

3
xk∂kH½n�

�
; ð5:99Þ

∂0Â
½n�
i ¼ x0∂iF½n� þH½n�

i þ 1

2
∂iðxkH½n�

k Þ: ð5:100Þ

We conclude that the solution for L½n�
i is

L½n�
i ¼ W½n�

i − χ̂½n�i þ A½n�
i þ x0B½n�

i

¼ W½n�
i þ 1

2
xiH½n� þ 1

12
r2∂iH½n� þ Â½n�

i þ x0H̃½n�
i :

ð5:101Þ

The terms to the right ofW½n� andW½n�
i in Eqs. (5.94) and

(5.101), respectively, are at most Oð1Þ, but if we differ-
entiate these terms with respect to x0 or xi they are Oðr−1Þ.
Since only derivatives of N½n� and L½n�

i appear in the metric,
we will demand that they obey the boundary condition that
their x0 and xi derivatives are Oðr−1Þ.
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The solutions for N½n� and L½n�
i can now be used to write

h½n�μν in harmonic gauge. We find

h½n�00 ¼ −2M½n�
0 þ 2∂0N½n� ¼ 2∂0W½n�; ð5:102Þ

h½n�0i ¼ −M½n�
i ðTÞ þ ∂0L

½n�
i þ ∂iN½n�

¼ ∂0W
½n�
i þ ∂iW½n� þ H̃½n�

i þ ∂iH̃½n�; ð5:103Þ

h½n�ij ¼h½n�ij ðTTÞþ∂iL
½n�
j þ∂jL

½n�
i þ1

3
δijH½n�

¼W½n�
ij ðTTÞþ∂iW

½n�
j þ∂jW

½n�
i þ2∂hiC

½n�
ji þĤ½n�

ij þx0H̃½n�
ij ;

ð5:104Þ

where we defined

Ĥ½n�
ij ¼ Â½n�

ij þ ∂iÂ
½n�
j þ ∂jÂ

½n�
i þ 4

3
δij

�
H½n� þ 1

3
xk∂kH½n�

�
;

ð5:105Þ

H̃½n�
ij ¼ H½n�

ij þ ∂iH̃
½n�
j þ ∂jH̃

½n�
i ; ð5:106Þ

where we used the solutions for M½n�
i ðTÞ and h½n�ij ðTTÞ

obtained previously. It can be shown using properties

derived previously that H̃½n�
i þ ∂iH̃½n�, Ĥ½n�

ij , and H̃½n�
ij are

all time-independent and harmonic and furthermore that

∂iĤ
½n�
ij ¼ ∂j∂iÂ

½n�
i þ 2∂j

�
H½n� þ 1

3
xk∂kH½n�

�

−OijðC½n�
i − x0∂0C

½n�
i Þ; ð5:107Þ

Ĥ½n�
ii ¼ 2∂iÂ

½n�
i þ 4

�
H½n� þ 1

3
xk∂kH½n�

�
; ð5:108Þ

∂iH̃
½n�
ij ¼ ∂j∂iH̃

½n�
i −Oij∂0C

½n�
i ; ð5:109Þ

H̃½n�
ii ¼ 2∂iH̃

½n�
i ; ð5:110Þ

where we defined (as before)

Oij ¼ δij∂
2 þ 1

3
∂i∂j: ð5:111Þ

Since H̃½n�
i þ ∂iH̃½n� is time-independent and harmonic,

we can absorb it into W½n�
i in the expression for h½n�it by

defining

W̃½n�
i ¼ W½n�

i þ x0ðH̃½n�
i þ ∂iH̃½n�Þ: ð5:112Þ

This gives h½n�it ¼ ∂0W̃
½n�
i þ ∂iW½n� where both W̃½n�

i andW½n�

satisfy the free wave equation. In terms of W̃½n�
i the

expression for h½n�ij becomes

h½n�ij ¼W½n�
ij ðTTÞþ∂iW̃

½n�
j þ∂jW̃

½n�
i þ2∂hiC

½n�
ji þĤ½n�

ij þx0Ȟ½n�
ij ;

ð5:113Þ

where

Ȟ½n�
ij ¼ H̃½n�

ij − ∂iH̃
½n�
j − ∂jH̃

½n�
i − 2∂i∂jH̃½n�; ð5:114Þ

which is harmonic, traceless, and time-independent, and
whose divergence is given by

∂iȞ
½n�
ij ¼ −Oij∂0C

½n�
i : ð5:115Þ

Finally, we define G½n�
ij as

G½n�
ij ¼ 2∂hiC

½n�
ji þ Ĥ½n�

ij þ x0Ȟ½n�
ij ; ð5:116Þ

so that

h½n�ij ¼ W½n�
ij ðTTÞ þ G½n�

ij þ ∂iW̃
½n�
j þ ∂jW̃

½n�
i : ð5:117Þ

The object G½n�
ij has the following properties (that follow

from its definition):

□G½n�
ij ¼ 0; ð5:118Þ

∂
2
0G

½n�
ij ¼ transverse traceless; ð5:119Þ

∂iG
½n�
ij −

1

2
∂jG

½n�
ii ¼ 0: ð5:120Þ

Furthermore, these properties are equivalent to its defini-
tion23 (5.116) (up to a TT solution to the free wave
equation), so that we can take (5.117) as the final form

of the harmonic gauge parametrization of h½n�ij .

23We will suppress the [n] superscript here. To show this we
first use ∂

2
0□Gij ¼ 0 so that Gij ¼ Zij þ Aij þ x0Bij where

□Zij ¼ 0 and where Aij and Bij are time-independent. Using
next that □Gij ¼ 0 it follows that Aij and Bij are harmonic. Next
we decompose Zij ¼ ZijðTTÞ þ 2∂hiYji þ 2

3
δijY. Using that

∂
2
0Gij is traceless we see that ∂20Y ¼ 0, but we also know that
Zij and hence, its trace obeys the free wave equation so that Y
must be harmonic. We can therefore absorb Y into Aij and Bij. We
have thus arrived at Gij ¼ ZijðTTÞ þ 2∂hiYji þ Aij þ x0Bij. Us-
ing that ∂20Gij is transverse we conclude that Oij∂

2
0Cj ¼ 0. By

acting with ∂
2 on (5.120) we also find that Oij∂

2Cj ¼ 0. The
decomposition of Zij suffers from the usual ambiguity, and we
can now repeat the argument around Eq. (E22), which leads to the
conclusion that without loss of generality we can take Yi to obey
□Yi ¼ 0. Finally, by simply writing out ∂iGij and Gii we see that
we have recovered (5.116) (up to a TT solution to the free wave
equation).
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We thus conclude that in harmonic gauge we can
parametrize (the homogeneous part of) h½n�μν as follows24:

h½n�tt ¼ 2∂tW½n�; ð5:121Þ

h½n�ti ¼ ∂tW
½n�
i þ ∂iW½n�; ð5:122Þ

h½n�ij ¼ W½n�
ij ðTTÞ þ ∂iW

½n�
j þ ∂jW

½n�
i þ G½n�

ij ; ð5:123Þ

where we dropped tildes on W½n�
i and W½n�

ij and where we

used x0 ¼ ct. We absorbed a factor of c into W½n� (i.e., we
defined cW½n� ¼ W̃½n� and subsequently dropped the tilde

onW½n�). In hereW½n�,W½n�
i ,W½n�

ij ðTTÞ, and G½n�
ij all obey the

free wave equation, and G½n�
ij furthermore satisfies (5.119)

and (5.120). In the expression for G½n�
ij we assume that there

is no TT part that separately solves the free wave equation

(for if that existed we could absorb it into W½n�
ij ).

The functions W½n� and W½n�
i can be viewed as corre-

sponding to the residual gauge transformations of the

harmonic gauge conditions. The function W½n�
ij ðTTÞ

describes the physical degrees of freedom. Finally, the

object G½n�
ij is needed to ensure that the spacetime has the

appropriate ADM energy as neither W½n�
ij ðTTÞ nor W½n�

i

contribute to the ADM energy P0 defined in (5.73)
(for ν ¼ 0).
There is a slight freedom in the choice of functionsW½n�,

W½n�
j , W½n�

ij ðTTÞ. This freedom is parametrized by time-

independent harmonic functions Λ½n� and Λ½n�
i and are given

by the following transformations:

W0½n� ¼ W½n� þ Λ½n�; ð5:124Þ

W0
i
½n� ¼ W½n�

i − t∂iΛ½n� þ Λ½n�
i ; ð5:125Þ

G0½n�
ij ¼ G½n�

ij þ 2t∂i∂jΛ½n� − ∂iΛ
½n�
j − ∂jΛ

½n�
i : ð5:126Þ

The properties of Λ½n� and Λ½n�
i follow from writing h½n�tt ¼

2∂tW0½n� and h½n�ti ¼ ∂tW0½n�
i þ ∂iW0½n� and demanding that

W0½n� and W0½n�
i obey the free wave equation.

A natural choice of boundary conditions in the harmonic
gauge is to demand that h½n�μν obeys the Sommerfeld no-
radiation condition at I−. We will abbreviate this boundary
condition simply by “S”. This means in particular that
∂tW½n� obeys S. This does not imply that W½n� itself obeys

S, but we can choose Λ½n� such that it does. This means that

∂iW½n� obeys S and hence so does ∂tW
½n�
i (since h½n�it is

required to obey S). Again we can choose Λ½n�
i such that

W½n�
i obeys S. Turning to the ij component of the metric we

already know that h½n�ij ðTTÞ and W½n�
ij ðTTÞ obey S so we

conclude that G½n�
ij must obey S. Finally, we also want that

h½n�μν ¼ Oðr−1Þ. This implies that we can allowW½n� andW½n�
i

to be Oð1Þ as long as their ∂t and ∂i derivatives are Oðr−1Þ.
Furthermore, we need that both W½n�

ij ðTTÞ and G½n�
ij are

each Oðr−1Þ.
The boundary conditions as formulated above in the

harmonic gauge are compatible with the boundary con-
ditions as formulated by Trautman in [56]. For the trans-
verselike gauge the boundary conditions used here are
almost but not quite in agreement with [56]. However, we
have previously shown that the boundary conditions in that
gauge result in finite expressions for the ADM energy and
momentum.
As an illustration of the harmonic gauge parametrization

we consider linearized Schwarschild in isotropic coordi-
nates. The Schwarzschild line element in isotropic coor-
dinates is given by

ds2 ¼ −
ð1 − GM

2c2rÞ2
ð1þ GM

2c2rÞ2
c2dt2 þ

�
1þ GM

2c2r

�
4

dxidxi: ð5:127Þ

To first order in G this is

ds2¼
�
−c2þ2

GM
r

�
dt2þ

�
1þ2

GM
c2r

�
dxidxiþOðG2Þ;

ð5:128Þ

so that

h½1�tt ¼ 2M
r

; h½1�ti ¼ 0; h½1�ij ¼ 2M
c2r

: ð5:129Þ

This can be written in the form (5.121)–(5.123) if we
choose

W½1� ¼ Mu
r

; ð5:130Þ

W½1�
i ¼ −

M
2
∂i

�
u2

r

�
; ð5:131Þ

W½1�
ij ðTTÞ ¼ 0; ð5:132Þ

G½1�
ij ¼ 2M

c2r
δij þM∂i∂j

�
u2

r

�
: ð5:133Þ

24There is another parametrization of the homogeneous part of
the harmonic gauge metric that is commonly used in the literature
on post-Newtonian expansions (see Introduction). We will use
this parametrization in Sec. VII.
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It can be readily verified that these all obey the free wave
equation (with Sommerfeld boundary conditions), as well
as (5.119) and (5.120).

F. Summary

We briefly summarize the main findings of this section.
In transverse gauge the G expanded vacuum Einstein
equations are

∂
2H½n� ¼ −

3

4
ðτ½n�00 þ τ½n�kk Þ; ð5:134Þ

∂
2

�
M½n�

0 −
r2

12
∂
2
0H

½n� þ xi

2
∂0M

½n�
i ðTÞ

�

¼ 1

2
τ½n�00 þ

r2

16
∂
2
0ðτ½n�00 þ τ½n�kk Þ þ

xi

2
∂0τ

½n�
0i ; ð5:135Þ

∂
2

�
M½n�

i ðTÞ − 1

3
xi∂0H½n�

�
¼ τ½n�0i þ

xi

4
∂0ðτ½n�00 þ τ½n�kkÞ;

ð5:136Þ

as well as

−□h½n�ij ðTTÞ ¼ −2∂0∂ðiM
½n�
jÞ ðTÞ þ 2∂hi∂jiM

½n�
0

þ 1

3
∂hi∂jiH½n� þ τ½n�hiji: ð5:137Þ

The latter implies

□

�
∂
2
0h

½n�
ij ðTTÞþ∂i∂0M

½n�
j ðTÞþ∂j∂0M

½n�
i ðTÞ−2∂i∂jM

½n�
0 þ1

3
δij∂

2
0H

½n�
�
¼−∂20τ

½n�
ij þ∂0∂iτ

½n�
0j þ∂0∂jτ

½n�
0i −∂i∂jτ

½n�
00 : ð5:138Þ

The homogeneous solution is given by (E8)–(E10) and
(E28). For the particular solution to the sourced equations
we need to invert the Laplacian and the d’Alembertian. The
boundary conditions are such that H½n�, M½n�

0 , and M½n�
i ðTÞ

are Oðr−1Þ for large r and h½n�ij ðTTÞ obeys the Sommerfeld
no-incoming radiation condition at past null infinity.
In harmonic gauge the equations are

□h½n�μν ¼ −τ½n�μν þ ∂μK
½n�
ν þ ∂νK

½n�
μ : ð5:139Þ

The homogeneous solutions are just the most general

solutions to □h½n�μν ¼ 0. The boundary conditions are such

that h½n�μν obey the Sommerfeld no-incoming radiation
condition at past null infinity. Not all the components of

h½n�μν are independent in the harmonic gauge which is why it
is convenient to use the parametrization given in
(5.121)–(5.123).
In a general gauge Eqs. (5.134)–(5.138) together with

the above boundary conditions are also valid but then we
still need to specify what the longitudinal fields L½n�

i and
N½n� are by making a gauge choice and an appropriate
boundary condition. The problem of solving the G expan-
sion can thus always be reduced to that of inverting the

operators ∂
2 and □ as well as solving the equations that

result from the gauge choice.
If we compare the transverse gauge with the harmonic

gauge, then the former has the advantage of a smaller set of
residual gauge transformations. In harmonic gauge the
residual gauge transformations are (5.48) and (5.49), which
involves homogeneous solutions to the free wave equation,
whereas for the transverse gauge the residual gauge trans-
formations are given by the ambiguities (5.29) and (5.30),
which involves harmonic functions. The latter are much
easier to deal with. Another feature of the transverse gauge
is that the traceless part of hij is automatically transverse so
we do not need to resort to transverse traceless projectors
that are used in harmonic gauge to find an expression for
the waveform.

G. Nonlinear sources

In this section we focused on the homogeneous solution
and the consequences the boundary conditions have for
these solutions. We end this section with a few remarks
about the nonlinear sources described by the τ½n�μν . We

already gave an expression for τ½2�μν in (5.4). Here we give
an explicit expression in terms of the metric and its

derivatives for τ½2�μν and τ½3�μν . These are

τ½2�μν ¼ ∂α

�
hαβ½1� −

1

2
ηαβhγ½1�γ

�
ð2∂ðμh½1�νÞβ − ∂βh

½1�
μνÞ − 1

2
∂μh

αβ
½1�∂νh

½1�
αβ

− ∂
βhα½1�μ∂βh

½1�
αν þ ∂

βhα½1�μ∂αh
½1�
βν þ hαβ½1�ð2∂βðμh½1�νÞα − ∂μνh

½1�
αβ − ∂αβh

½1�
μνÞ; ð5:140Þ
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τ½3�μν ¼ −
1

2
hαβ½1�∂αh

½1�
μν∂βh

γ
½1�γ þ hαβ½1�∂αh

½1�γ
μ ∂βh

½1�
νγ þ hαβ½1�∂αh

½1�
μν∂γh

½1�γ
β − hαβ½1�∂αh

½1�γ
μ ∂γh

½1�
νβ

þ h½1�γα hαβ½1�∂γ∂βh
½1�
μν − hαβ½1�∂βh

½1�
νγ ∂

γh½1�μα þ hαβ½1�∂γh
½1�
νβ∂

γh½1�μα þ hαβ½1�∂βh
½1�
αγ∂

γh½1�μν

−
1

2
hαβ½1�∂γh

½1�
αβ∂

γh½1�μν þ 1

2
hαβ½1�∂βh

γ
½1�γ∂μh

½1�
να − hαβ½1�∂γh

½1�γ
β ∂μh

½1�
να − hαβ½1�∂βh

½1�
αγ∂μh

½1�γ
ν

þ 1

2
hαβ½1�∂γh

½1�
αβ∂μh

½1�γ
ν − h½1�γα hαβ½1�∂μ∂γh

½1�
νβ þ hαβ½1�∂μh

½1�γ
α ∂νh

½1�
βγ

þ 1

2
hαβ½1�∂βh

γ
½1�γ∂νh

½1�
μα − hαβ½1�∂γh

½1�γ
β ∂νh

½1�
μα − hαβ½1�∂βh

½1�
αγ∂νh

½1�γ
μ

þ 1

2
hαβ½1�∂γh

½1�
αβ∂νh

½1�γ
μ − h½1�γα hαβ½1�∂ν∂γh

½1�
μβ þ h½1�γα hαβ½1�∂ν∂μh

½1�
βγ

þ ∂α

�
hαβ½2� −

1

2
ηαβhγ½2�γ

�
ð2∂ðμh½1�νÞβ − ∂βh

½1�
μνÞ − 1

2
∂μh

αβ
½2�∂νh

½1�
αβ

− ∂
βhα½2�μ∂βh

½1�
αν þ ∂

βhα½2�μ∂αh
½1�
βν þ hαβ½2�ð2∂βðμh½1�νÞα − ∂μνh

½1�
αβ − ∂αβh

½1�
μνÞ

þ ∂α

�
hαβ½1� −

1

2
ηαβhγ½1�γ

�
ð2∂ðμh½2�νÞβ − ∂βh

½2�
μνÞ − 1

2
∂μh

αβ
½1�∂νh

½2�
αβ

− ∂
βhα½1�μ∂βh

½2�
αν þ ∂

βhα½1�μ∂αh
½2�
βν þ hαβ½1�ð2∂βðμh½2�νÞα − ∂μνh

½2�
αβ − ∂αβh

½2�
μνÞ: ð5:141Þ

In harmonic gauge we also need

K½2�
μ ¼ hαβ½1�∂αh

½1�
βμ −

1

2
hαβ½1�∂μh

½1�
αβ; ð5:142Þ

K½3�
μ ¼ hσρ½1�

�
∂σh

½2�
ρμ −

1

2
∂μh

½2�
σρ

�

þ ðhσρ½2� − ηαβhσα½1�h
βρ
½1�Þ

�
∂σh

½1�
ρμ −

1

2
∂μh

½1�
σρ

�
; ð5:143Þ

as these feature in the source in (5.139).

For the case of the transverse gauge we will give the
sources to order G2. In this case the equations are given in
the summary Sec. V F. Using Eq. (5.4) together with the
transverse gauge condition and the order G equations of
motion, we find

τ½2�00 ¼ −
1

2
C
½1�

ll0C
½1�

000 þ
1

2
C
½1�

llkC
½1�

00k þ
1

2
C
½1�

k00C
½1�

k00 −
1

2
C
½1�

0klC
½1�

0kl

þ h½1�kl ðTTÞð∂lC
½1�

00k − ∂0C
½1�

0klÞ; ð5:144Þ

τ½2�00 þ τ½2�ii ¼ −
1

2
C
½1�

kk0C
½1�

ll0 þ
1

2
C
½1�

kkiC
½1�

lli þ
1

2
C
½1�

kl0C
½1�

kl0 −
1

2
C
½1�

ijkC
½1�

ijk

þ h½1�kl ðTTÞð∂lC
½1�

00k − ∂0C
½1�

l0kÞ þ h½1�kl ðTTÞð∂lC
½1�

iik − ∂iC
½1�

likÞ; ð5:145Þ

τ½2�0i ¼ −
1

2
C
½1�

ll0C
½1�

i00 þ
1

2
C
½1�

llkC
½1�

0ik þ
1

2
C
½1�

k00C
½1�

ik0 −
1

2
C
½1�

0klC
½1�

ikl

þM½1�
k ðTÞð∂0C

½1�
0ik − ∂iC

½1�
00kÞ þ h½1�kl ðTTÞð∂lC

½1�
0ik − ∂iC

½1�
0lkÞ; ð5:146Þ

τ½2�ij ¼ 1

2
ðC
½1�

000 − C
½1�

kk0ÞC
½1�

ij0 −
1

2
ðC
½1�

00k − C
½1�

llkÞC
½1�

ijk −
1

2
C
½1�

i00C
½1�

j00 þ
1

2
C
½1�

0ikC
½1�

0jk þ
1

2
C
½1�

ik0C
½1�

jk0 −
1

2
C
½1�

iklC
½1�

jkl

þ
�
2M½1�

0 −
1

3
H½1�

��
∂
2h½1�ij ðTTÞ þ

1

3
∂i∂jH½1�

�
þ h½1�kl ðTTÞð∂lC

½1�
ijk − ∂jC

½1�
ilkÞ

þM½1�
k ðTÞ½∂kC

½1�
ij0 þ ∂0C

½1�
ijk þ 2∂i∂jMkðTÞ�; ð5:147Þ

where in transverse gauge we have
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C
½1�

000 ¼ −2∂0M
½1�
0 ; ð5:148Þ

C
½1�

00k ¼ 2∂kM
½1�
0 − 2∂0M

½1�
k ðTÞ; ð5:149Þ

C
½1�

k00 ¼ −2∂kM
½1�
0 ; ð5:150Þ

C
½1�

ij0 ¼ −∂0h
½1�
ij ðTTÞ − ∂iM

½1�
j ðTÞ − ∂jM

½1�
i ðTÞ − 1

3
δij∂0H½1�;

ð5:151Þ

C
½1�

0ij ¼ −C
½1�

ij0 − 2∂iM
½1�
j ðTÞ; ð5:152Þ

C
½1�

ijk ¼ ∂ih
½1�
jk ðTTÞ þ ∂jh

½1�
ik ðTTÞ − ∂kh

½1�
ij ðTTÞ

þ 1

3
ðδjk∂iH½1� þ δik∂jH½1� − δij∂kH½1�Þ: ð5:153Þ

When solving the inhomogeneous PDEs at order G2 and
higher we will have to use Green’s functions to write down
the particular solution, and these will involve integration
over the exterior zone that has a boundary (or a lower
cutoff). Therefore, just as we encountered in Sec. IV D
when we discussed the integration of the near zone PDEs,
we will have to worry about dependence of the particular
solution on said boundary. We will come back to this in the
next section.

VI. NEAR ZONE METRIC TO 1.5PN

The purpose of this section is to determine the near zone
metric to 1.5PN order by solving the 1=c expanded Einstein
equations. The latter are of the form ∂

2ðfieldÞ ¼ ðsourceÞ,
and so the most general solution will involve near zone

regular harmonic functions. To determine these harmonic
functions we will use the matching with the exterior zone
metric. We will from now on exclusively work in the
harmonic gauge. For a similar analysis in the transverse
gauge we refer the reader to [15]. For the homogeneous part
of the harmonic gauge metric in the exterior zone we will
use the parametrization (5.121)–(5.123). The purpose of
this section and the next is to show that our methods work.
The results that will be derived are well-known (see [1] and
references therein). Nevertheless, seeing them emerge in
this way will help when using a very different gauge.
Before we can start the matching process, we first need

some general results about expanding the exterior zone
metric in 1=c which is valid only in the part of the
spacetime where the exterior zone overlaps with the
near zone.

A. 1=c expansion of the exterior zone metric

Here we will collect some general results about 1=c

expansions of the solutions W½n�, W½n�
i , etc. Since the free

indices will play no role in this section, we will suppress
them. We will also suppress the superscript [n]. We refer to
Appendix C for some standard results about multipole
expansions of solutions to the free wave equation using
inertial coordinates.
Using Eq. (C15) we know that if W is a solution to the

free wave equation (obeying Sommerfeld), it can be
expanded as

W ¼ UðuÞ
r

þ ∂i

�
UiðuÞ
r

�
þ 1

2
∂i∂j

�
UijðuÞ

r

�
þ � � � ; ð6:1Þ

where the Uij are STF and the dots denote higher multipole
moments. If we Taylor expand this around u ¼ t, we obtain

W ¼
X∞
n¼0

1

n!

�
−1
c

�
n
�
rn−1∂nt UðtÞ þ ∂irn−1∂nt UiðtÞ þ

1

2
∂i∂jrn−1∂nt UijðtÞ þ � � �

�

¼
X∞
l¼0

X∞
n¼0

1

n!

�
−1
c

�
n 1

l!
∂Lrn−1∂nt ULðtÞ

¼
X∞
l¼0

X∞
n¼0

1

n!

�
−1
c

�
n 1

l!
ðn − 1Þðn − 3Þ � � � ðn − 2lþ 1ÞxLrn−2l−1∂nt ULðtÞ

¼
X∞
l¼0

1

l!
∂Lr−1ULðtÞ −

1

c
∂tUðtÞ þ 1

2c2
X∞
l¼0

1

l!
∂Lr∂2t ULðtÞ −

1

6c3
ðr2∂3t UðtÞ þ 2xi∂3t UiðtÞÞ þOðc−4Þ; ð6:2Þ

where we use the multi-index notation L ¼ i1 � � � il. We see that the even powers of 1=c lead to all order multipole
expansions, whereas the odd powers lead to truncated expansions with only a finite number of multipole moments
contributing. We also see from this that we have a harmonic function that is regular in the interior whenever n ¼ 2lþ 1. For
example, for n ¼ 1 and l ¼ 0 we have the term − 1

c ∂tUðtÞ. For n ¼ 3 and l ¼ 1 the harmonic function is − xi

3c3 ∂
3
t UiðtÞ, and

for n ¼ 5 and l ¼ 2 we get − xixj

30c5
∂
5
t UijðtÞ. The harmonic part (regular at r ¼ 0) of W in the overlap region is given by
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−
X∞
l¼0

2l

ð2lþ 1Þ! c
−2l−1xL∂2lþ1

t ULðtÞ; ð6:3Þ

where we used that UL is STF.
If we 1=c expand the multipole coefficientsUi1���il , which

we will assume is an expansion in even powers (which is

related to the even power expansion of the fluid variables
discussed in Sec. II D), as

UL ¼ Uð0Þ
L þ 1

c2
Uð2Þ

L þOðc−4Þ; ð6:4Þ

then we get for W the expansion25

W ¼
X∞
l¼0

1

l!
∂Lr−1U

ð0Þ
L ðtÞ − 1

c
∂tUð0ÞðtÞ þ 1

2c2
X∞
l¼0

1

l!
∂Lr∂2t U

ð0Þ
L ðtÞ þ 1

c2
X∞
l¼0

1

l!
∂Lr−1U

ð2Þ
L ðtÞ

−
1

6c3
ðr2∂3t Uð0ÞðtÞ þ 2xi∂3t U

ð0Þ
i ðtÞÞ − 1

c3
∂tUð2Þ þOðc−4Þ: ð6:5Þ

We can write similar expressions for Wi and Wij þ Gij.

This leads to multipole coefficients of the form26 Vð0Þ
i;i1���ilðtÞ

and Zð0Þ
ij;i1���ilðtÞ, etc., where the comma between the i index

and the remaining indices indicates that there is no
symmetry assumed between interchanging i with any of
the other indices. The indices after the comma are assumed
to be STF.27 Objects such as Vi;i1���il can be decomposed
into irreducible representations of SOð3Þ, but we will
refrain from implementing this decomposition until we
are forced to do so (by the matching process) as this will
lead to a proliferation of terms.
Using the above results together with the parametrization

of the harmonic gauge metric given in (5.121)–(5.123),
which we repeat here for convenience

gtt ¼ −c2 þ 2G∂tW½1� þOðG2Þ; ð6:6Þ

gti ¼ G∂tW
½1�
i þG∂iW½1� þOðG2Þ; ð6:7Þ

gij ¼ δij þGðW½1�
ij ðTTÞ þ G½1�

ij Þ
þ Gð∂iW½1�

j þ ∂jW
½1�
i Þ þOðG2Þ; ð6:8Þ

we can match the exterior and near zone metrics to first
order in G. The above results only concern the homo-
geneous solution in the exterior zone, so if we want to
match at orderG2 or higher we need to include a discussion
of the particular solution to the inhomogeneous PDE in the
exterior zone.
Let us write the metric in the exterior region as we did at

the start of the previous section,

gμν ¼ ημν þ Gh½1�μν þ G2h½2�μν þ � � � : ð6:9Þ

Then at order Gn the object h½n�μν solves the following PDE:

□h½n�μν ¼ S½n�μν ¼ −τ½n�μν þ ∂μK
½n�
ν þ ∂νK

½n�
μ ; ð6:10Þ

where we used harmonic gauge and notation introduced in
the previous section. The full solution that obeys
Sommerfeld’s no-incoming radiation boundary condition
at I− is

h½n�μν ¼ W½n�
μν −

1

4π

Z
E
d3x0

S½n�μνðt − jx − x0j=c; x0Þ
jx − x0j þ B½n�

μν ;

ð6:11Þ

where W½n�
μν obeys the free wave equation with Sommerfeld

boundary conditions. The last two terms represent the
retarded Green’s function on the exterior zone E, constitut-
ing the particular solution to (6.10). Here x is a point in the
exterior zone and so does not lie on its boundary. The term

B½n�
μν also obeys the free wave equation but it only has

support on the inner boundary of E and depends on the

source S½n�μν in a specific way. It is in general of the following
form:

B½n�
μν ¼ 1

4π

Z
E
d3x0∂0i

�
J½n�iμν ðt − jx − x0j=c; x0Þ

jx − x0j
�
; ð6:12Þ

where J½n�iμν depends on the source.
The reason that we need this term can be understood as

follows. We want that the particular solution obeys the
harmonic gauge condition which can be written as [see
Eq. (5.42)]

Hρσ
νh

½n�
ρσ ¼ K½n�

ν ; ð6:13Þ

where we defined

25We let the expansion ofW start at order c0 in order to recover
the Newtonian limit from the 1=c expansion of the exterior
solution.

26We are suppressing the [n] index. In general we will have
multipole coefficients of the form V ½n�ðmÞ

i;i1���ilðtÞ at order Gnc−m.
27We remind the reader that our conventions regarding the

manipulation of indices can be found in Appendix A.
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Hρσ
ν ¼

�
ηλρδσν −

1

2
ηρσδλν

�
∂λ: ð6:14Þ

Let us formally denote the particular solution to □hμν ¼
Sμν (satisfying Sommerfeld) by

h½n�μν ¼ □−1
retS

½n�
μν : ð6:15Þ

By taking the d’Alembertian of (6.13) we see that the
harmonic gauge operator Hρσ

ν acting on Sμν gives

Hρσ
νS

½n�
ρσ ¼ □K½n�

ν : ð6:16Þ

In order that the particular solution (6.15) obeys the
harmonic gauge condition we need the following set of
formal manipulations to be valid:

Hρσ
νh

½n�
ρσ ¼Hρσ

ν□
−1
retS

½n�
ρσ ¼□

−1
retHρσ

νS
½n�
ρσ ¼□

−1
ret□K½n�

ν ¼K½n�
ν :

ð6:17Þ

The nontrivial steps are the second and fourth equalities.

For example, if we take for □−1
retS

½n�
μν just the middle term in

(6.11) without the Bμν term, then the second and fourth
equalities in (6.17) would only be true up to boundary

terms of the form (6.12). This is the rationale for adding B½n�
μν

to the particular solution. Rather than explicitly construct-

ing B½n�
μν we will simply drop boundary terms in the exterior

metric that can be absorbed into B½n�
μν . With this in mind we

will not explicitly write this term.
Let us introduce the following notation. Let R½S½n�μν � and

A½S½n�μν � denote the retarded and advanced Green’s functions
given by

R½S½n�μν � ¼ 1

4π

Z
E
d3x0

S½n�μνðt − jx − x0j=c; x0Þ
jx − x0j ; ð6:18Þ

A½S½n�μν � ¼ 1

4π

Z
E
d3x0

S½n�μνðtþ jx − x0j=c; x0Þ
jx − x0j ; ð6:19Þ

where the integrations are over the exterior zone E and x is a
point in the exterior zone (not on its boundary). Using the
retarded and advanced Green’s functions we can write the
solution (6.11) as

h½n�μν ¼W½n�
μν −

1

2
ðR½S½n�μν �þA½S½n�μν �Þ−1

2
ðR½S½n�μν �−A½S½n�μν �ÞþB½n�

μν :

ð6:20Þ

The sum of the retarded and advanced Green’s functions is
even in 1=c and is a particular solution to (6.10). The
difference of the retarded and advanced Green’s functions
is odd in 1=c and is a homogeneous solution to (6.10). By

1=c expanding the particular solution we obtain

−
1

2
ðR½S½n�μν � þ A½S½n�μν �Þ ¼ −

1

4π

Z
E
d3x0

S½n�μνðt; x0Þ
jx − x0j

−
1

8π

1

c2

Z
E
d3x0∂2t S

½n�
μνðt; x0Þjx − x0j

þOðc−4Þ: ð6:21Þ

When we discussed the homogeneous solution we con-
cluded that the harmonic part only appears at odd powers of
1=c [see Eq. (6.3)]. Here we see that also for the particular
solution the even powers of 1=c will never give rise to
harmonic functions that are regular at the origin. We thus
arrive at the important conclusion that the near zone
harmonic functions obtained in solving the 1=c expanded
Einstein equations at even powers of 1=c must be set to
zero.28 Furthermore, we learn that the odd powers of 1=c in
the exterior region obey the free wave equation.
All of the above is based on the assumption that the

dependence on 1=c is real analytic so that we can perform a
Taylor series in 1=c. As soon as this assumption breaks
down, these comments need to be revisited. It is known that
the breakdown of the Taylor expansion in 1=c is associated
with the presence of tail terms [17,40]. To the order we are
working such terms do not arise in the near zone. For more
details we refer the reader to the review paper [1].

B. Fixing the inertial coordinates

Before we start the matching process, it will be useful to
fix our choice of inertial coordinates by choosing an
appropriate origin. So far we have been using inertial
coordinates that describe our vacuum Minkowski space-
time, but we have not chosen any particular origin yet. At
this stage we are still free to perform Poincaré trans-
formations on our inertial coordinates (if we are using theG
expanded Einstein equations) or the 1=c expanded Poincaré
transformations (see, e.g., [11] for the construction of the
1=c expanded Poincaré algebra) if we are using the 1=c
expanded Einstein equations.
We will choose inertial coordinates such that the origin is

at the center of mass of the matter distribution. To define
this we need to use the fluid conservation equations that, as
discussed in Appendix D, can be written as

∂tT tν þ ∂iT iν ¼ 0; ð6:22Þ

28We assume here that the near zone integrals have already
been made well-defined (which sometimes requires the use of a
specific harmonic function as discussed in Sec. IV D) so that the
particular solution does not depend on any cutoff. Furthermore,
we assume that the integrals in the exterior zone are also well-
defined and (lower) cutoff independent (by a judicious choice of
B½n�
μν ).
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where T μν is defined with the help of the Landau-Lifshitz
energy-momentum pseudotensor [see Eq. (D2)]. The ADM
charges

Z
t¼cst

d3xT tν ð6:23Þ

form a Lorentz vector with respect to the Lorentz sym-
metries of the vacuum. We can always perform a Lorentz
boost to set the total momentum equal to zero, i.e.,

Z
d3xT ti ¼ 0: ð6:24Þ

Having made this choice we can show that the dipole
moment

R
d3xxiT tt is constant. We can thus perform a

translation to set this to zero, i.e.,
Z

d3xxiT tt ¼ 0: ð6:25Þ

If we expand the latter two equations in 1=c, then at
leading order we get

Z
d3xEð−2Þvi ¼ 0; ð6:26Þ

Z
d3xEð−2Þxi ¼ 0; ð6:27Þ

which simply state that the center of mass momentum is
zero and that the origin of our coordinate system coincides
with the center of mass and so the dipole moment of the
mass distribution is zero. We can always use Galilei boosts
and translations to achieve this. At higher orders in 1=c we
get subleading boosts and translations (as unfixed diffeo-
morphisms) that can be used to set

Z
d3xT 0i

ðnÞ ¼ 0; ð6:28Þ
Z

d3xxiT tt
ðnÞ ¼ 0; ð6:29Þ

where T tt
ðnÞ is the coefficient of c−n in the 1=c expansion

of T μν.

C. Matching to 0.5PN

We start with the Newtonian order. From the near zone
metric we know that we have for the tt component

gtt¼−c2þ2UþOðc−2Þ; U¼G
Z

d3x0
Eð−2Þðt;x0Þ
jx−x0j :

ð6:30Þ

From the 1=c expansion of the exterior metric at orderGwe
know that

gtt ¼ −c2 þ 2G
X∞
l¼0

1

l!
∂Lr−1∂tU

½1�ð0Þ
L ðtÞ

−
2G
c

∂
2
t Uð0ÞðtÞ þOðc−2Þ; ð6:31Þ

where we used (6.5). Comparing the two results leads to

X∞
l¼0

1

l!
∂Lr−1∂tU

½1�ð0Þ
L ðtÞ ¼

Z
d3x0

Eð−2Þðt; x0Þ
jx − x0j : ð6:32Þ

For the integral on the right-hand side, the point x is in the
overlap region and the point x0 is inside the matter
distribution. We can thus expand

1

jx−x0j¼
1

r
−x0i∂i

1

r
þ1

2
x0ix0j∂i∂j

1

r
þ���¼

X∞
l¼0

ð−1Þl
l!

∂L
1

r
:

ð6:33Þ

Hence, Eq. (6.32) tells us that

∂tU
½1�ð0Þ
L ¼ ð−1Þl

Z
d3x0x0hLiEð−2Þðt; x0Þ; ð6:34Þ

where the hi denotes the symmetric trace-free combination
of the indices inside.
We thus see that the ∂tU

½1�ð0Þ
L ðtÞ are related to the

multipole moments of the mass distribution. Furthermore,
since the PN near zone metric has no term at order c−1 in
the expansion of gtt we conclude that ∂2t U½1�ð0Þ ¼ 0, which
means that the total mass as measured by

R
d3x0Eð−2Þðt; x0Þ

is constant. This also follows from the leading order
fluid conservation equation given by the four-divergence
of (D10a) and (D10b). We see that this has the effect of
removing the term proportional to r2 at order c−3 making
the entire c−3 term in (6.5) harmonic.
Further below we will often denote the constant total

mass by M, so we have

M ¼ ∂tU½1�ð0Þ ¼
Z

d3x0Eð−2Þðt; x0Þ: ð6:35Þ

Furthermore, as we discussed in the previous subsection,
we will choose inertial coordinates for which the mass
dipole moment vanishes, so that

∂tU
½1�ð0Þ
i ¼ −

Z
d3x0x0iEð−2Þðt; x0Þ ¼ 0: ð6:36Þ

We next consider the ti component of the metric. From
the exterior solution we know that this is given by
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Gð∂tW½1�
i þ ∂iW½1�Þ at order G. We know from the 1=c expansion that at order c0 the metric gti is simply zero. However,

from the matching of the tt component we know thatW½1� starts at order c0. This means thatW½1�
i must also start at order c0

in order that we can have a cancellation at order c0 between the ∂tW
½1�
i and ∂iW½1� terms. The 1=c expansion ofW½1�

i follows

from (6.5), and we will denote the multipole moments by V ½1�
i;L. Explicitly, we have

W½1�
i ¼

X∞
l¼0

1

l!
∂Lr−1V

½1�ð0Þ
i;L ðtÞ − 1

c
∂tV

½1�ð0Þ
i ðtÞ þ 1

2c2
X∞
l¼0

1

l!
∂Lr∂2t V

½1�ð0Þ
i;L ðtÞ

þ 1

c2
X∞
l¼0

1

l!
∂Lr−1V

½1�ð2Þ
i;L ðtÞ − 1

6c3
ðr2∂3t V ½1�ð0Þ

i ðtÞ þ 2xj∂3t V
½1�ð0Þ
i;j ðtÞÞ − 1

c3
∂tV

½1�ð2Þ
i ðtÞ þOðc−4Þ; ð6:37Þ

where we also 1=c expanded V ½1�
i;L in even powers of 1=c.

In order that the c0 contribution from ∂tW
½1�
i cancels the

one from ∂iW½1� we need that

X∞
l¼0

1

l!
∂Lr−1∂tV

½1�ð0Þ
i;L ðtÞ ¼ −∂i

X∞
l¼0

1

l!
∂Lr−1U

½1�ð0Þ
L ðtÞ: ð6:38Þ

At low multipole moments this implies that we have

∂tV
½1�ð0Þ
i ¼ 0; ð6:39Þ

∂tV
½1�ð0Þ
i;j ¼ −U½1�ð0Þδij; ð6:40Þ

∂tV
½1�ð0Þ
i;jk ¼−

�
δijU

½1�ð0Þ
k þδikU

½1�ð0Þ
j −

2

3
δjkU

½1�ð0Þ
i

�
: ð6:41Þ

At a general order this is solved by

∂tV
½1�ð0Þ
i;i1���ilþ1

¼ −ðlþ 1Þδihilþ1
U½1�ð0Þ

i1���ili: ð6:42Þ

From Eq. (6.39) we learn that W½1�
i is zero at order c−1.

Since the same is true for W½1� we immediately see that
there cannot be anything at 0.5PN. In other words we

have ∂tW
½1�
i þ ∂iW½1� ¼ Oðc−2Þ.

Finally, we turn to the ij components. We know from the
1=c expansion that at order c0 this is just δij. At the same

time W½1�
i has terms at order c0 so we need to ensure that

W½1�
ij ðTTÞ þG½1�

ij has an order c0 term that cancels the one

from ∂iW
½1�
j þ ∂jW

½1�
i . For the time being we will consider

the sumW½1�
ij ðTTÞ þ G½1�

ij . We know that this solves the free
wave equation so we have the following 1=c expansion:

W½1�
ij ðTTÞ þ G½1�

ij ¼
X∞
l¼0

1

l!
∂Lr−1Z

½1�ð0Þ
ij;L ðtÞ − 1

c
∂tZ

½1�ð0Þ
ij ðtÞ þ 1

2c2
X∞
l¼0

1

l!
∂Lr∂2t Z

½1�ð0Þ
ij;L ðtÞ

þ 1

c2
X∞
l¼0

1

l!
∂Lr−1Z

½1�ð2Þ
ij;L ðtÞ − 1

6c3
ðr2∂3t Z½1�ð0Þ

ij ðtÞ þ 2xk∂3t Z
½1�ð0Þ
ij;k ðtÞÞ − 1

c3
∂tZ

½1�ð2Þ
ij ðtÞ þOðc−4Þ; ð6:43Þ

wherewe followed the same steps as with the 1=c expansions

of W½1� and W½1�
i . To get the right cancellation between

W½1�
ij ðTTÞ þG½1�

ij and ∂iW
½1�
j þ ∂jW

½1�
i , we require that

X∞
l¼0

1

l!
∂Lr−1Z

½1�ð0Þ
ij;L ðtÞ¼−∂i

X∞
l¼0

1

l!
∂Lr−1V

½1�ð0Þ
j;L ðtÞþði↔ jÞ:

ð6:44Þ

For low multipole moments this equation leads to

Z½1�ð0Þ
ij ¼ 0; ð6:45Þ

Z½1�ð0Þ
ij;k ¼ −δikV

½1�ð0Þ
j − δjkV

½1�ð0Þ
i ; ð6:46Þ

Z½1�ð0Þ
ij;kl ¼ −2ðV ½1�ð0Þ

j;hk δlii þ V ½1�ð0Þ
i;hk δlijÞ: ð6:47Þ

For general l we have

Z½1�ð0Þ
ij;i1���il ¼ −ðlþ 1Þðδihilþ1

V ½1�ð0Þ
jjj;i1���ili þ δjhilþ1

V ½1�ð0Þ
jij;i1���iliÞ:

ð6:48Þ

We still need to ensure that W½1�
ij ðTTÞ þG½1�

ij satisfies the

properties that we have derived earlier, i.e., thatW½1�
ij ðTTÞ is
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a TT solution to the free wave equation and G½1�
ij obeys

(5.119) and (5.120). Since W½1�
ij ðTTÞ is TT the sum

W½1�
ij ðTTÞ þG½1�

ij also obeys (5.119) and (5.120).
Furthermore, since at order c0 we have

ðW½1�
ij ðTTÞþG½1�

ij ÞjOðc0Þ ¼
X∞
l¼0

1

l!
∂Lr−1Z

½1�ð0Þ
ij;L ðtÞ

¼−ð∂iW½1�
j þ∂jW

½1�
i ÞjOðc0Þ; ð6:49Þ

property (5.120) becomes ∂2W½1�
j jOðc0Þ ¼ 0 which is auto-

matically fulfilled. Next we consider property (5.119). The

second time derivative of Z½1�ð0Þ
ij;L can be evaluated using

(6.42) and (6.34), and in order for this to be TT we need

∂
2
t Z

½1�ð0Þ
ihj;i1���ili ¼ 0: ð6:50Þ

Using Eq. (6.42) this can be shown to be satisfied. The part

of Z½1�ð0Þ
ij;i1���il that satisfies Z½1�ð0Þ

ihj;i1���ili ¼ 0 and that is further-
more trace-free with respect to ij can be attributed to

W½1�
ij ðTTÞjOðc0Þ. The trace of Z½1�ð0Þ

ij;i1���il with respect to ij is

zero if and only if V ½1�ð0Þ
hi;i1���ili ¼ 0. An example of such a term

is given by

Z½1�ð0Þ
ij;kl ¼ δikV

½1�ð0Þ
½l;j� þ δjkV

½1�ð0Þ
½l;i� þ δilV

½1�ð0Þ
½k;j� þ δjlV

½1�ð0Þ
½k;i�

−
2

3

�
δikδjl þ δjkδil −

2

3
δijδkl

�
V ½1�ð0Þ
n;n ; ð6:51Þ

which is traceless with respect to ij and satis-

fies Z½1�ð0Þ
ihj;kli ¼ 0.

From Eq. (6.45) it follows that the order c−1 term in
(6.43) vanishes so that gij ¼ δij þOðc−2Þ.
The results of this subsection are in agreement with the

comments made in Sec. III C [see below Eq. (3.43)]
regarding asymptotic flatness in Newtonian gravity and
at 0.5PN order. Sufficiently close to the matter source we
can ignore retardation effects. Far away from it we cannot
but they do not invalidate the assumption of asymptotic
flatness at 0PN and 0.5PN order from the point of view of a
near zone observer.

D. Matching to 1.5PN

We now move on to the 1PN and 1.5PN metric.
Einstein’s field equations at 1PN order are given by
Eqs. (4.65)–(4.67) for n ¼ 2, which using the results of
Secs. IV B and IV C can be shown to be

∂
2hð2Þij ¼ −8πGEð−2Þδij; ð6:52Þ

∂
2τð4Þi ¼ −16πGEð−2Þvi; ð6:53Þ

∂
2τð4Þt ¼ 4πGðEð0Þ þ 3Pð0Þ þ 2Eð−2Þv2Þ þ

1

2
∂
2ðτð2Þt Þ2

þ ∂
2
t τ

ð2Þ
t þ hð2Þij ∂i∂jτ

ð2Þ
t : ð6:54Þ

The 0PN solution is τð2Þt ¼ −U where U is defined in
Eq. (3.26). Using the 1=c expansion of the fluid equations
given in Appendix D we can rewrite this as

∂
2hð2Þij ¼ −8πGT tt

ð0Þδij; ð6:55Þ

∂
2τð4Þi ¼ −16πGT ti

ð0Þ; ð6:56Þ

∂
2τð4Þt ¼ 4πGðT tt

ð2Þ þ T ii
ð0ÞÞ þ

5

2
∂
2U2

− ∂
2
t U − ðhð2Þij − 2UδijÞ∂i∂jU; ð6:57Þ

where (6.52) tells us that hð2Þij − 2Uδij is harmonic.
At 1.5PN order the Einstein equations are (4.65)–(4.67)

for n ¼ 3. Using the results of Secs. IV B and IV C we have
in harmonic gauge

∂
2hð3Þij ¼ 0; ð6:58Þ

∂
2τð5Þi ¼ 0; ð6:59Þ

∂
2τð5Þt ¼ 0: ð6:60Þ

If we solve (6.52) and (6.53) the most general solution is
given by

hð2Þij ¼ 2Uδij þHð2Þ
ij ; ð6:61Þ

τð4Þi ¼ 4G
Z

d3x0
ðEð−2ÞviÞðt; x0Þ

jx − x0j þHð4Þ
i ¼ 4Ui þHð4Þ

i ;

ð6:62Þ

where Hð2Þ
ij and Hð4Þ

i are near zone harmonics, and where
the second equality definesUi. The solution is first order in
G and must therefore be matched by a homogeneous
solution in the exterior zone. From the results of
Sec. VI A we know that the harmonic functions that come
from the 1=c expansion of the homogeneous part of the
exterior metric only show up at odd orders in 1=c. So using
that 1PN is an even order in 1=c we conclude that

Hð2Þ
ij ¼ 0; Hð4Þ

i ¼ 0: ð6:63Þ
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Using this we see that the last term in (6.57) vanishes. With

this extra information the most general solution for τð4Þt is
given by

τð4Þt ¼ −G
Z

d3x0
ðEð0Þ þ 3Pð0Þ þ 2Eð−2Þðv2 þUÞÞðt; x0Þ

jx − x0j
−
1

2
∂
2
t X þ 1

2
U2 þHð4Þ; ð6:64Þ

whereHð4Þ is a near zone harmonic, and where the integral
is over the matter source.
Furthermore, X is the superpotential given by

Xðt; xÞ ¼ G
Z

Eð−2Þðt; x0Þjx − x0jd3x0: ð6:65Þ

The superpotential obeys the defining equation

∂
2X ¼ 2U: ð6:66Þ

To see how we arrive at this, consider first the most general
solution to (6.66) given by

Xðx; tÞ ¼ −
1

2π

Z
ΩR⋆

d3x0
Uðt; x0Þ
jx − x0j þ X0ðx; tÞ; ð6:67Þ

where X0ðx; tÞ is a harmonic function and ΩR⋆
is a ball of

radius R⋆ centered around the origin and containing x.
The integrand is noncompact and the integral diverges as
we send R⋆ to infinity. However, this divergence
can be removed by a judicious choice of X0 as is well-
known.29 This is an example of a type 3 integral (see
Sec. III).
To find X0 first consider the identity

1

2

Z
ΩR⋆

d3x0∂0i

�
∂
0
ijx − x0j
jy − x0j − jx − x0j∂0i

1

jy − x0j
�

¼
Z
ΩR⋆

d3x0

jx − x0jjy − x0j þ 2πjx − yj; ð6:68Þ

where we used

∂
2jx − x0j ¼ 2

jx − x0j : ð6:69Þ

Using this we obtain

Xðx; tÞ ¼ −
G
2π

Z
d3y

Z
ΩR⋆

d3x0
Eð−2Þðt; yÞ

jy − x0jjx − x0j þ X0ðx; tÞ

¼ G
Z

Eð−2Þðt; yÞjy − xjd3yþ X0ðx; tÞ

−
G
4π

Z
d3y

Z
ΩR⋆

d3x0Eð−2Þðt; yÞ∂0i
�
∂
0
ijx − x0j
jy − x0j − jx − x0j∂0i

1

jy − x0j
�
: ð6:70Þ

All the y-integrals are over the compact source. The second
line is a harmonic function of x so we can choose X0 to
cancel this function that leads to the result (6.65). It can be
checked that the harmonic function diverges linearly with
R⋆ for large R⋆.
From the 1=c expansion we know that to 1PN gtt is

given by

gtt ¼ −c2 þ 2U −
2

c2

�
τð4Þt þ 1

2
U2

�
þOðc−3Þ: ð6:71Þ

This expression contains terms that are order G2 so in order
to match this onto the exterior solution we need to know the
latter to orderG2 (at least for as much as the tt component is
concerned). To order G2 the exterior solution is

gtt¼−c2þ2G∂tW½1� þ2G2

c2
∂tW½2�

−
G2

4π

Z
E
d3x0

S½2�tt ðt− jx−x0j=c;x0Þ
jx−x0j þOðG3Þ; ð6:72Þ

where we rescaled W½2� with a factor of c−2 since W½1�

already matches onto the 0PN metric, and where S½2�tt is

defined by □h½2�tt ¼ S½2�tt where according to Eq. (5.140) we
have

29In fact, the divergent terms get annihilated by ∂
2
t in the

expression for τð4Þt .
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S½2�tt ¼ −
1

c2
∂kh

½1�
tt ∂kh

½1�
tt þ h½1�kl ∂hklih

½1�
tt þ 2

c4
h½1�tt ∂

2
t h

½1�
tt

þ 4

c4
∂th

½1�
tt ∂th

½1�
tt −

2

c2
h½1�kt ∂k∂th

½1�
tt þ 2∂½kh

½1�
l�t∂kh

½1�
lt :

ð6:73Þ
We now wish to 1=c expand the right-hand side.
We know from the matching at 0PN and 0.5PN that the

near zone metric is such that git ¼ Oðc−2Þ and
gij ¼ δij þOðc−2Þ. Using (6.61) and (6.63) we also know
that the ij components of the near zone metric at order c−2

is pure trace. We thus conclude that h½1�it ¼ Oðc−2Þ and

h½1�hiji ¼ Oðc−4Þ. Furthermore, from the matching of the tt
component at 0PN and 0.5PN we derive that

h½1�tt ¼ 2G−1U þOðc−2Þ. Thus, expanding the right-hand
side of (6.73) in 1=c we see that

S½2�tt ¼ −
1

G2c2
∂kU∂kU þOðc−4Þ: ð6:74Þ

The tt component of the 1PNmatching equation becomes

−
2

c2

�
τð4Þt þ 1

2
U2

�
¼ 2G

c2
∂tW½1�

���
Oðc−2Þ

þ 2G2

c2
∂tW½2�

���
Oðc0Þ

þ 1

πc2

Z
E
d3x0

ð∂0kU∂
0
kUÞðt; x0Þ

jx − x0j ;

ð6:75Þ

where W½1�jOðc−2Þ denotes the coefficient of 1=c2 in the 1=c

expansion of W½1� as given in (6.5). Likewise, W½2�jOðc0Þ
denotes the coefficient of c0 in the 1=c expansion of W½2�.
We can rewrite the last integral in (6.75) as

1

πc2

Z
E
d3x0

ð∂0kU∂
0
kUÞðt; x0Þ

jx − x0j ¼ 1

2πc2

Z
E
d3x0

∂
02U2ðt; x0Þ
jx − x0j

¼ 1

2πc2

Z
R3

d3x0
∂
02U2ðt; x0Þ
jx − x0j −

1

2πc2

Z
I
d3x0

∂
02U2ðt; x0Þ
jx − x0j

¼ −
2

c2
U2 þ 1

2πc2

Z
E
d3x0∂0i

�
∂
0
iU

2ðt; x0Þ −U2ðt; x0Þ xi−x0i
jx−x0j2

jx − x0j
�
; ð6:76Þ

where in the first equality we used that ∂2U ¼ 0 for x∈ E and in the second equality we simply used that R3 is the disjoint
union of E and I . In the last equality30 we used that x is an interior point of E. The last term in (6.76) can be absorbed into
the 1=c expansion of the boundary term in the particular solution (6.12) and so will be dropped.
With this result we see that the matching equation in (6.75) becomes

2G
c2

Z
d3x0

ðEð0Þ þ 3Pð0Þ þ 2Eð−2Þv2 þ 2Eð−2ÞUÞðx0Þ
jx − x0j þ 1

c2
∂
2
t X −

2

c2
Hð4Þ ¼ 2G

c2
∂tW½1�jOðc−2Þ þ

2G2

c2
∂tW½2�jOðc0Þ: ð6:78Þ

Since the right-hand side cannot give rise to near zone
regular harmonic functions (as we are at even orders in
1=c), we conclude that

Hð4Þ ¼ 0: ð6:79Þ
From the general result (6.5) we know that

W½1�jOðc−2Þ ¼
1

2

X∞
l¼0

1

l!
∂Lr∂2t U

½1�ð0Þ
L ðtÞþ

X∞
l¼0

1

l!
∂Lr−1U

½1�ð2Þ
L ðtÞ;

ð6:80Þ

W½2�jOðc0Þ ¼
X∞
l¼0

1

l!
∂Lr−1U

½2�ð0Þ
L : ð6:81Þ

Using Eqs. (6.5) and (6.34) from the matching at the
Newtonian order we can write31

30We also used that

−
1

2πc2

Z
I
d3x0

∂
02U2ðt;x0Þ
jx−x0j

¼−
1

2πc2

Z
I
d3x0∂0i

�
∂
0
iU

2ðt;x0Þ
jx−x0j −U2ðt;x0Þ∂0i

1

jx−x0j
�
: ð6:77Þ

31In deriving this we used

jx − x0j ¼
X∞
l¼0

ð−1Þl
l!

xL∂Lr

¼
X∞
l¼0

ð−1Þl
l!

xhLi∂Lrþ
1

3
x02r−1 −

1

5
x02x0i∂ir−1 þ � � � ;

ð6:82Þ

where the dots denote higher multipole terms.
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∂tW½1�jOðc−2Þ ¼
1

2G
∂
2
t X þ 1

2

�
−
1

3
r−1∂2t

Z
d3x0x02Eð−2Þðt; x0Þ þ

1

5
∂ir−1∂2t

Z
d3x0x02x0iEð−2Þðt; x0Þ þ � � �

�
þ
X∞
l¼0

1

l!
∂Lr−1∂tU

½1�ð2Þ
L ;

ð6:83Þ

where the dots denote higher multipole moments. If we consider the monopole term in the multipole expansion of the
matching Eq. (6.78) we find

∂tU½1�ð2Þ þG∂tU½2�ð0Þ ¼ þ
Z

d3xðEð0Þ þ 3Pð0Þ þ 2Eð−2Þv2 þ 2Eð−2ÞUÞ þ 1

6
∂
2
t

Z
d3xx2Eð−2Þ: ð6:84Þ

We are particularly interested in this term since this is what
is needed to fix the 1.5PN term as we will show now.
At 1.5PN order the tt component of the exterior metric

reads

2G∂tW½1�jOðc−3Þ þ
2G2

c2
∂tW½2�jOðc−1Þ: ð6:85Þ

Using Eq. (6.5) this is equal to

−
2G
3c3

xi∂4t U
½1�ð0Þ
i ðtÞ − 2G

c3
∂
2
t U½1�ð2Þ −

2G2

c3
∂
2
t U½2�ð0Þ; ð6:86Þ

where we used that ∂2t U½1�ð0ÞðtÞ ¼ 0. From the PN expan-

sion we know that the 1.5PN metric is given by −2c−3τð5Þt .
Since we use coordinates for which the mass dipole

moment is zero, i.e., ∂tU
½1�ð0Þ
i ðtÞ ¼ 0, we conclude that

τð5Þt ¼ G∂2t U½1�ð2Þ þ G2
∂
2
t U½2�ð0Þ: ð6:87Þ

Equation (6.84) then tells us that

τð5Þt ¼ G
6
∂
3
t

Z
d3xx2Eð−2Þ þ G∂t

Z
I
d3xðEð0Þ

þ 3Pð0Þ þ 2Eð−2Þv2 þ 2Eð−2ÞUÞ: ð6:88Þ

We thus see that τð5Þt only depends on time and is thus
harmonic (as it should be). Using the fluid conservation
equations from Appendix D we can simplify the expression

for τð5Þt to

τð5Þt ¼ 2G
3

∂
3
t

Z
d3xx2Eð−2Þ: ð6:89Þ

To 1.5PN we thus have for gtt

gtt ¼ −c2 þ 2G
Z

d3x0
Eð−2Þðt; x0Þ
jx − x0j þ 2G

c2

Z
d3x0

ðEð0Þ þ 3Pð0Þ þ Eð−2Þð2v2 þ 2UÞÞðt; x0Þ
jx − x0j

þ 1

c2
∂
2X −

2

c2
U2 −

2

c3
τð5Þt þOðc−4Þ ð6:90Þ

¼ −c2 þ 2G
Z

d3x0
Eð−2Þðt − jx − x0j=c; x0Þ

jx − x0j þ 2G
c2

Z
d3x0

ðEð0Þ þ 3Pð0Þ þ Eð−2Þð2v2 þ 2UÞÞðt − jx − x0j=c; x0Þ
jx − x0j

−
2

c2
U2 þOðc−4Þ; ð6:91Þ

where in the second way of writing gtt we have used retarded potentials.
32 We thus see that the superpotential X and τð5Þt can

be viewed as originating from retardation effects. The first term in (6.88) can be shown to be a 1.5PN retardation effect of

32We used the following 1=c expansion of the retarded Newtonian potential:

G
Z

d3x0
E−2ðt − jx − x0j=c; x0Þ

jx − x0j ¼ U −
G
c
∂t

Z
d3x0E−2ðt; x0Þ þ

1

2

G
c2

∂
2
t

Z
d3x0E−2ðt; x0Þjx − x0j

−
1

6

G
c3

∂
3
t

Z
d3x0E−2ðt; x0Þjx − x0j2 þOðc−4Þ

¼ U þ 1

2

1

c2
∂
2
t X −

1

6

G
c3

∂
3
t

Z
d3x0E−2ðt; x0Þx02 þOðc−4Þ; ð6:92Þ

where we used that ∂t
R
d3x0E−2ðt; x0Þ ¼ 0 and

R
d3x0x0iE−2ðt; x0Þ ¼ 0.
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the 0PN term and the second is a 0.5PN retardation effect of
the 1PN term. The potentialU does not give rise to a 0.5PN
retardation term due to the total mass being constant and
thus the U2 term does not have a retardation effect at 1.5PN
order.
Before continuing the matching process for the

other components we note that there is a certain asymmetry
in the 1=c and G expansions. When we expand in 1=c, we
expand all variables (both metric and fluid). However,
when we expand in G, we only expand the metric. This is
because the exterior zone metric solves the vacuum
Einstein equations. However, when we perform the match-
ing, one might wonder whether we should have expanded
the fluid variables in G as well (and we know that they
must depend on G because the fluid conservation

equations33 contain terms proportional to G). This asym-
metry comes about because we are treating the G depend-
ence of the fluid variables as implicit and in the matching
process we only match explicit G-dependent terms. So
when we expand the exterior zone metric we simply say

that the coefficients h½n�μν should not have any explicit G
dependence.
Next, we consider the ti components of the metric. From

the near zone and exterior metric we know that at order c−2

we must have

−
1

c2
τð4Þi ¼ G

c2
ð∂tW½1�

i þ ∂iW½1�ÞjOðc−2Þ: ð6:94Þ

Hence, using (6.5) we derive the condition

−4
Z

d3x0
ðEð−2ÞviÞðx0Þ

jx − x0j ¼ 1

2

X∞
l¼0

1

l!
∂Lr∂3t V

½1�ð0Þ
i;L þ

X∞
l¼0

1

l!
∂Lr−1∂tV

½1�ð2Þ
i;L þ 1

2
∂i

X∞
l¼0

1

l!
∂Lr∂2t U

½1�ð0Þ
L þ ∂i

X∞
l¼0

1

l!
∂Lr−1U

½1�ð2Þ
L ;

ð6:95Þ

where we used the solution for τð4Þi given in (6.62) and
(6.63). If we multipole expand the left-hand side, then the
monopole term from this equation tells us that

∂tV
½1�ð2Þ
i ¼ −4

Z
d3xEð−2Þvi ¼ 0; ð6:96Þ

where we used Eqs. (6.39)–(6.41) as well as the fact that

∂
2
t U½1�ð0Þ ¼0¼∂tU

½1�ð0Þ
i [see Eqs. (6.35) and (6.36)], and

(6.26).
At 1.5PN order the ti component of the matching

equation is

−
1

c3
τð5Þi ¼ G

c3
ð∂tW½1�

i þ ∂iW½1�ÞjOðc−3Þ; ð6:97Þ

which can be seen to simplify to

τð5Þi ¼ G∂2t V
½1�ð2Þ
i ¼ 0: ð6:98Þ

Finally, we consider the ij component of the metric. At
order c−2 the matching equation reads

1

c2
hð2Þij ¼ G

c2
ðW½1�

ij ðTTÞ þ G½1�
ij þ ∂iW

½1�
j þ ∂jW

½1�
i ÞjOðc−2Þ:

ð6:99Þ

Using the solution for hð2Þij given in Eqs. (6.62) and (6.63),
and using furthermore (6.5) and (6.43), this becomes

2Uδij ¼ GðW½1�
ij ðTTÞ þ G½1�

ij þ ∂iW
½1�
j þ ∂jW

½1�
i ÞjOðc−2Þ;

ð6:100Þ

where

W½1�
i jOðc−2Þ ¼

1

2

X∞
l¼0

1

l!
∂Lr∂2t V

½1�ð0Þ
i;L þ

X∞
l¼0

1

l!
∂Lr−1V

½1�ð2Þ
i;L ;

ð6:101Þ

ðW½1�
ij ðTTÞ þ G½1�

ij ÞjOðc−2Þ ¼
1

2

X∞
l¼0

1

l!
∂Lr∂2t Z

½1�ð0Þ
ij;L

þ
X∞
l¼0

1

l!
∂Lr−1Z

½1�ð2Þ
ij;L : ð6:102Þ

The monopole term in (6.100) can be evaluated using
Eqs. (6.45)–(6.47) as well as (6.39) and (6.40) leading to

1

4
∂k∂lr∂2t Z

½1�ð0Þ
ij;kl þr−1Z½1�ð2Þ

ij þ1

2
∂i∂kr∂2t V

½1�ð0Þ
j;k þ1

2
∂j∂kr∂2t V

½1�ð0Þ
i;k

¼2∂tU½1�ð0Þr−1δij: ð6:103Þ

33For example, the 0PN fluid equations are given by ∂tT tν
ð0Þ þ

∂iT iν
ð0Þ ¼ 0 where T μν

ð0Þ is given in Appendix D. Explicitly, these
equations are

∂tEð−2Þ þ∂iðEð−2ÞviÞ¼0; ∂tviþvj∂jviþ
1

Eð−2Þ
∂iPð0Þ ¼−∂iU:

ð6:93Þ

The right-hand side of the second equation is order G. Hence, the
solution for the fluid variables featuring in these equations must
contain terms that are at least order G0 and order G.
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Using that [see Eqs. (6.47) and (6.40)]

∂
2
t Z

½1�ð0Þ
ij;kl ¼ 2∂tU½1�ð0Þ

�
δikδjl þ δjkδil −

2

3
δijδkl

�
; ð6:104Þ

we obtain

Z½1�ð2Þ
ij ¼ 8

3
δij∂tU½1�ð0Þ; ð6:105Þ

where ∂tU½1�ð0Þ is the total mass of the source. We then find

ðW½1�
ij ðTTÞ þ G½1�

ij ÞjOðc−2Þ ¼ ∂tU½1�ð0Þ½∂i∂jrþ 2δijr−1� þ � � � ;
ð6:106Þ

where the dots denote higher multipole moments. This
agrees with the c−2 terms in the expression we found for the
linearised Schwarzschild solution in isotropic coordinates
(5.133). It obeys the properties (5.119) and (5.120).
At 1.5PN the matching equation is

1

c3
hð3Þij ¼ G

c3
ðW½1�

ij ðTTÞ þ G½1�
ij þ ∂iW

½1�
j þ ∂jW

½1�
i ÞjOðc−3Þ:

ð6:107Þ

Using Eqs. (6.37) and (6.43) and the results obtained above

we find that

hð3Þij ¼ 0: ð6:108Þ

We point out that the vanishing of τð5Þi and hð3Þij is
consistent with the interpretation that the low odd orders in
1=c (at least to 2.5PN) are entirely due to retardation

effects. Since τð4Þi and hð2Þij involve moments of conserved
quantities (momentum and mass, respectively) it follows
from the Taylor expansion of the corresponding retarded
potentials (where in the integrands we replace t by

t − jx − x0j=c) that τð5Þi and hð3Þij must vanish.

VII. NEAR ZONE METRIC TO 2.5PN

In this section we go one and a half PN order higher in
the determination of the near zone metric.

A. Solving the near zone equations of motion

To determine the near zone metric at 2PN and 2.5PN
order we consider the 1=c expanded Einstein equa-
tions (4.65)–(4.67) for n ¼ 4, 5. The source terms are
given in Secs. IV B and IV C. Using the results from the

previous section, in particular that τð5Þi ¼ 0 ¼ hð3Þij as well

as hð2Þij ¼ 2Uδij, the near zone PDEs in harmonic gauge are

∂
2hð4Þij ¼ −16πGEð−2Þðvivj þ δijUÞ − 8πGðEð0Þ − Pð0ÞÞδij − 4∂iU∂jU þ 2δij∂

2U2 þ 2δij∂
2
t U; ð7:1Þ

∂
2τð6Þi ¼ −16πG

�
−Eð−2ÞUi þ Eð−2Þvið2Þ þ

�
1

2
Eð−2Þv2 þ 4Eð−2ÞU þ Eð0Þ þ Pð0Þ

�
vi
�

þ 8∂kU∂kUi − 16∂kU∂iUk − 12∂iU∂tU þ 4∂2t Ui; ð7:2Þ

∂
2τð6Þt ¼ 4πG½Eð−2Þðτð4Þt þ 4vkð2Þv

k þ 2Uð3v2 þ 2UÞÞ þ Eð0ÞðU þ 2v2Þ
þ Pð0Þð3U þ 2v2Þ þ Eð2Þ þ 3Pð2Þ� − 8ð∂jUk∂jUk − ∂jUk∂kUjÞ

− 8Uk∂t∂kU −
11

2
∂kU∂kU2 þ 2∂2U3 − 7∂tU∂tU − 4U∂t∂tU

− hð4Þkl ∂k∂lU − 2∂kU∂kτ
ð4Þ
t þ ∂

2
t τ

ð4Þ
t : ð7:3Þ

Similarly, we find that the 2.5PN equations of motion are

∂
2hð5Þij ¼ 0; ð7:4Þ

∂
2τð7Þi ¼ 0; ð7:5Þ

∂
2τð7Þt ¼∂

2
t τ

ð5Þ
t −hð5Þkl ∂k∂lUþ4πGðEð−2Þτ

ð5Þ
t þEð3ÞÞ: ð7:6Þ

All these field equations are consistent with the 2.5PN
metric given in [28].
To solve for hð4Þij in Eq. (7.1) we start by applying the

diagnostics of Sec. IV D to the noncompact source terms.
These are ∂iU∂jU, ∂2U2, and ∂

2
t U. The first two of these

sources go as r−4 for large r, and so there are no issues with
extending the range of the Poisson integral over all of R3.
The noncompact source ∂2t U is one we already encountered

when solving for τð4Þt , and this leads to a superpotential X
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contribution to the solution for hð4Þij . The solution for h
ð4Þ
ij is

then given by

hð4Þij ¼ 2U2δij þ ∂
2
t Xδij þ 4P½∂iU∂jU�

þ 8πGP½ðEð0Þ − Pð0Þ þ 2Eð−2ÞUÞδij þ 2Eð−2Þvivj�;
ð7:7Þ

where we have introduced the following notation:

P½S� ¼ 1

4π

Z
R3

d3x0
Sðt; x0Þ
jx − x0j : ð7:8Þ

In principle we could add a harmonic function to Eq. (7.7)
that is regular in the interior. However, we know from the
argument given at the start of Sec. VI [below Eq. (6.20)]
that such a function cannot occur at this order in the exterior
solution, and so we must set it equal to zero.
We continue with the discussion of the noncompact

source terms by looking at the equation for τð6Þi . All the
noncompact source terms are written on the second line in
(7.2). Using that Ui, which is defined in (6.62) and (6.63),
goes as r−1 for large r we see that the first two terms, i.e.,
∂kU∂kUi and ∂kU∂iUk, go as r−4 and so are well-behaved.
The third term ∂iU∂tU is naively Oðr−3Þ but since U is the
Poisson integral of a conserved quantity (the mass), the

monopole term is constant in time. Furthermore, we chose
coordinates such that the mass dipole moment is zero. This
means that ∂tU actually goes as r−3 and so ∂iU∂tU is also
well-behaved. This leaves us with ∂

2
t Ui which naively

goes as r−1. However, just as U, the quantity Ui involves
the Poisson integral of a conserved quantity, namely the
momentum. So, analogous to the introduction of the
superpotential X [see below (6.65)], we define

Xi ¼ G
Z

d3x0jx − x0jðEð−2ÞviÞðt; x0Þ; ð7:9Þ

which satisfies

∂
2Xi ¼ 2Ui: ð7:10Þ

The argument leading to the existence ofXi is identical to the
case of X. The most general solution to (7.10) is given by

Xi ¼ −
1

2π

Z
ΩR⋆

d3x0
Uiðt; x0Þ
jx − x0j þ X0

i ; ð7:11Þ

where X0
i is harmonic and where ΩR⋆

is a ball of radius R⋆
with the center at 0. Using the identity (6.68) we can show
that there exists anX0

i such that we get (7.9).We thus find the

following solution for τð6Þi :

τð6Þi ¼ 16πGP

�
−Eð−2ÞUi þ Eð−2Þvið2Þ þ

�
1

2
Eð−2Þv2 þ 4Eð−2ÞU þ Eð0Þ þ Pð0Þ

�
vi
�

þ 2∂2t Xi − 4P½2∂kU∂kUi − 4∂kU∂iUk − 3∂iU∂tU�; ð7:12Þ

where again we do not add a near zone harmonic function
as we already know that these will be set to zero by the
matching.
We now turn to the equation for τð6Þt . If we consider the

right-hand side of (7.3), we see that the first three lines
consist of either compact source terms or noncompact
sources that decay fast enough for the Poisson integrals to
exist. That leaves us with the last line of (7.3). The trace

part of hð4Þij in hð4Þkl ∂k∂lU gives rise to a compact source.

Meanwhile, the traceless symmetric part of hð4Þij falls off like
r−1, so combined with the fact that ∂k∂lU goes as r−3, we

can conclude that the Poisson integral over hð4Þkl ∂k∂lU is

well-behaved. The next term is ∂kU∂kτ
ð4Þ
t but this also goes

as r−4 for large r where we used that τð4Þt goes as34 r−1. The

last term to consider is ∂2t τ
ð4Þ
t . The solution for τð4Þt is given

in (6.64). This means that

∂
2
t τ

ð4Þ
t ¼

Z
d3x0

C1ðt;x0Þ
jx−x0j þ

Z
d3x0jx−x0jC2ðt;x0Þþ

1

2
∂
2
t U2;

ð7:13Þ

where C1 and C2 denote terms with compact support given
by

C1 ¼ −G∂2t ðEð0Þ þ 3Pð0Þ þ 2Eð−2Þðv2 þUÞÞ; ð7:14Þ

C2 ¼ −
G
2
∂
4
t Eð−2Þ: ð7:15Þ

We know that 1
2
∂
2
t U2 goes as r−4 for r → ∞, and so the

Poisson integral for this term is well-behaved. For the
remaining two terms we use the following identity:

∂
2jx − x0jn ¼ nðnþ 1Þjx − x0jn−2; ð7:16Þ

to see that
34This uses the fact that ∂2t X goes as r−1, which follows from

mass conservation and the vanishing of the mass dipole moment.
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∂
2
t

�
τð4Þt −

1

2
U2

�
¼∂

2

�Z
d3x0

1

2
jx−x0jC1ðt;x0Þ

þ
Z

d3x0
1

12
jx−x0j3C2ðt;x0Þ

�
: ð7:17Þ

Thus, up to a harmonic function the Poisson integral of

∂
2
t ðτð4Þt − 1

2
U2Þ is equal to the term in square brackets on the

right-hand side of the above equation. So, even though the
Poisson integral

Z
ΩR⋆

d3x0
∂
2
t ðτð4Þt − 1

2
U2Þ

jx − x0j ; ð7:18Þ

is divergent in the limit R⋆ → ∞, Eq. (7.17) shows that
there exists a harmonic function such that when it is added
to the latter Poisson integral, the limit R⋆ → ∞ becomes
finite. Using this we can rewrite (7.3) as

∂
2

�
τð6Þt − 2U3 −

Z
d3x0

1

2
jx − x0jC1ðt; x0Þ −

Z
d3x0

1

12
jx − x0j3C2ðt; x0Þ

�

¼ 4πG½Eð−2Þðτð4Þt þ 4vkð2Þv
k þ 2Uð3v2 þ 2UÞÞ þ Eð0ÞðU þ 2v2Þ

þ Pð0Þð3U þ 2v2Þ þ 3Pð2Þ þ Eð2Þ� − hð4Þkl ∂k∂lU − 2∂kU∂kτ
ð4Þ
t þ 1

2
∂
2
t U2

− 8Uk∂t∂kU −
11

2
∂kU∂kU2 − 7∂tU∂tU − 4U∂t∂tU − 8ð∂jUk∂jUk − ∂jUk∂kUjÞ; ð7:19Þ

where now the Poisson integral of the right-hand side is convergent and so we find

τð6Þt ¼ 2U3 −
G
2
∂
2
t

Z
d3x0jx − x0jðEð0Þ þ 3Pð0Þ þ 2Eð−2Þðv2 þ UÞÞðt; x0Þ

−
G
24

∂
4
t

Z
d3x0jx − x0j3Eð−2Þðt; x0Þ þ P½hð4Þkl ∂k∂lU� þ 2P½∂kU∂kτ

ð4Þ
t �

−
1

2
P½∂2t U2� þ 8P½Uk∂t∂kU� þ 11

2
P½∂kU∂kU2� þ 7P½∂tU∂tU�

þ 4P½U∂t∂tU� þ 8P½∂jUk∂jUk − ∂jUk∂kUj�
− 4πGP½Eð−2Þðτð4Þt þ 4vkð2Þv

k þ 2Uð3v2 þ 2UÞÞ þ Eð0ÞðU þ 2v2Þ
þ Pð0Þð3U þ 2v2Þ þ 3Pð2Þ þ Eð2Þ�: ð7:20Þ

Last, we want to solve the equations for the 2.5PN metric
in (7.4)–(7.6). The first two equation are simply solved by a
harmonic function. For Eq. (7.6) we see that the first two
terms are noncompact. In Eq. (6.89) we found that τð5Þt is

just a function of time, and so the source term ∂
2
t τ

ð5Þ
t gives

rise to a biharmonic function, more specifically it is solved

by 1
6
r2∂2t τ

ð5Þ
t . Finally, for the term hð5Þkl ∂k∂lU we will assume

that hð5Þkl is only a function of time, which later in this
section is shown to be the case. Given this we can write

hð5Þkl ðtÞ∂k∂lU ¼ 1
2
∂
2ðhð5Þkl ðtÞ∂k∂lXÞ where X is the super-

potential. So, we end up with the following solution to the
2.5PN metric:

hð5Þij ¼ Hð5Þ
ij ; ð7:21Þ

τð7Þi ¼ Hð7Þ
i ; ð7:22Þ

τð7Þt ¼ 1

6
r2∂tτ

ð5Þ
t − 4πGP½Eð3Þ� −Uτð5Þt

−
1

2
hð5Þkl ðtÞ∂k∂lX þHð7Þ; ð7:23Þ

whereHð5Þ
ij , H

ð7Þ
i , andHð7Þ are the undetermined near zone

harmonics. The purpose for the rest of this section is to
determine these.

B. Exterior zone metric and matching to 2.5PN order

In Sec. VI we worked with the parametrization of the
homogeneous part of the exterior zone metric given in
(5.121)–(5.123). In this section we will (for the sake of
contrast) use the more conventional parametrization given
in Eqs. (1.6)–(1.10). We will use this to determine the near
zone harmonic functions to 2.5PN order.
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Equations (5.121)–(5.123) imply that the homogeneous part of hμν can be written as

hhomtt ¼ 2
X∞
l¼0

ð−Þl
l!

∂L

�
ILðuÞ
r

�
þ 8

c2
X∞
l¼0

ð−Þl
l!

∂L

�
ẆLðuÞ

r

�
; ð7:24aÞ

hhomit ¼ 4

c2
X∞
l¼1

ð−Þl
l!

�
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r
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þ 4
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ð−Þl
l!

∂iL

�
WLðuÞ

r

�
−

4

c4
X∞
l¼0

ð−Þl
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�

−
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c4
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�
∂L−1

�
ẎiL−1ðuÞ

r

�
þ l
lþ 1

∂aL−1

�
ϵiabŻbL−1ðuÞ

r

��
; ð7:24bÞ

hhomij ¼ 4

c4
X∞
l¼2

ð−Þl
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��

þ δij
2
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l¼0

ð−Þl
l!

∂L

�
ILðuÞ
r

�
−
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c4
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l¼0

ð−Þl
l!
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XLðuÞ

r
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8
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ZbL−1ðuÞ

r

��
; ð7:24cÞ

where IL, JL, WL, XL, YL, ZL are all STF tensors that can be thought of as having an expansion in G themselves. In other
words, at each order in G these multipole moments get corrected. It also follows from the harmonic gauge condition that

İ ¼ 0; J̇a ¼ 0; ̈Ik ¼ 0: ð7:25Þ

Matching this result with the Newtonian metric we find that

IL ¼
Z

d3xEð−2ÞxhLi þOðc−2Þ: ð7:26Þ

This means that the mass I ¼ M is constant. As discussed in the previous section our choice of coordinates is such
that Ik ¼ 0.
To catch up with what we did in the previous section (using the parametrization given in (5.121)–(5.123), we will match

the exterior zone metric with the 1.5PN near zone metric. For this we use the multipole expansion of the particular solution
we found in (6.76), as well Eqs. (7.24a)–(7.24c). We find that the 1=c expansion of the exterior zone metric to 1.5PN order
is given by

CðgEttÞ ¼ −c2 þ 2GM
r

þ G∂kl

�
Ið0Þkl ðtÞ

r

�
−
G
3
∂klm
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∂klmn

�
Ið0ÞklmnðtÞ

r

�

þ 2GIð2Þ

c2r
þ G
c2

∂kl

�
Ið2Þkl ðtÞ
r

�
þ G
2c2

∂klðr̈Ið0Þkl ðtÞÞ −
1

6

G
c2

∂klmðr̈Ið0ÞklmðtÞÞ

þ 1

24

G
c2

∂klmnðr̈Ið0ÞklmnðtÞÞ þ
8G
c2
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Ẇð0ÞðtÞ

r
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Ẅð0ÞðtÞ

c
− ∂k

�
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k ðtÞ
r

�

þ 1

2
∂kl

�
Ẇð0Þ

kl ðtÞ
r

��
− 2

G2M2

c2r2
þ � � � þOðc−4Þ; ð7:27aÞ
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CðgEtiÞ ¼
4G
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1
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İð0Þik ðtÞ
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−
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∂kl
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− ∂ik
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�
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∂ikl
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��
þ � � � þOðc−4Þ; ð7:27bÞ

CðgEijÞ ¼ δij

�
1þ 2GM

r
þ G∂kl

�
Ið0Þkl ðtÞ

r

��
þ � � � þOðc−4Þ; ð7:27cÞ

where C denotes the operation of 1=c expanding and whereQðnÞ
L denotes the nth order coefficient in the 1=c expansion of the

multipole momentsQL ¼ IL; JL;WL; XL; Yl; ZL. Furthermore, the dots denote higher-order terms in the multipole expansion.
For the other side of the matching condition we need the multipole expansion of the 1.5PN near zone metric, which we

work out in Sec. F 2. Matching the multipole expanded near zone metric components in (F46), (F38), and (F33) with
Eqs. (7.27a)–(7.27c) we find that

Jð0Þk ¼ J ð0Þ
k ; Jð0Þkl ðtÞ ¼ J ðklÞðtÞ; Jð0ÞklmðtÞ ¼ J ð0Þ

ðklmÞðtÞ; Wð0ÞðtÞ ¼ 1

6
İ ð0Þ
nn ðtÞ;

Wð0Þ
k ðtÞ ¼ 1

15
İ ð0Þ
knn −

1

6
ϵklmJ

ð0Þ
lm ; Wð0Þ

kl ðtÞ ¼
1

28
İ ð0Þ
klnn −

1

6
ϵðkjmpJ

ð0Þ
mpjlÞ;

Ið2Þ ¼ Mð2Þ; Ið2Þkl ¼ I ð2Þ
hkli þ

1

84
Ï ð0Þ
hklinn þ

8

3
Pð0Þ

nnhkli þ
1

6
ϵðkjmpJ

ð0Þ
mpjlÞ; ð7:28Þ

where I ðnÞ
L , J ðnÞ

iL , and PðnÞ
ijklL are given in terms of multipole

moments associated with the fluid. See Eq. (D9) for their
definitions. We also use the notation MðnÞ ≔ I ðnÞ (and
M ¼ Mð0Þ). Additionally, we see that at 1.5PN order in
(7.27) we just have −8Ẅð0Þ, so through the matching
condition we also find that τ5t ¼ 2

3
∂
3
t Ikk, as we had already

learned in the previous section.
At this point we have just repeated what we did in the

previous section, so now we are going to move on to
determine the 2.5PN near zone harmonics and for that we
need to be able to work out the particular solution to higher
orders in the multipole expansion and in the G expansion.

1. Solving the inhomogeneous equation

Our formal solution to the sourced wave equation (6.10)
was given in Eq. (6.11) which we restate here for
convenience

h½n�μν ¼ W½n�
μν − R½Sμν� þ B½n�

μν ;

R½Sμν� ¼
1

4π

Z
E
d3x0

S½n�μνðt − jx − x0j=c; x0Þ
jx − x0j ; ð7:29Þ

B½n�
μν ¼ 1

4π

Z
E
d3x0∂0i

�
J½n�iðt − jx − x0j=c; x0Þ

jx − x0j
�
; ð7:30Þ

whereW½n�
μν is the coefficient ofGn in the expansion of hhomμν .

We recall that the role of B½n�
μν is to cancel any boundary term

that comes from the regularized retarded Green’s func-
tion, R½S�.
To the order we are interested in, the source for the

exterior zone wave equation consists of terms taking the
following form (this breaks down when tail terms show up
in the source term):

S ¼ fLðuÞnhLi
rm

; ð7:31Þ

where we have suppressed any free indices. Using that the
source term takes the form in (7.31) we get

R½S�ðt; xÞ ¼ nhLi

r

�Z
lc

0

fðu − 2s=cÞAðs; rÞds

þ
Z

∞

lc

fðu − 2s=cÞBðs; rÞds
�
; ð7:32Þ

with

Aðs;rÞ≔
Z

rþs

lc

dr0
PlðξÞ
r0ðm−1Þ ; Bðs;rÞ≔

Z
rþs

s
dr0

PlðξÞ
r0ðm−1Þ ;

ð7:33Þ

where Pl is the Legendre polynomial of degree l and where
ξ ¼ ðrþ 2sÞ=r − 2sðrþ sÞ=ðrr0Þ. This is the same integral
as is used in the DIRE approach [see Eq. (1.19)]. It can be
derived by performing a change of variables and integrating
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over the azimuthal angle by making use of the connection
between the set of STF unit vectors, nhLi, and spherical
harmonics. For a full derivation and an accompanying
geometrical interpretation, see Sec. 6.3 of [2].
Once we have a specific source term, we can compute

Aðs; rÞ and Bðs; rÞ. From there one can use integration by
parts, resulting in higher and higher derivatives of
fðu − 2s=cÞ, while throwing away boundary terms that
depend explicitly on lc as they are expected to be canceled by

B½n�
μν . This process eventually truncates, usually with a tail

term or with the remaining integral being associated with a

boundary term that is again expected to be canceled by B½n�
μν.

At this point we have the tools to work out whether the
particular solution contributes to the near zone harmonics at
2.5PN order. Source terms for 2PM/3PM equations are
worked out in Appendix F. We will make use of Eqs. (F7),
(F12), (F16), and (F17) in this section. Let us start by taking
a look at the ðitÞ components as an example,

□h½2�it ¼ −
8ϵikbJbMnk

r5c4
þ 36

5

MİkkðuÞni
c4r5

−
28

5

Mİ ikðuÞnk
c4r5

þ 6MİklðuÞnhilki
c4r5

þ � � � ; ð7:34Þ

where the dots denote terms that are higher order in the
multipole expansion of the source term or Oðc−5Þ. An
Oðc−5Þ term in the particular solution cannot give rise to
near zone harmonics at 2.5PN. This is because it only
contributes with the leading order term of its 1=c expan-
sion, and since the leading order term corresponds to just
replacing u by t, that term must go to zero as r → ∞ per the
exterior zone boundary conditions, thus excluding it from
producing a near zone harmonic term.
Considering the terms in Eq. (7.34), we see that the

first term is constant in u and can therefore not produce
any near zone harmonics. The next two terms can be
written as

FilðuÞnl
c4r5

for FilðuÞ ¼
36

5
Mİ ð0Þ

kk ðuÞδil −
28

5
Mİ ð0Þ

il ðuÞ:
ð7:35Þ

This takes the form of (7.31) with m ¼ 5 and l ¼ 1. We
plug this into Eq. (7.32) and use integration by parts to
find

□−1
ret

�
FilðuÞnl
c4r5

�
¼ −

nl

c4r

�
½FilðuÞðu − 2s=cÞĀðs; rÞ�lc0 þ ½FilðuÞðu − 2s=cÞB̄ðs; rÞ�∞lc

þ 2

c

Z
lc

0

Ḟilðu − 2s=cÞĀðs; rÞdsþ 2

c

Z
∞

lc

Ḟilðu − 2s=cÞB̄ðs; rÞds
�
; ð7:36Þ

where ∂sĀ ¼ A and ∂sB̄ ¼ B. Specifically, we use

Āðs;rÞ¼4lsðrþsÞ3þðr−2sÞðrþsÞ4þ l4ð3rþ2sÞ
12l4rðrþsÞ2 ;

B̄ðs;rÞ¼ r2

12s2ðrþsÞ2 : ð7:37Þ

The last two terms in (7.36) can be ignored as they are
Oðc−5Þ, and as explained earlier they cannot contribute to
the near zone harmonics. For the first two terms we find
(after dropping boundary terms)

□
−1
ret

�
FilðuÞnl
c4r5

�
¼ FilðuÞnl

4r3c4
þOðc−5Þ: ð7:38Þ

Now, just from the power of 1=r in the equation above we
can conclude that this term will not produce near zone
harmonics until order c−7.

Similarly, we find for the last term in (7.34) that

□
−1
ret

�
6Mİ ð0Þ

kl ðuÞnhilki
c4r5

�
¼ −

7

5

Mİ ð0Þ
ik ðuÞ

c4r3
nk þOðc−5Þ;

ð7:39Þ

where again, because of the power of 1=r, it is obvious that
the 1=c expansion of this term in the overlap will not lead to
any near zone harmonics at 2.5PN. In (7.34) we have, of
course, also ignored terms that are higher order in the
multipole expansion but these only come with higher
powers in 1=r, so they will not contribute to the near zone
harmonics either. Thus, we conclude that the particular

solution for h½2�it does not give rise to near zone harmonic
terms at 2.5PN order.
Similar analysis can be carried out for the ij and tt

components in which case we find

h½2�ij ¼ W½2�
ij þ δij

M2

c4r2
þ M2

c4r2
ninj þ � � � þOðc−5Þ; ð7:40Þ
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h½2�tt þ h½3�tt ¼ W½2�
tt þW½3�

tt þ 2M3

c4r3
−
4M2

c2r4
−
4Mnhkli

c2

�
9I ð0Þ

kl ðuÞ
r6

þ 9İ ð0Þ
kl ðuÞ
cr5

−
2Ï ð0Þ

kl ðuÞ
c2r4

�

−
16M
3c2

Ï ð0Þ
kk ðuÞ
c2r4

þ 16MnlϵlmnJ̇
ð0Þ
mnðuÞ

c4r5
þ � � � þOðc−5Þ: ð7:41Þ

Following similar arguments as for the it components we see that the particular solution for the tt and ij components will
not produce near zone harmonic terms at 2.5PN. Hence, those can only come from the homogeneous solution.

2. Matching with the 2PN metric

With what we have learned in the previous subsection we are ready to determine the 2.5PN near zone harmonics. If we
1=c expand the homogeneous solution in (7.24a)–(7.24c) in the overlap region, we get

CðgEttÞ ¼ � � � − 8Ẅð0ÞðtÞ
c3

þ 1

c5

�
8

3
xk∂4t W

ð0Þ
k ðtÞ − 8Ẅð2ÞðtÞ − 1

15
xhkli∂5t I

ð0Þ
kl ðtÞ

�
þOðc−6Þ; ð7:42aÞ

CðgEtiÞ ¼ � � � þ 1

c5

�
−
2

3
xk∂4t I

ð0Þ
ik −

4

3
xi∂3t Wð0ÞðtÞ þ 4

3
∂
3
t W

ð0Þ
i ðtÞ − 4Ÿð0Þ

i ðtÞ
�
þOðc−6Þ; ð7:42bÞ

CðgEijÞ ¼ � � � − 1

c5
2∂3t I

ð0Þ
ij ðtÞ þOðc−6Þ; ð7:42cÞ

where the dots here denote any term that is not a near zone harmonic.
Using that the particular solutions will not contribute to the near zone harmonics up to 2.5PN order we find from the

matching condition that

Hð7ÞðtÞ ¼ 4Ẅð2Þ þ 2

9
xkϵklmJ̇

ð0Þ
lm −

4

3
xk∂4t W

ð0Þ
k ðtÞ þ 1

30
xhkli∂5t I

ð0Þ
kl ðtÞ; ð7:43aÞ

Hð7Þ
i ðtÞ ¼ 4Ÿð0Þ

i ðtÞ − 4

3
∂
3
t W

ð0Þ
i ðtÞ þ 2

3
xk∂4t I

ð0Þ
ik þ 4

3
xi∂3t Wð0ÞðtÞ; ð7:43bÞ

Hð5Þ
ij ðtÞ ¼ 2∂5t I

ð0Þ
ij ðtÞ; ð7:43cÞ

where Hð5Þ
ij , H

ð7Þ
i , and Hð7Þ are the near zone harmonics defined in Eqs. (7.21), (7.22), and (7.23).

Using Eq. (7.28) we see that all of the multipole moments in the above expressions have already been determined with the
exception ofWð2ÞðtÞ and Yð0Þ

i ðtÞ. So the goal now is to determineWð2ÞðtÞ and Yð0Þ
i ðtÞ. These both appear at order c−4r−1 in

the 1=c expansion of gEtt and gEit, respectively. Therefore, we need to match with the 2PN metric up to the monopole order,
r−1, in the multipole expansion. The multipole expanded 2PN metric is derived in (F47) and (F39) and given here at the
monopole order,

Mðg2PNtt Þ ¼ 2Mð4Þ
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∂klðr3∂4t I ð0Þ

hkliÞ −
1

72
∂klmðr3∂4t I ð0Þ

hklmiÞ

þ 1

12 · 4!
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∂kðr∂4t I ð0Þ

knnÞ

þ 13

168
∂klðr∂4t I ð0Þ

hklinnÞ þ
2

45

∂
4
t I

ð0Þ
llnn

r
þ 2

3
∂kðrϵkabJ

…ð0Þ
ab Þ −

1

4
∂klðrϵkabJ

…ð0Þ
ablÞ

þ 4

3
∂klðrP̈ð0Þ

mmhkliÞ þ
8

9

P̈ð0Þ
kkll

r
þOðr−2Þ; ð7:44Þ

Mðg2PNit Þ ¼ 4G
c4
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…ð0Þ
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1

12
∂iðrI

…ð0Þ
kk Þ −

1
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1

30
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1

30

I
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r
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6
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ml Þ
�
þOðr−2Þ:

ð7:45Þ
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Next, we collect the c−4 terms in the 1=c expansion of the exterior zone metric

CðgEμνÞ ¼ ημν þ gEμν
ð0Þ

þ 1

c2
gEμν
ð2Þ

þ 1

c3
gEμν
ð3Þ

þ 1

c4
gEμν
ð4Þ

þ � � � ; ð7:46Þ

where the it and tt components of the 2PN term are given by

gEtt
ð4Þ

¼ 2GIð4Þ

r
þ 1

2c2
∂klðGr̈Ið2Þkl ðtÞÞ þ

1

4!c4
∂klðGr3∂4t Ið0Þkl ðtÞÞ

−
1

3 · 4!c4
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1
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∂klmnðGr3∂4t Ið0ÞklmnðtÞÞ

þ 8
Ẇð2ÞðtÞ
c2r

þ 4r
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W
… ð0ÞðtÞ − 4

c4
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… ð0Þ
k ðtÞÞ þ 2

c4
∂klðrW

… ð0Þ
kl ðtÞÞ þOðr−2Þ; ð7:47Þ

gEit
ð4Þ

¼ ∂lðr∂3t Ið0Þil ðtÞÞ −
1

3
∂klðr∂3t Ið0Þikl ðtÞÞ þ 2∂iðr∂2t Wð0ÞðtÞÞ − 2∂ikðr∂2t Wð0Þ

k ðtÞÞ þ 4ẎiðtÞ
r

þOðr−2Þ; ð7:48Þ

where we used that the particular solutions given in the
previous subsection are all Oðr−4Þ in the multipole ex-
pansion and thus do not contribute to the equations above.
The matching condition tells us that

gEtt
ð4Þ

¼ Mðg2PNtt Þ; gEit
ð4Þ

¼ Mðg2PNit Þ: ð7:49Þ

If we use this along with what we learned in (7.28), we can
conclude that

Ẏi ¼ −
1

30
∂
3
t I

ð0Þ
ikk −

1

6
ϵipq∂

2
tJ

ð0Þ
pq ; ð7:50Þ

Ẇð2ÞðtÞ ¼ 1

6
Ï ð2Þ
kk þ 1

180
∂
4
t I

ð0Þ
llnn þ

1

9
P̈ð0Þ

kkll þWð2Þ
0 ; ð7:51Þ

whereWð2Þ
0 is a constant, which can be shown to be zero by

matching at higher order in the multipole expansion.
However, this is not necessary as we are only interested
in Ẅð2ÞðtÞ. Thus, at this point we can use Eq. (7.43) to fix
the undetermined function in the 2.5PN metric. Finally, we
find that the 2.5PN metric variables are given by

hð5Þij ¼ −2∂3t I
ð0Þ
hiji; ð7:52Þ
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9
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kl þ 2

3
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ik ; ð7:53Þ

τð7Þt ¼ 1
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∂
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This along with the lower-order fields has been checked
against and is in agreement with the result from [28].

VIII. OUTLOOK

This work leads to a number of natural follow-up
questions which we discuss here in turn.
The first concerns the use of new gauge choices. In [15]

we will work out the details of the matching process in
transverse gauge. Are there other useful gauge choices with
particular computational advantages? Is there a systematic
set of conditions at every order in 1=c andG that singles out
a preferred gauge choice?

Going beyond the scope of this work a natural question is
to what extent it is possible to further covariantize the
approach taken here. As is well-known, the Newtonian
description is a gauge-fixed version of Newton-Cartan
gravity, and so it would be natural to extend this work
in the direction of a fully covariant post-Newton-Cartan
gravity theory. In the near zone something like that is
certainly possible at the level of the expansion of Einstein’s
equations. The question is whether something similar can
be done for the G expansion and the matching process. At
which point does one have to choose a gauge to make
progress?
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Then there is the issue of tail terms and the associated
breakdown of the 1=c Taylor expansion. Is there a
systematic way to incorporate these radiation reaction
effects into the 1=c expansion framework?
Is it possible to reorganize the 1=c expansion, by expand-

ing around a nonvacuum configuration? We know that
nonrelativistic gravity is not necessarily a weak field approxi-
mation, and so it might be interesting to explore this option
further.
It would also be interesting to change the vacuum to, say,

an Friedmann–Lemaître–Robertson–Walker (FLRW) space-
time, which can be incorporated into the framework for
Newtonian gravity, and to develop similar techniques in such
a setting.
Finally, post-Newtonian theory is also used in the study

of quantum theory in curved gravitational backgrounds
(see, e.g., [57–61] and [12] for the use of post-Newtonian
methods in that context). These applications require a
different class of sources, and so it would be interesting
to see if we can extend our methods to include more general
sources such as scalar fields and electromagnetic fields.
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APPENDIX A: NOTATION, ABBREVIATIONS,
AND CONVENTIONS

For indices we use the following:
(i) Lowercase Greek indices are coordinate indices,

μ ¼ 0;…; d or μ ¼ t;…; d depending on whether
x0 ¼ ct or x0 ¼ t.

(ii) i, j, k, etc., are spatial indices in Cartesian coor-
dinates.

A superscript of the type X
ðnÞ

corresponds to the coef-
ficient of c−n in a Taylor series expansion in 1=c of X.
Likewise, unless explicitly stated otherwise, a superscript

of the type X
½n�

denotes the coefficient of a Taylor expansion
in G of X at order Gn.
We denote a totally symmetrized collection of indices

with round brackets, ðijkl � � �Þ, and a totally antisymme-
trized collection with square brackets, ½ijkl � � ��. The
symmetrization and antisymmetrization of indices is done
with the following normalization:

Tði1���ilÞ ¼
1

l!

X
Tiσð1Þ���iσð1Þ ; ðA1Þ

T ½i1���il� ¼
1

l!

X
sgnðσÞTiσð1Þ���iσð1Þ ; ðA2Þ

where σ is a permutation of 1 � � � l. We use angle brackets,
hijkl � � �i, to denote the traceless part of the totally
symmetrized pair of indices ðijkl � � �Þ. Finally, we use
vertical bars to indicate that the (anti)symmetrization does
not affect the enclosed indices. Sometimes we use a multi-
index L to denote a collection of l indices i1 � � � il, so
instead of writing Ti1���il we simply write TL.
We will use mostly plus signature for gμν. We define the

Riemann tensor as

½∇μ;∇ν�Xσ ¼ Rμνσ
ρXρ − Tρ

μν∇ρXσ; ðA3Þ

½∇μ;∇ν�Xρ ¼ −Rμνσ
ρXσ − Tσ

μν∇σXρ; ðA4Þ

where ∇μ is any affine connection with connection coef-
ficients Γρ

μν. Explicitly, this means that

Rμνσ
ρ ≡ −∂μΓ

ρ
νσ þ ∂νΓ

ρ
μσ − Γρ

μλΓλ
νσ þ Γρ

νλΓλ
μσ; ðA5Þ

Tρ
μν ≡ 2Γρ

½μν�: ðA6Þ

The Ricci tensor is defined as

Rμν ¼ Rμρν
ρ: ðA7Þ

We frequently use the following two abbreviations:
(i) STF: symmetric trace-free;
(ii) TT: transverse traceless.

APPENDIX B: THE 1=c EXPANSION OF THE
EINSTEIN EQUATIONS

In this appendix we will provide some details regarding
the 1=c expansion of the Einstein equations using the PNR
variables (2.23) in the KS gauge which means Πti ¼ 0 [see
below Eq. (2.51)]. In this paper we will perform this
expansion to 2.5PN order. This appendix provides some
background to the derivation of the results presented in
Sec. IV B.

1. KS gauge

We start with the left-hand side of (2.23), which is given
by (2.14)–(2.18). The main objects are Wρ

μν, C
ρ
μν, S

ρ
μν, and

Vρ
μν. Wewill first study these in KS gauge and then consider

how they behave in the 1=c expansion in the next
subsection.
We will first consider the objects Vρ

μν and Sρμν defined in
(2.13) and (2.12). The nonzero components in the KS
gauge are

Vt
ij ¼

1

2T2
t
∂tΠij; ðB1Þ

Stti ¼
1

Tt
Tit; ðB2Þ
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Stij ¼ −
1

2Tt
Tij þ

1

2T2
t
ðTitTj þ TjtTiÞ; ðB3Þ

where we remind the reader that Tμν ¼ ∂μTν − ∂νTμ. The
nonzero components of the C connection are

Ct
tt ¼

1

Tt
∂tTt; ðB4Þ

Ct
ti ¼

1

Tt
∂tTi −

1

2Tt
ΠklTk∂tΠil; ðB5Þ

Ct
it ¼

1

Tt
∂iTt −

1

2Tt
ΠklTk∂tΠil; ðB6Þ

Ct
ij ¼

1

Tt
∂iTj −

1

Tt
C̃k
ijTk −

1

2T2
t
ΠklTkTl∂tΠij; ðB7Þ

Ck
ti ¼ Ck

it ¼
1

2
Πkl

∂tΠli; ðB8Þ

Ck
ij ¼ C̃k

ij þ
1

2Tt
ΠklTl∂tΠij; ðB9Þ

where we defined

C̃k
ij ¼

1

2
Πklð∂iΠjl þ ∂jΠil − ∂lΠijÞ; ðB10Þ

which is the Levi-Civita connection for a Riemannian
manifold with metric Πij. The components of Wρ

μν are all
generically nonzero without any obvious simplification but
it is useful to note that

Wk
tt ¼ T2

tΠklSttl; ðB11Þ

Wk
ti ¼ T2

tΠklStil: ðB12Þ

From this it follows that in KS gauge we have

R½2�
tt ¼ 0; ðB13Þ

R½2�
ti ¼ 0; ðB14Þ

R½0�
tt ¼ R

ðCÞ
tt ¼ −∂tCk

kt þ Ck
ktC

t
tt − Cl

ktC
k
lt; ðB15Þ

R½0�
ti ¼ R

ðCÞ
ti þ Ck

ktS
t
ti −Wk

ttVt
ki ¼ R

ðCÞ
it þ Ck

itS
t
tk −Wk

ttVt
ki;

ðB16Þ

R½−2�
tt ¼ Ytt þ ΠklTktTlt; ðB17Þ

R½−2�
ti ¼ Yti −Wt

ttStti − ΠklTltTik; ðB18Þ

where we defined

Yμν ¼ ∇
ðCÞ

σWσ
μν; ðB19Þ

and where

R
ðCÞ

ti ¼ ∂kCk
ti þ Cl

lkC
k
ti − Ck

liC
l
tk þ ∂tCk

ki þ Ck
ktC

t
ti: ðB20Þ

We left out the spatial components R½2�
ij , R

½0�
ij , and R½−2�

ij as
the main simplification for those objects comes only once
we start 1=c expanding.

2. The equations of motion up to 2.5PN

The Einstein equations (2.23) are repeated here for
convenience:

Rμν¼c4R½−4�
μν þc2R½−2�

μν þR½0�
μνþc−2R½2�

μν ¼4πGSμν; ðB21Þ

where Sμν is a compact perfect fluid matter source. The
goal is to expand these to 2.5PN, i.e., to c−5. This requires
knowing

R½−4�
μν ¼ Oðc−10Þ; R½−2�

μν ¼ Oðc−8Þ;
R½0�
μν ¼ Oðc−6Þ; R½2�

μν ¼ Oðc−4Þ: ðB22Þ

Based on results from the previous subsection we have in
general for the tt, ti, and ij components of (B21),

c4R½−4�
tt þ c2ðYtt þ ΠklTktTltÞ − ∂tCk

kt þ Ck
ktC

t
tt − Cl

ktC
k
lt

¼ 4πGStt; ðB23Þ

c4R½−4�
ti þ c2ðYti −Wt

ttStti − ΠklTltTikÞ þ R
ðCÞ

ti

þ Ck
ktS

t
ti −Wk

ttVt
ki ¼ 4πGSti; ðB24Þ

c4R½−4�
ij þ c2R½−2�

ij þ R½0�
ij þ c−2R½2�

ij ¼ 4πGSij: ðB25Þ

Explicitly, the expansion of the metric variables to 2.5PN
in KS gauge is

Tt ¼ 1þ c−2τð2Þt þ c−4τð4Þt þ c−5τð5Þt þ c−6τð6Þt

þ c−7τð7Þt þOðc−8Þ; ðB26Þ

Ti ¼ c−4τð4Þi þ c−5τð5Þi þ c−6τð6Þi þ c−7τð7Þi þOðc−8Þ;
ðB27Þ

Πij¼δijþc−2hð2Þij þc−3hð3Þij þc−4hð4Þij þc−5hð5Þij þOðc−6Þ:
ðB28Þ
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Using these expansions we see that

ΠαβΠρσTαρTβσ ¼ Oðc−8Þ; ðB29Þ

which appears in R½−4�
μν . Since we only need to know the

Einstein equations up to terms that are Oðc−6Þ, we can

discard R½−4�
ij and R½−4�

ti but not R½−4�
tt . Furthermore, we can

determine

Wt
tt ¼ Oðc−6Þ; ðB30Þ

Wt
ti ¼ Oðc−8Þ; ðB31Þ

Wt
ij ¼ Oðc−10Þ; ðB32Þ

Wk
tt ¼ Oðc−2Þ; ðB33Þ

Wk
ti ¼ Oðc−4Þ; ðB34Þ

Wk
ij ¼ Oðc−8Þ: ðB35Þ

This allows us to write a version of (B23)–(B25) that is only
correct to 2.5PN, which is

c4R½−4�
tt þ c2ðYtt þ ΠklTktTltÞ − ∂tCk

kt þ Ck
ktC

t
tt − Cl

ktC
k
lt

¼ 4πGStt þOðc−6Þ; ðB36Þ

c2ðYti − ΠklTltTikÞ þ R
ðCÞ

ti þ Ck
ktS

t
ti −Wk

ttVt
ki

¼ 4πGSti þOðc−6Þ; ðB37Þ

c2R½−2�
ij þ R½0�

ij þ c−2R½2�
ij ¼ 4πGSij þOðc−6Þ; ðB38Þ

where

Ytt ¼ ∂tWt
tt þ ∂kWk

tt þ ðCt
tk − 2Ct

kt þ C̃l
lkÞWk

tt

− 2Cl
ktW

k
lt þOðc−8Þ; ðB39Þ

Yti¼ D̃kWk
tiþðCt

tk−Ct
ktÞWk

ti−Ct
kiW

k
ttþOðc−8Þ

¼ D̃kWk
tiþ

1

2
ΠklTltTik−ΠklTltD̃kTiþOðc−8Þ; ðB40Þ

R½−4�
tt ¼ 1

4
T2
tΠijΠklTikTjl þOðc−10Þ: ðB41Þ

In here D̃k is a three-dimensional covariant derivative with
connection C̃k

ij and Wk
ti is viewed as a three-dimensional

(1,1) tensor.
By inserting the expressions for the relevant components

of W and C, the tt component, Eq. (B36), can be further
rewritten as

c4
1

4
T2
tΠijΠklTikTjl þ c2Πklð−∂tTl∂kTt − Tl∂t∂kTt þ TtD̃k∂lTt − TtD̃k∂tTlÞ

−
1

2
Πkl

∂
2
tΠkl þ

1

4
ΠkiΠlj

∂tΠij∂tΠkl þ
1

2Tt
Πkl

∂tΠkl∂tTt ¼ 4πGStt þOðc−6Þ: ðB42Þ

Performing a similar rewriting for the ti component leads to

c2
�
D̃kW̃k

ti þ
1

2
Πklð∂kTl∂iTt þ Tl∂k∂iTt þ Ti∂k∂lTt − ∂lTt∂iTkÞ

�
−

1

2Tt
ΠklTlt∂tΠik

þ D̃kCk
ti −

1

2
∂tðΠkl

∂iΠklÞ þ
1

2Tt
Πkl

∂tΠkl∂iTt ¼ 4πGSti þOðc−6Þ; ðB43Þ

where we defined

W̃k
ti ¼

1

2
TtΠklTli: ðB44Þ

To simplify the ij components of the Einstein equation
we need to use

R½2�
ij ¼ 1

2T2
t
∂
2
tΠij þOðc−4Þ; ðB45Þ

R½−2�
ij ¼ Oðc−8Þ; ðB46Þ

R½0�
ij ¼ R

ðC̃Þ
ij þ

1

2Tt
∂tð∂iTj þ ∂jTiÞ −

1

Tt
∂i∂jTt

þ 1

Tt
∂kTtC̃

k
ij þOðc−6Þ; ðB47Þ

where
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R
ðC̃Þ

ij ¼ ∂kC̃
k
ij − ∂iC̃

k
kj þ C̃l

lkC̃
k
ij − C̃l

ikC̃
k
lj: ðB48Þ

This allows us to write

R
ðC̃Þ

ij þ
1

2Tt
∂tð∂iTj þ ∂jTiÞ −

1

Tt
∂i∂jTt þ

1

Tt
∂kTtC̃

k
ij

þ c−2
1

2T2
t
∂
2
tΠij ¼ 4πGSij þOðc−6Þ: ðB49Þ

We have so far focused on the left-hand side of
the Einstein equation (B21). The source in (B21) is given
by (2.6) with a perfect fluid energy-momentum tensor
given in (2.52). In the PNR variables the right-hand side is
as in (2.23). For a perfect fluid in KS gauge using the
leading order 1=c behavior of all the fields involved we can
write for the various components of the source Sμν the
following:

Stt ¼
2

c4
ðEþ PÞT2

tΠijUiUj þ 1

c2
ðEþ 3PÞT2

t ; ðB50Þ

Sti ¼ −
2

c4
ðEþ PÞTtΠijUj −

1

c6
ETtΠijUjΠklUkUl

þ 1

c2
TtTiðEþ 3PÞ þOðc−6Þ; ðB51Þ

Sij ¼
1

c4
ðE − PÞΠij þ

2

c6
EΠikUkΠjlUl þOðc−6Þ; ðB52Þ

where we used that

ðTμUμÞ2 ¼ 1þ 1

c2
ΠijUiUj: ðB53Þ

We are now ready to insert the explicit 1=c expansions
(B26)–(B28) for the PNR variables as well as (2.55)–(2.57)
for the fluid variables leading to (4.7)–(4.9) with the source
terms given in Sec. IV B.

APPENDIX C: MULTIPOLE EXPANSIONS

In this appendix we collect some standard results
regarding the multipole expansion of the solution to the
free wave equation□f ¼ 0. We suppress any potential free
indices f might have.
Using three-dimensional spherical coordinates the wave

equation reads

�
−

1

c2
∂
2
t þ ∂

2
r þ

2

r
∂r þ

1

r2
∇S2

�
ϕ ¼ 0; ðC1Þ

where ∇S2 is the Laplacian on the round two-sphere. Going
to Fourier space by writing ψ ¼ e−iωtψðxÞ we obtain the
Helmholtz equation for ψ,

ðk2 þ ∂
2Þψ ¼ 0; ðC2Þ

where k2 ¼ ω2=c2. This equation can be solved by the
method of separation of variables, and the well-known
solution is given by

ψðxÞ ¼
X∞
l¼0

Xl

m¼−l
ðAlmYlmðθ;φÞhð1Þl ðkrÞ

þ BlmYlmðθ;φÞhð2Þl ðkrÞÞ; ðC3Þ

where Alm and Blm are constants and Ylmðθ;φÞ are the usual
spherical harmonics with respect to spherical coordinates
ðθ;φÞ that are such that the round sphere metric is

dθ2 þ sin2 θdφ2. Finally, the functions hð1Þl ðkrÞ and

hð2Þl ðkrÞ are the spherical Hankel functions of the first
and second kind, i.e.,

hð1ÞðxÞ ¼ −ið−xÞl
�
1

x
d
dx

�
l
�
eix

x

�
; ðC4Þ

and with hð2Þl ðxÞ the complex conjugate of hð1Þl ðxÞ.
Since we use inertial coordinates, it will be useful to

write this in terms of Cartesian coordinates. This can be
achieved by the following useful map35:

rl
Xl

m¼−l
AlmYlm ¼ di1���ilx

i1 � � � xil ; ðC5Þ

where the constants di1���il are STF. Using a similar
expression for the Blm coefficients and by absorbing some
k-dependent constants into these STF coefficients we can
write

ψðxÞ ¼
X∞
l¼0

dð1Þi1���ilx
i1 � � � xil

�
1

r
d
dr

�
l
�
eir

r

�

þ
X∞
l¼0

dð2Þi1���ilx
i1 � � � xil

�
1

r
d
dr

�
l
�
e−ir

r

�
: ðC6Þ

Using

xi1 � � � xil
�
1

r
d
dr

�
l
�
eir

r

�
¼ ∂hi1 � � � ∂ili

�
eir

r

�
; ðC7Þ

35This map is a consequence of the fact that both the left- and
the right-hand sides of (C5) represent the most general solution to
the Laplacian onR3 for solutions that are homogeneous of degree
l. Alternatively, STF polynomials (on the unit sphere) form a
finite dimensional irreducible representation for the group SOð3Þ,
but so do the spherical harmonics. Since these irreps are unique
(for a given finite dimension), there must exist a map relating
them.

JELLE HARTONG and JØRGEN MUSAEUS PHYS. REV. D 109, 124058 (2024)

124058-56



we can also write the solution to the free wave equation
with a single frequency as

ψðxÞe−iωt ¼
X∞
l¼0

∂i1 � � � ∂il
�
dð1Þi1���il

e−iωðt−r=cÞ

r

�

þ
X∞
l¼0

∂i1 � � � ∂il
�
dð2Þi1���il

e−iωðtþr=cÞ

r

�
: ðC8Þ

Integrating over ω we then obtain the most general solution
to the free wave equation as a multipole expansion (in
Cartesian coordinates) that is given by

ϕðxÞ¼
X∞
l¼0

∂i1 ���∂il
�
Ui1���ilðuÞ

r

�
þ
X∞
l¼0

∂i1 ���∂il
�
Vi1���ilðvÞ

r

�
;

ðC9Þ

where we used retarded u ¼ t − r=c and advanced time
v ¼ tþ r=c and where the functions Ui1���il and Vi1���il
are STF.
Asymptotically, at leading order in 1=r, the solution

behaves as

X∞
l¼0

r−lxi1 � � � xil 1
r

�
−1
c

�
l
UðlÞ

i1���ilðuÞ

þ
X∞
l¼0

r−lxi1 � � � xil 1
r

�
1

c

�
l
VðlÞ
i1���ilðvÞ; ðC10Þ

where UðlÞ
i1���ilðuÞ denotes the lth derivative of Ui1���ilðuÞ and

similarly for VðlÞ
i1���ilðvÞ.

Hence, if we impose the Sommerfeld boundary con-
dition of no-incoming radiation at I−, i.e.,

lim
v¼cst
r→∞

∂vðrϕÞ ¼ 0; ðC11Þ

then this leads to

Vðlþ1Þ
i1���il ðvÞ ¼ 0; ðC12Þ

so that

Vi1���ilðvÞ ¼
Xl

n¼0

AðnÞ
i1���ilv

n; ðC13Þ

which is a polynomial in v of degree l. By using the
following observation

∂i1 � � � ∂il
�
Vi1���ilðvÞ − Vi1���ilðuÞ

r

�

¼ ∂i1 � � � ∂il
Xl

n¼0

AðnÞ
i1���il

�
vn − un

r

�
¼ 0: ðC14Þ

This follows from the fact that un − vn is an odd function of
r so that ðun − vnÞ=r only contains even powers of r. The
function ðun − vnÞ=r is a polynomial in xi of degree n − 2
for n ¼ even and n − 1 for n ¼ odd. Thus, for the solution
in (C9) we can replace the v by a u in the second term when
we impose Sommerfeld, and then subsequently absorb this
term into the first one. We thus conclude that the most
general solution obeying Sommerfeld is given by

ϕðxÞ ¼
X∞
l¼0

∂i1 � � � ∂il
�
Ui1���ilðuÞ

r

�
: ðC15Þ

At leading order in 1=r this solution is given by

X∞
l¼0

r−lxi1 � � � xil 1
r

�
−1
c

�
l
UðlÞ

i1���ilðuÞ: ðC16Þ

Another boundary condition that we will impose is that
ϕ ¼ Oðr−1Þ for large r. We can send r to infinity in
different ways depending on what we do with t. We can
keep t fixed in which case we approach spatial infinity, we
can keep v fixed in which case we approach past null
infinity, or we can keep u fixed in which case we approach
future null infinity. We want that ϕ is order r−1 in all these
cases. This means that Ui1���ilðuÞ and all its derivatives must
be bounded for large negative values of its argument.
Regarding the Laplace equation ∂2f ¼ 0we can use very

similar arguments to show that the most general solution
that decays to zero for large r is given by

f ¼
X∞
l¼0

∂i1 � � � ∂il
�
fi1���ilðtÞ

r

�
; ðC17Þ

where now the coefficients are STF functions of t. If we
want the function to go to zero close to r ¼ 0 the solution is
given by

f ¼
X∞
l¼0

gi1���ilðtÞxi1 � � � xil ; ðC18Þ

where the gi1���ilðtÞ are STF functions of t.

APPENDIX D: FLUID CONSERVATION
EQUATIONS AND IDENTITIES

In this appendix we will consider the matter equations of
motion and how to extract useful identities that play a
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crucial role in the multipole expansion and the subsequent
matching procedure for the near zone metric.
There is more than one way to write down the equations

of motion for the matter source in general relativity. For the
multipole expansion of the post-Newtonian metric it is
beneficial to express the fluid equations of motion in the
form of conserved currents, i.e., ∂μT μν ¼ 0 where
the derivatives are with respect to inertial coordinates.
This can be achieved with the help of the Landau-Lifshitz
energy-momentum pseudotensor as follows:

∂μT μν ¼ 0; ðD1Þ

T μν ≔ ð−gÞðTμν þ Tμν
LLÞ; ðD2Þ

Tμν
LL≔−

c4

8πG
Gμνþ c4

16πGð−gÞ∂ρ∂σðð−gÞðg
μνgρσ−gμρgνσÞÞ:

ðD3Þ

The reason this is a useful way of expressing the fluid
equations is because the multipole moments of the near
zone metric are time derivatives of expressions of the form

Z
d3xT μνxL: ðD4Þ

Because of the conservation equation (D1) these are not all
independent.
We can use Eq. (D1) to derive the following set of

identities that will relate time derivatives of different
multipole moments upon integration:

T tixL ¼ 1

lþ 1
∂tðT ttxiLÞ þ l

lþ 1
ϵimðk1Ajmjk2���klÞ þ 1

lþ 1
∂mðT tmxiLÞ; ðD5aÞ

T ij ¼ 1

2
∂
2
t ðT ttxijÞ þ 1

2
∂mðT mp

∂pðxijÞ þ ∂tT tmxijÞ; ðD5bÞ

T ijxk ¼ 1

6
∂
2
t ðT ttxijkÞ þ 2

3
ϵmkði

∂tAjmjjÞ þ 1

6
∂mðT mp

∂pðxijkÞ þ ∂tT tmxijkÞ − 2

3
∂mðT mkxij − T mðixjÞkÞ; ðD5cÞ

T ijxL ¼ 1

ðlþ 1Þðlþ 2Þ ∂
2
t ðT ttxijLÞ þ 1

lþ 2
∂tðϵimðk1Ajmjk2���klÞj þ ϵjmðk1Ajmjk2���klÞiÞ

þ 8ðl − 1Þ
ðlþ 1Þ Bijðk1���klÞ þ 1

ðlþ 1Þðlþ 2Þ ∂mðT
mp

∂pðxijLÞ þ ∂tT tmxijLÞ

þ 2

lþ 2
∂mðT mðixjÞL − T mðk1xk2���klÞijÞ; ðD5dÞ

where the last identity, Eq. (D5d), only holds for l ≥ 2 and
where we defined

AiL ¼ ϵijkxjT tkxL; BijklL ¼ x½kT i�½jxl�L; ðD6Þ

where ϵijk is the Levi-Civita symbol with ϵ123 ¼ 1.
For the purposes of this paper all multipole moments that

we will work with can be expressed as time derivatives of
the following set of multipole moments: IL;J iL;PijklL
which are defined as

IL≔
Z

d3xT tt; J iL≔
Z

d3xAiL; PijklL≔
Z

d3xBijklL:

ðD7Þ

Finally, we use the 1=c-expand T μν as well as the
multipole moments

T μν¼T μν
ð0Þ þ

1

c2
T μν

ð2Þ þ
1

c4
T μν

ð4Þ þ
1

c5
T μν

ð5Þ þOðc−6Þ; ðD8Þ

QL¼Qð0Þ
L þ 1

c2
Qð2Þ

L þ 1

c4
Qð4Þ

L þ 1

c5
Qð4Þ

L þOðc−6Þ; ðD9Þ

for QL ¼ IL;J L;PL. Additionally, we define
MðnÞ ≔ I ðnÞ. In harmonic gauge the coefficients are given
by (see, for example, [28])

T tt
ð0Þ ¼ Eð−2Þ; ðD10aÞ

T ti
ð0Þ ¼ Eð−2Þvi; ðD10bÞ

T ij
ð0Þ ¼Eð−2ÞvivjþPð0Þδijþ

1

4πG

�
∂iU∂jU−

1

2
δij∂kU∂kU

�
;

ðD10cÞ
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T tt
ð2Þ ¼ Eð0Þ þ Eð−2Þðv2 þ 6UÞ − 7

8πG
∂lU∂lU; ðD10dÞ

T it
ð2Þ ¼ ðEð0Þ þ Pð0ÞÞvi þ Eð−2Þvi2 þ

�
1

2
v2 þ 5U

�
viEð−2Þ þ

1

4πG
½3∂tU∂iU þ 4ð∂iUk − ∂kUiÞ∂kUÞ�; ðD10eÞ

T ij
ð2Þ ¼ 2Eð−2Þvðiv

jÞ
ð2Þ þ ðEð0Þ þ 4UEð−2Þ þ Pð0ÞÞvivj þ δijðPð2Þ þ 2UPð0ÞÞ

þ 1

4πG

�
2∂ðiU∂jÞΨþ ∂ðiU∂jÞ∂2t X − 16∂½iUk�∂½jUk� þ 8∂ðiU∂tUjÞ

− δij

�
∂kU∂kΨþ 1

2
∂kU∂k∂

2
t X − 4∂kUl∂½kUl� þ 4∂tUk∂kU þ 3

2
∂tU∂tU

��
; ðD10fÞ

T tt
ð4Þ ¼Eð2Þ þEð0Þv2þ6Eð0ÞUþPð0Þv2þEð−2Þ½3∂2t X−8Ukvkþ2vkð2Þv

kþ17U2þ8Uv2�
þ4πGEð−2ÞP½6Eð0Þ−2Pð0Þ þ14Eð−2ÞUþ4Eð−2Þv2�

þ 1

4πG

�
5

2
∂tU∂tU−4U∂

2
t Uþ4∂tUk∂kU−7∂kU∂k

�
Ψþ1

2
∂
2
t X

�
−8Uk∂k∂tUþ2∂lUkð3∂kUlþ∂lUkÞ−10U∂kU∂kU

−4ðP½Eð−2Þvkvl�þP½∂kU∂lU�Þ∂k∂lU
	
þ8∂kU∂k

�
P
�
3Pð0Þ þEð−2Þv2−

1

2
Eð−2ÞU

��
; ðD10gÞ

T tt
ð5Þ ¼ Eð3Þ þ

1

2π
I ð0Þ
kl ∂klU; ðD10hÞ

where X is the superpotential given in Eq. (6.65) and where Ψ is

Ψ ¼ −4πGP½Eð0Þ þ 3Pð0Þ þ 2Eð−2Þv2 þ 2Eð−2ÞU�: ðD11Þ

In writing down the expressions for T μν
ðnÞ (for a given n) we used the matched near zone solution to the metric at lower

orders. For example, in computing T ij
ð0Þ and T

tt
ð2Þ (which appear for the first time as source terms at 1PN) we used the 0PN

near zone metric. Likewise, when computing T it
ð2Þ and T

ij
ð2Þ we used the 1PN near zone metric (after matching). It would be

interesting to compute both the 1=c and G expansions of (D2) for the general class of gauges used in Secs. IV and V.

APPENDIX E: HOMOGENEOUS SOLUTION TO THE PROPAGATING SECTOR

In this appendix we derive the homogeneous solution to (5.18). First, we differentiate (5.18) twice with respect to x0 and
then use Eqs. (5.51) and (5.52) to obtain

□

�
∂
2
0h

½n�
ij ðTTÞ þ ∂i∂0M

½n�
j ðTÞ þ ∂j∂0M

½n�
i ðTÞ − 2∂i∂jM

½n�
0 þ 1

3
δij∂

2
0H

½n�
�

¼ −∂20τ
½n�
ij þ ∂0∂iτ

½n�
0j þ ∂0∂jτ

½n�
0i − ∂i∂jτ

½n�
00 : ðE1Þ

The homogeneous part of the equation can then be written as

0 ¼ □∂
2
0

�
h½n�ij ðTTÞ þ ∂iU

½n�
j þ ∂jU

½n�
i þ ∂i∂jðxkU½n�

k Þ − 2∂i∂jU½n� þ r2

6
∂i∂jH½n� þ 2

3
∂iðxjH½n�Þ þ 2

3
∂jðxiH½n�Þ

�
; ðE2Þ

where we defined the functions U½n� and U½n�
i that satisfy

∂
2
0U

½n� ¼ F½n�; ∂0U
½n�
i ¼ H½n�

i : ðE3Þ

The functions F andHi are harmonic and appeared for the first time in (5.54) and (5.55). Recall thatHi obeys the condition
(5.56), which can now be written as
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∂0

�
∂iU

½n�
i þH½n� þ 1

3
xk∂kH½n�

�
¼ 0: ðE4Þ

Integrating this we find that

∂iU
½n�
i þH½n� þ 1

3
xk∂kH½n� ¼ Ũ½n�; ðE5Þ

where Ũ½n� is some time-independent function that is not a
new function as it is entirely determined by the left-hand
side. It is merely a useful shorthand notation.
If we define χ̂½n�i and χ̂½n� as follows:

χ̂½n�i ¼−U½n�
i þ∂iU½n�−

1

2
∂iðxkU½n�

k Þ−1

2
xiH½n�−

1

12
r2∂iH½n�;

ðE6Þ

χ̂½n� ¼ 1

12
r2∂0H½n� þ 1

2
xiH½n�

i − ∂0U½n�; ðE7Þ

then we can write

H½n� ¼ 2∂kχ̂
½n�
k þ 4Ũ½n� − 2∂2U½n� þ xi∂2U½n�

i ; ðE8Þ

M½n�
0 ¼ −∂0χ̂½n�; ðE9Þ

M½n�
i ðTÞ ¼ −∂0χ̂

½n�
i − ∂iχ̂

½n�: ðE10Þ

This is almost of the form of an ambiguity transformation
(5.23)–(5.28). Referring to Eqs. (5.29) and (5.30) we see
that we have

∂
2χ̂½n�i þ 1

3
∂i∂jχ̂

½n�
j ¼ −

5

3
∂iŨ½n� − ∂

2U½n�
i þ 4

3
∂i∂

2U½n�

−
2

3
∂iðxj∂2U½n�

j Þ; ðE11Þ

∂
2χ̂½n� þ ∂0∂iχ̂

½n�
i ¼ 0: ðE12Þ

We thus see that the failure for this to be an ambiguity

transformation is measured by Ũ½n�, ∂2U½n�, and ∂
2U½n�

i .
Furthermore, we have

∂iU
½n�
j þ ∂jU

½n�
i þ ∂i∂jðxkU½n�

k Þ − 2∂i∂jU½n�

þ r2

6
∂i∂jH½n� þ 2

3
∂iðxjH½n�Þ

þ 2

3
∂jðxiH½n�Þ ¼ −∂iχ̂

½n�
j − ∂jχ̂

½n�
i þ 1

3
δijH½n�; ðE13Þ

so that we can write (E2) as

0 ¼ □∂
2
0

�
h½n�ij ðTTÞ − ∂iχ̂

½n�
j − ∂jχ̂

½n�
i þ 2

3
δij∂kχ̂

½n�
k

�
; ðE14Þ

where we used that

∂
2
0H

½n� ¼ 2∂20∂kχ̂
½n�
k : ðE15Þ

The second time derivative of the term in parentheses in
(E14) is transverse traceless. The most general solution to
Eq. (E14) necessarily must be of the form36

h½n�ij ðTTÞ¼W½n�
ij þ∂iχ̂

½n�
j þ∂jχ̂

½n�
i −

2

3
δij∂kχ̂

½n�
k þA½n�

ij þx0B½n�
ij ;

ðE16Þ

where A½n�
ij and B½n�

ij are time-independent and traceless and

where W½n�
ij is traceless and obeys the free wave equation.

We can decompose W½n�
ij into a TT and longitudinal trace-

less part as

W½n�
ij ¼ W½n�

ij ðTTÞ þ ∂iC
½n�
j þ ∂jC

½n�
i −

2

3
δij∂kC

½n�
k : ðE17Þ

Since ∂20∂hiχ̂
½n�
ji is TT, it follows from (E16) that ∂20∂hiC

½n�
ji

is also TT. This means that we have

∂
2
0

�
∂
2C½n�

j þ 1

3
∂j∂iC

½n�
i

�
¼ 0: ðE18Þ

Since□W½n�
ij ¼ 0, if we act with□∂j on the decomposition

(E17), the result (E18) also tells us that ∂2C½n�
j þ 1

3
∂j∂iC

½n�
i is

harmonic.
The decomposition (E17) suffers from the following

ambiguity transformation:

W0½n�
ij ðTTÞ ¼ W½n�

ij ðTTÞ þ 2∂hiψ
½n�
ji ; ðE19Þ

C0½n�
i ¼ C½n�

i þ ψ ½n�
i ; ðE20Þ

where in order for W0½n�
ij ðTTÞ to be TT we need that

∂
2ψ ½n�

j þ 1

3
∂j∂kψ

½n�
k ¼ 0: ðE21Þ

We have just proven that both ∂
2
0C

½n�
i and ∂

2C½n�
i are

solutions to (E21). Let us define these solutions as

ψ̌ ½n�
i ¼ ∂

2
0C

½n�
i ; ψ̂ ½n�

i ¼ ∂
2C½n�

i : ðE22Þ

These are not independent since we have ∂
2ψ̌ ½n�

i ¼ ∂
2
0ψ̂

½n�
i .

36We use here that the solution to an equation of the form
□∂

2
0f ¼ 0 is a sum W þ T where □W ¼ 0 and ∂

2
0T ¼ 0. We

checked this for the class of solutions that can be obtained by the
method of separation of variables.
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Under an ambiguity transformation (E20) we have

□C0½n�
i ¼ □C½n�

i þ□ψ ½n�
i ¼ −ψ̌ ½n�

i þ ψ̂ ½n�
i þ□ψ ½n�

i : ðE23Þ

Hence, if we can write −ψ̌ ½n�
i þ ψ̂ ½n�

i ¼ □X½n�
i where Xi

solves (E21) (up to a solution to the free wave equation),

then we can without loss of generality set □C0½n�
i ¼ 0 by

taking ψ ½n�
i such that □ðψ ½n�

i þ X½n�
i Þ ¼ 0. The equation

−ψ̌ ½n�
i þ ψ̂ ½n�

i ¼ □X½n�
i implies that Oij□X½n�

j ¼ 0 where we
defined the operator Oij ¼ δij∂

2 þ 1
3
∂i∂j. Since Oij and □

commute and are different operators, it follows that X½n�
i is a

sum W½n�
i þ ψ̄ ½n�

i where W½n�
i obeys □W½n�

i ¼ 0 and ψ̄ ½n�
i

solves (E21). We thus conclude that without loss of

generality we can set □C½n�
i ¼ 0 and thus □W½n�

ij ðTTÞ ¼
0 as follows from (E17).
As an intermediate result we now know that h½n�ij ðTTÞ

must take the form

h½n�ij ðTTÞ ¼ W½n�
ij ðTTÞ þ 2∂hiðχ̂½n�ji þ C½n�

ji Þ þ A½n�
ij þ x0B½n�

ij ;

ðE24Þ

where □W½n�
ij ðTTÞ ¼ 0. On this result we still have to

enforce that the right-hand side is transverse and that the

original equation for h½n�ij ðTTÞ, i.e., Eq. (5.18), is satisfied

(where as usual we ignore the nonlinear sources described

by τ½n�μν ). We start with the latter. Equation (5.18) can
alternatively be written as

□h½n�ij ðTTÞ ¼ −2∂20∂hiχ̂
½n�
ji −

1

3
∂i∂jH½n�: ðE25Þ

We substitute (E24) into (E25) which leads to

∂
2

�
∂iχ̂

½n�
j þ ∂jχ̂

½n�
i −

2

3
δij∂kχ̂

½n�
k

�
þ ∂

2A½n�
ij

þ x0∂2B½n�
ij þ 1

3
∂i∂jH½n� ¼ 0: ðE26Þ

If we differentiate this equation with respect to x0, we

obtain an equation for B½n�
ij that is solved by

B½n�
ij ¼ H½n�

ij − 2∂0∂i∂jU½n� þ 2

3
δij∂0∂

2U½n�; ðE27Þ

where H½n�
ij is harmonic and traceless. Substituting this into

(E26) we obtain an equation for A½n�
ij . Rather than working

with A½n�
ij it will prove convenient to write the right-hand

side of (E24) as follows:

h½n�ij ðTTÞ ¼ W½n�
ij ðTTÞ þ 2∂hiC

½n�
ji þ Â½n�

ij þ x0H½n�
ij −

1

6
r2∂i∂jH½n� −

2

3

�
∂iðxjH½n�Þ þ ∂jðxiH½n�Þ − 2

3
δij∂kðxkH½n�Þ

�
; ðE28Þ

where we defined Â½n�
ij which is traceless as

Â½n�
ij ¼ A½n�

ij − ∂iU
½n�
j − ∂jU

½n�
i þ 2

3
δij∂kU

½n�
k − ∂i∂jðxkU½n�

k Þ þ 1

3
δij∂

2ðxkU½n�
k Þ

þ 2∂i∂jðU½n� − x0∂0U½n�Þ − 2

3
δij∂

2ðU½n� − x0∂0U½n�Þ: ðE29Þ

Equations (E26) and (E27) then lead to

∂
2Â½n�

ij ¼ 2∂i∂j

�
H½n� þ 1

3
xk∂kH½n�

�
: ðE30Þ

From the fact that A½n�
ij and B½n�

ij are time-independent and
the redefinitions (E27) and (E29) we see that

∂0H
½n�
ij ¼ 2∂i∂jF½n�; ðE31Þ

∂0Â
½n�
ij ¼ −2x0∂i∂jF½n� − ∂i∂jðxkH½n�

k Þ − ∂iH
½n�
j

− ∂jH
½n�
i þ 4

3
δij∂kH

½n�
k : ðE32Þ

We still need to require that the right-hand side of (E24)
is transverse. By taking the divergence of (E28) and
differentiating with respect to x0 we find that H½n�

ij obeys

∂iH
½n�
ij þ

�
δij∂

2 þ 1

3
∂j∂i

�
∂0C

½n�
i ¼ 0: ðE33Þ
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Substituting this into the divergence of (E28) we learn that

∂iÂ
½n�
ij þ

�
δij∂

2 þ 1

3
∂j∂i

�
ðC½n�

i − x0∂0C
½n�
i Þ

¼ 5

3
∂j

�
H½n� þ 1

3
xk∂kH½n�

�
: ðE34Þ

We recall that C½n�
i obeys (E18), and so the C-dependent

terms in the above two equations are time-independent.
To summarize, the solution for h½n�ij ðTTÞ is given by

(E28). In here H½n�
ij is traceless and harmonic and obeys

Eqs. (E31) and (E33). Furthermore, Â½n�
ij is traceless and

obeys Eqs. (E30), (E32), and (E34).

APPENDIX F: SOLVING FOR THE EXTERIOR
ZONE METRIC

In the first part of this appendix we will focus on the
exterior zone metric. We will go through some generalities
and then make consistency checks of our treatment of the
exterior zone metric. In doing so we need to also perform
the multipole expansion of the near zone metric which will
be done in the second half of this appendix.
However, we will begin by discussing how to get a

consistent treatment of error terms in the double expansion
that we perform on the exterior zone metric. The relativistic
multipole expansion schematically takes the following
form:

F ðuÞ
r

þ ∂k

�
F kðuÞ

r

�

þ ∂kl

�
F klðuÞ

r

�
þ ∂klm

�
F klmðuÞ

r

�
þ � � � ; ðF1Þ

where the FLðuÞ are associated with near zone multipole
moments through the matching procedure; thus we can
assume that FL ∼ ðlcÞLF and ḞL ∼ 1

tc
FL. Using this we see

that for the lth order term in the expansion we get

∂i1���il

�
F i1���ilðuÞ

r

�

∼
�
lc
r

�
l
�
1þ r

λc
þ
�
r
λc

�
2

þ � � � þ
�
r
λc

�
l
�
F
r
: ðF2Þ

Now, in general lc=r is going to be completely unrelated to
the post-Minkowskian expansion parameter, ϵ ¼ GM

c2lc
. Thus,

a priori there is no good answer to the question of how
many orders in the multipole expansion one needs to keep
if we truncate theG expansion at nth order. At the very least
the answer will be r-dependent. In other words there is no
consistent analogy to the nPN metric for the exterior zone;
it simply depends on what one is interested in calculating.

However, if we restrict ourselves to the wave zone,
λc ≤ r, then we know that ðlcrÞ2 ≤ ϵ. This allows us to put an
upper limit on the order in the multipole expansion that we
need to keep for any finite order in the G expansion. For
example, if the highest-order correction we are interested in
is the monopole correction to the nPM metric, then we
know that we at most need to keep up to the 2ðn − kÞth
order correction in the multipole expansion of the kPM
metric (k < n). Anything higher in the multipole expansion
of the kPM correction is guaranteed to be subleading.
However, this is often much more than what is actually
needed.
For example, in gravitational wave physics the goal is

usually just to compute the waveform for which we only
need the 1=r piece of the metric.37 More precisely, the
waveform is constructed by taking the transverse traceless
projection of the 1=r part of gij. At leading order the
waveform is given by the famous quadrupole formula

hTTij ¼ 2GÏTT
ij

c4r
þOðc−5Þ: ðF3Þ

Using this along with (F2) we see that in order to compute
the full nth order 1=c corrections to the quadruple moment,
one needs to keep up to nþ 2 − 2m orders in the multipole
expansion of the Gm correction to hij.
Now, returning to the main aim of this appendix, in

Sec. VII. 2 we have laid out how to compute the particular
solution to the exterior zone metric, but we have only made
very limited use of it since it does not contribute to the
determination of the near zone harmonic functions.
Therefore, we want to give more examples of the matching
process. One way to do this is to compute the relevant part
of the wave zone metric (following the counting argument
laid out above) to a given order and match it against the
2.5PN near zone metric. We have chosen to do this to up to
the order where we get the leading order (in the multipole
expansion) contribution to the 3PM particular solution for
the tt component and the leading order 2PM particular
solution for the it and ij components.

1. Solving the inhomogeneous wave equation

We know from Eq. (5.45) that the 2PM equations of
motion are given by

□h½2�μν ¼ S½2�μν ; ðF4Þ

S½2�μν ¼−τ½2�μνþ∂μðhαβ½1�∂αh½1�βνÞþ∂νðhαβ½1�∂αh½1�βμÞ−∂μðhαβ½1�∂νh½1�αβÞ:
ðF5Þ

37The subleading correction to this is completely negligible for
any physically relevant sources.
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We also already matched the exterior zone metric to 1.5PN order (see Sec. VII B), and from this we know that

gEtt ¼ −c2 þ 2GðM þ c−2Mð2ÞÞ
r

− 2
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−
G
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�
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�
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r

−
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3
∂k

�
GÏ ð0Þ
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�
þ � � � ; ðF6aÞ

gEti ¼
4G
c2

�
1

2
ϵiab

naJ
ð0Þ
b

r2
þ 1

2
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�
İ ð0Þ
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�
þ 1

3
ϵiab∂l∂a

�
J ð0Þ

bl ðuÞ
r

�
−
1

6
∂kl

�
İ ð0Þ
ikl ðuÞ
r

��
þ � � � ; ðF6bÞ

gEij ¼ δij

�
1þ 2GM

c2r

�
þ � � � ; ðF6cÞ

where the dots denote terms that are subleading according to the wave zone counting. This is not all we know; for example,

the Ið0ÞL have been fixed for all l in the Newtonian expansion [see Eq. (7.26)]. Equation (F6) is simply stated here for
convenience when computing the source terms for the 2PM equations.

a. 2PM spatial components

Starting with the spatial components, we find that the leading order correction to S½2�ij is given by

S½2�ij ¼ −
4M2

c4r4

�
nhiji −

2

3
δij

�
þ � � � ; ðF7Þ

where the dots denote terms that are either higher order in the multipole expansion or Oðc−6Þ as in this section we are not
interested in the part of the wave zone metric that we cannot match with the 2.5PN metric. Using the integral equation in
(7.32) we find

−
1

4π

Z
E
d3x0

S½2�ij ðt − jx − x0j=c; x0Þ
jx − x0j ¼ M2

c4r2

�
ðninj þ δijÞ −

8

3
δij

r
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þ 4

5

lc
r
nhiji

�
þ � � � : ðF8Þ

The first two terms make up the particular solution while the last two terms above are boundary terms that are assumed to be

canceled by B½2�
ij .

Adding the homogeneous solution to the 2PM particular solution we find that the exterior zone metric is given by

gEij ¼ δij

�
1þ 2ðM þ c−2Mð2ÞÞ
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þ 1
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∂kl

�
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kl ðuÞ
r

�
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∂k

�
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r
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−
8
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To match with the near zone we go to the overlap region and 1=c expand

CðgEijÞ ¼ δij
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b. 2PM mixed components

Next, we want to compute the leading order contribution to the particular solution for h½2�it using Eq. (5.140), and we find
that

S½2�it ¼ −
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To use the integral equation in (7.32) we decompose the source into irreducible representations

S½2�it ¼ −
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Ï ð0Þ
ik ðuÞ − 4

r2

c2
I
…ð0Þ
ik ðuÞ

��
þ � � � : ðF12Þ

We then apply the integral equation in (7.32) to each term individually. Using integration by parts and dropping boundary

terms that are expected to be canceled by B½2�
it , we find

−
1

4π

Z
E
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kl ðuÞ=cÞ

c4r3
nhikli þ 9

5
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ik ðuÞ=cÞ
c4r3

nk þ � � � : ðF13Þ

Adding the homogeneous solution to this we get that the exterior zone metric is given by
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If we then go to the overlap region and 1=c expand the metric, we get
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∂ikðrẄkðtÞÞ −

1

3
xi∂3t WðtÞ þ ∂

3
t WiðtÞ þ

1

4!
∂klm

�
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c. 3PM time components

Finally, we move on to the tt component. Using Eq. (5.140) we find
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Meanwhile, the source term for h½3�tt is given below

S½3�tt ¼ 12M3

c4r5
þ � � � : ðF17Þ

Solving these equations we find the following particular solution:

□−1
retS

½3�
tt ¼ 2M3

c4r3
; ðF18Þ
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þ 8Ï ð0Þ

klm

c2r2
þ 14I

…ð0Þ
klm

3c3r

�

þ 4M
c4

naϵablðJ̇ ð0Þ
bl þ J̈ ð0Þ

bl r=cÞ
r2

: ðF19Þ
The final expression for the exterior zone metric is then given by
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We then 1=c expand in the overlap region to find
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For convenience we have not explicitly expanded the
multipole moments IL and WL.

2. Multipole expanding the near zone metric

In this subsection we will multipole expand the 2.5PN
near zone metric. We start with some generalities. First of
all, for integrals with some compact source term μðx; tÞ that
are of the following form:

Z
d3x0μðt; x0Þjx − x0jn; ðF22Þ

we use that for jxj > lc

jx − x0jn ¼
X∞
l¼0

ð−Þl
l!

∂Lðrnx0LÞ: ðF23Þ

The other type of term we will run into is the Poisson
integral over a noncompact source term, σðt; xÞ,

Z
d3x0

σðt; x0Þ
jx − x0j : ðF24Þ

In this case we split the domain of integration in the integral
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I ð0Þn ¼ fx0 ∈R3jr0 < lcg: ðF25Þ
The integration over the interior can be treated as a compact
term and so we use what we learned in (F23). For the
exterior zone integral, we use that the source term itself can
be multipole expanded, so we find

σðt; xÞ ¼ 1
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σfmg
L ðtÞnhLi
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: ðF26Þ

Each of these terms can be solved using a simpler version
of Eq. (7.32), which can be derived in a similar fashion and
results in

Z
E
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Aðs;rÞ≔
Z

rþs

lc

dr0
PlðξÞ
r0ðm−1Þ ; Bðs;rÞ≔

Z
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s
dr0
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r0ðm−1Þ :

ðF28Þ

This integration will naturally lead to terms that depend
explicitly on lc but these will be canceled by boundary
terms from the integration of the interior.
For the integral over the interior one often makes use of

the conserved currents in (D10) as well as the associated
identities in (D5), which when integrated over will lead to
the aforementioned boundary terms.

a. Multipole expanding the spatial components

We wish to perform the multipole expansion of the
2.5PN near zone metric. First, we note that
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where

hð2Þij ¼ 2δijU; ðF30Þ

hð4Þij ¼ δijð2U2 þ ∂
2
t X þ 8πGP½Eð0Þ − Pð0Þ þ 2Eð−2ÞU�Þ

þ 16πGP½Eð−2Þvivj� þ 4P½∂iU∂jU�; ðF31Þ
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ij : ðF32Þ
Using what we learned in the first part of this section, we

see that the multipole expansion of the near zone metric in
(F29) is given by
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We see that the matching with (F10) is consistent and fixes for us
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30
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b. Multipole expanding the mixed components

The it components of the near zone metric up to 2.5PN order are given by

git ¼
1

c2
g1PNit þ 1

c4
g2PNit þ 1

c5
g2.5PNit : ðF35Þ

We know that g2.5PNit is just a harmonic function that we determined in Sec. VII. So for the purpose of this appendix, g2.5PNit is
already fully matched and can be ignored. Meanwhile we know that

g1PNit ¼ 4Ui; ðF36Þ
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Multipole expanding these we find
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We find that the matching with the metric in (F15) is consistent.
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c. Multipole expanding the time-time component

The tt component of the near zone metric up to 2.5PN order is given by
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where we know from previous sections that
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We then multipole expand, express the integrals in terms of conserved currents and apply the fluid identities of Appendix D.
In the end we find
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We find that the matching with the exterior zone metric in (F21) is consistent.
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