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We consider the classic problem of a compact fluid source that behaves nonrelativistically and that
radiates gravitational waves. The problem consists of determining the metric close to the source as well as
far away from it. The nonrelativistic nature of the source leads to a separation of scales resulting in an
overlap region where both the 1/¢ and (multipolar) G expansions are valid. Standard approaches to this
problem (the Blanchet-Damour and the DIRE approach) use the harmonic gauge. We define a “post-
Newtonian” class of gauges that admit a Newtonian regime in inertial coordinates. In this paper we set up a
formalism to solve for the metric for any post-Newtonian gauge choice. Our methods are based on previous
work on the covariant theory of nonrelativistic gravity (a 1/c expansion of general relativity that uses post-
Newton-Cartan variables). At the order of interest in the 1/¢ and G expansions we split the variables into
two sets: transverse and longitudinal. We show that for the transverse variables the problem can be reduced
to inverting Laplacian and d’Alembertian operators on their respective domains subject to appropriate
boundary conditions. The latter are regularity in the interior and asymptotic flatness with a Sommerfeld no-
incoming radiation condition imposed at past null infinity. The longitudinal variables follow from the gauge
choice. The full solution is then obtained by the method of matched asymptotic expansion. We show that

our methods reproduce existing results in harmonic gauge to 2.5PN order.
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I. INTRODUCTION

The post-Newtonian expansion is an expansion of general
relativity (GR) assuming weak fields and slow motion. The
expansion is almost as old as general relativity itself and has
played a key role in our understanding of gravity. Its
applications go as far back as the precession of the perihelion
of Mercury. Currently, it plays a key role in gravitational
wave physics. In fact, one can argue that the demand for
high accuracy predictions in gravitational wave physics has
driven modern developments in post-Newtonian theory. One
of the hurdles that had to be overcome was finding a way to
glue together the physics of the slowly evolving system (for
example, some fluid with compact support) with that
of the relativistic phenomenon of gravitational radiation
that one observes far away from the source. The objective is
to compute the metric both close to and far away from the
source. This problem has led to two different but equivalent
approaches, namely the Blanchet-Damour approach (for a
review see [1]) and the direct integration of the relaxed
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Einstein equations (DIRE) approach (for a review see [2])."
Both approaches make use of the relaxed Einstein equations,
which is a clever rewriting of Einstein gravity adapted to the
harmonic gauge. Then through a separation of scales one is
able to split spacetime into separate but overlapping regions
for which different approximations are valid.

In recent times there has been a revival of work done in
developing covariant nonrelativistic expansions of gravity
described in terms of Newton-Cartan-type geometries plus
relativistic corrections [7—12]. For a review see [13]. In this
covariant approach the nonrelativistic expansion of gravity
essentially takes place in tangent space in the limit in which
the tangent space light cones flatten (1/¢ — o). This
expansion is more general than the post-Newtonian expan-
sion for two reasons. The first reason is that being “post-
Newtonian” already presupposes that one is working in a
gauge in which there is a Newtonian regime (this is not true
in all gauge choices?). Second, the covariant 1/¢ expansion

'Other important approaches to post-Newtonian gravity in-
clude the effective field theory methods reviewed in [3], the
celestial mechanics for N-body systems [4], and the Hamiltonian
approach for compact binary systems [5,6].

*The covariant formulation of Newtonian gravity is Newton-
Cartan gravity of which Newtonian gravity is a gauge-fixed
version.
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is not necessarily a weak field expansion. There is a regime
called strong nonrelativistic gravity that includes solutions
such as a nonrelativistic Schwarzchild geometry [8,10,14].
It depends on what assumptions are made regarding
the nonrelativistic expansion of the matter fields whether
one ends up with a weak or strong nonrelativistic gravity
regime [11]. One of the purposes of this paper is to use
the covariant nonrelativistic gravity approach to find a
systematic framework that allows us to perform post-
Newtonian calculations in a more covariant manner.
There are in some sense three increasingly challenging
generalizations of the current state of the art (reviewed
below) regarding post-Newtonian methods. The first layer
(the scope of this paper) is to find a framework in which we
can perform post-Newtonian calculations in any gauge that
admits a Newtonian regime. The second layer of sophis-
tication is to generalize this further to a framework that is
properly covariant in the sense of some yet to be con-
structed post-Newton-Cartan theory, but still assumes weak
fields. Finally, the ultimate aim is to develop methods that
are based on post-Newtonian ideas but where the leading
order theory is not Newtonian gravity but rather the strong
nonrelativistic gravity regime’ alluded to above.

With this work we intend to build a clear bridge between
the covariant nonrelativistic expansion and the post-
Newtonian expansion that will serve multiple purposes.
First, it gives us a better understanding of the covariant 1/¢
expansion and what its capabilities as well as its limitations
are. Second, this will provide us with a new framework for
the post-Newtonian expansion that is able to improve upon
certain aspects of the otherwise very well-developed theory.
In our endeavor to construct a more covariant approach to
the post-Newtonian expansion we will also have to develop
a more covariant framework for the post-Minkowskian
expansion outside the source, which is necessary to
describe radiating systems. We will set up a formalism
that allows us to compute the metric close to and far away
from a radiating source for any gauge choice that admits a
Newtonian regime and for which the vacuum is described
in inertial coordinates.

This framework is, of course, not going to compete with
the Blanchet-Damour or DIRE approach when it comes to
the accuracy with which calculations have been performed
in the harmonic gauge. However, a more covariant frame-
work might make it easier to identify gauge-independent
physics and develop intuition about the expansion.
Furthermore, there might be advantages to working in
other gauges, depending on the problem at hand.

Apart from developing the ingredients of a more covar-
iant framework we also show how our approach works in
the standard harmonic gauge (to show that the method
works and to facilitate comparison with the literature) as

3To be clear, this aim can be achieved independently from the
second layer/aim.

well as in another gauge that we refer to as the transverse
gauge [see Eq. (4.69)]. The latter can be thought of as the
GR version of the Coulomb gauge familiar from electro-
magnetism. In the companion paper [15] we will report in
more detail on how the post-Newtonian expansion works in
that case.

A. State of the art

Here we give a very brief review of the Blanchet-Damour
approach [16-26] as well as the DIRE approach [27-32]
which themselves build on a lot of previous work (see, for
example, [33-39] or for a much more comprehensive list of
references see [1]) that helped bridge the gap between
the classic approach4 and modern day post-Newtonian
theory. The basic post-Newtonian setup goes as follows.
One assumes that the matter source is compact with some
characteristic length scale, /., and characteristic timescale,
t.. Then one assumes slow motion % < 1 where
v, = 1./t., and through the virial theorem it then follows
that the gravitational field strength is weak as well,

)2 .
M ~% <« 1 where M is the total mass. The post-

2.
Newtonian expansion has a limited region of validity,
called the near zone, which is the part of the spacetime
where retardation effects can be treated perturbatively, i.e.,
r < A. = ct,. Outside of the near zone one has to rely on
post-Minkowskian techniques, i.e., expansions in Newton’s
constant G.

Both approaches are reliant on the harmonic gauge that
can be expressed as

d,h" =0, (1.1)

where ¥ = ¥ — \/=gg" and u = 0, 1, 2, 3. In this gauge
Einstein’s equations can be rewritten as

162G
D = — 2 o, (1.2)
c
where = - Clz% +V?2 is  the flat-spacetime

d’ Alembertian and 7*¥ depends on nonlinear combinations
of W and its derivatives as well as the energy-momentum
tensor 7" of the matter source. Once h* is determined,
one can derive the metric by simply solving h** = p —
v/—9g" for g,,. One can then derive the matter equations of
motion (EOM) from the near zone metric or the waveform
from the asymptotic behavior of the metric. Equation (1.2)
is the starting point for both approaches but they differ in
how they solve this equation.

The Blanchet-Damour approach relies on the method
of matched asymptotic expansions. One solves Eq. (1.2) in
the exterior (/. < r) of the source using a multipolar

“In the classic approach the 1/c expansion is assumed to be
valid everywhere, i.e., all the way up to infinity.
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post-Minkowskian (MPM) expansion, and one solves the
equation in the near zone (r < A.) using a post-Newtonian
expansion. The two solutions are matched in the overlap
region, fixing undetermined functions on both sides. The
near zone solution takes the following form:

,_ 161G o 4G (o)
n C4 I:|rel [Tﬂ]_Fl:OTaL
wo, _ Y
" (RL (t—r/c)—RY (t—i—r/c))’ (1.32)
2r
L& () (0
|:|_l THY = —_-— _—
et 7] 47%::0 m! <caz>

xfP/d3x’|x—x’|'"_1%"”(x’,t), (1.3b)

where the bar over 7 indicates that the source 7#* has been
1/c expanded. The index L is a multi-index i;---i,.
Meanwhile, FP denotes a regularization procedure to find
the finite part of the integral. The functions R}* (1 — r/c)

|

I 1 1 )
hly = 32 7 aL 1[ iL— 1<M)+l_"_—1€iabaa<;JbL—l(”)>:| +5i¢0—;az¢',

>1

are fixed in the matching and are in general not analytic in
1/c. However, to 2.5PN order these terms will be zero. The
source 7, of course, depends on A** as well but only
nonlinearly, and so (1.3) can be computed iteratively.

In the exterior zone 7#¥ = 0, and therefore 7** simply
consists of nonlinear combinations of ##* and its deriva-
tives. So, for the G expansion

W = Ghif, + Gzh‘(‘z”) - G3h’(‘§) +0O(GY), (1.4
™ =Gy + G%’(g”) + O(G*), (1.5)

the leading order equation is simply Dh’(‘f ) = 0. This is then

solved making use of the past-stationarity condition
{9,/ = 0|t < —=T,} for some finite positive number T,
The solution can be expressed as

4 1 !
iy =—z (l') aL{ (u)} Tt -od (16)

>0

(1.7)

. 4 —)! 1. 21 1 . . y
Iy = A4 %aL—z [;IijL—z( )+ T 10 < €ap(i j )bL—Z(u)>:| +200p)) — 59,9, (1.8)
> v
with

4 -t T1
P = ) (—,)aL [— WL(”):| , (1.9)

C >0 r

=) X ()] 4 (-1)! Yir—i(u) l 1

= 9 - 0r- 0| = Zy1 - , 1.10
¢ c41220 TGS - oA — TG . l+1€lab a pr—1(1t) ( )

uv

where I;,J;, W, X;,Y;, Z; are undetermined symmetric =~ where Vi) is a specific homogeneous solution that is

trace-free (STF) tensors that will be fixed in the matching determined through 9,0, = —a,u",. This is to ensure
procedure in terms of multipole moments of the matter hat 5™ w o, o) 1 ! ('i) tion that fulfills th
source. The resulting expression for h’(‘f) will then deter- 1t #(n) T ¥y Torms a particular solution that fultills the

v harmonic gauge condition. Finally, /. is the general

mine the source term 1@’) in the wave equation for h<2),
which itself enters in 1’(’; and so on.

The full nth order solution can then be written as

h#v Ghﬁgm+ZGn (e +of2),  (111)
n t—|x X|/e,x)
fP/cP ! : (1.12)
|x — x|

solution to the homogeneous equation, which is given by
taking h’(‘ly) and adding corrections to /;,...,Z; up to the
desired order in G. For more details and in-depth analysis
we refer the reader to the review paper [1].

In the DIRE approach the first step is to formally
integrate (1.2) using the retarded Green function

o [ mlmle)

e = x|

(1.13)
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Then one splits up the integration domain in a
near zone N = {¥€R3|r <R} and a wave zone
W = {XeR’|r > R}, where by definition R is the boun-
dary of the near zone. One then gets

W = B4 R, (1.14)
#(t—|x = x'/e, x)
W — & /T Ly
& /N * =]
y Y (t = |x = x'|/c,X')
h’y‘\,:/w(ﬁx’ )

In here /; and h),, are each subject to different approx-
imations depending on whether one is evaluating at a field
point x € or x € W. This leads to four different integral
equations that one solves iteratively. At leading order
" = T and thus h’{,'\’, = 0. For the near zone integrations
the following approximations are used:

v < <_)I A% 3 v -1
h"N:[ZO:W > Nd X (t,x)|x—=x'|7! forxeN,

hj’\';zzudL {/ &X't (t—r/c,x')x't| forxeWw,
= [! rJn

(1.17)

where the expression in (1.16) has been 1/¢ expanded and
the expression (1.17) has been multipole expanded using
that the field points are in the near and wave zones,
respectively. Equation (1.17) then gives rise to the source
terms for Ay, at the second iteration. It follows from this
that the source term, for x € WV, is going to be a sum over
terms of the generic form

L fi (wn'®

— , 1.18
4 r'"m ( )

where m is a positive integer. Using this the wave zone
integrals can be written as follows [given here for just one
generic term in (1.18), but in actuality one would have to

(1.16)  sum over multiple contributions of this type]:
|
n<L> R o
Ry, = — {/ dsfy"(u—2s/c)A(s, r)—|—/ ds ’z”(u—Zs/c)B(s,r)] for xe W, (1.19)
r 0 R
n<L> R o
o " [ / ds ™ (u =25/ A(s, r) + / dsf™ (u—25/¢)B(s, r)] for x €N, (1.20)
r R-r R

where u =t —r/c and

A(s,r) :=/r+sdr’ Pi¢)

r/(m—l) ’

I%

r+s P
B(s.r):= / are

c

(1.21)

In here P, denotes the Legendre polynomial of degree
I and &= (r+2s)/r—2s(r+s)/(rr'). The functions
A(s,r) and B(s,r) can be computed explicitly for a
given [ and m. The integrals over s are done by making
continual use of integration by parts while throwing away
terms that depend explicitly on the cutoff [these will be
canceled by similar boundary terms coming from (1.17)
and (1.16)].

Going beyond the second iteration the source term in the
wave zone, 7Y, will be constructed out of a nonlinear
combination of both (1.19) and (1.17) as well as their
derivatives. Most of these terms will be on the form of
(1.18); but if one goes to high enough order log r-terms will
appear, then (1.19) and (1.20) no longer hold and one has to

return to (1.15). For a slightly different form of (1.19) and
(1.20), and a more in-depth description, see [28].

B. Statement of the problem

Given a perfect fluid source with compact support the
goal is to devise a computational scheme that is able to
perturbatively compute the metric both near the source as
well as far away from it (and in principle in the inter-
mediate region). The source is assumed to behave non-
relativistically so that the characteristic velocity is much
smaller than the speed of light leading to a separation
of scales /. < A. = t.c. The method should allow us to
compute the metric in any gauge that admits a Newtonian
regime for the near zone metric. Furthermore, we assume
that the metric is asymptotically flat in inertial coordinates
with Sommerfeld no-incoming radiation conditions
imposed at past null infinity. This framework must include
a suitably covariant framework for the multipolar post-
Minkowskian expansion as this is necessary to capture the
radiative effects. In this paper we construct this framework
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and test that it produces the correct results for the metric in
harmonic gauge to 2.5PN order. In [15] we show how the
method works in transverse gauge.

We restrict ourselves to solving the post-Newtonian
metric for a compact perfect fluid source. However, there
exists a method of extracting the equations of a compact
binary system from those of the perfect fluid [29]. This
involves treating the bodies as small (compared to their
separation), spherical, nonrotating balls of fluid. Doing this,
of course, adds a whole extra layer of complication that is
beyond the scope of this paper.

Additionally, Since we restrict ourselves to 2.5PN order
we do not have to deal with tail terms that will eventually
show up in the near zone and that signal a breakdown of the
1/c¢ Taylor expansion. To fix this one needs to include
log c-terms [17,40]. We leave their incorporation for
future work.

C. Summary of results

In this paper we present a 1/c¢ expansion approach to the
post-Newtonian expansion that applies to any post-
Newtonian gauge. By a post-Newtonian gauge we mean
a gauge choice for which the metric admits a Newtonian
regime. More concretely, these are gauge choices for which
we can write the metric as g, = n,, + h,, where 7,
corresponds to the Minkowski metric in inertial coordinates
and where there is a region of spacetime where the metric is
Newtonian plus corrections.

We start by working out the metric in the near zone,
defined by r < 4, using the covariant 1/c expansion. Then
we solve the metric in the exterior zone r > [. using a
multipolar G expansion that works for the same class of
post-Newtonian gauge choices as used for the 1/¢ expan-
sion. Finally, we match the two expansions in the overlap
region. In both cases the general principle is to first expand
the equations, split the variables into transverse and
longitudinal variables, solve for the former, and fix the
latter by applying a gauge condition. We then integrate the
1/c and G expanded Einstein equations subject to appro-
priate boundary conditions and match them in the overlap
region.

The covariant 1/c expansion starts by expressing the
metric in pre-nonrelativistic variables T, and IT,,, as

G = —CQTﬂTU +10,, (1.22)
where II,, has signature (0, 1, 1, 1). The choice of T,
and TII,, is, however, not unique and is subject to local
Lorentz boost transformations. We use this freedom to set
IT;, = 0 (where i = 1, 2, 3 is a spatial index), in which case
we get

ds? = —=c*(T,dx")* + I1,;dx'dx’. (1.23)

The fields 7', and II;; are assumed to be analytic in 1/c,
which is valid to the order we are interested in’ which is
2.5PN. The 1/c expansions of T, and I1;; are then given by

1o 1 ©_ |
n=4 n=2

(1.24)

where we used that the 0.5PN metric (and the term in 7', at
order 1/c) can always be gauged away. Since we use
inertial coordinates for the vacuum we have

Wy = 6,68, 1, =8l (1.25)
It then follows that 15,2) = -U¢, with U being the

Newtonian potential. To construct the 5PN metric one

needs to determine 7', to 1},’”2) and IT;; to hg;o. We expand

Einstein’s equation in 1/c¢, and apply the following
decomposition of the post-Newtonian variables:

n n n n 1 n
h = W (TT) +o,L" + o,L") +36,H".  (1.26)
Tl(n+2) _ M§”> (T) - atLE”) — 9;N™, (1.27)
TEn+2> _ MS‘”) _ atl\](n)7 (128)

where H") = h,(c',? - 20kL,({") and where T denotes that the
field is transverse and TT that it is transverse traceless. This
leads to

PHO — 251@, (1.29)
! (TT) = S\ — %@ R %aiajH<">, (1.30)
FMU(T) = s 4 %atai HO, (1.31)

PM™ = s 4 %a%HW + L")
- %aiH('ﬁairSz) +hM0,0,77, (1.32)

where S, $" and SE';-] depend only on the fluid matter
variables (which are also 1/c¢ expanded) and lower-order
fields hg.o and 1,(]‘*2) with k < n. These equations can be

rewritten in the form of simple Poisson-type equations.

>This will eventually break down at higher order, but it can be
fixed by including log c-terms in the expansion.
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_ 350 (1.33)

a2H(n) 4 >’

(1.34)

i Ji

\ 1, 1
o <M(- (1) —3x’(3,H(”)> =5/ — 10

. iy . 2
02<h§j>(TT)+E[xfajH<">+xfa,.H<> 20 o D

1 1 o) 2 n
=S — 26,81+ x'0,8)) + 2108 —25,x40,81) ).
37 16 3%
(1.35)
2021_1() 1, (n)
-+ E)C atMl- (T)
— s 2025< o Liig st ldH(”)aTSz)
16 2 et !
+ L0 + hPo,0,47. (1.36)

At this point we still have not applied any gauge
condition, except for what we assumed in (1.24) to get
Newtonian gravity. Thus, we see that for any post-
Newtonian gauge the field equations all reduce to
Poisson-type equations and the gauge freedom is stored
in the longitudinal fields L,(»"> and N which are deter-
mined through an appropriate gauge choice. The latter is an
important addition to the list of equations because the

source terms depend on Lgk) and NW for k < n.

The Poisson equations are formally solved using a
regularized Poisson integral to which we add the most
general harmonic function that is regular in the near zone.
Take, for example, Eq. (1.33), where the solution to this
would be given by

3
H[n] — = d3 / ll Lx F
1671'[2 \x x| Z s

where L = iy, ..., i, and where F; is completely symmet-
ric and trace-free in all its indices. The coefficients F
characterize our ignorance about boundary conditions
imposed outside the near zone, and they will be fixed in
the matching process.

For the exterior zone metric we perform a post-
Minkowskian or G expansion

(1.37)

G = M + G + G2 + - (1.38)

and we will use x” = ct. The vacuum Einstein equations for
hgﬁ can be written as

—Ofl) + 12(20,0,h". — 0,0,hl) = <

) (1.39)

[n]

where 7, depends only on products of lower-order fields

h,[ﬁ,_l], h[ | and their derivatives. Similar to what we did
[1] -

in the near zone, we then make a decomposition of h,w in
terms of transverse and longitudinal fields:

n n n n 1 n
H = R(TT) + o,Ll + oLl +30,H. (1.40)
hY = —MU(T) 4 oL 4 oNP, (141
il = —2M{" + 20,N 1), (1.42)
where
HI =l — 29,1, (1.43)
Equations (1.39) are then given by
3 n
PH = 7 (agy + 7)), (1.44)
PMy = aZH["l + Lok (1.45)
2 00’ :
2
PM"(T) = 2000 + 7, (1.46)
—Oh) (TT) = =2000;M; (T) + 20,0, M)
1 n
+§a,-ajH[ Y (1.47)
which can be rewritten as
3 n
PH! =7 (el 4 2, (1.48)
n n X! n
P (M([) Eang + EGOM[- ](T)>
1 n n n 'xl n
=570 [ ] +Eaz(7[og Eck]) +3607[0i]’ (1.49)
& (M )= Lo min | = P (w42 (1.50)
i 3 Toi 4 0\*00 kk :
~Oh) (TT) = ~2000,M"} (T) + 20,0, M
1 n [n]
+ 3060 H + 7. (1.51)

If we differentiate the latter equation with respect to x°
twice, we can rewrite it further to
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O (agh£j1 (TT) + 0;96M " (T) + 0,0,M""(T) - 20,0,M" +

Thus, we see that the problem boils down to inverting the
d’Alembertian and the Laplacian operators in the exterior
zone. Again this holds for any post-Newtonian gauge. In
solving for these equations we, of course, also need to
apply boundary conditions. These are asymptotic flatness
as well as Sommerfeld’s no-incoming radiation condition at
past null infinity.

More concretely, the homogeneous solution to these
equations can be found in Egs. (E8)—(E10) and (E28). For
the particular solution to the sourced equations we need to
invert the Laplacian and the d’Alembertian in the exterior
zone. The boundary conditions are such that H M ([)”], and

M"(T) are O(+!) for large r and hE:f] (TT) obeys the
Sommerfeld no-incoming radiation condition at past null
infinity, which is the statement that

1imd, (A} (TT)) = 0,

(1.53)

where v = 1+ r/c (advanced time).

The particular solution for hg'}] (TT) can be obtained
by using a retarded Green function that is well-defined in
the exterior zone. Again the longitudinal fields are fixed by
an appropriate post-Newtonian gauge choice. These are
important as they are part of the matching process with the
near zone solution and because they appear in the sources
for the higher-order G equations of motion.

Once we have obtained the most general solution in both
the near zone and in the exterior zone, we apply the
matching condition that is very reminiscent of what is done
in the Blanchet-Damour approach in harmonic gauge; i.e.,
we require that in the overlap region we have

M(gly) = Clgia):

where C indicates the operation of 1/c¢ expanding the
exterior zone metric, g,,, and M indicates the operation of

(1.54)

multipole expanding the near zone metric, g%

D. Outline of the paper

This paper is organized as follows. In Sec. II we review
the covariant 1/c¢ expansion of GR. This leads to a
formulation of Einstein’s equations in terms of what are
called pre-nonrelativistic variables. In Sec. III we continue
our review of nonrelativistic gravity by spelling out the
conditions under which the theory has a Newtonian gravity
description that informs us later about the class of gauge
choices we can make. Sections IV and V constitute the first
main part of the paper. In Sec. IV we outline the general
structure of the 1/c¢ expansion of the Einstein equations to

5ij6(2)H["]> = _a(z)f[r{] + aoai'[([)r}] + aoajf([)r;‘] - aiajf([)r(l)]'

(1.52)

ij

|

any order in 1/c, and we give the explicit equations to
2.5PN order in any post-Newtonian gauge. The details of
the latter result are discussed in Appendix B. In Sec. V we
essentially do the same for the G expansion. We decompose
the metric at a certain order in G into transverse and
longitudinal components. We then show how the G
expanded FEinstein equations can be solved for the trans-
verse components at any order in G and how the gauge
choice fixes the longitudinal components. We furthermore
discuss the issue of asymptotic boundary conditions for the
different components of the metric. In the case of the
transverse gauge we solve for the homogeneous part of
the G expanded Einstein equations explicitly and we derive
a useful parametrization of the homogeneous part of the
harmonic gauge metric. In Secs. VI and VII as well as
Appendix D we then focus our attention entirely on the
harmonic gauge and show that our methods lead to the
known 2.5PN near zone metric. In Appendix F we discuss
the solution for the exterior zone metric and its matching
onto the 2.5PN near zone metric. In Appendix A we collect
our conventions. Appendix C is a review of the multipole
expansion of solutions to the free wave equation in
Cartesian coordinates (for the sake of keeping the paper
as self-contained as possible).

II. THE COVARIANT 1/¢c EXPANSION

In this section we begin our exposition of the covariant 1 /¢
expansion of GR also known as nonrelativistic gravity (for a
review see [ 13]). Ultimately, we want to make contact with the
post-Newtonian approximation, but before doing so we will
briefly recap some results from [11] (which was based in part
on the earlier works® [8,9.45]). We will deviate from this
reference in two important ways. First of all, in [11] they
consider a 1/c? expansion of Einstein gravity. However, to
reproduce the half-integer post-Newtonian (PN) orders we
will need to include odd powers in 1 /¢ for our nonrelativistic
expansion. The second deviation comes from the fact that we
will be doing an expansion of Einstein’s field equations rather
than the Einstein-Hilbert action. We choose to do this, as it
reduces the amount of computation needed, which is very
valuable when going to high orders.

A. Pre-nonrelativistic variables

We state our conventions in Appendix A. The first task
will be to formulate Einstein’s field equations in terms of
what are known as pre-nonrelativistic (PNR) variables. We
can always write the metric g, in terms of vielbeine 7, and
& as

®For other works on nonrelativistic gravity see [7,10,14,41-44].
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G = —czTﬂT,/ + 5ab5255, (2.1)
where a, b = 1, 2, 3 are spatial tangent space indices. We
have introduced a speed of light so that 7,dx* has
dimensions of time, and we will denote x* = (¢,x') (only
in Sec. V will we use the notation x” = c?). This helps with
the covariant formulation in the nonrelativistic domain. The
PNR variables are 7, and II,, = 5ab5,‘j5,’j, which is a
symmetric tensor with signature (0, 1, 1, 1). The variables
(T,.&;) form an invertible square matrix whose inverse
(T#, &4) follows from the completeness and orthogonality
conditions given by

T”EZ =0, T”E;’j =0, T, = -1,
il =¢85 ELEL =8+ T'T,. (2.2)
The metric and its inverse are thus
G = —czTﬂTU + 11, (2.3)
1
gv =—-=T"T" + 11, (2.4)
c

where IT" = £4,EY 5.

So far everything is fully general. The theory of non-
relativistic gravity (i.e., the 1/c¢ expansion of GR) relies on
the following important assumption: 7, and II,, admit
Taylor series expansions in 1/c. This assumption is known
to break down in post-Newtonian calculations when tail
terms start appearing, in which case we need to consider
expansions in ¢™"(log ¢)™. This happens at higher post-
Newtonian orders than considered in this work (we restrict
our attention to 2.5PN order), and so we will not consider
this important possibility. We refer to [1] for more details.

Next, we will formulate Einstein’s field equations in
terms of the variables 7, and IL,. We are specifically
interested in the PNR version of the trace-reversed Einstein
equations

87G
le — 78"”’ (25)
where we defined
1
Sﬂ,, = T/w — zgm,T, (2.6)

with 7, the energy-momentum tensor (and 7 its trace).
Therefore, the main task is to rewrite the Ricci tensor, R
in terms of PNR variables.

We know that the Ricci tensor can be expressed in terms
of the Levi-Civita connection as

I

R, = 0,05, = 9,1g, + T, —T,I7%,.

O,

(2.7)

So, first of all, we will have to work out the PNR version of
the Levi-Civita connection. We know that

1
I_‘lpﬂ/ = Eg/m(aug/w + augua - aag;w)’ (28)
so from Eqgs. (2.3) and (2.4) we find that
I = Wiy + Chy + Shy + ¢ 72V, (2.9)

where we have defined

wh ::lT 17°(o,T —6T)+1TH’”’(0T -0,T,)
122 o H ol v vio v ot u uto)s

(2.10)
1
Ch=-T179,T, +§Hp"(0yﬂ,w +0,,,—0,11,,),  (2.11)
1
Shy = ETp(a"T” -0,T,-T,LsT, —T,LsT,), (2.12)
P 1 /4
Vi = 2 TP LI, (2.13)

2

In here L7 denotes the Lie derivative along 7#. We note that
with the exception of (2.11) all objects are tensorial. We
refer to (2.11) as the C connection. Its leading order (LO)
expansion in 1/c¢ gives us a useful connection that can be
used in the covariant formulation of Newtonian gravity
[11,13]. We note that the C connection is not symmetric
and so contains torsion. We stress that this is merely a
reformulation of GR in terms of a torsionful and non-GR
metric compatible connection whose features are chosen
such that it gives us a useful Newton-Cartan connection
when expanding in 1/c.

We now insert the expression for the PNR Levi-Civita
connection into Eq. (2.7) and find that

R, = 4R+ ARG + R + c2RE, (214
with
R = Lo 1 nwrwer, 1 (2.15)
Hv 4 ntv apt fo>s .
O
Ry =V Wo, +Wg, S, — W3S, — W3Sk, (2.16)
(©€) ©
Ribd = R, — Wo,Vh, = Wo,VE, — V85,
© o A o
+ V85, = 2Ct,,83,. (2.17)
o ©
Ry =V,Vi,. (2.18)
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where we defined

T, =0,T,—-0,T,, (2.19)
and where the overscript (C) means that the object in
question has been computed with respect to the C con-
()
nection (2.11). The expression for R, is given by
@ o o o (A e
R, =9,Ch, —0,C5, + C3,C — €, G, (2.20)
which is not symmetric in y and v due to the fact that Cl,
has torsion.
We have now dealt with the left-hand side (LHS) of
Eq. (2.5). However, it will be convenient to rewrite the
right-hand side (RHS) (2.5) as well, since we are generally

3
S W IREE —4nG | T, T, T, T~
n=0

This equation may seem daunting but it is the 1/c
expansion we are interested in; when performing that
expansion this will prove to be a useful starting point.

B. Notation and basic identities

The basics objects we are going to be expanding are 7,
I1,,, T*, and IT**. Since we are planning to go to high orders
in the long run, we introduce the following notation for the

expansion of the PNR fields:

o0 1 [Se]

_ (n) _ 1
=Y G Tr=v Y Sl

n=1 n=1

T

p (2.24)

1w
My =y + Y=
n=1

201
o 3 L
n=1
(2.25)

The LO geometry is of Newton-Cartan-type and is
described by 7, and h,,. For ease of notation in some

expressions below we will sometimes denote the LO

T, = 1,(,0), and

objects 7, with a (0) superscript, i.e.,
similarly for 4, v*, and h*.

Now, the variables above are not all independent. They
are related through the completeness/orthogonality rela-
tions that we know from GR, Eq. (2.2). These relations

given in terms of 7, and I, read

1
(2T, TuT+ 2T, TyTL

going to be working with 7#* rather than 7 ,,,.. For example,
for the trace 7 = T#, we find that

T = T, TyT% + T, T (2.21)

We can also express 7, in terms of 7" in which case

we get
Ty = AT, T,T,TyT
~ (T, T, + T, Tyl )T
+ 11,11, 7. (2.22)

This leads us to our final expression for the PNR version of
Einstein’s equations

2 1
Ha T/l TuHaﬂ - T{lTﬂHﬂ ) +—= 4 Hﬂanuﬂ 4 H/wHa[)’ T(lﬁ
(2.23)
[
T,T'=—1, T,W*=TMI, =0, TWII, =& +T'T,.
(2.26)

These hold order by order in the 1/¢ expansion. At leading
order we simply get

T, 0H=-1,

ﬂ =8, + ',

(2.27)

T W =0'h, =0, h"h,

For every subsequent order we get a new set of
constraints from Eq. (2.26). At the Nth order in 1/c¢ (for
N > 1) we get

N N
Do tyn =0 Yo et =0,

n=0 n=0

N

> o at ™ =0, zN:h"th" iv

n=0 n=0 n=0

(2.29)

We can use these equations to express h’(':,) and v’(‘N) in
terms of b, v#, bl and 7\’ (for n < N). From Egs. (2.28)
and (2.29) we can derive the following expressions for hf’;\’,)
and 1/(‘ N

h’”’Zv ",

(2.30)
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z
L

N-1

+ oH Z hf}‘;)rg\'_").

n=0

My = oy (ot 20 = R ™)

I
=}

n

(2.31)

We can solve these equations iteratively, starting from
N =1 and working our way up to the desired order.

It is clear that these expressions get messy very quickly.
In practice, however, one determines the metric at a certain
order in 1/¢ before going to the next order. It then often
happens (especially at low orders) that certain components
at a given order in 1/c¢ will be zero, which simplifies the
expressions for the inverse objects at higher orders con-
siderably compared to the general result. It is therefore not
very useful to compute the higher-order contributions to the

inverse objects without knowing anything about 1,(,"> and

h,(ﬁ) at lower orders.

C. Gauge transformations

Since we are working with a covariant theory of non-
relativistic gravity, gauge transformations are going to play
a crucial role. To describe the most general nonrelativistic
gauge transformation, we must first study the gauge
transformations of our PNR variables 7, and IL,.
Because we have split the metric into 7}, and IL,,, we
are allowed to perform local Lorentz boosts that transform
T, and II, into each other while leaving the metric
invariant. Apart from that the only other gauge trans-
formations that act on 7', and I, are diffeomorphisms.

The action of the gauge transformations on 7, and IT,,
are thus given by

8T, = L=T, + c2A,, (2.32)

ol = L1, + T, A, + T,A,, (2.33)
where Z¥ is a vector field generating diffeomorphisms and
where A, = A,,Efj is any one-form for which T#A, = 0.
The transformations with local parameter A; correspond to
local Lorentz boost transformations.

The next step is to expand both sides of Egs. (2.32) and
(2.33). We will assume that the gauge parameters are real
analytic in 1/c in order that the gauge transformed objects
T, and I1,, admit a Taylor series in 1/c. We thus consider
the following expansions:

- 1 1
O

1 1
A, =1+ ;,1,3‘) + ?z,?) (2.35)

For the LO gauge transformations we will write & = 5"
and 2, = 4.

Starting with Eq. (2.32), we find that the most general

gauge transformations for 7, r,gl), 1,(,2), T,(;’), and T,(,N) are
given by

6t, = Lez,, (2.36)

57,, =Le, Ty +Egrﬂ . (2.37)

51,, =L, 7+ L, T,, '+ [,,:1',4 + Ay (2.38)

51',4 —ﬁg 7+ L, T,, +[,§ Tﬂ +£§T,4 a0, (2.39)

sz ch( AN, (2.40)
where the condition 7#A, = 0 implies that /ILN) obeys
N "
> oA (2.41)

n=0

In the case of (2.33) we find that the gauge transformations

of hy,, h,(w), and hfu, are given by

Shyy = Ly, + 27,4, (2.42)
1 1 1 1
Shia) = L hu + L) + 20,4 +21)2,). (243)
N N
shi) =3 Lo ™ +23 a0 (2.44)
n=0 n=0

If we goback to (2.32) and (2.33), we see that we can fix the
local Lorentz transformations entirely by setting I1;, = 0. In
this gauge we have I1,; = 0 for otherwise the signature would
not be (0, I, 1, 1); i.e., the determinant of I, is zero while
detIT;; is nonzero. In this gauge we also have that T =0,
which follows from T*I1,, = 0 for v = j. Hence, the con-
dition 7#A,, = 0 implies that A, = 0. The condition T7#T, =
—1 with 7% = 0 tells us that 7" must be nonzero since T* is
nonvanishing and thus that 7', # 0. Explicitly, when we take
I1;; = 0, we obtain for the inverse objects

1 . ) 1 . 1
T'mmoos TI=0, M=, =TT,
Tl Tl l
(2.45)
where I1¥ follows from
AL, = 5. (2.46)

The residual gauge transformations of the gauge choice
I, =0 follow from setting OIl,; =0 = LI, + T,A,;
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which tells us that A; is entirely fixed and given by

1 »
Ai - —Tnija[:/.

t

(2.47)

Using this result together with (2.32) and (2.32) we see that
the residual gauge transformations act on 7, and II;; as
follows:

oT, =%0,T, +T,0,Z, (2.48)
oT;, =20, T; + T,0,5° ! 1H0:f 2.49
;i =20, + pOi= = 3 o=, (2.49)
t
5HU - TPOPHU + ija,-Ek + H,’kajEk
1 1

/A g—— =k

—iTiija,_ T, T ;10,5 (2.50)
In this gauge the metric is parametrized as

ds? = —=c*(T,dt + T;dx')* +I1;;dx'dx’ . (2.51)

This is the metric in Kol-Smolkin (KS) parametrization
[46,47]. We will refer to the choice I1;, = 0 as the KS
gauge. Alternatively, we could have fixed the local Lorentz
transformations by setting 7; = 0. This would have led to
the metric in Arnowitt-Deser-Misner (ADM) parametriza-
tion. See [48] for more information about these two choices
in relation to 1/¢ and ¢ expansions of GR. We prefer the KS
parametrization because then the nonzero components of
I1,, form a three-dimensional invertible tensor I1;;. We will
henceforth always take I1,; = 0.

D. The perfect fluid in nonrelativistic gravity

In this paper we are going to work with a perfect fluid
(with compact support) as our matter source. The energy-
momentum tensor for a perfect fluid is given by

E+4+P
o2

1
TH = urur + PI" — = PTHT", (2.52)
c

where E is the relativistic internal energy density, P is the
pressure, and U* is the four-velocity that is normalized such
that

9 UFUY = —c2. (2.53)

Using (2.3) this can be solved for T,,U* by writing this as

1
(T, U*)? =1+ 11, U V"
c

(2.54)

Since we expand the metric in even and odd powers of
1/c, it is inevitable that we also have to include even and
odd powers in the expansion of the fluid variables. The

even powers are, of course, the dominant ones that
correspond to the OPN, IPN, etc., sources. It turns out
that at low orders the odd powers in 1/c in the metric are
either zero or pure gauge. Our approach to expanding the
fluid variables in 1/c¢ is to assume this to be an even power
series expansion until that assumption breaks down. This
breakdown can be seen by studying the fluid conservation
equations (the 1/c expansion of the covariant constancy of
the fluid’s energy-momentum tensor) at each PN order and
to ensure that each nontrivial PN order has its own set of
fluid variables to avoid unphysical constraints on the
solution.” In this way it turns out that we need odd powers
in 1/c in the expansion of the fluid variables for the first
time at 2.5PN in the expansion of the fluid equation. Odd
terms break time-reversal symmetry, and this is related to
the well-known fact that the fluid starts to dissipate at
2.5PN due to the emission of gravitational waves.

We expand the energy density E, pressure P, and three-
velocity U’ in powers of 1/c?, until we get to 2.5PN. To
recover the Newtonian limit we need to assume that E starts
at order ¢? and that P starts at order ¢’. We therefore have
the following expansion:

1 1
E = czE(_z) + Eq) + ?E(z) + ?E@) + O(C_4), (2.55)

1
P = P(o) +?P(2) —+ O(C_4), (256)

Ui = —I—évém + O(c™). (2.57)
We will always assume that £ (=2) > 0. At OPN, i.e., order ¢
in the expansion of the fluid conservation equations, the fluid
variables are E (=2)» P(0)> and v'. However, at OPN the metric
only features E_5). The 2.5PN fluid variables are E3), P s),
and ”és) . However, since our goal is to work up to 2.5PN in the

metric, we will only need E3) of these variables.

The four-velocity U* is a constrained variable. The time
component U’ follows from (2.54) which in the KS gauge
becomes

1 o
(T,U*)* =1+ ?H,-J-U’ U/, (2.58)

Hence, the expansion of U’ follows from the expansion of
the PNR variables and U’. At LO we have

"If we have a nontrivial equation at a given order in the
expansion of the fluid conservation equations and the fields
appearing in said equation are all lower order fields that have
already been determined at previous orders, that equation would
appear as a constraint on these lower-order fields. This would be
unwanted and simply a consequence of not having introduced
the appropriate coefficients in the 1/c¢ expansion of the fluid
variables.
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U' = u' + O(c7h), (2.59)

and (2.58) tells us that

T,ut = 1.

’ (2.60)

ITII. THE NEWTONIAN ORDER

In this section, we set the stage for the post-Newtonian
expansion by discussing how the Newtonian limit of GR
comes about in the nonrelativistic gravity framework
reviewed in the previous section.

The general covariant framework that describes
Newtonian gravity is Newton-Cartan gravity. Newtonian
gravity is a gauge-fixed version of that setting (for details
see, for example, the review paper (135 A post-
Newtonian framework therefore necessarily has to be
consistent with the same gauge fixing that is done in
Newton-Cartan gravity to obtain the Newtonian descrip-
tion. In this section we will show how this gauge fixing
works in the framework of nonrelativistic gravity that was
introduced in the previous section. One of the main
purposes of this paper is to set up a framework for post-
Newtonian calculations that is not tied to a particular gauge
choice such as the harmonic gauge. However, the very fact
that we want to be post-Newtonian means that we inevi-
tably have to restrict ourselves to those gauge choices that
are compatible with a Newtonian viewpoint. It would be
interesting to develop techniques to study what one might
call post-Newton-Cartan gravity which would then have to
be a fully covariant version of what we present here and of
what has been done elsewhere.

Finally, we end this section by discussing the 0.5PN
order (which is trivial) in this nonrelativistic gravity
framework.

A. Absolute time and Newtonian gravity

We start our discussion by showing how a perfect fluid
with E = O(c?) and P = O(c") gives rise to a nonrela-
tivistic spacetime with absolute time at leading order in
1/c. We start with Einstein’s field equations, which we
have written in PNR form in Eq. (2.23). To leading order
Eq. (2.23) becomes

(3.1)

1
Zrﬂr,,haﬁhp"raprﬂg =0,
where we defined

Ty = 0,7, — 0,T,.

(3.2)

¥In Newton-Cartan gravity it is perfectly possible to choose a
gauge in which the Newtonian potential is zero while still being
able to describe the same physics as we observe in Newtonian
gravity [49].

Equation (3.1) is simply the leading order expansion of R,[,_f]

which is set to zero because there is no term on the RHS of
(2.23) thatis of order ¢*. We see that the factor in front of 7,7,
is a sum of squares, and so Eq. (3.1) implies that

h*Phrozs, =0, (3.3)
which in the Newton-Cartan literature is known as the
twistless torsional Newton-Cartan (TTNC) condition which
is equivalent to 7 A dz = 0 [50]. This condition tells us that
the spacetime admits a foliation since by Frobenius’ theorem
this is equivalent to 7 = NdT where N and T are two scalar
fields. The function N is like a nonrelativistic lapse function
that describes time dilation.

In this work we will always assume that we can make a
weak field approximation which corresponds to absolute
time in the NC setting, but it is perhaps interesting that in
principle NC geometry can also describe what is called
strong NR gravity. This simply means that dN A dz # 0 so
that N describes time dilation. In [8,10] it has been shown
that the Schwarzschild geometry admits a strong NR
approximation, and that this regime of NR gravity can
describe perihelion of mercury, and effects due to gravi-
tational time dilation (in agreement with GR) [14]. It would
be interesting to study this regime as a potential starting
point for an approximation scheme that does not start with
flat space (and a Newtonian potential).

To arrive at absolute time we must turn to the con-
servation of the energy-momentum tensor, given by

VvV, 7" = 0. (3.4)
Using the 1/c expansions of the previous section the LO
term of the expansion of this equation is given by [11],
0= E(_z)h/“’u”’rw, (35)
where u* is defined in Eq. (2.59). From Eq. (2.60) it follows
that we can write the fluid velocity field as
uw = —v’ +h?X,, (3.6)
for some field X,. Using this along with the TTNC
condition, Eq. (3.5) reduces to

0 = h*v¥z,,. (3.7)
If we contract this with &,,, we get
0=1"1,,. (3.8)

This along with the TTNC condition (3.3) means that
7, = 0 which is the condition for absolute time, and so we
set T = dT for some scalar field 7. We can and will always
choose coordinates such that 7' = .
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We want to arrive at Newtonian gravity, which means
that we need to compute the metric up to order c° (i.e., up to

r,(f) and h,,). So, we continue to expand Einstein’s field

equations until we have solved the metric up to
order c°.
The next nontrivial part of Einstein’s field equa-

tions (2.23) comes at order ¢? in which case we get

)
R+ R =0, (3.9)

(=2)
[-4]

where R,," denotes the order ¢? term in the 1/c expansion
(0)
of R,[,_f]. Likewise, R,[;Z] denotes the order ¢° term in the

[

expansion of R,;zl. Using that dz = 0 this becomes

1
Zwbhaﬁhﬂ%&})q@‘g ~0, (3.10)

and so we conclude that z() A dz(l) = 0.

We then turn to the NLO equation in the expansion of
(3.4). Using again that dz = 0 we end up with the following
expression:

0= Eyh*oursly). (3.11)

Using a similar argument as was used at LO, we conclude

that dzV) =0, so that 7, = 0,T. The gauge trans-

formation acting on T,(,”

to set 7,

is given in Eq. (2.37). We can
use %) = 0. We will always assume this gauge
choice.

The next nonzero order in the expansion of Einstein’s
field equations is at order Y, which is the Newtonian order
and is given by

4 ) (0)

R+ R + Rl = 4nGrr B,y (3.12)
Using Eqgs. (2.15)—(2.17) we have that
<[4 )41 1 2)_(2)
Ry :ZTﬂTbhaﬁhpGTapTﬂG, (3.13)
2 2) 2) @) @ . @
Ry =V, Wg, = 0,W, + g, Wa, — 1%, W3, — 1%, W7,
(3.14)
o
R} =R, (3.15)

where we used that dz = 0 and where 17, is the Newton-
Cartan connection that is obtained as the LO term in

the 1/c¢ expansion of the C connection. Explicitly, it is
given by

. 1
C,’jy|0(co) =17, = -0’0, +§h/w(a”h"” +0,h,—05hy,).

(3.16)

Quantities such as ?M and Rﬂy are computed using the lv“fw
connection. We furthermore have that

1 1
Wi = 55075 + 5 5,725, (3.17)

To solve (3.12) we start with the ij component. This
simply becomes

= 0. (3.18)

Since 7,h/" = 0 and 7 = dt we have that 2'* = 0. We also
fixed the local Lorentz boosts by setting I1,, = 0 which
implies at LO that h,, =0. Hence, the only nonzero

components of fﬁy are the ff] components. These are
given by

I = %h’d(aih,, + 0;hy — 0jhy;). (3.19)
where h;; is a Riemannian metric on a constant 7 slice.
Equation (3.18) states that h;; is Ricci flat.

Since we are working in three spatial dimensions we
know that the Weyl tensor of the Riemannian geometry on
the constant ¢ slices is zero. This means that if /;; is Ricci
flat it is also Riemann flat. Since the constant time shces are
assumed to be noncompact, there exist coordinates such
that

Ry = 5,615,

(3.20)

The y =v =t and p = t, v = i components of (3.12) then
become

1
L7 T+ 0my = 4nGE (. (3.21)
9,7y = 0. (3.22)

We use the fact that we are working in three spatial
dimension to write r(z) in terms of a (pseudo)vector field
Fy,

(2 _
Tij = €iijk'

(3.23)

Equation (3.22) then becomes
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This means that we can write F, = d;F for some unknown

function F. Recall that T,(-f) = 20[,-15.]2) so it must satisfy the

Bianchi identity

oty = 0. (3.25)
If we contract this equation with €”/% and use (3.23), we find
that 0, F* = 0, and thus that F is harmonic.

Since F is a harmonic function, any nontrivial solution to
*F = 0 will lead to a singularity somewhere in space
(independent of the matter distribution) if we include
infinity. As discussed in the Introduction the 1/¢ expansion
only has a finite region of validity. Within this region that
contains the matter source we need F to be regular (and thus
in particular we will demand that F is regular at origin). For
this harmonic function to be nonzero we need to match this
onto a solution in the exterior region that is an order G
solution to the source-free Einstein equations. It turns out
that by matching onto such a solution the harmonic function
F has to be zero. Another viewpoint is that we insist that in
the NR regime Newtonian gravity is a good approximation,
and so we should be able to demand that the metric to order
" is asymptotically flat. This means that F cannot be a
nontrivial harmonic function and the only allowed solution

for F is F = F(t). This means that 11(-]2-)
Eq. (3.21), reduces to the Poisson equation whose solution is
found by the use of Green’s function

E o (t,x
1'52)()C,f) — —G/(2>()d3x’ - _U.

Jx = x|

= 0, and therefore

(3.26)

This is the Newtonian gravitational potential, as expected.
The integration is over the matter source.

B. The Newtonian matter equations

Having computed the Newtonian metric, we turn to the
matter EOMs to see if we get the correct fluid equations.
The Newtonian term in the expansion of (3.4) is at order ¢,
which evaluates to be

u"u”éuE(_z) + 2E(_2)M(”0DM”) + E(_z)h’“’rg)u”

+ 0,P )" = 0. (3.27)
This equation describes both mass conservation as well as
momentum conservation. To see this we consider the 4 = ¢,
i components separately. For y = t we obtain

0= 0,(E_pyu”). (3.28)

This equation corresponds to conservation of mass since
E(5) > 0 is the nonzero mass density. Then if we take

u=1i we get the Euler equation in a Newtonian
potential

vt + vt = — 0P — Y. (3.29)

E()

The latter equation together with (3.28) forms four
equations for five unknowns. The unknowns are velocity
v', mass density E<_2), and the temperature that enters P(O).
Normally, the fifth equation is the energy conservation
equation. However, this comes from the NLO correction to
(3.28), which also depends on subleading fields, such as
”éz)’ that appear in the expansion of the fluid variables.

Hence, we do not get a closed system of equations for just
the LO fluid variables (see [11] for more details).

C. Gauging away the 0.5PN metric

In this section we want to solve for the 0.5PN metric,
which requires knowing T,(f) and hw. We begin by
expanding Einstein’s field equations to one order higher
in 1/c¢ than the Newtonian order. Einstein’s field equations
at order ¢! are

CINC )
R + Ry + Ryt = 0.

(3.30)

We note that there is no source term at this order. Using that

2

ij

and the orthogonality conditions, it can be shown that
(5)

R,[;4] = 0. The other two terms in (3.30) can be shown to be

equal to

173

7.7/ =0 as well as h<1> = 0, which we get from r,(,l) =0

(3) ® O 0 @

R = 0,Wg, + Cg, Wi, —2C2 W7, .

(3.31)
) (1) (1)

R = 0,Cl, — 9,Cl,.

(3.32)

(1
where we used S}, = 0. Finally, the gauge choice IT;, = 0
tells us that hgt” =0.
Using what we have just learned, we find that the y = i
and v = j components of (3.30) give us

20001y, — 00hly) — 00,y =0 (3.33)
The u =t and v = j components give us
a0,h) —a,0,n)) — 0,25 = 0. (3.34)

Finally, for 4 = v =t we find that
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1) _(2 3 2 1 1
_aj(hgj)ft('t)) + akf/(g) + Tl(ct)akhgi) - ata!hl(ck) =0. (3.35)

We can without loss of generality decompose h§}> into a
transverse traceless (TT) part, a longitudinal traceless part,

and a trace part, using

m (1 m 1
hy) = hi)(TT) + o,L" + oL, +§5,;,-H“>, (3.36)
where H!) is given by
HO = pll) —29,L". (3.37)

From Eq. (2.43) we learn that the gauge transformation
acting on hg}) is given by

(1 _ j i (1)
5hij - d,-ffl) + ajé(l) + ‘thij ’

(3.38)

where we used that 7 = df, 7! = 0, and h = dx'dx’. We can

thus gauge away LSI) using éj’('l). The trace of Eq. (3.33) tells

E}) is globally
well-defined; and since there are no matter sources, it
follows that H(!) must be a function of time only. However,
we also require that the solution is asymptotically flat so

us that HV) is harmonic. We require that &

that hfy goes to zero at infinity. Hence, we find that H(!) is
zero. The LHS of Eq. (3.33) then reduces to d°h{) (TT),

and by similar arguments we conclude that hgﬁ(TT) =0,
|

& = cst, E=a'(t)+ A,

where A;; = —4;; corresponds to a rotation, a'(r) is any
vector that only depends on #, and f ;) is any function that
only depends on . The Newtonian potential U transforms
under the residual gauge transformations as

8U = &0,U — X' — 0,f ), (3.42)

which agrees with the results of [51]. The £“d, generate
the acceleration extended Galilei symmetries. Finally, the
A()ij = —A(1)ji are constant, and 5’(‘1) and f(3) have to
correspond to a symmetry of U; i.e., they have to obey
oU = 0 or what is the same, they should solve the equation

f’(l)aﬂU = X’ﬁél) + 0tf(3) (343)

The arguments above assumed asymptotic flatness
which means that we assume the 1/c¢ expansion to be a

so that, in fact, hl(.jl.) = 0. The remaining Eqgs. (3.34) and
(3.35) then simplify to

G _g

ot B —o.

PR (3.39)

Using similar arguments as in the case of (3.22) we find that
we can choose a gauge (by using 523)) to set 71(3) =0.
53) is harmonic without a source
so that asymptotic flatness tells us that 153) = 0. Hence, we
conclude that we can always choose a gauge such that
7} = 0 and hly = 0.

We emphasize that the above arguments used the
assumptions that the metric up to and including 0.5PN
terms is globally well-defined, that the spacetime is
asymptotically flat and four-dimensional, and that constant
time slices are topologically R>.

To summarize, we have found that we can always choose
a gauge such that

Finally, this implies that 7

T = dt,
A =0,

h = dx'dx’, 7 =0,

72 = —ydt, 73 =0, (3.40)
where U is given in (3.26). The residual gauge trans-
formations are obtained by setting Egs. (2.36)—(2.39) as
well as (2.42) and (2.43), in which we substitute (3.40),

equal to zero with the exception of 5152), which is simply

equal to —oU. This leads to

521) = cst, 521) = aél)(t) + ﬂél)jxj,
522) = xida’ +f(2)<t)’ §E3> = xiazl) +f(3>(t)7

A =0,
(3.41)

good approximation all the way up to infinity. In actual
fact we need to perform matched asymptotic expansion by
matching with an order G solution’ to the source-free
Einstein equations (in the overlap region). That perspective,
as we will see, leads to the same conclusion, namely that
there is nothing at order 0.5PN. More concretely, if we had
left the 0.5PN harmonic functions as undetermined and had
matched the metric up to 0.5PN with the linear in G
solution, we would have found the same result as what we
just obtained assuming asymptotic flatness. From the
matching perspective the absence of a 0.5PN solution
can be shown to be a consequence of mass conservation.

9Higher orders in G would be too subleading in 1/c. For
example, order G? is actually G?/c? compared to G.
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IV. GENERAL STRUCTURE OF THE
POST-NEWTONIAN EXPANSION

Now that we have discussed the general framework of
nonrelativistic gravity and reviewed how it recovers the
Newtonian regime, we will embark on the 1/¢ expansion of
Einstein’s equation to post-Newtonian orders in earnest. The
framework developed here is valid in any gauge for which
the vacuum is described in inertial coordinates and for which
there is a Newtonian regime, but apart from that, it is fully
general. We will on occasion discuss what happens for the
harmonic gauge choice as well as for the transverse gauge
(about which we will report more in [15]).

We assume weak fields, so we are expanding around flat
spacetime for which we use inertial coordinates denoted by
(t,x"). The 1/c expansion is a general expansion that works
off shell. The assumption that there exist fields that admit a
Taylor series in 1/¢ (which is dimensionful) means that in a
specific on shell context the expansion will organize itself
in terms of a dimensionless ratio »/c where the interpre-
tation of v depends on the context. For us the velocity v is
either the characteristic velocity of a bound gravitational

GM
> .,
(as follows from the virial theorem), or v is [,./f, where [,
and 7. are the system’s characteristic length and time,
respectively. The latter is small compared to ¢ when the
characteristic wavelength of the gravitational radiation
Ae ~t.c is much larger than /.. The general form of,
say, a metric components’ 1/¢ expansion is schematically

[s+] G n
Z (—2> a,(c7ht,%),
c

n=1

system, i.e. ~ z—z where M is the total mass of the fluid

(4.1)

where the a, are independent of G and admit a Taylor
expansion in 1/c including odd powers. The latter assum-
ption can break down, signaling the need for the introduction
of log c-terms. We will not need to consider these terms that
are generically related to gravitational tails [17,40], as they
only appear at higher PN orders. We will restrict our
attention up to and including 2.5PN order. We see that
any order in 1/c¢ will have a finite number of powers of G.

On sufficiently large scales retardation effects will no
longer be perturbative in 1/¢, so the 1/c¢ expansion is valid
only in a finite region of space. The standard assumption is
that the matter source behaves nonrelativistically so that it
is fully contained within the region where the 1/c¢ expan-
sion applies.'” The latter will be called the near zone. The

"“The characteristic velocity of the fluid ». will be much
smaller than the speed of light, i.e., v. < c¢. If we multiply this
with the characteristic timescale of the source, we find [, < 4.
where [ is the length scale of the matter source and A, is of the
order of t.c which is the characteristic wavelength of the
gravitational radiation. There is thus a separation of scales which
is why there is an overlap region that allows us to use the method
of matched asymptotic expansions.

exterior zone will be all of space minus the compact matter
source. These two zones overlap, which is the region where
the matching of the 1/c expansion (this section) and the G
expansion (next section) takes place.

A. Equations of motion
Using the notation of Sec. II [see in particular Eq. (2.51)]
we will expand the metric around flat Galilean spacetime as
follows:
ds? = —c*(T,dx")* + 11;;dx'dx/, (4.2)
where we made the choice II,; = 0 (implying II,, = 0)
which can be done without loss of generality. We have

1 2 > —n_(n > —ny(n
T”:5;,+?r§ 543 el =6+ e hl,
n=4 n=2
(4.3)

where we used the results from the previous section
regarding the OPN and 0.5PN orders in the expansion of
Tﬂ and Hi e

Following standard terminology the n/2PN order is the

order at which we determine 7" ">) and hg;). For the metric

we have
Gy =+ c(=22"P L)1 O, (44)
gi =+ (=" )4 O, (45)
gy =+ )+ O (46)

where the dots on the left of ¢™" denote terms of lower order
of 1/¢ while the dots in parentheses denote terms that are of

order ¢ but that depend on T,(lk”) and hg-€> for k < n.

We can expand Einstein’s equations and only make
explicit the appearance of the n/2PN fields. If we do this,
we find that at n/2PN the Einstein equations for n > 2 can
be written as

S/ = OPhij) + 00kl — 00y - 0y (47)
SU = P — 0,02 + 0,(kh}) — o,hy)).  (4.8)
’ w2 1o
S0 = 0" — 905"V — 2 ot
@ (550 _Lam\ _pmy s @
— a,»r, (ajhu —Ea,h” ) - hl] 6,0_]-7, . (49)

where the sources S™,S"™. S™ on the left-hand side

i My
depend on the expansion of the matter fields as well as

124058-16



TOWARD A COVARIANT FRAMEWORK FOR POST-NEWTONIAN ...

PHYS. REV. D 109, 124058 (2024)

© an )

give explicit expressions for these sources to 2.5PN. There is
anatural order in which to solve the above partial differential
equation(s) (PDEs) by starting with (4.7), which can be

solved for hgf), and then moving on to (4.9) by solving it for
(n+2 (n+2)

T; >, and ending with (4.9), which can be solved for z;

It also follows from these equations (upon differentiation
and combining equations) that

lower-order fields & with k < n. Below we will

1 n n
5atsﬁ,.) +9,5" =0, (4.10)

1

n— n— n— 1. n n
0=4, {SW—Z) + o7? (a,h,i, 2 561h< 2)> +h" o007 - ES,((,()} —9,8",

n— n— 1
0=¢¢”—%PW@+Q#KW%D‘§@

where 7 > 2 and where S(*) =0 = SEO). These lead to the
fluid conservation equations, i.e., the 1/c expansion of
(3.4). We see that the n/2PN Einstein equations determine
the (n/2 — 1)PN fluid equations.

To solve the expanded Einstein equations it will prove
useful to decompose the n/2PN fields as follows:

n n n n 1 n
h =W (TT) o, + oL +36,H".  (4.15)
o = M(T) oL —oNT). (4.16)
7'_En+2) _ M§n> _ 6,N(”), (4]7)
where
) — B _ g 1
H" = hy' =20, L, (4.18)

We will show that one can rewrite Eqgs. (4.7)-(4.9)
schematically as 0*(field) = (known source), so that they
can in principle be solved by integration (we comment on
issues that can arise in the integration step further below).
Once we have solved for the fields appearing in the
decomposition (4.15)—(4.17) we reassemble them to form

the n/2PN fields hg’), Tf,"H), which are then used to write
the source terms in (4.7)—(4.9) at the next order. Put
differently, the decomposition (4.15)—(4.17) is used only

n— n—. oln 1 oln
h/(ck 2)> + h;d z)akaﬂ'?)} =+ aiSz('j) __ajSS‘i)’

n 1 n
9,8 a8 = 0.

2 Jou (4'11)

The source Sg.l) contains terms that are linear in lower-
order fields. If we isolate these we can write

I = 0,0 + 972" + 2h( — 20,0, + 3,

(4.12)
where now S fj">
well as nonlinear terms of lower-order fields. The sources

contains both the compact source terms as

Sg”) and S do not contain any linear terms in lower-order
fields. If we use (4.12) together with (4.8) and (4.9), then
Egs. (4.10) and (4.11) become

(4.13)

i

5 (4.14)

|
on the right-hand side of (4.7)—(4.9) and not on the left-
hand side.

Using (4.15)—(4.17) the n/2PN Einstein equations
become

3
PHM = ZS’(i ). (4.19)
2, () m _ Lo m_1 (n)
2 (1) m 2 (n)
oM (T) = S; —l—gdtd,H , (4.21)
n 1 n
62M§ ) _ S(n) 4 5()IZI{(M) + 02L§ >ai752>
1 n
< OHM o7 + o077 (4.22)
These equations can be rewritten as
a2H(n) _ 3 (n)
= ZS,.,. , (4.23)
. i U
P <M§ (1) - gx’a,H(")> = s _ lea,sﬁjﬁ (4.24)
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n 1 i j 2 n
62 <hl(]>(TT) +E [XZOJH(”) —I—xfaiH(") —gb'ijxkdkH( >:| >

=5 —%51- S +11—6 (xfajsﬁg” +x0;8) —%5,- jxkaksﬁ,”)) ,
(4.25)
(M - % PORH™ + %xl‘atMﬁ”) (T)>
= s = Lagagt  Liig g Lo g,
16" Ui Tt T
+ LMo + no,0,47). (4.26)

We note that N and L§”> do not appear on the left-hand

side and that only L appears on the right-hand side and

i
only in the equation for ME") . However, the lower-order

longitudinal fields N**) and Ll(.k) for k < n do appear inside
the source terms. Hence, to have a well-defined set of
equations we need to supplement the above equations with
a gauge fixing condition that provides (solvable) equations

for the longitudinal fields N and Ll(-") at every order.

The right-hand side of (4.26) depends on the solution for
h,
need to know what hg;l) is first. This can be determined by
solving the other equations, including the ones that
determine the longitudinal fields.

so that equation is the last one to be integrated as we

B. The source terms to 2.5PN

In this paper and in [15] we will be interested in the
near zone metric to 2.5PN. The metric up to this order is

given by
2 1
9 = - - 2752) > < §4) + 5 (752))2>
2 2
— 5 = S (@ 4P
C C
2
-5 " + 2P 4 0(c), (4.27)
I @ 1 G 2) (4
= _?Tl( ) _§T§s> _F(T'(' RN
1
- (@7 + 225N 1 o), (4.28)
Lo, 1 e, 1w, 16 -
9ij = 6ij + ?hij + ?hii + ?hij + C—shij + O(c™®).
(4.29)

In Appendix B we derive the Einstein equations to 2.5PN.
These take the form of Eqs. (4.7)—(4.9). Here we will list
the explicit form the source terms take.

Starting with the ij components, the nonzero sources are
given by

@)
S = 872G S;; - 20,077,

; (4.30)

)
S = 812G S + 0,02 + 92Y) + 7)) — 20,07

i

+2070,0;27 + 0,7 C5) - hF (9,C) — 0, C)
L o2 1 .20
) Ckk)lcgjl T3 Cikl) C;kl’ (4.31)

(5)
Sy = —81GS,; + 0,02 + 0;2)) + 7n) — 20,020

+ oz CSJZ - hl(c?(akcgj'l) - az-Cﬁ?)

3) 4 A2 L 2.3 1 3.0
-0 -0~ Sy - e

ijl Jj 2 ijl 2 ijl
I o3 1 .30
letcs +Loe, 43
where we defined
i = ony) + o;h) — opny. (4.33)

n
In here (S)i ; 1s the ¢™" term in the expansion of the source
that appears in the trace reversed Einstein equations (2.5)
and (2.6). For a perfect fluid this becomes (see Appendix B
for details)

Sij = E(2)0. (4.34)
@) @ .
Sy = Eqyhij’ +2Ev'v + (E) = P())0y.  (4.35)
5) 3

By expanding the #i components of the Einstein equations
we obtain the sources

)

$? =82GS,, (4.37)
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4) 1
W =82GS,; + <akh,(j> - —alhkk )a h? —n%o,(0;n — 0,n'})
2 1 (2) )4 (2) 5 4.( (2)_(4) () ()
X (akhkl - Ealhkk) T~ 50 hi'o hkl) + 0ihj; 7 —0 iy i

- 6,(1,((4)()»152) - 7,24)6,(6»19) + 26,(152) 0,»1,((4) — ()k152)0k154)

—Ye2c® 4 ho W — Do + a2 Pa,n? (4.38)
; 5)
= 872G S ,; + terms that follow from the “odd order rule” below. (4.39)

For a perfect fluid the matter sources are

)

Sy =—2E_yv, (4.40)
S = Epn# — 2ePE oy 0i = Epyi?0 = 2(E ) + Pio))0f = 2By kP 0~ 2E 441
i = L(-2)T; " — £t L)V — L()UTV — ( (0) T (o))v T ALV T LE(—2) Uiy ( . )
&= 2B hPv o
W= (_2) ij v +E(—2)Ti . (442)
Finally, the expansion of the ¢t/ component of the Einstein equations tells us that
? _op0
S@ =42GS,, — 1,7 0%, (4.43)
1 1
sS4 = 4nG8n - 4 7 oMo +M0,0,47 - fa,h,(?)a,h,?f)
1 4 2 4
— 50 oa® —hP o0 + Po,07Y -2 L9
I 2 2 4 2 4
— 3 h )+ hP o0 — oo — g +Zcf,Ja )
1 1 1
= hhR 00 + 7 00 =S W CRloe =S CRo + S CloY. (444)
)
S®) = 472G S, + terms that follow from the odd order rule below, (4.45)
where in the case of a perfect fluid we have
2 > @)
0= ) + 3P( 0) T 2E(_2)Z) + 2E(_2)Tt , (446)

)

Stt = E(_2>(2TE4) + (752))2 + 41)2’552) + 411i1)22) + 2hE]2)v’1ﬂ) + 2(E(0) + P(O))UZ + 2(E(0) + 3P( ) () + E + SP( 2)s

(4.47)

(5)

The odd order rule is the following prescription that allows one to write down the 2.5PN source terms SEJS.), Sgs)’ and SO
once we know the corresponding terms at 2PN. It also works to obtain the 1.5PN source terms from the 1PN ones, but the
result is always zero. Given the 1PN and 2PN source terms, the 1.5PN and 2.5PN source terms follow from the following
three prescriptions:

(i) If the source term is linear in some field, say X¥), then we take the same term with X*) and replace it by X*+1),
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(ii) If the source term is quadratic in two fields, say
X®yW  then we take the same term and write it
twice, once as Xkt Y and once as XK yU+1D),

(iii) If the source term is cubic in three fields, say
XKy zm then we take the same term and write
it three times, XDy z(m) 4 x®&) y(+1)zm)
X(k)y(l)z(m+1)'

Note that when applying this rule one sometimes runs into
coefficients that are zero such as ’L'SB), so these terms need to
be discarded. To illustrate these rules we give an example.
Let us consider the following two terms that appear on the
first line of (4.44), which we repeat here for convenience,

| 4. 2
_ZTEj)ng) + 0,15 )dirg ), (4.49)
Applying the second prescription we obtain
1 1
—— e — D 4 0,Y02 1 02 M0Y. (4.50)

4704
Since 153) =0 we drop the final term. It would be
interesting to check whether this rule can be generalized
to apply at higher orders such as 3.5PN.

One of the reasons why we do not write out the 2.5PN
source terms explicitly is because these expressions
become rather unwieldy, but as we shall see many terms
will vanish after matching.

C. Gauge fixing

As we mentioned before, to have a complete set of
equations of motion we need to choose a gauge, i.e., some
equation that determines/constrains the longitudinal fields

N and L,(."). In this paper we aim to set up a formalism
that works for any gauge choice (for which the metric has a
Newtonian limit described using inertial coordinates). We
call this class of gauge choices “post-Newtonian gauges.”
This rules out a gauge choice such as synchronous gauge in
which case we have g, = —c? and g;, = 0 as this has no
Newtonian regime.

From the results of the previous section we have seen
that the source terms contain many nonlinear terms. These
will in general have noncompact support that complicates
the integration step (see below for more details). It would
therefore seem natural to choose a gauge to try to minimize
the number of noncompact source terms at every order.
However, it is not possible to completely remove all of
them at each order [52].

There are other considerations that concern a judicious
choice of gauge that relate to being able to solve the G
expanded vacuum Einstein equations in the exterior zone.
This will be discussed in the next section.

In this paper we aim to formulate the general framework
in any post-Newtonian gauge and illustrate our methods for

two specific gauge choices. The first is the harmonic gauge,
chosen because this is the most common choice made in the
literature, and so this helps to compare and to show that the
methods developed here reproduce existing results. The
second is a gauge choice that is sometimes made for
linearized GR that we call transverse gauge. This gauge has
some interesting properties and illustrates that our frame-
work also works outside the harmonic gauge. We will
discuss the basics of the transverse gauge here and defer
further analysis to the companion paper [15].

We next discuss the 1/¢ expansion of the harmonic gauge
condition 9, (,/=g¢") = 0. Up to 2.5PN this tells us that

oY + %a,hff) = 9,27, (4.51)
oh ~ %ajhﬁf) = 9,717, (4.52)
07 + %a,h,@ =0, (4.53)
oihf — %ajh,(f) =0, (4.54)

1
dirl(»6) + Ealhf;‘) = 0,154) - rﬁz)at#) + 7(4)01‘752)

1

1
—70" + oo + o,

(4.55)

@ Loow_ 0,0 1 2,0
aihij _Eajhii _hik aihjk _Ehik ajhik

oV — 9,4 — Mo (4.56)

J

1
dirlm + E@hﬁ? = alr§5> + 755)01-1'52) - 152)0ir(»5>

4

Loy,  Le,, o
o hij i+ 5 b Ouh

()5 _(5) (3)y . (4)
+ h’lj a[‘Tj + hlj aiTj B (457)

1 1
ohiy =50y = WO+ o) =2 o hy)

J'ii 5

1
~hQon) + 0,2 — 0,7

5 ik Oj'tik | (4.58)

Schematically and in terms of the decompositions (4.15) and
(4.16), this leads to equations of the form

1

PN = S0,H = KW, (4.59)

(4.60)

1

PL" - %a,-m") = k",
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where K" and K E") depend on the lower-order fields. This
can be rewritten as

1 I IR
P (N<"> - ErzﬁtHW + 5x'MS >(T)> =K 4+ 5 s,

(4.61)

2 _ L igm Z g _ 3 g
0 <Li 4)cH ) =K; 16ijj, (4.62)
which is again of the form 0?(field) = (known source).

We are not necessarily saying that the ideal variables are
the ones used in the decomposition (4.15)—-(4.17). The
purpose of these variables is to show that the problem can
be tackled in a rather large class of gauge choices. For a
particular gauge it is perfectly possible that another set of
variables is more convenient. For example in the harmonic
gauge we can just work with rffﬂ) and h,(f;) as in that case
we have

1
0" + o) = =KW, (4.63)
w_ 1o m o
oy~ oy = K", (4.64)
which allows us to write Eqgs. (4.7)—(4.9) as
() _ o) (n) (n)
*hy) =S5+ oK + 0,k (4.65)
o = 57— 9K — 9K, (4.66)
" =5 107K —9, K™ +h{P9,0,47 . (4.67)

which is also of the form'' @*(field) = (known source).
This is the form in which we will solve the 1/c¢ expanded
Einstein equations in harmonic gauge in subsequent

"By the definitions of K and K§"> these equations are
equivalent to (4.7)—(4.9). Using the form of the sources at 1PN,

one can ask whether there exists a choice for the K" and K 5") such
that all sources are compact at 1PN. This is, however, not possible.
For example, if we make the right-hand sides of (4.65) and (4.66)
compact, we need to pick Egs. (4.51) and (4.52), which is the 1PN
harmonic gauge, but then the equation for 1'54) +1 (152) )2, i.e., the
tt component of the metric at order ¢> via (4.67), has a
noncompact source that is 9,K®). A weaker requirement, inves-
tigated in [52], is to demand that the sources in (4.65) and (4.66) are
such that we can write down a particular solution on all of R? (that
is asymptotically flat) using Green’s function for the Laplacian. It
was found that this is possible up to 2PN for a judicious choice of

the K and KE") with n =2, 4. Of course, none of these
requirements are necessary since the 1/c expansion has a finite
regime of validity and so the solutions do not, and in general will
not, be asymptotically flat. They simply need to be matched onto a
G expanded exterior solution that is asymptotically flat.

sections. The EOM for TE"H) depends on hg;l), which itself

is given by the particular solution to its EOM plus a
homogeneous solution. The latter is fixed by the matching

process, and so it is convenient to first match the ij part of

the metric before integrating the EOM for 7"

To formulate the aforementioned transverse gauge con-
dition we assume a metric that is of the form g,, = #,, +
h,, where h,, is perturbative and we have chosen inertial
coordinates for the Minkowski metric 7,,,. This means that
we can write the various components as

_ 2 _ _
9 = —¢"+ hy, Gii = huis gij = 6ij + hyj, (4.68)
where (#,x') are the inertial coordinates. The transverse
gauge condition is then the statement that

1
aihti - 0, 0l- (hl/ - géijhkk> = 0 (469)

We stress that this is to all orders in 1/¢ and G. This gauge
choice is commonly made at the linearized level, i.e., when
hy,, is first order in G. There are infinitely many ways to
extend this to a nonlinear gauge choice (see footnote 15 for
more details). We found it convenient to use (4.69) as our
definition of transverse gauge in this work, but we do not
rule out the possibility that allowing for certain nonlinear
terms on the right-hand side of (4.69) would not be more
preferential. 12
Up to 2.5PN Eq. (4.69) leads to

oY) =0, (4.70)
o) =0, (4.71)
00 = —tWo,r?, (4.72)
ot = -V, r?) (4.73)

n 1 n
0; <h§j) - géijh,ﬂk)) =0, forn=2.3,45 (4.74)

Schematically, and in terms of the decompositions (4.15)
and (4.16), this leads to equations of the form

PN® 49,0, L" = K", (4.75)
n 1 n T-\n
PL! >+§aiakL,§) = kW, (4.76)

"In the same spirit one could consider modifying the harmonic
gauge choice order by order by making different choices for the

K™ and K.
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where K™ and K S") depend on lower-order fields. These
equations can be rewritten as

n l 7 n T-\n 1 / 7-n
P <L§ >+6xlakL,§)> — k" + 0K} 47)
1 n 2 i n
e <N(") +35 r20,0,L\" + B d,L! >>
By 2 iy L oas o wm
= K0+ S0 K" + 5 P00k, (4.78)

which are again of the form that allows for integration.

D. Comments on integrating the equations of motion

Both in the harmonic and in the transverse gauge we now
have a complete set of equations that are all schematically
of the form 9?(field) = (source). The generic way to solve
the equations at order n is as follows. We start with
Eq. (4.23), which can be formally integrated using
Green’s function for the Laplacian. The general solution
is thus a harmonic function plus a Poisson integral over the
source. We then continue solving (4.24) and (4.25) in the
same way. When writing down the solutions for M;(T) and
h;;(TT) in terms of homogeneous solutions and Poisson
integrals we still need to ensure that the solutions are
transverse. We then use the gauge condition to solve for the
longitudinal fields. We then finally use all of the above
solutions to determine the source for (4.26), so that we can
integrate that equation as well. We subsequently impose the
boundary condition that the solutions are all regular for
small 7. Once we have found the most general solution, we

(n)

reassemble the fields into the fields z,,’ and hL'Z) at order

¢~ . This is then used to compute the sources S,g’,’,“m at the
next order in the 1/c expansion.

However, when performing the above recipe for con-
structing solutions a few issues can arise that we now address
in general terms. To aid the discussion, let us consider
Egs. (4.23) and (4.24). These can be formally solved by
using Green’s function of the Laplacian leading to

1 d3x/§S§in>(t’ xl)

H = pon — , 4.79
4z Joy, 4 |x — x| ( )
n n 1 [
M"(T) = H" + FVOH")
LU STE) — i )
4z Jay, |x — x| ’
(4.80)

where F(") and H E”) are harmonic functions (solutions to the
homogeneous equation) that are regular at r = 0. The
domain of integration has been chosen to be Qg , which
is a ball of radius R, centered around the origin r = 0. We

are solving the equations within the region of validity of the
PN expansion, i.e., the near zone, so we assume that R is
large enough that x € Qg . We will introduce the notation

1 St (¢, x'
Pq. [5] = — /Q d3x’<7),c),
‘R

VT g lx —x

(4.81)

for a Poisson integral over a source S with integration region
Qpg, . The source is in general noncompact. This is due to the
nonlinearities of GR. The actual matter source is assumed to
be compact. As a result the Poisson integrals over the source
when the integration range is R3 become indefinite integrals,
and these can and will eventually lead to divergences. To
regulate these integrals we introduce a cutoff radius R,.

There are now four possible scenarios concerning these
Poisson integrals:

(1) The Poisson integral over the source converges for
large R,. In this case we can extend the integration
range to R3.

(2) A power-counting argument applied to the integrand
(when the integration measure is d>x’) suggests that
the Poisson integral diverges but the divergent terms
in R, have zero coefficients (the naive divergence
goes away after performing the angular integrations
when expressing d*x’ in spherical coordinates).
Again in this case we can extend the range of
integration to R>.

(3) The integral is divergent for large R,. However,
there exists a particular harmonic function (depend-
ing on R, ) such that when added to the integral the
sum does have a large R, limit. In other words, the
divergence can be removed/absorbed by an appro-
priate harmonic function.

(4) The integral is divergent for large R, and the diver-
gence cannot be removed by adding a harmonic
function.

In the latter case the 1/c¢ expansion has broken down and
we need to add log c-terms. However, this does not happen
at the orders that we are interested in, which is up to and
including 2.5PN (at least not in the harmonic and transverse
gauges). Such log c-terms are associated with the appear-
ance of tail terms [17,40]. We will not have to consider
option 4 here.

Let us consider again the integral in (4.81) where x is a
point in the near zone. The integration region Qg is a ball
of radius R, (which is large enough to contain the near
zone) with origin x = 0. This integral will diverge for large
R, if [dQS(t,x) = O(r™) for n <2 where [dQ are all
the angular integrations when we express the integral in
spherical coordinates with center at x =0. A simple
diagnostic is to check how the source behaves for
large r. If S goes to zero strictly faster than r~2, the limit
R, — oo exists. If § goes to zero as r~2 or slower, then we
need to check what happens to f dQS. If the latter also goes
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to zero as =2 or slower, then the integral is divergent. We
then need to check whether or not we can add a harmonic
function that is regular close to x = 0 to make the result
finite again.

Finally, we point out that a solution such as (4.80) still
has to obey the transversality condition. For simplicity we
will assume that the Poisson integrals are of type 1 or 2.
Taking the divergence of (4.80) we obtain after some
rewriting13

1
O;H" +0,F" +_xig,0,F(n

(n)
3 / d3 / /Sz (t X/)—O.

’ e=x]
(4.83)
Since, by assumption the integral [ps d°x’ 5‘1;(1’;‘) converges,

the falloff of S;(z,x’) is such that the boundary term at
infinity, which results from applying Stokes’ theorem to the
last term in the above equation, vanishes. We thus end up
with the condition on the homogeneous part of the solution

. 1
O;H"™ + 9,F™ 4 FHOGFM =0, (4.84)

We can solve this for F(") in terms of 0;H; (n) and substitute

the result into (4.80) via H). Similar comments apply to
Eq. (4.25) where we need to ensure that the solution for

hgj'-’) (TT) is transverse.

V. THE COVARIANT G EXPANSION

So far we have focused on the near zone of the
spacetime. In this section we will consider the exterior
zone where we have vacuum Einstein’s equations. In this
part of spacetime we will use an expansion in G. Just as
before we will be general concerning the gauge choice. We
start by expanding the metric around Minkowski spacetime
(in inertial coordinates) in powers of G,

— (1] 2p,2]
G = N + Gy + G=hyy + (5.1)
We want to approach this in a fashion similar to what we
did in the near zone. This means that, at each order, we
want to first expand the equations, apply the gauge
conditions, and finally solve the PDEs subject to appro-
priate boundary conditions.

PWe used that 0;]x — x/|7' = —d}|x —x/|"! as well as the
identity
/d3 /10 S(t'x)i/d3 /lla S(t'x) /d3x,S(l,Xl)
=] = x| e = x|
(4.82)

where we replaced by x in the first integral by x' — x’ + x' and

used that (x' — x')o,]x — x'|7! = —|x — x|

A. Equations of motion

We will solve the vacuum Einstein equations in an
expansion in G, outside the source. Hence, the equation
of interest is R,, = 0. From our knowledge of linearized
gravity (expanding R,, = 0) we know the form of the

equation at every order is going to be

—Ohyd +17°(20,04,h), = 0,0,h3) = 7.

(5.2)
where 7, = diag(—1,1,1,1) (u =0, with x° = ¢r) and

where r;[fy] is a nonlinear object that will only depend on

products of lower-order fields h[" ]] .,h,[,ly] and their

derivatives, and thus can be thought of as a source term.
We stress that in this section we will find it convenient to

use x° = c¢t. To second order in G we have
=0, (5.3)
2l [1]” (1] [116 (! ]/1 [l] oo+ o [1]
T =21 [, 00, =20 05, +20,(hfy T'},) — 0, (W 0,hp0)
o (1] (1] 10] . (1] 1] 6[1]
:h[l] (ao'cyyp_avcaup>+§(:6 p /wp_icﬂp Cypm

(5.4)

[1]
where I'/, is the order G term in the expansion of the Levi-
Civita connection, i.e.,

(1 11 (1

L =57"Coe C= oo, —a,nl.  (5.5)

B. Gauge transformations

The gauge transformation of g,, is g,, = Lzg,, where
we expand E* in powers of G as

B = &y + GEyy + G25'[‘2] + 0(G?), (5.6)

and where 5’[‘0] must be an isometry of 7,, to preserve the

form of the expansion of g,,; i.., fflo] is given by

— AF 4 LA (5.7)

u
[0]

where A* and L,, = —L,, are constant (corresponding to
spacetime translations, Lorentz boosts, and spatial rota-
tions). Indices are raised and lowered with the Minkowski

metric. The gauge transformations acting on hw, hﬂ,,,m and

h L’,’J are

Shisy = Loyl + 0,60 + 0,8 (5.8)
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5h;421J »Cf ;,w + »Cf ﬂl/ + a}l + a f (59)
Shi = Zﬁ m a8 + 0,80 (5.10)
We next split the index p into (0,i) where x° = ct.

Furthermore, we introduce the following decomposition:

Wl g SR
by = WD) + oL} + oLl 4 26HY. (5.11)
n = —MIT) oL + o, (5.12)

hig = —2Mg" +20,N"", (5.13)

where hE';] (TT) is transverse traceless, ME"] (T) is trans-
verse, and H" is given by
Hlin = pl

1 _20,L". (5.14)

In terms of these variables the G expanded vacuum Einstein
equations (5.2) can be written as

3
PHY = = (50 + 7). (5.15)
gl 1 [n]
My =S GH +2100, (5.16)
2041 ) — 2 ]
PM(T) =S dH! + < 2, (5.17)
—DhE;’.](TT)——ZdOa( MU(T) + 20,0, M,

where 0> = 0;0; and where we have split the ij part of (5.2)
into a trace part (first equation) and a traceless part (last
equation). The notation (ij) denotes the symmetric trace-
free part of ij. The equations are presented in the order in
which they should be solved.

The longitudinal fields L!" and N/ do not appear at all
on the left-hand side of these equations. These fields are
fixed by an appropriate gauge fixing condition. The
physical propagating degrees of freedom are described

by hgf] (TT). The right-hand side, through T/[JYILJ], does depend

on Lgk] and N for k < n. For r,[fy] this can be seen by using
the second equality in (5.4) and the fact that

(1

(1]
] ~
Cuuo = 20,0,L5 + C . (5.19)

(1]
where C,,,, does not depend on the longitudinal fields and

where we defined Lgl] = NI,

When we are solving (5.15)—(5.18) at order G" (in a
particular gauge) the object TL’,’J is known from solving
lower orders and matching the result to the near zone. We

M"(T), etc., only on the left-
K]

hand side, i.e., only at order G". For the source we use h,[w
with k < n, which are known functions obtained after
integration and matching.

Equations (5.15)—(5.18) imply

use the variables hg-l] (TT),

1 n n n
~500(m +7fy) + oz =0, (5.20)

n 1 n n n
—~dyzy) + 0, <2 (i — 25, +r£j]> =0. (521

This is obtained by taking the divergence of Eqs. (5.17) and
(5.18) and using the other equations to eliminate all but TL'L]

This can also be written as

1
), <¢WU - 55!;&»1@) o,

which follows from the divergence of (5.2).
The decomposition (5.11)—(5.13) suffers from the fol-
lowing ambiguity:

(5.22)

WUTT) = BI(TT) + 0" + 00" - %&,dkx,ﬂ L (5.23)
L=y, (5.24)
M) = MIT) = oy~ 0", (5.29)
NIl — ] — Il (5.26)
MY = M = oy, (5.27)
H'0 = 5 29,4, (5.28)
where )(E"] and y1" satisfy the equations
0=0%" +- : Lo, 2, (5.29)
0 = 0y + o2yl (5.30)

The latter two equations follow from the transversality of
n EZL] (TT) and M ’E"] (T). These ambiguities are Stiickelberg-
like transformations in the sense that they do not act on the

metric h,[l"y] but only on the terms in the decomposition
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(5.11)—(5.13). Equations (5.29) and (5.30) can be written as

n 1 i n
0 =09 ()(E ] +—x’0j;(£< ]),

; (5.31)

2 1 .
0= (;([”1 +Sxi0ur + 557000, ]>, (5.32)

[n]

i

= (0, which follows from the
[n]

where we used that 0%0,y

divergence of Eq. (5.29). Hence, the solution for y;~ and
2 s
n n 1 i n
oL e
A = sl Zaigostd 4 L 2g0,0  (530)
5 0 30 ovYiti » .

where ZE”] and X" are harmonic and where we still need to

express 6i)(£-"] in terms of aizﬁ."], which can be achieved by

taking the divergence of (5.33) and solving the subsequent
equation14

3 n 1 . n n

5 Yk i i
for 05)(£"].
The gauge transformation with parameter f’[‘n] acting on

h,[f’y] [see Eq. (5.10)] can be realized entirely on the
longitudinal fields L" and NU! via

3, N =& (536)
Together with Eqgs. (5.23)—(5.28), these are all the gauge
transformations acting on the fields appearing in the
decomposition (5.11)—(5.13) with the exception of
lower-order gauge transformations with parameters 5’[‘,{]

(k < n) that appear in (5.10). However, once we get to
order G" these lower-order transformations will not con-
cerns us because the matching of the solution at the
previous orders will have fixed these lower-order gauge
transformations sufficiently for them to no longer be of
interest once we get to the next order in the G expansion.

Finally, we mention that a gauge transformation at the
level of the vacuum exterior solution is not necessarily a
gauge transformation of the whole solution obtained after
matching. This is because in a given gauge the PDEs that
the residual gauge transformation parameters have to obey

"“If we denote 01-;(1[-"] and a,-z?” as f, and f, respectively, then
Eq. (5.35) reads %f;( + g% = gs. This equation can be integrated
to give f, = r% JIdr'rgs where ¢ is some constant giving the
homogeneous solution.

need to satisfy different boundary conditions in the near
zone and the exterior zone.

C. Gauge fixing

Our formalism assumes that the full metric g,, can be
written as 7,,, + h,,, where h,, represents either the 1/c or
G expansion of the metric and where 7, is the Minkowski
metric in inertial coordinates. The class of allowed gauge
choices to which our formalism applies involves conditions
imposed on hy, hy, h;j, and requires there to be a
Newtonian regime. As mentioned previously, we will refer
to this class as post-Newtonian gauge choices. This
restriction rules out, for example, a gauge choice such as
Bondi gauge (because it does not describe flat spacetime in
inertial coordinates) or synchronous gauge (because it does
not allow for a Newtonian regime). It would be interesting
to develop similar methods that are more covariant with
regards to the coordinates used to describe Minkowski
spacetime.

To solve (5.15)—(5.18) we need to impose a gauge fixing

condition that tells us what LE"] and N!"| are for; otherwise,

+1
the sources r,[,"y ]

termined fields LE.”] and N, Furthermore, at order G" the

choice for LE"] and N influences the matching process.

A common gauge choice is the harmonic gauge. To show
that our methods reproduce existing results, we will employ
the harmonic gauge in this paper. An alternative gauge
choice is what we refer to as a transverse gauge15 in which
case we set

at the next order depend on the unde-

M=o, NWM=o,

1

(5.38)

at every order in the G expansion. We will study this gauge
choice in the companion paper [15].
The harmonic gauge choice is the choice

¢Th =0 9,(y=g9") =0.  (539)

If we expand this in powers of G, we find

At the linearized level this can be thought of as the GR
analog of the Coulomb gauge used in electromagnetism and is
also known as the Poisson gauge [53]. There are, of course,
infinitely many nonlinear gauge choices that reduce to the
transverse gauge at the linearized level. One common nonlinear
gauge choice is to set ;N' =0 and 9;(y'/?y"/) = 0 where we
used ADM variables to write the metric as

ds? = —=N*di* +y;;(dx' + N'dt)(dx’ + Nidr), (5.37)
with y the determinant and y*/ the inverse of 7ij- The derivative 0;
is with respect to inertial coordinates of a flat background metric.
The condition 9;(y'/3y"/) = 0 is due to Dirac [54,55].
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|
e <a,4h,[3J - anhi},i) —0, (5.40)

2 1. ¢ ’ 1
o (aﬂh,u - anh,a,l) — ol ~ L itro nl)

(5.41)
to first and second order in G, respectively. To order G" it
takes the form

1 n n
e (a,,hl,’ﬁ - —aDth]> =kl (5.42)

2
where K,[J"] depends on lower-order fields. If we use the
decomposition (5.11)—(5.13), then we find

oLl — 60 HI 4 o.M — oM (T) + K1, (5.43)

1
N = 2 90H'" — oMM 4 K. (5.44)

These equations should be added to the list (5.15)—(5.18).
In the formulation (5.2) the FEinstein equations

become
Ohp =~z + 9,k + 0,K,", (5.45)

where the right-hand side now only depends on the lower-
order fields, and where at order G> we have

2 2 _ 1 Y
9,K;" +0,K;" = h[l](aﬂcpaﬁaycw)

(5.46)

We will show that in any post-Newtonian gauge, for as much
as the fields 4 (TT
reduce the problem of solving the Einstein equations to
inverting Laplacian and d’ Alembertian operators.

The residual gauge transformations of the choice (5.39)
are those diffeomorphisms generated by Z* for which we
have

), M E"] (T), etc., are concerned, we can

90,0, = (5.47)

The diffeomorphism generator is expanded as in (5.6). We
will ignore the LO term 5’[‘0] as this is constrained to be an

isometry of Minkowski spacetime. Hence, setting 5’[‘0] =0

we find the well-known result that the residual gauge
transformations are

g7, =0, (5.48)

&y = MY 0,08, (5.49)

to first and second order in G.

D. Asymptotic boundary conditions

The equations of motion that we need to solve are
(5.15)—(5.18) supplemented with a gauge fixing condition
and an appropriate set of asymptotic boundary conditions.
First of all, we will demand that the spacetime is asymp-
totically flat so £, will go to zero for large r. We will
formulate all boundary conditions for a coordinate system
that is asymptotically inertial; i.e., the metric approaches
flat spacetime described in inertial coordinates (, x'). We

will demand that A", M[O"], M E"] (T), and hE?] (TT) are all
O(r7!) for large r = Vx'x'.

1. The nonpropagating sector

We start with the fields H", M([)"], M"(T) that obey
Poisson-type PDEs (5.15)—(5.17), and so do not correspond
to propagating fields. For these fields a Dirichlet boundary
condition will suffice. Equations (5.15)—(5.17) can be
rewritten as follows:

3 n n
PHI = E (g0 + 1), (5.50)
92 M["] __a2H[n] a M[”]
1 de X
= S0+ 1—602( o)+ o (551)
n 1 i n i n n
P (M£ lT) —gxlaoH["]> — b ﬂZaO(ng o), (5.52)

turning them into genuine Poisson equations. The right-
hand side can be rewritten using (5.20) and (5.21) but we
will not attempt this as the focus will be on the left-hand
side. The solutions thus take the general form

HI = Kl .. (5.53)
MY = Finl - E azm - aoH[”] o (554)
MI(T) = 1Y 4 %OOH[”] +o (5.55)

where the dots denote terms resulting from the nonlinear

sources in T,[Z,] and where K", FI"l and H En] (for every i) are

[n]

all harmonic functions and where H;" obeys

1.
O,H™ = —aH" — = xi9,0,H!™, 5.56
i 3
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resulting from the fact that M E-"] (T) is transverse. The
boundary condition that the fields H", M([)”], M E"] (T) are
O(r~!) can now be seen to have a number of consequences.
From the fact that K"/, FI"l_ and H E"] (for every i) are all
harmonic functions it follows that all the terms on the right-
hand side of (5.53), (5.54), and (5.55) have to separately be
O(r7!). Hence, we conclude that

QWHM =0(r2), RHM=0(3), HH" =0(2).

(5.57)

The homogeneous solution to Egs. (5.50)—(5.52) can be
solved asymptotically (for large r) as follows. We start with
K .6Since it is harmonic and decaying for large » we know
that'

n AN Al
K =2 +ai< ;>+2aa< >+O( 4, (5.58)

where the coefficients A" AE ], and A (symmetric trace-

free) are in general functions of ¢. However, the conditions
(5.57) tell us that

A = o,

1

A" =0, (5.59)

where the dots denote x° derivatives. There are no conditions
on F" other than it being a decaying harmonic, so we have

(5.60)

where Bl" is a function of ¢. Finally, since HE"] obeys

PH" = 0, we know that we must have the following large
r expansion:

a =G +a(

)+0( ), (5.61)

where a priori CE.”] and CE"I] are functions of ¢ and where the

[7]

comma between the indices in Ci’j is to indicate that,

a priori, there is no symmetry between them.
Equation (5.56) then tells us that we must have
n 1 1|n n n
cit = -34l", c”_35 Cl+cl (5.62)

[n ]

i.e., the traceless symmetric part of C is zero. This leads to

"In Appendix C we collect some results about multipole
expansions of solutions to the Laplace and the free wave
equation. For the problem at hand see Eq. (C17).

the following asymptotic homogeneous solution for H",
My, M{(T):

Al AN Al
HI" = +5i( i ) +-0,0; < > + 0> ™), (5.63)
r r

My == ;_szE’}] +O(r?),  (5.64)
My = -1 A et g 1
’ 3 3808 2P M

- ;%cﬁ") f;c{;f]k] +O(r), (5.65)

where A" and A" are constants (as is A" — x?A" since

A" is linear in x°). The other coefficients Bl" AE;Z], cl", and

C }”].] are at this stage arbitrary functions of time.

Further below we will see that part of the above asymp-
totic solution for H!" Mg ! M (T) takes the form of an
ambiguity transformatlon In other words, parts of the
solution can be shown to correspond to coefficients in the

asymptotic expansion of the parameters y" and ;(E"] that
describe the ambiguities (5.23)—(5.28). These ambiguities
get intertwined with the gauge transformations (5.36) when
specifying the gauge choice.'” We stress that even though
these may appear as gauge artifacts, we cannot set these
ambiguity parameters equal to zero as this would amount to
setting the residual gauge transformations equal to zero, and
these are not actual residual gauge transformations of the
whole matched solution. The process of matching tells us to
find the most general solution to the PDEs on both sides of
the matching, and this most general solution includes what
appear to be residual gauge transformations.'®

"For example, if we choose the gauge LE”] =0and N" =0,
then we can perform the transformation (5.23)—(5.27) provided we
also perform a compensating gauge transformation (5.36) with

5([)”] = yI" and cfl[."] = )(E"] to ensure that the transformed LE"] and

N remain zero. More precisely, under the combination of the
ambiguity and an order G" gauge transformation the longitudinal

fields transform as L' = LI — & 4 1" and N0} = Nlnl—

1
f([)"J + 4", Setting this to zero gives Zj([)”] = yI" and SE”] = ;(,[-"].
For example, if a residual gauge parameter has to be a
harmonic function in the exterior region, then it must be a
decaying harmonic to respect the boundary conditions, but in the
near zone the same equation would have to be solved by a
harmonic function that is regular at the origin. There is no
harmonic function that obeys both these properties at the same
time. Hence, what appears to be a residual gauge transformation
is not a gauge transformation of the whole matched solution. In
fact, for well-chosen gauge conditions and boundary conditions
there are no globally well-defined gauge transformations left to
perform.
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To be more explicit about the nature of the effect of the
ambiguities we solve Eq. (5.35) asymptotically so that we
can apply the transformations (5.23)—(5.28) with ;(E"] and
2" as given in (5.33) and (5.34). To respect the boundary
conditions both ){E.”] and y" need to be O(r7!).
Equations (5.33) and (5.34) then tell us that the harmonic
functions £ and X need to decay for large r and

2 = 0(r2) as well as 9,0 = O(r3). Using that

9" and X" are harmonic we can write

o = 0, ( )+2aa ( )+(9( 4, (5.66)
r

[n] ["]
n E;
2 =510, (22) o0,

r

(5.67)

From the above boundary conditions we learn that D"l = 0

and that D" and E\" are time-independent. Solving (5.35)
we find that

n) _ 6 gl ) _ gl
pl' =2 D=2kl (568)
We can use this to determine x!" at the orders #~! and =2

and y!"! at the leading r~' order. We will denote the leading
order part in the expansion of X" by El"/r~!. Using (5.25),
(5.27), and (5.28) we then find the following asymptotic

ambiguities in HU", [ |, and M ( ):

E..
H — | _172@ < > ~ 20,0, (7/) +O>).,  (5.69)

() gl [n] -
My =My == =15 =55 By +OUT). (570)
M (1) = M(T i £ 2xiijk £V
(T) = i ( )“‘ﬁ [i,j]+ S (J.k)
7 i n i _
LX) X o) (571)

This can be matched with the appearance of the functions
Bl Agﬂ, V. and CB’JJ] (as well as the constant A" —

A" via EM) in the solution (5.63), (5.64), and (5.65).
\a

The ambiguity transformation does not affect A" and A,

2. ADM charges

Before we continue our discussion of the boundary
conditions for the remaining fields, we show that our
boundary conditions are such that the homogeneous sol-
utions lead to well-defined ADM charges. The Landau-
Lifshitz (LL) energy-momentum pseudotensor is defined as

4 4

C
TMV [ G/,w
L 872G * 167G(—g

)6[,66((—9) (9" =g"7)).
(5.72)

Hence, upon using the Einstein equations we see that 7+ :=
(=g)(T" + TY} ) is conserved, i.e., 9, 7" = 0. We can thus
define conserved charges (energy-momentum) as follows:

pr = / (=g (1% + T (5.73)
t=cs
The integrand can be written as
0 0 ct
where we defined
I = 0gI" + 0I"° + 0, 1¥¥, (5.75)
177 = (=g)(g" 9" = g% ¢°). (5.76)

The energy-momentum vector P¥ can thus be expressed as a
surface integral over the boundary of the constant ¢ slices,
i.e., at spatial infinity as

C4

P = dQrinlJm,
162G /S;.m m

(5.77)

where n/ = x//r and the integral is over the two-sphere at

spatial infinity.
Because of the symmetry of 7 := (—g)(T* + T}]) we
can build another conserved current J#” given by
JHP = THxP — THP Y (5.78)

and hence, we can define the angular momentum and
Lorentz boost charges

M = / dBxJo . (5.79)
1=cst

If we work to first order in G, it can be readily shown that

. 2
JO = —ga,HUl +0(G?), (5.80)

i 2 1 1
J/:55,-,-00H[11—a,-ME.](T)—ajME](T)+0(G2). (5.81)
At higher orders in G we get the above terms but with the
superscript [1] replaced by [n] as well as new nonlinear

terms. The boundary conditions that B, M, M (T) are

O(r7!) as well as (5.57) ensures that the contribution at
order G" coming from the linear terms in J%, ie., (5.80)
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and (5.81), is finite. It can be shown that A" contributes to

the ADM energy P° while AE”] contributes to the ADM

momentum. For example, at order G we have that P° is

proportional to Al and P is proportional to Al

Furthermore, the angular momentum MY at order G is

propor[ional19 to CE]J] Finally, the Lorentz boost MY is

proportional”® to A; — x°A;, ie.,

of A;.

the z-independent part

Earlier we said that the coefficients C% ]] suffer from the

ambiguity described by the transformations (5.23)—(5.28)
[because of the appearance of E{"]] in (5.71)]. Now we see
that the angular momentum at leading order in G is

proportional to C B]J]

which therefore suffers from
the ambiguity as well.”> We expect this to be related to
the known ambiguities in defining angular momentum for
asymptotically flat spacetimes. Relatedly, we point out that
the appearance of the constant vector E; in the ambiguity of
H" [see Eq. (5.69)] implies that there is an ambiguity in
the Lorentz boost charge as well.

3. The propagating sector
We next turn to the field h (TT) which solves Eq. (5.18)
and hence describes propagatmg degrees of freedom. In
Appendix E we derive the solution of the homogeneous
equation

n n 1 n
OIAy) (TT) = 2000,M") (T) + 20,0, M{) +30,0,H" = 0.
(5.82)
Restating the solution here we have
W) (TT) = WE(TT) +20,C) + A} + xOH)
1 2 :
—EFZG,OJH[ | —g [ai(x/H[ ])
iryn] 2 k ry(n]
+ aj(x H ) —géijak(x H ) s (583)
"This can be shown by using that JOU = 16“46 (7 TR —
X JK.
*This follows from JO = 700y — x070i — ﬁd (x!JKO—
OJkl 25 H[l])

One might wonder where the ambiguity in the angular
momentum comes from since the Landau-Lifshitz energy-
momentum pseudotensor depends on g,,, which is free from
these ambiguities. The step where this happens is when we write
J7in Eq. (5.81). The integrand of M/ when written as an integral
over three-space is the divergence d;J%/ that can be written in
terms of H" which does not suffer from the ambiguities, but
when we apply Stokes’ theorem, the object J*/ contains M;(T),

which does suffer from it at order r—2.

where H;; "l s traceless and harmonic and obeys the
following two conditions™

aOHE.;?] — 20,0,F", (5.84)
oH" = — (6,0 +20.9, ) apC™ 5.85
ity = = 04j0" T 30,0 ot (5.85)
Furthermore, AE;?] is traceless and obeys
Al n 1 n
Al = 20,0, (H[ I g xo.H! 1) . (5.86)
A} = ~2x09,0,F1" — 9,0, (x*H}")
n 4 n
—oH" — o, 4 7 3 5,0cH., (5.87)

Al 5 n 1 n 1
QA; gaj(H[ 1 +§xkakH[ 1) - <5,-ja2 +390;

x (€M = x09,C!"). (5.88)
Last, we have that CE"] is a solution to the free wave
equation as well as

n 1 n
&2 (aZC.E. Ly gajaicﬁ ]> =0, (5.89)

where due to (5.89) we see that the C-dependent terms in
(5.88) and (5.85) are time-independent.
Having solved the homogeneous equation, we move on

to boundary conditions. The field h["](TT) obeys a wave

equation, and we will demand that hE'jl.](TT) obeys the
Sommerfeld no-incoming radiation condition at past null
infinity 7~. If we write the Minkowski line element in
spherical coordinates and define retarded and advanced
timeasu =t —r/cand v = t + r/c, respectively, then this
means that we will require that

lima, (rh} (TT)) = 0.

v=cst
r—>o0

(5.90)
Apart from WE'}] (TT) and CE."] the only terms on the right-
hand side of the solution for h["] (TT) in Eq. (E28) that are
[”] ,and H[ "l Using

their asymptotic solutions, which for A[”] follows from
solving (E30), tells us that the Sommerfeld condition on

O(r~") come from the terms with "), A

hg?] (TT) translates into a Sommerfeld condition on

*The functions F and H; are harmonic and appeared for the
first time in (5.54) and (5.55).
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]

WE.'}] (TT) and the symmetric trace-free derivative of C; .
Hence, we need to require that
lim 9, (r

r—co
v=cst

wi(TT)) =0, (5.91)

and similarly for a<ic£§].
We are, however, not done yet. To determine the
homogeneous part of the metric at order G" we need to

include the longitudinal fields L and NI
Equations (5.15)—(5.18) for n > 2 do not form a closed

set of equations. The reason is that the source terms r,[,"y]

depend on the longitudinal fields Lg.k] and N for k < n.

The fields LE-"] and N are fixed by imposing a gauge
fixing condition, and if the latter take the form of a PDE,
then we need boundary conditions for the LE"] and NI
fields as well. This is furthermore relevant since these fields
will be part of the matching process. In order that the metric
satisfies g, = 1,, + O(r™') we will need to impose that

LE"] and N are at most O(1) and that both their d, and 9;
derivatives are O(r~!). This is because the metric only

depends on the d, and 9; derivatives of LE"] and NI

E. Parametrizing the harmonic gauge metric

In harmonic gauge the homogeneous part of h[ ] obeys
the free wave equation. However, the gauge condition

relates the various components of h,[,"y] In this section we

show that we can parametrize h,[,',l,] into a number of
independent solutions to the free wave equation. The final
result is given in Egs. (5.121)—(5.123).

In the harmonic gauge the longitudinal fields obey the
wave equations (5.43) and (5.44). The time derivative of the
homogeneous part of these latter two equations is equiv-
alent to OAY = 0 = 04, Using Egs. (5.54) and (5.55)
(as well as the properties of 7" and ;?E"]) we can rewrite (the
homogeneous part of) Egs. (5.43) and (5.44) as follows:

O 4 gy = —gy02UM, (5.92)
D(L[n] +Z["]) —9; gl — g2 UE_"] + aiaZU[n]
- 5 0 (v PU). (5.93)

Using that 32U = F!"l is harmonic we can differentiate
the first of these two equations to get d,I(N" + 7"y = 0
whose solution is of the form N )?[”] = Wl 1 Al
where W obeys (JW!"l = 0 and where Al") is independent
of xY. Substituting this into (5.92) we find that
(A +9,U") =0 so that Al = A" — g Ul with
A" harmonic. Since Al is time-independent, we learn
that d,H") = FI"l. We thus conclude that

NI = wlil — plnl 4 Flnl — g,y
1 -
_wi _ = 2 [n]__ [n] [n]
= W 12r ooH 2xH + H™, (5.94)

Next we consider Eq. (5.93). We start by observing that
ROL" + 5"y =0, so that

L 4 gl — Wil 4 Al opl,

g (5.95)
where A" and B!" are time-independent. Substituting this
into (5.93) we obtain

- U + 0,0°Ul

PAM 4+ x02BM = —g,0

1 i
—Eai(x/()zUB- . (5.96)
If we differentiate this with respect to x°, we find
0 (BE-"] — 0;,0,U")) = 0 so that we obtain
B = A" 4 9,0,U1, (5.97)
where fIE-”] is harmonic and for which dOHE = —0,Fl".
Equation (5.96) now reduces to an equation for A £ " that can

be simplified by defining AE"] as

1

~n n n 1 n
AE b= Al 4 UE ] +—6i(kaLJ) —0,(UM —x09,Ul).
(5.98)

This object then obeys the following two equations:

PAM = g, (H[”] + %xkakH[ﬂ) . (5.99)
Al = x00,Fin + " 4+ %a,-(kaL”]). (5.100)
We conclude that the solution for L is
L — il gl 4 qlel ol
= w4 ;x A % PoHM 4+ A 4 0 f,
(5.101)

The terms to the right of W and WE"] in Egs. (5.94) and
(5.101), respectively, are at most O(1), but if we differ-
entiate these terms with respect to x° or x' they are O(r~1).
Since only derivatives of N and LE"] appear in the metric,
we will demand that they obey the boundary condition that

their x° and x’ derivatives are O(r7").
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The solutions for N and LE"] can now be used to write

erf,] in harmonic gauge. We find

hi = —aMl 4 20,NIM = 29, Wi, (5.102)
Y = —M(T) + 9Ll + o, NI
= oW+ o,wi 4+ B 4 9, HV (5.103)
] _ o In] In] mo e
hii = hii (TT) +0;L ;" +0,L; +§5,,HH
_ il [n] In] ] | gyl | 0zl
=W (TT)+0,W;"+0;,W;" +20,C\' + Hj; +x°H;},
(5.104)
where we defined
RN PN BN A Y ks gl
A=Al +0,AT" + 04 +§6,»j(H[ 1 +3 0,H! 1),
(5.105)
A 7] £7ln]

where we used the solutions for MEn] (T) and hgf](TT)
obtained previously. It can be shown using properties
derived previously that A" + 0,0, i E';] and H [;L] are
all time-independent and harmonic and furthermore that

il _ 5 5l a1 "
0,H]} = 0,0,A" + 20, (H[ ] +§xkakH[ 1)

—0,(Cl" = x09,cM), (5.107)
o .- 1
A =20,A" + 4 <H["1 + 3xkakH["l> . (5.108)
0,A" = 9,0,H" - 0,,0,C", (5.109)
A =20,H", (5.110)
where we defined (as before)
, 1

Since H E-"] + 0;H" is time-independent and harmonic,
we can absorb it into W!" in the expression for A" by
defining

Wi = w0 4 0,H1),

i i

(5.112)

This gives A" = a,W!" + 9,W!") where both W!" and W

i

satisfy the free wave equation. In terms of W the

i

[n]

expression for h; becomes
(] _ yyln] /] /] (] gylnl o0 pylnd
(5.113)
where
' =" 08" —0,A" ~20,0,H",  (5.114)

which is harmonic, traceless, and time-independent, and
whose divergence is given by

oA = ~0,0,C". (5.115)
Finally, we define GE’;J as
Gy =20,C)) + A + (. (5.116)
so that
W= wo(TT) + G oW oW (5.117)

The object G[;] has the following properties (that follow
from its definition):

0G) =0, (5.118)

0(2)G£-;f] = transverse traceless, (5.119)
oG — Lo g 5.120
iJij — 5 i — Y ( . )

Furthermore, these properties are equivalent to its defini-
tion” (5.116) (up to a TT solution to the free wave
equation), so that we can take (5.117) as the final form
[n]

of the harmonic gauge parametrization of h;; .

Bwe will suppress the [n] superscript here. To show this we
first use dj0JG;; =0 so that G;; = Z; + A;; + x°B;; where
UZ;; =0 and where A;; and B;; are time-independent. Using
next that JG;; = 0 it follows that A;; and B;; are harmonic. Next
we decompose Z;; = Z;;(TT) + 20,;Y; + %5in. Using that
03G;; is traceless we see that d3Y = 0, but we also know that
Z;; and hence, its trace obeys the free wave equation so that Y
must be harmonic. We can therefore absorb Y into A;; and B;;. We
have thus arrived at G;; = Z;;(TT) +20,;Y ;, + A;; 4+ x°B;;. Us-
ing that d§G;; is transverse we conclude that O;;05C; = 0. By
acting with 0% on (5.120) we also find that OijdzC ;= 0. The
decomposition of Z;; suffers from the usual ambiguity, and we
can now repeat the argument around Eq. (E22), which leads to the
conclusion that without loss of generality we can take Y; to obey
tY; = 0. Finally, by simply writing out 9;G;; and G;; we see that
we have recovered (5.116) (up to a TT solution to the free wave
equation).
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We thus conclude that in harmonic gauge we can
24,

parametrize (the homogeneous part of) h,[ﬁ, as follows™:

hiy! = 20,Wl, (5.121)
hih = oW + oW, (5.122)
W= wi(TT) + oWl 1 oW + Gl (5.123)

[n]
ij
used x° = ¢£. We absorbed a factor of ¢ into W (i.e., we
defined ¢W" = Wl"l and subsequently dropped the tilde

on W), In here W, wi wl (TT), and Ggf] all obey the

n
> ij

where we dropped tildes on WE-"] and W, and where we

free wave equation, and GE?] furthermore satisfies (5.119)

and (5.120). In the expression for GE?] we assume that there
is no TT part that separately solves the free wave equation

(for if that existed we could absorb it into WE;]).
The functions W and WE"] can be viewed as corre-
sponding to the residual gauge transformations of the

harmonic gauge conditions. The function WE.';-](TT)
describes the physical degrees of freedom. Finally, the

(7]

object G;; is needed to ensure that the spacetime has the

appropriate. ADM energy as neither WE-;%](TT) nor WE."]

contribute to the ADM energy P° defined in (5.73)
(for v = 0).
There is a slight freedom in the choice of functions W,

[yl : : : :
Wi, W (TT). This freedom is parame‘{u;zed by time-

independent harmonic functions A"l and A,
by the following transformations:

and are given

Wl = winl 1 Al (5.124)
Wil = Wi — g, Al 4 A (5.125)
Al n [] [n]

The properties of A" and AE"] follow from writing A" =

20,W'" and A" = 9,w'" + o,W'" and demanding that
W'l and W’ E."] obey the free wave equation.

A natural choice of boundary conditions in the harmonic
gauge is to demand that h,[fy] obeys the Sommerfeld no-
radiation condition at Z~. We will abbreviate this boundary
condition simply by “S”. This means in particular that
0,Wl" obeys S. This does not imply that W itself obeys

*There is another parametrization of the homogeneous part of
the harmonic gauge metric that is commonly used in the literature
on post-Newtonian expansions (see Introduction). We will use
this parametrization in Sec. VII.

S, but we can choose A"} such that it does. This means that
9;W obeys S and hence so does G,WE"] (since hE':] is
required to obey S). Again we can choose AE-"] such that
WE"] obeys S. Turning to the ij component of the metric we
already know that hg?] (TT) and W ](TT) obey S so we

n
i
conclude that G%] must obey S. Finally, we also want that

hld = O(r~1). This implies that we can allow W) and W!"
to be O(1) as long as their 9, and 0; derivatives are O(r!).
Furthermore, we need that both ng] (TT) and GE?] are
each O(r7").

The boundary conditions as formulated above in the
harmonic gauge are compatible with the boundary con-
ditions as formulated by Trautman in [56]. For the trans-
verselike gauge the boundary conditions used here are
almost but not quite in agreement with [56]. However, we
have previously shown that the boundary conditions in that
gauge result in finite expressions for the ADM energy and
momentum.

As an illustration of the harmonic gauge parametrization
we consider linearized Schwarschild in isotropic coordi-
nates. The Schwarzschild line element in isotropic coor-
dinates is given by

(1_(;%2 GM\* i
ds? = _m&dﬂ + (1 +E) dx'dx'. (5.127)

2c%r

To first order in G this is

GM GM\ . .
ds? = (_C2+2—) dr* + (1 +2T> dx'dx' +O(G?),
r cr

(5.128)
so that
n _ 2M o n _2M
= =00 b= (5.129)

This can be written in the form (5.121)—(5.123) if we
choose

Mu

wil = —| (5.130)
r
M 2
will = — =g, <”—> (5.131)
r
1y —
wil(TT) =0, (5.132)
Gl =M s waa (1 (5.133)
N I\ r ) )
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It can be readily verified that these all obey the free wave
equation (with Sommerfeld boundary conditions), as well
as (5.119) and (5.120).

F. Summary

We briefly summarize the main findings of this section.
In transverse gauge the G expanded vacuum Einstein
equations are

PHI =~ (e + o)) (5.134)
n rz xl n
P <Mg I T %H" 5 oM ](T)>
Efp Raz(fgg +oh)+= : > el (5.135)

D(@%h{(ﬂ(ﬂ)+a,.aOM§”](T)+ajaOM[.”]( ) —20,0;M" +3 Ls

The homogeneous solution is given by (E8)-(E10) and
(E28). For the particular solution to the sourced equations
we need to invert the Laplacian and the d’ Alembertian. The
boundary conditions are such that H", M, and M!"(T)

are O(r~!) for large r and hg?] (TT) obeys the Sommerfeld
no-incoming radiation condition at past null infinity.

In harmonic gauge the equations are

O =~ 4+ o,k + 0,0, (5.139)

The homogeneous solutions are just the most general

solutions to Dh,[jﬂ = 0. The boundary conditions are such

that h,[ﬁ,] obey the Sommerfeld no-incoming radiation
condition at past null infinity. Not all the components of

erf,] are independent in the harmonic gauge which is why it
is convenient to use the parametrization given in
(5.121)—(5.123).

In a general gauge Eqgs. (5.134)—(5.138) together with
the above boundary conditions are also valid but then we
still need to specify what the longitudinal fields L and
N are by making a gauge choice and an appropriate
boundary condition. The problem of solving the G expan-

1
P (ME.”] (T) - gxléoH["]) T : 00(1851 Ay

(5.136)
as well as
—Ohy} (TT) = —2000,M" (T) + 20,0, My’
+ %a<iaj>H["1 +2). (5.137)
The latter implies
R HI > = el +0p0yey +9y0yzy) — 0,070 (5.138)

operators 0> and [J as well as solving the equations that
result from the gauge choice.

If we compare the transverse gauge with the harmonic
gauge, then the former has the advantage of a smaller set of
residual gauge transformations. In harmonic gauge the
residual gauge transformations are (5.48) and (5.49), which
involves homogeneous solutions to the free wave equation,
whereas for the transverse gauge the residual gauge trans-
formations are given by the ambiguities (5.29) and (5.30),
which involves harmonic functions. The latter are much
easier to deal with. Another feature of the transverse gauge
is that the traceless part of ;; is automatically transverse so
we do not need to resort to transverse traceless projectors
that are used in harmonic gauge to find an expression for
the waveform.

G. Nonlinear sources

In this section we focused on the homogeneous solution
and the consequences the boundary conditions have for
these solutions. We end this section with a few remarks
about the nonlinear sources described by the T/[:,l,] We
already gave an expression for ‘L'LZJ in (5.4). Here we give

an explicit expression in terms of the metric and its
2] 3]

sion can thus always be reduced to that of inverting the  derivatives for 7, and 7,,;. These are
|
2 _ g (gL, i 0 aby pll
T = 0O, <h[1] —51 ﬁh’[’l] )(Zawhy)ﬁ — Ophyw) — Eaﬂhma By
a a (1] 1] (1] [1]
- aﬁh aﬂh(,,, + aﬂh 1uOaltg, + h[ll (204041 B e Ouph) (5.140)
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1
it = =5 h0uhpiboghly, + o, h " oyhi

(1] [ (1]

1

+ B 0o, hy = ho,hy" 0, h))

+ i Y0, 0phya) — W 0p M O sk + B0, By il + Y Ophig) o )

(1]

(1

1 1
— 1ol i) + = hogn!, a,hbd — o, 9, nlk — ntayhlio,n)

2 T ap 2

1 Qj Q
+ 5 M0, g0, — i h0,0,h,

1
ap
+ 5 hiTosh]

(171 =r=p

1
aby g plllr _ il jap
5 hi110,hgd i — e hi1}0,0

1
af 1 afpr (1] _
+ 0, (hm SN hmy> (2041,
a 1] a (1]
- aﬁh[z]ﬂaﬁhau + d’h[z]ﬂaahﬂy + h
1
a1 afpr 2 _
+9, (hm SN hmy> (2041,

a (2] a 2] ¢/
— 1t Ophay + O hE,) 0uhy, + )

In harmonic gauge we also need

1
K= n%o,hy) > hho,nl)

) > M Ouhey (5:142)

3 op 2
ki) = a7 (a(,h;,;

1
—_ 5 aﬂhgp>

0 oa 1 1 1
+ (hTY = naghfe ) (a(,h,[,] _ Eaﬂh[ﬂ,l) (5.143)

1)l

d,hlat — ha, h\ o, h

7 up

1
i) — = 0,h%0,h]

(205

=rep (1]

o)

a 1 1
— hf!Ophia)0, b

Wrpapy o pll
+ ha 0,0, hy,)

1 1 Q 1
Ophis) = 5 0,0,

1

(zaﬁ(ﬂh - 9 ha/]f - aa/}h/[tlv])

v)a 123

2 H 1] af

el — 0, h — 0,,n). (5.141)

wya T Cwtap T

[

For the case of the transverse gauge we will give the
sources to order G. In this case the equations are given in
the summary Sec. V F. Using Eq. (5.4) together with the
transverse gauge condition and the order G equations of
motion, we find

U £ (I N (1 (T RTINS R
Too = — E CllO COOO + E 1k COOk + 5 CkOOCkOO - E COkICOkl

. 0 )

+ 1y (TT)(0,Coox — 90 Coxi)s (5.144)
as these feature in the source in (5.139).
2) 2] 10 0 10 10 0 101 0]
Too T T =~ 5 CiroCio + 5 CuiCui + 5 CrioCrio — 5 CijkCiji
] (1] (1 ] (1 (1
+ Iy (TT)(9,Coox = 0o Cror) + Iy (TT)(9,Ciig = 0;Ciix) (5.145)
2] 10 0 1 100 10
Toi =~ ) CioCioo + 5 1k Coix + ) CrooCiro — 3 CouCint
0 (1] (1 ] (1] (1
+ M, (T) (30 Coix — 0:Coox) + Iy (TT)(9;Coix — 9;Cont), (5.146)
p 1 (1] SN 1 1 1 [ 10 n 10 M 1 n 1 a
Tij = §(C000 — Cio)Cijo — 5 (Coox = Cur)Cijk — 5 i00Cjoo + ECOikCOjk + Ecikocjk() - Eciklcjkl
2M[1] le 2h[]] 1 1] (1] (1] [1]
+ 073 0°hy; (TT) + gaiéjH + hy (TT)(0,Cijx — 0, Ciyy)
0 (1 (1
+ M (T)[0cCijo + 9 Cij +20;0;M(T)], (5.147)

where in transverse gauge we have
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(1]

Conp = —20,M, (5.148)
m 0 0
Coor = 20,M —20,M(T), (5.149)
i "
Croo = —20,M)), (5.150)

(1] 1
Cijo = —aohg}} (TT) - aiM.[jl] (T) - ajME'” (T) - 55@/5011“]7

(5.151)
1] i) 0
) 1] 1] ]
1
+3 (60 HY + 640, H - 5,0, HI).  (5.153)

When solving the inhomogeneous PDEs at order G* and
higher we will have to use Green’s functions to write down
the particular solution, and these will involve integration
over the exterior zone that has a boundary (or a lower
cutoff). Therefore, just as we encountered in Sec. IVD
when we discussed the integration of the near zone PDEs,
we will have to worry about dependence of the particular
solution on said boundary. We will come back to this in the
next section.

VI. NEAR ZONE METRIC TO 1.5PN

The purpose of this section is to determine the near zone
metric to 1.5PN order by solving the 1/¢ expanded Einstein
equations. The latter are of the form ¢*(field) = (source),
and so the most general solution will involve near zone
|

regular harmonic functions. To determine these harmonic
functions we will use the matching with the exterior zone
metric. We will from now on exclusively work in the
harmonic gauge. For a similar analysis in the transverse
gauge we refer the reader to [15]. For the homogeneous part
of the harmonic gauge metric in the exterior zone we will
use the parametrization (5.121)—(5.123). The purpose of
this section and the next is to show that our methods work.
The results that will be derived are well-known (see [1] and
references therein). Nevertheless, seeing them emerge in
this way will help when using a very different gauge.

Before we can start the matching process, we first need
some general results about expanding the exterior zone
metric in 1/¢ which is valid only in the part of the
spacetime where the exterior zone overlaps with the
near zone.

A. 1/c expansion of the exterior zone metric

Here we will collect some general results about 1/c¢
[

expansions of the solutions winl, Wi"], etc. Since the free
indices will play no role in this section, we will suppress
them. We will also suppress the superscript [n]. We refer to
Appendix C for some standard results about multipole
expansions of solutions to the free wave equation using
inertial coordinates.

Using Eq. (C15) we know that if W is a solution to the
free wave equation (obeying Sommerfeld), it can be
expanded as

U(u)

U (108 o (49 .

where the U;; are STF and the dots denote higher multipole
moments. If we Taylor expand this around u = ¢, we obtain

W= (6.1)

=1 /—1\" 1
W= Z;ﬂ (7) [r“—layU(t) + 0,71 01U (1) + 50,0, 0 Uy (1) + - ]

o= 1 /=1\"1

=3 (F) e
—ign! \ ¢ !
il —I\"1 L .n—-21-1n
=0 n=0
©_ 1 1 .

= ;l—!aﬂ—l UL(t) =-0U(0) + 55 ;l—!aLra,zUL( ) —— (P3U(t) + 2x133U,(1)) + O(c™),  (6.2)

where we use the multi-index notation L =i, ---i;. We see that the even powers of 1/c lead to all order multipole

expansions, whereas the odd powers lead to truncated expansions with only a finite number of multipole moments
contributing. We also see from this that we have a harmonic function that is regular in the interior whenever n = 2/ + 1. For

example, for n = 1 and / = 0 we have the term —10,U(¢). For n = 3 and [ = 1 the harmonic function is — 3)‘7 0;U,(1), and

forn =5 and [ = 2 we get — %Gf U;;(t). The harmonic part (regular at » = 0) of W in the overlap region is given by
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21 LRI+
; 21 i xR UL (1), (6.3)
where we used that U; is STF.
If we 1/c expand the multipole coefficients U;; ...;,, which

we will assume is an expansion in even powers (which is
|

——0U

W= ;ﬁaﬂ P (r)

We can write similar expressions for W; and W;; + G;;.
This leads to multipole coefficients of the form® V( ) (t)

i)
and Zf J)l ., (), etc., where the comma between the i index

and the remaining indices indicates that there is no
symmetry assumed between interchanging i with any of
the other indices. The indices after the comma are assumed
to be STE. Objects such as V;; .; can be decomposed
into irreducible representations of SO(3), but we will
refrain from implementing this decomposition until we
are forced to do so (by the matching process) as this will
lead to a proliferation of terms.

Using the above results together with the parametrization
of the harmonic gauge metric given in (5.121)-(5.123),
which we repeat here for convenience

gu = = +2Go,Wll + O(G?), (6.6)

g = GoW, + Gowll + O(G*).  (67)
=5, + GW(TT) + Gl

+ G(a,w[ lrow)+0(6),  (68)

we can match the exterior and near zone metrics to first
order in G. The above results only concern the homo-
geneous solution in the exterior zone, so if we want to
match at order G? or higher we need to include a discussion
of the particular solution to the inhomogeneous PDE in the
exterior zone.

Let us write the metric in the exterior region as we did at
the start of the previous section,

We let the expansion of W start at order ¢ in order to recover
the Newtonian limit from the 1/c¢ expansion of the exterior
solution.

We are suppressing the [n] index. In general we will have
multipole coefficients of the form VET'ZJI(TB,(I) at order G"¢c™"

?"We remind the reader that our conventions regarding the
manipulation of indices can be found in Appendix A.

1 [Se]
)20

. A
= — (PRUO@) + 200U (1) -
6¢ ‘

related to the even power expansion of the fluid variables
discussed in Sec. II D), as

U, =0+ c—lz U+ 0(c™), (6.4)
then we get for W the expansion25
zl o, ro2Uy (1) %g%aLr‘lU( (1)
2+ 0O(c™). (6.5)
[
G = M + Ghis) + G*hl3 + (6.9)

Then at order G” the object h,[,"y] solves the following PDE:

Ohf = si =~ + 0,k + 0,K",  (6.10)
where we used harmonic gauge and notation introduced in
the previous section. The full solution that obeys
Sommerfeld’s no-incoming radiation boundary condition
at 7~ is

[n]
n n 1 Sy (1
h;[w] = WLD ——4”/£d3x’ o

—|lx=X1/c,x)

[1]
B ’
|x _ x/| + HU

(6.11)

where W;[Z,] obeys the free wave equation with Sommerfeld
boundary conditions. The last two terms represent the
retarded Green’s function on the exterior zone &, constitut-
ing the particular solution to (6.10). Here x is a point in the

exterior zone and so does not lie on its boundary. The term

B,[;,’,] also obeys the free wave equation but it only has

support on the inner boundary of £ and depends on the

source S,[,"y] in a specific way. It is in general of the following

form:

;u/ :_/dS /a/( 1224 t_|x )C/|/C X)>’ (612)

Joc = x|

where J, ,[,"y]l depends on the source.

The reason that we need this term can be understood as
follows. We want that the particular solution obeys the
harmonic gauge condition which can be written as [see
Eq. (5.42)]

Heo = K, (6.13)

where we defined
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1
Hr, = (W&g - 577””%) 9, (6.14)

Let us formally denote the particular solution to [Jh,, =
S, (satisfying Sommerfeld) by

hy = Ol Sh. (6.15)

By taking the d’Alembertian of (6.13) we see that the

harmonic gauge operator H”?, acting on S, gives

Hro st = Ok, (6.16)

In order that the particular solution (6.15) obeys the

harmonic gauge condition we need the following set of
formal manipulations to be valid:

HOKY =K

HP? b = Hee O Sl = Ot HeeSh = O]
(6.17)

ret

The nontrivial steps are the second and fourth equalities.
For example, if we take for (.| S ,[ff,] just the middle term in
(6.11) without the B, term, then the second and fourth

equalities in (6.17) would only be true up to boundary

terms of the form (6.12). This is the rationale for adding BL'L]

to the particular solution. Rather than explicitly construct-

ing B,[,'L] we will simply drop boundary terms in the exterior

metric that can be absorbed into BH,’,] With this in mind we
will not explicitly write this term.

Let us introduce the following notation. Let R[S,[Z,]] and

A[S,[ﬁ,]] denote the retarded and advanced Green’s functions

given by

[n] ! /
n 1 Sw(t—|x—x , X
R[S}[w]] = I‘/gdSXI a ( | |/C )

. (6.18)

e = x|

(1] ! /
w4 [ s Sw(t+ x = x|/c,x')
AlSiw| = s .1
[S/l] 4”/£dx |x_x/| (6 9)

where the integrations are over the exterior zone £ and x is a
point in the exterior zone (not on its boundary). Using the
retarded and advanced Green’s functions we can write the
solution (6.11) as

n n 1 n n 1 n n n
= wh —E(R[S,[w]] +A[SH)) —E(R[S,[w]] —A[Si]) + Bl

(6.20)

The sum of the retarded and advanced Green’s functions is
even in 1/c¢ and is a particular solution to (6.10). The
difference of the retarded and advanced Green’s functions
is odd in 1/c¢ and is a homogeneous solution to (6.10). By

1/c¢ expanding the particular solution we obtain

[n] /
1 [n] [n] ]/ 3 ,SW(Z,)C)
——(R[S] + A[Si]) = —— RN

11
— 87102/‘g d3x’0%S,[fL](t, X)|x = x|
+O(c™). (6.21)
When we discussed the homogeneous solution we con-
cluded that the harmonic part only appears at odd powers of
1/c [see Eq. (6.3)]. Here we see that also for the particular
solution the even powers of 1/¢ will never give rise to
harmonic functions that are regular at the origin. We thus
arrive at the important conclusion that the near zone
harmonic functions obtained in solving the 1/¢ expanded
Einstein equations at even powers of 1/¢ must be set to
zero.”® Furthermore, we learn that the odd powers of 1/¢ in
the exterior region obey the free wave equation.

All of the above is based on the assumption that the
dependence on 1/c is real analytic so that we can perform a
Taylor series in 1/c. As soon as this assumption breaks
down, these comments need to be revisited. It is known that
the breakdown of the Taylor expansion in 1/c is associated
with the presence of tail terms [17,40]. To the order we are
working such terms do not arise in the near zone. For more
details we refer the reader to the review paper [1].

B. Fixing the inertial coordinates

Before we start the matching process, it will be useful to
fix our choice of inertial coordinates by choosing an
appropriate origin. So far we have been using inertial
coordinates that describe our vacuum Minkowski space-
time, but we have not chosen any particular origin yet. At
this stage we are still free to perform Poincaré trans-
formations on our inertial coordinates (if we are using the G
expanded Einstein equations) or the 1/¢ expanded Poincaré
transformations (see, e.g., [11] for the construction of the
1/c¢ expanded Poincaré algebra) if we are using the 1/c
expanded Einstein equations.

We will choose inertial coordinates such that the origin is
at the center of mass of the matter distribution. To define
this we need to use the fluid conservation equations that, as
discussed in Appendix D, can be written as

0,T" +9,T" =0, (6.22)

*We assume here that the near zone integrals have already
been made well-defined (which sometimes requires the use of a
specific harmonic function as discussed in Sec. IV D) so that the
particular solution does not depend on any cutoff. Furthermore,
we assume that the integrals in the exterior zone are also well-
defined and (lower) cutoff independent (by a judicious choice of

Bl
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where 7# is defined with the help of the Landau-Lifshitz
energy-momentum pseudotensor [see Eq. (D2)]. The ADM

charges
/ d3 T
1=cst

form a Lorentz vector with respect to the Lorentz sym-
metries of the vacuum. We can always perform a Lorentz
boost to set the total momentum equal to zero, i.e.,

/d3xT’i =0.

Having made this choice we can show that the dipole
moment [ dxx'7T" is constant. We can thus perform a
translation to set this to zero, i.e.,

/d3xxiT” =0.

If we expand the latter two equations in 1/c, then at
leading order we get

/d3xE(_2)vi =0,
/deE(_z)xi =0,

which simply state that the center of mass momentum is
zero and that the origin of our coordinate system coincides
with the center of mass and so the dipole moment of the
mass distribution is zero. We can always use Galilei boosts
and translations to achieve this. At higher orders in 1/c we
get subleading boosts and translations (as unfixed diffeo-
morphisms) that can be used to set

/d3xT?li) =0,
/d%x’”fﬁl) =0

where Tétn ) is the coefficient of ¢~ in the 1/c¢ expansion
of TH,

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

C. Matching to 0.5PN

We start with the Newtonian order. From the near zone
metric we know that we have for the ## component

E(_z)(t,x’)

Gu=—c>+2U+0O(c7?), U—G/d3x’ =]

(6.30)

From the 1/¢ expansion of the exterior metric at order G we
know that

gy = —C +2GZ 0o, i)
1= 0

G 2U0 (1) + 0(c),

- RUC (6.31)

where we used (6.5). Comparing the two results leads to

E( 2)(1 )C/)

001 1 [1](0 —2)\"
E —o,r—o,U; X
z (0= / T

For the integral on the right-hand side, the point x is in the
overlap region and the point x’ is inside the matter
distribution. We can thus expand

(6.32)

1 .11 =
S la /i /Ja a
lx—x| r —|—2x * + ; l!
(6.33)
Hence, Eq. (6.32) tells us that
o, UM = (—1y! / B PE o (1x),  (6.34)

where the () denotes the symmetric trace-free combination
of the indices inside.

We thus see that the O,U[Ll](o) (t) are related to the
multipole moments of the mass distribution. Furthermore,
since the PN near zone metric has no term at order ¢~! in
the expansion of g, we conclude that 2U"(0) = 0, which
means that the total mass as measured by [ d®x'E(_5 (1, x)
is constant. This also follows from the leading order
fluid conservation equation given by the four-divergence
of (D10a) and (D10b). We see that this has the effect of
removing the term proportional to 72 at order ¢~ making
the entire ¢~ term in (6.5) harmonic.

Further below we will often denote the constant total

mass by M, so we have
/d3x/E )( /)

Furthermore, as we discussed in the previous subsection,
we will choose inertial coordinates for which the mass
dipole moment vanishes, so that

= o,Ul10) (6.35)

a,UE.”“”——/cP XE (1) =0.  (6.36)

We next consider the #i component of the metric. From
the exterior solution we know that this is given by
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G(dtWE-l] + 0,-W[”) at order G. We know from the 1/c expansion that at order ¢ the metric g,; is simply zero. However,
1]

must also start at order ¢°
(1]

from the matching of the 7r component we know that W!!I starts at order ¢°. This means that W£

in order that we can have a cancellation at order ¢’ between the O,W?] and 0, W!! terms. The 1/¢ expansion of W, follows
from (6.5), and we will denote the multipole moments by Vﬂ Explicitly, we have
=1 1 1 1
:Zﬁaﬂ_l‘/ﬂ(o)()——av _ZZI_ VPL (1)
— . 1=0
ILS=1 . o 1 100 30,10 1 e -
tad o V0 = 5 (PEVO (1) + 200V (1) - S0v P (1) + 0. (637)
=0
where we also 1/c¢ expanded Vﬂ in even powers of 1/c. o,v1© — (14 D)8y o (6.42)
In order that the ¢® contribution from d,W\" cancels the B )
one from 9, W!! we need that
NI () L o) U =
Z_a r o, v (1) = —aiz—,aﬂ U, (t). (6.38)  From Eq. (6.39) we learn that W; " is zero at order ¢
= ! = Since the same is true for Wl!I we immediately see that

there cannot be anything at 0.5PN. In other words we
have 9, W\ + o, Wil = O(c2).

Finally, we turn to the ij components. We know from the
1/c expansion that at order c° this is just §; ;- At the same

At low multipole moments this implies that we have

o,V = o, (6.39)

(6.40) time WEI] has terms at order ¢® so we need to ensure that

atvgl}(o) =~y
WB](TT) + GB] has an order ¢” term that cancels the one

oV — < 5, U0 45,y _% 5, Ul >> (6.41)  from oW} 4+ 0;W}"\. For the time being we will consider
the sum Wg}] (TT) + GB]. We know that this solves the free

At a general order this is solved by wave equation so we have the following 1/c¢ expansion:
_ [1)( I &1 (1]
wi(rT) + Gl Zl.aﬂ 1z () — —az [ —ZZO:Z— Lra2Z00 (1)
L L P L 253,0110) k 33/110) Lo e ”
2 o 200 = 5 PRz 0+ 2020 0) - 5020 + 0. (6.4)

where we followed the same steps as with the 1 /¢ expansions

10

oy _ _5ikV£'l](0) _ 5jkV£l](0)’ (6.46)

of Wl and WP]. To get the right cancellation between

W A(TT) 4+ G;; andalw +0Wl , WE 1€ uire that Zl 0 ) 1](0 ‘71 0
Y ( ) Y / ! d Ej]l(cl) ([ 5,15{ )5l>i E,(]I(c )5l>]) (64‘)

Z“aLr—lz —0; ZpaL’_IV (1) + (i <> j). For general / we have

+ 85, VIO,

0
6.44) 20O — —(1 415, VIO Vi
(6.48)

ijiy i [1d1ip)

For low multipole moments this equation leads to

We still need to ensure that WB] (TT) + GE}] satisfies the

(10) _
Zij = 0, (6.45) properties that we have derived earlier, i.e., that Wg] (TT) is
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(1]

a TT solution to the free wave equation and G;; obeys
(5.119) and (5.120). Since W|(TT) is TT the sum
WITT) + Gl also  obeys (5.119) and  (5.120).

Furthermore, since at order ¢ we have

—111](
Zl,aL” IZE_/L (1)

1 1]
—(5iW£']+ajW£' Mo

(WH(TT)+G
(6.49)

property (5.120) becomes OQWE.I] lo(cvy = 0 which is auto-
matically fulfilled. Next we consider property (5.119). The
second time derivative of Z“] can be evaluated using
(6.42) and (6.34), and in order for this to be TT we need

2700 _
a i,y +ip) =0.

(6.50)

Using Eq (6.42) this can be shown to be satisfied. The part

of ZB]l ;, that satisfies Z%(?l)---i,) = 0 and that is further-

more trace-free with respect to ij can be attributed to

WB] (TT)|¢(c)- The trace of ZE ]]l( >i1 with respect to ij is
zero if and only if V[&.Ll'?m = 0. An example of such a term
is given by

(1) _ [1](0) [1](o (1](0) (11(0)
Ziiu = sz[lj] +5jkV[ L —l—é,lV[k] +6 V[kl]

2 2
which is traceless with respect to ij and satis-
fies I = 0.
ikl

From Eq. (6.45) it follows that the order ¢! term in
(6.43) vanishes so that g;; = §;; + O(c™2).

The results of this subsection are in agreement with the
comments made in Sec. IIIC [see below Eq. (3.43)]
regarding asymptotic flatness in Newtonian gravity and
at 0.5PN order. Sufficiently close to the matter source we
can ignore retardation effects. Far away from it we cannot
but they do not invalidate the assumption of asymptotic
flatness at OPN and 0.5PN order from the point of view of a
near zone observer.

D. Matching to 1.5PN

We now move on to the 1PN and 1.5PN metric.
Einstein’s field equations at 1PN order are given by
Egs. (4.65)—(4.67) for n = 2, which using the results of
Secs. IV B and IV C can be shown to be

Ph?
tj

= —87GE( 56 (6.52)

ijs

P = —162GE_yv', (6.53)

62154) = 477G(E(O) + 3P( 0) +2E 2) 4z 02( (2 ))2

2 2 2
+ o+ h0.0,7. (6.54)
The OPN solution is r§2> = —U where U is defined in
Eq. (3.26). Using the 1/c¢ expansion of the fluid equations
given in Appendix D we can rewrite this as

2
Py = -82GT1) ;. (6.55)
rY = —162GT1 (6.56)
;5
o)) = 4nG(T 'y +T}) + 30U
~ QU — (h)) —2U8,)0,0,U,  (6.57)

where (6.52) tells us that hgf) —2U¢;; is harmonic.

At 1.5PN order the Einstein equations are (4.65)—(4.67)
for n = 3. Using the results of Secs. [V B and IV C we have
in harmonic gauge

*h =0, (6.58)
P =0, (6.59)
P =o0. (6.60)

If we solve (6.52) and (6.53) the most general solution is
given by

2 _ )
E._ t,x .
r§4>—4c/d3x'—( 2PN g i oy,
[x — x|
(6.62)

where Hl(-jz-) and H,(»4> are near zone harmonics, and where
the second equality defines U'. The solution is first order in
G and must therefore be matched by a homogeneous
solution in the exterior zone. From the results of
Sec. VI A we know that the harmonic functions that come
from the 1/c¢ expansion of the homogeneous part of the
exterior metric only show up at odd orders in 1/¢. So using
that 1PN is an even order in 1/c we conclude that

HY = 0.

H? — o,

1

(6.63)
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Using this we see that the last term in (6.57) vanishes. With
this extra information the most general solution for 154) is

given by

4 g / B0 3P + 2B (v
t e = x|

+0U))(%.x)

1 1
- 5a%x +3 U? +HW (6.64)

where H*) is a near zone harmonic, and where the integral
is over the matter source.
Furthermore, X is the superpotential given by

X(t,x) = G/E<_2)(t, X)|x = X%, (6.65)

The superpotential obeys the defining equation

’?X =2U. (6.66)
To see how we arrive at this, consider first the most general
solution to (6.66) given by

1 U(t,x)
X(x, 1) = —— Bx —= Xo(x, 1),
T A T

(6.67)

/d3 / d3 /
o, |y—

where X, (x, t) is a harmonic function and Q, is a ball of
radius R, centered around the origin and containing x.
The integrand is noncompact and the integral diverges as
we send R, to infinity. However, this divergence
can be removed by a judicious choice of X, as is well-
known.” This is an example of a type 3 integral (see
Sec. III).
To find X, first consider the identity

1 di|x — x' 1
—/ d3x’6§<4’|x NP >
2 Jay, |y = x| |y =«

=G / E()(t,y)]y = x[dy + Xo(x, 1)

4’y / dXE_
Qg

All the y-integrals are over the compact source. The second
line is a harmonic function of x so we can choose X, to
cancel this function that leads to the result (6.65). It can be
checked that the harmonic function diverges linearly with
R, for large R,.

From the 1/c¢ expansion we know that to 1PN g, is
given by

2 1
In = —c? +2U — ? (’554) + §U2> + 0(6_3)' (6'71)

This expression contains terms that are order G so in order
to match this onto the exterior solution we need to know the
latter to order G? (at least for as much as the t# component is
concerned). To order G? the exterior solution is

d3x/
S S 6.68
AR* FEF7 T R (6.68)
where we used
Plx—x| = L (6.69)
|x — x|
Using this we obtain
L) + Xo(x. 1)
x'||x x|
o (S g g (6.70)
—|x—x ) .
y—x] Hly - x|
I
2G?
gu=—c>+2Go,W!! +—zatW[2]
C
G? S[Z]( t—|x=x1/c,x)
dx' : O(G?), (6.72
=/ o). (672)
where we rescaled W2 with a factor of ¢=2 since WU

2]

already matches onto the OPN metric, and where S£,

defined by DhE] = SE] where according to Eq. (5.140) we

have

1s

PIn fact, the divergent terms get annihilated by 9? in the

ion for 79
expression for 7, .
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1 2
Skt = =3 0chia Oy -+ hig O i+ 5 i iy

4
+ ?a,hgla,hw hQ)aka hiy) + 20, hy, 0ghyy .

(6.73)

We now wish to 1/c¢ expand the right-hand side.

We know from the matching at OPN and 0.5PN that the
near zone metric is such that g; = O(c™?) and
gij = 6;; + O(c™?). Using (6.61) and (6.63) we also know
that the ij components of the near zone metric at order ¢ >
is pure trace. We thus conclude that hm O(c™?) and
h% = O(c™). Furthermore, from the matching of the 7t
component at OPN and O0.5PN we
nY) = 2G-1U + O(c™?). Thus, expanding the right-hand
side of (6.73) in 1/c we see that

derive that

rc? Je |x — x| 2r

— 1 / d3x/
271'6‘2 R3

L d3x/ (%{Ua;cU)l(t?xl): 12/d3x/
¢ Je

1
Y 320U + O(c™). (6.74)

The ¢t component of the 1PN matching equation becomes

_3 ()+1U2 :2_Gaw[]‘ 2Gaw[2]
c? 2 O(c™) (%)

L[ oy BURDEY)

ﬂ'C £

’

|x — x|
(6.75)

where W[ ) denotes the coefficient of 1/¢? in the 1/¢
expansion of Wl as given in (6.5). Likewise, W |y,

denotes the coefficient of c” in the 1/c expansion of W!Z.
We can rewrite the last integral in (6.75) as

0/2U2(l, xl)

o — x|
P22 (1, ')

d*U(t, X' 1
( /X)_ 2/d3xl
T

/772 N _ 7172 7\ xi=x't
/ Py o U*(t,x") — U*(1,x)) T
2 Je ! |x — x| ’

|x — x| 2rc |x — x|

(6.76)

where in the first equality we used that 0>U = 0 for x € £ and in the second equality we simply used that R is the disjoint
union of £ and Z. In the last equality™ we used that x is an interior point of £. The last term in (6.76) can be absorbed into
the 1/c expansion of the boundary term in the particular solution (6.12) and so will be dropped.

With this result we see that the matching equation in (6.75) becomes

2G +3Pg) + 2Ep)v” + 2EU)(¥) 1 2 2G 2G

v B0 T3P0 T 2E 2 2O )+—26%X——2H<4) oWy + = Wolo). (678)
c? |x — x| c c

|
Since the right-hand side cannot give rise to near zone
regular harmonic functions (as we are at even orders in ©
1/c), we conclude that ) = Zﬂaqu U[L2]<0) (6.81)
HW = 0. =0 "

(6.79)

From the general result (6.5) we know that

+Z vaL _1U )’

(6.80)

o2y 2Zl'aLraZUL

3OWe also used that

- ! /d3x’
277,’C2 T

1 dU(t, 1
g [exa (T g L) 6
; =] =]

2rc

012 U2 (t,x’)

i

|x—x

Using Egs. (6.5) and (6.34) from the matching at the
Newtonian order we can write'

n deriving this we used

|x —x'| = xto,r

1 1 .
x Lo, r+ g)c’zr‘l - gx’zx”a,-r‘l 4

(6.82)

where the dots denote higher multipole terms.
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1 171 1
oW o) = 560X +5 [— 3o / PAE (1, 3) + 07! / X' xPXE () (1,x') } Z TR v,

(6.83)

where the dots denote higher multipole moments. If we consider the monopole term in the multipole expansion of the
matching Eq. (6.78) we find

1
a,U[l](2> + G(),U[Z](O) =+ / d3x(E<0> + 3P(0) + 2E(_2) 2 + 2E(_2) U) + 60,2 / d3xx2E(_2). (684)

[
We are particularly interested in this term since this is what ~ Equation (6.84) then tells us that
is needed to fix the 1.5PN term as we will show now.
At 1.5PN order the ¢ component of the exterior metric

G
reads 7 = / dPxx2E(_y) + GO, / dx(E
A

2G?

2Go, Wl o + oWl loge1)- (6.85) +3P(g) + 2E(_5)v* +2E,)U). (6.88)
C

Using Eq. (6.5) this is equal to ) ) ]
We thus see that 7,7’ only depends on time and is thus

2G ., [](0) 2G 0 262 R harmonic (as it should be). Using the fluid conservation

- gx 0iUTT (1) = — 30U me a3 ;U0 (6.86) equations from Appendix D we can simplify the expression
for 755) to
where we used that 0?U"()(r) = 0. From the PN expan-
sion we know that the 1.5PN metric is given by —2c‘37§5>.
Since we use coordinatelsofor which the mass dipole 1.55) — 26 o / B2 Ey). (6.89)
moment is zero, i.e., 0,U£ it )(t) = 0, we conclude that 3
(5) _
o = GopUl® + G2 UPIO). (6.87) To 1.5PN we thus have for g,

E<_2)<t, x') n 2G/d3 /( (0) + 3P(0) + E(—Z) (21}2 + ZU))(I, X/)

Gy = —c> + 2G/d3x’

Ix—x’l Jx - x|

1 2

FSPX S0 S 0 (6.90)
C C

:—c2+zG/d3x'E<— (f—|x—X’I/c,X’)+2G B + 3P0 + By (207 +20))(1 = [x = |/, %)
- x| [ — x|

2

—2U o), (6.91)

where in the second way of writing g,, we have used retarded potentials.32 We thus see that the superpotential X and TES) can

be viewed as originating from retardation effects. The first term in (6.88) can be shown to be a 1.5PN retardation effect of

We used the following 1/c¢ expansion of the retarded Newtonian potential:

E_(t—|x—=x|/c,x G 1G
G/d3x/ 21— |x ),C|‘/C x):U——0,/d3x’E_2(t,x’)+§?0,2/d3x’E_2(t,x’)|x—x’\

|x —x

1G
e / PAE(t,2)|x = ¥ + O(c)
11 2 1G 3 3/ 1\ 2 -4
= U—I-f—G X - 8—() X E_(t,x")x"* + O(c™), (6.92)

where we used that 9, [ @®*X'E_»(t,x') = 0 and [ d®x'x"E_(1,x') = 0.
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the OPN term and the second is a 0.5PN retardation effect of
the 1PN term. The potential U does not give rise to a 0.5PN
retardation term due to the total mass being constant and
thus the U? term does not have a retardation effect at 1.5PN
order.

Before continuing the matching process for the
other components we note that there is a certain asymmetry
in the 1/¢ and G expansions. When we expand in 1/c¢, we
expand all variables (both metric and fluid). However,
when we expand in G, we only expand the metric. This is
because the exterior zone metric solves the vacuum
Einstein equations. However, when we perform the match-
ing, one might wonder whether we should have expanded
the fluid variables in G as well (and we know that they
must depend on G because the fluid conservation

|

(E_ i xl 1 =) 1
3,/ E 3 []
_4/dx|xT—§Ol—aLra iL

where we used the solution for 154> given in (6.62) and

(6.63). If we multipole expand the left-hand side, then the
monopole term from this equation tells us that

o,V = —4/d3xE(_2>vi =0, (6.96)

where we used Eqs (6 39)—(6.41) as well as the fact that

2yl =0=0,U"” [see Egs. (6.35) and (6.36)], and
(6.26).

At 1.5PN order the ti component of the matching
equation is

1 G
—57 =S @W oW oy, (697)
c c
which can be seen to simplify to
Y = gavl® = o, (6.98)

Finally, we consider the ij component of the metric. At
order ¢~? the matching equation reads
1
—2hf ) = (WM(TT) + G oWl oW o
(6.99)
Using the solution for h{; given in Egs. (6.62) and (6.63),
and using furthermore (6.5) and (6.43), this becomes
om0, W) o
(6.100)

208, = G(W,)(TT) + G,

)+ Z 00, )

equations33 contain terms proportional to G). This asym-
metry comes about because we are treating the G depend-
ence of the fluid variables as implicit and in the matching
process we only match explicit G-dependent terms. So
when we expand the exterior zone metric we simply say

that the coefficients hL','J] should not have any explicit G
dependence.

Next, we consider the #i components of the metric. From
the near zone and exterior metric we know that at order ¢~2
we must have

G
—on =W o Wo . (6.94)
Hence, using (6.5) we derive the condition
2771110 —17701]2
R 6Zl'aLr0U + 9, Zl‘aLr U,
(6.95)

[
where

1 Io-1 100 =1 _ . ne
Wl 15 ka0 5 o)

(6.101)

[\)

1 1 1 1 1
(W5 (TT) + G)loes) =53 ,a Rz,

[Se]

Z Lr_lz

(6.102)

The monopole term in (6.100) can be evaluated using
Egs. (6.45)—(6.47) as well as (6.39) and (6.40) leading to

1 1 1

=20,U10" 15, (6.103)

3For example, the OPN fluid equations are given by 9,7 % 0T
0; T’” = 0 where ’T” is given in Appendix D. Explicitly, these

equatlons are

S 1
0,v' +1v/0v —|—E

0,E(—2) +0i(E(-2)v") =0, -2)

aiP(()) = —8,- U
(6.93)

The right-hand side of the second equation is order G. Hence, the
solution for the fluid variables featuring in these equations must
contain terms that are at least order G° and order G.
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Using that [see Egs. (6.47) and (6.40)]

2
OZZEI],(CI) = 20 U[ ]( ) <5ik5jl + 5jk5il - 351']'5/{[) ) (6104)

we obtain
e _ 85 5 o 6.105
i = 300U (6.105)
where 0,U") is the total mass of the source. We then find

(WINTT) + G o2y = a,UMNO0,0,r + 26,77 + -+

(6.106)

where the dots denote higher multipole moments. This
agrees with the ¢~ terms in the expression we found for the
linearised Schwarzschild solution in isotropic coordinates
(5.133). It obeys the properties (5.119) and (5.120).

At 1.5PN the matching equation is

1
C—3h§ ) = (W[”(TT) + G oWl oW o

(6.107)

Using Egs. (6.37) and (6.43) and the results obtained above
|

we find that

3 —o.

tj

(6.108)

We point out that the vanishing of T ) and h
consistent with the interpretation that the low odd orders in
1/c (at least to 2.5PN) are entirely due to retardation
effects. Since 154) and hl(-? involve moments of conserved
quantities (momentum and mass, respectively) it follows
from the Taylor expansion of the corresponding retarded
potentials (where in the integrands we replace ¢ by

t—|x —x'|/c) that T ) and h must vanish.

VII. NEAR ZONE METRIC TO 2.5PN

In this section we go one and a half PN order higher in
the determination of the near zone metric.

A. Solving the near zone equations of motion

To determine the near zone metric at 2PN and 2.5PN
order we consider the 1/c¢ expanded Einstein equa-
tions (4.65)—(4.67) for n =4, 5. The source terms are
given in Secs. IVB and IV C. Using the results from the

previous section, in particular that z; ) —0= h( as well

as hg ) = 2Us,, the near zone PDEs in harmonic gauge are

ijo

PhY = —162GE_)(v'v) + 5,;U) — 81G(E(g) — P())8;; — 40,U0;U + 25,,0*U° + 25,,03U. (7.1)
. 1 .
0211(_6) = —162G —E(_2> U, + E(_2>1}l(2) + (5 E(_z)y2 + 4E(_2)U + E(O) + P(O)) 1}1:|
+ 80, U0, U; — 160,U0;U, — 120,U0,U + 402U, (7.2)
1) = 4nGlE(y)(zY + 4vly vk +2U(30? + 2U)) + E(o)(U +20%)
Poy(3U +20v?) + Ep) + 3P y)] — 8(0;U40;Uy — 0;U0,U)
11

— 8U;0,0,U — 7akUa,{U2 +20°U? - 70,U0,U — 4U0,0,U

— hWouo,U - 20,U0 Y + 022tV (7.3)

Similarly, we find that the 2.5PN equations of motion are

27,05 _
’hY) =0, (7.4)
*" =0, (7.5)
62157) = aIZTES) _ hl(j)ak()[U-f—“-ﬂ'G(E(_z)TES) +E(3)) (76)

[

All these field equations are consistent with the 2.5PN
metric given in [28]

To solve for h( in Eq. (7.1) we start by applying the
diagnostics of Sec IV D to the noncompact source terms.
These are 0;,Ud;U, 0°U?, and 07 U. The first two of these
sources go as r~* for large r, and so there are no issues with
extending the range of the Poisson integral over all of R?.
The noncompact source 02U is one we already encountered

when solving for 154), and this leads to a superpotential X
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“)

ij “) is

contribution to the solution for /;;". The solution for A;;

then given by

@ _
iy’ =2U6;; + 0;X5,; + 4P[0;U0;U]
+ SHGP[(E(O) - P(O) + 2E(_2> U)5ij + 2E<_2)1)i1)j],

(7.7)
where we have introduced the following notation:
1 S(t,x)
PlS|=— | &x—"—. 7.8
15 4n’As x|x—x’| (7.8)

In principle we could add a harmonic function to Eq. (7.7)
that is regular in the interior. However, we know from the
argument given at the start of Sec. VI [below Eq. (6.20)]
that such a function cannot occur at this order in the exterior
solution, and so we must set it equal to zero.

We continue with the discussion of the noncompact
source terms by looking at the equation for 11(6). All the
noncompact source terms are written on the second line in
(7.2). Using that U;, which is defined in (6.62) and (6.63),
goes as r~! for large r we see that the first two terms, i.e.,
0, U0, U, and 0, U0, U, go as r~* and so are well-behaved.
The third term 9,U0,U is naively O(r~3) but since U is the
Poisson integral of a conserved quantity (the mass), the
|

monopole term is constant in time. Furthermore, we chose
coordinates such that the mass dipole moment is zero. This
means that 0,U actually goes as v~ and so 9;Ud,U is also
well-behaved. This leaves us with 0?U; which naively
goes as r~!. However, just as U, the quantity U, involves
the Poisson integral of a conserved quantity, namely the
momentum. So, analogous to the introduction of the
superpotential X [see below (6.65)], we define

X, =G / X x— X (Eiyt)(1.5). (19)

which satisfies

The argument leading to the existence of X, is identical to the
case of X. The most general solution to (7.10) is given by

1 By U,(t,x)

X; = 7 + X9, (7.11)

2 o, |x — x

where X? is harmonic and where Q_is a ball of radius R,
with the center at 0. Using the identity (6.68) we can show

that there exists an X ? such that we get (7.9). We thus find the
(6)

i

following solution for 7

) 1 .
TZ(G) = 162GP —E_U;+ E(_Q)Ul(z) + <2E(_2) 2+ 4E(_2)U +Eq + P(0)> ’U’:|

+ 202X, — 4P[20, U0 U; — 40,U0;U, — 30;U9,U],

where again we do not add a near zone harmonic function
as we already know that these will be set to zero by the
matching.

We now turn to the equation for 156). If we consider the
right-hand side of (7.3), we see that the first three lines
consist of either compact source terms or noncompact
sources that decay fast enough for the Poisson integrals to
exist. That leaves us with the last line of (7.3). The trace
part of hf.;‘) in hg)()ka,U gives rise to a compact source.
Meanwhile, the traceless symmetric part of h[(-j) falls off like

r~1, so combined with the fact that 0,0,U goes as r~>, we

can conclude that the Poisson integral over h,(:})dkalU is

well-behaved. The next term is d, U 0,(154)

as r~* for large r where we used that 154) goes as™ r~!. The

last term to consider is 0?154). The solution for 154)

in (6.64). This means that

but this also goes

is given

3*This uses the fact that G?X goes as r~1, which follows from
mass conservation and the vanishing of the mass dipole moment.

(7.12)

[
Cy(t,x' 1
6,2754):/d3x’|)16(f;,|>+/d3x’|x—x’|C2(t,x’)—i—Ed,zUz,
(7.13)

where C; and C, denote terms with compact support given
by

C = —G@%(E(O) + 3P(0) + 2E(_2)(02 + U)), (714)

C2 - - &E(_z)

G
> (7.15)

We know that $0?U? goes as r—* for r — oo, and so the
Poisson integral for this term is well-behaved. For the
remaining two terms we use the following identity:

Plx =" =nn+1)|]x =2, (7.16)

to see that
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1 1 2,4 _ 172
612 <T§4) —§U2> :02 [/d3x/§x—x/|cl(t,xl) / d3xl at (Tt _EU ) , (718)
Q

1
—|—/d3x’ﬁ|x—x’|3C2(t,x’) . (7.17)

Thus, up to a harmonic function the Poisson integral of  is divergent in the limit R, — co, Eq. (7.17) shows that
there exists a harmonic function such that when it is added
to the latter Poisson integral, the limit R, — co becomes
finite. Using this we can rewrite (7.3) as

RV - 1U?) is equal to the term in square brackets on the
right-hand side of the above equation. So, even though the
Poisson integral

i (TE()) -2U3 - /d3x’%|x =X |Cy(t,x) - / d3x’11—2|x —x’|3C2(t,x’)>
= 42G[E () (zf" + 4vby) v + 20U (307 +2U)) + E(o) (U + 207)
+ P)(3U + 20) + 3Py + Ep)] — W} 0,0,U = 20,Ud, 7" + %0,2U2
— 8U,0,0,U — l—zla,cua,(U2 ~70,U0,U — 4U0,0,U — 8(0,U0,Uy — 0,U0,U,), (7.19)

where now the Poisson integral of the right-hand side is convergent and so we find

G
TEG) =203 - 50? / d3x’|x - x’|(E<0) + 3P(0) + 2E(_2)(1)2 +0))(t,x)
G
-5 / &¥|x — X' PEy)(1,5') + P[h} 0,0,U] + 2P[0, Uo7,

1 11

-5 P[0?U?] + 8P[U0,0,.U] + > P[0, U0, U?| + 7P[0,U0o,U]

+4P[U0,0,U) + 8P[0;U;0,U; — 0;U;0, U]

— 42GPE(y) (7)) + 40l vF + 2U(30 + 2U)) + E( (U +20°)

+ P(O)(3U + 202) + 3P(2) + E(z)}. (720)

|
Last, we want to solve the equations for the 2.5PN metric

in (7.4)—(7.6). The first two equation are simply solved by a 7§7) = 1 rZale) - 47;GP[E<3>} — UTES )
harmonic function. For Eq. (7.6) we see that the ﬁrst(jt)wo 6 |
terms are noncompact. In Eq. (6.89) we found that 7z, is _ - h(?(t) 0,0,X + HD). (7.23)

just a function of time, and so the source term 0,2155) gives

rise to a biharmonic function, more specifically it is solved 5) 4,

where H;;", H; ", and H7) are the undetermined near zone
harmonics. The purpose for the rest of this section is to
determine these.

by & 237\, Finally, for the term h,i?aka,u we will assume

that h,(j) is only a function of time, which later in this
section is shown to be the case. Given this we can write
W) (1)0,0,U = L2 (h)) (1)0,0,X) where X is the super-
potential. So, we end up with the following solution to the ] o
2 5PN metric: In Sec. VI we worked with the parametrization of the

homogeneous part of the exterior zone metric given in

B. Exterior zone metric and matching to 2.5PN order

L) — H(_s_) (7.21) (5.121)—(5.123). In this section we will (for the sake of
Y ue ' contrast) use the more conventional parametrization given
in Egs. (1.6)—(1.10). We will use this to determine the near
7 =n 7.22
o= (7.22) zone harmonic functions to 2.5PN order.
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Equations (5.121)~(5.123) imply that the homogeneous part of 4, can be written as

! L< u) %i(l— ( )>, (7.24a)

eyl
Sy-d
(=}
=]
Il
()
s
—
0
QO

)L ()

AT () () oom
=S5 () ()

IS S )

. ii@ 06T (0/7) + - iy (21|, (7.24¢)

where I;,J;, W, X;, Y, Z; are all STF tensors that can be thought of as having an expansion in G themselves. In other
words, at each order in G these multipole moments get corrected. It also follows from the harmonic gauge condition that

i=0, J,=0, I;=0. (7.25)

Matching this result with the Newtonian metric we find that

I, = / PXE_yx) + O(c™?). (7.26)

This means that the mass / = M is constant. As discussed in the previous section our choice of coordinates is such
that 7 k= 0.

To catch up with what we did in the previous section (using the parametrization given in (5.121)—(5.123), we will match
the exterior zone metric with the 1.5PN near zone metric. For this we use the multipole expansion of the particular solution
we found in (6.76), as well Eqgs. (7.24a)—(7.24c). We find that the 1/c expansion of the exterior zone metric to 1.5PN order
is given by

(0) (0) (0)
2GM I, (t G I, (t G 1 t
C(gi) — 2 + + Gakl kl ( ) _ aklm klm( ) + aklmn klmn( )
r r 3 r 4! r

2GI® G 12 G - 16
+2+C20k1< klr( )> +27020k1(7‘153)(l)) 6 2aklm(rI§<lr)n( ))

cr

1G -(0) 8G [WO (1) WO(r) W)
+ oy a1 () + 5 | g (B
i7(0) 2102
1 Wi (t G°M
+ Eakl (L()>:| - 2T + e + O(C_4), (7273)
r Ccr
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o) = 4G L, (L0 _1, (L@ 1, (@) 1l
(97) = 2 2%\ A +4, kim p +§€iab 2
(0) (0) (0)
1 J . (t 1 gt WW (¢
+ 5 €iapOak pi (1) — 5 €iabOaki pia(1) +9 U
3 r 8 r r
(0) (0)
1
— 0y (Wk (0) + =0 (M)] + -+ 0(c™), (7.27b)
r 2 r
(0)
2GM 1,/ (t
C(g;‘:j) == 5,1 |: + - + G0k1< klr( )>:| + tte + O(C_4), (7270)

where C denotes the operation of 1/c¢ expanding and where Qé’” denotes the nth order coefficient in the 1/¢ expansion of the
multipole moments Q; = I1;,J;, W, X;,Y,, Z;.Furthermore, the dots denote higher-order terms in the multipole expansion.

For the other side of the matching condition we need the multipole expansion of the 1.5PN near zone metric, which we
work out in Sec. F2. Matching the multipole expanded near zone metric components in (F46), (F38), and (F33) with

Egs. (7.27a)—(7.27¢) we find that

0 0 0
JO =79, 100 = Tu),

0 1 1 0
W) = s T = gl Wil () =
_ (2 _ +(2) (0)
1% =M (2), Iy 1 (kl) + @I (klynn

where Z\", 7\ and 7357,2 ., are given in terms of multipole
moments associated with the fluid. See Eq. (D9) for their
definitions. We also use the notation M := 7™ (and
M =M0O ) Additionally, we see that at 1. 5PN order in
(7.27) we just have —8W©), so through the matching
condition we also find that 77 = 20977, as we had already
learned in the previous section.

At this point we have just repeated what we did in the
previous section, sO now we are going to move on to
determine the 2.5PN near zone harmonics and for that we
need to be able to work out the particular solution to higher
orders in the multipole expansion and in the G expansion.

1. Solving the inhomogeneous equation

Our formal solution to the sourced wave equation (6.10)
was given in Eq. (6.11) which we restate here for
convenience

hiw = Wyl = RIS, + By,

[" /
1 Sw(t—|x—=x|/c,x)

R[S B , 7.29
Sul =55 | o (7.29)
nli(+ _ -

W__/CP ' T =xlfe X)) g5

|x — x|

where W,[w] is the coefficient of G" in the expansion of A™.

We recall that the role of B,[w] is to cancel any boundary term

S (1) = T (o (1),

W(O)(t) — 1 .(O)(t),

8 nn
Lo 1 )
ﬁsznn = & Ekmp T pl:
1 )
P n(ki) +6€(k|mp~7mp\1) (7.28)

that comes from the regularized retarded Green’s func-
tion, R[S].

To the order we are interested in, the source for the
exterior zone wave equation consists of terms taking the
following form (this breaks down when tail terms show up
in the source term):

fL(”)”<L>

m 3

I%

S= (7.31)

where we have suppressed any free indices. Using that the
source term takes the form in (7.31) we get

sl =" [ stu=2/005. s
+ /{"" F(u—2s/c)B(s. r)ds} . (3
with
As.r)= / Tar rp(lrff) B(s.r)= / mdr':(lT(i)),
(7.33)

where P, is the Legendre polynomial of degree / and where
E=(r+2s)/r—2s(r+s)/(rr'). This is the same integral
as is used in the DIRE approach [see Eq. (1.19)]. It can be
derived by performing a change of variables and integrating
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over the azimuthal angle by making use of the connection
between the set of STF unit vectors, n<L>, and spherical
harmonics. For a full derivation and an accompanying
geometrical interpretation, see Sec. 6.3 of [2].

Once we have a specific source term, we can compute
A(s,r) and B(s, r). From there one can use integration by
parts, resulting in higher and higher derivatives of
f(u—2s/c), while throwing away boundary terms that
depend explicitly on /.. as they are expected to be canceled by

BL'L] This process eventually truncates, usually with a tail
term or with the remaining integral being associated with a
boundary term that is again expected to be canceled by B,[,"y]

At this point we have the tools to work out whether the
particular solution contributes to the near zone harmonics at
2.5PN order. Source terms for 2PM/3PM equations are
worked out in Appendix F. We will make use of Egs. (F7),
(F12), (F16), and (F17) in this section. Let us start by taking

a look at the (if) components as an example,

B 8€ixpd” Mn* ﬁMfkk(u)n" B §Mf,<k(u)nk

Rl —
" et 5 A 5 AP
6M:Z—kl(u)l’l<ilk>
I (7.34)
|
n
! —_
ctr ctr
2
_l’__
c

where d,A = A and d,B = B. Specifically, we use

A(s.r) Als(r+s)3 + (r—2s)(r+s)*+14(3r+2s)
s, r)=
12047 (r +5)?

’

_ 72

B(s,r):m. (7.37)

The last two terms in (7.36) can be ignored as they are
O(c™), and as explained earlier they cannot contribute to
the near zone harmonics. For the first two terms we find
(after dropping boundary terms)

_ Fi(”)nl
Dre%( 145 >:

Fy(u)n'
4r3ct

+O(cS).  (1.38)

c'r

Now, just from the power of 1/r in the equation above we

can conclude that this term will not produce near zone

harmonics until order ¢~.

Azc Fy(u—2s/c)A(s, r)ds —i—%/w Fy(u—2s/c)B(s, r)ds),

where the dots denote terms that are higher order in the
multipole expansion of the source term or O(c™>). An
O(c™) term in the particular solution cannot give rise to
near zone harmonics at 2.5PN. This is because it only
contributes with the leading order term of its 1/c¢ expan-
sion, and since the leading order term corresponds to just
replacing u by ¢, that term must go to zero as r — oo per the
exterior zone boundary conditions, thus excluding it from
producing a near zone harmonic term.

Considering the terms in Eq. (7.34), we see that the
first term is constant in u and can therefore not produce
any near zone harmonics. The next two terms can be
written as

Fy(u)n 36 . 28
é(r) for F,-l(u):? I;i?()(u)éil—?M E’?(”)-

(7.35)

This takes the form of (7.31) with m =5 and [ = 1. We
plug this into Eq. (7.32) and use integration by parts to
find

u I’ll 1 _ _
(F”Si )—— ([Fﬂ<u><u—zs/c>A<s,r>1é+[F,»,<u><u—2s/c>3<s,r>];f

(7.36)

I

Similarly, we find for the last term in (7.34) that

~(0) ilk ~(0)
_ (6MT) (u)n'ik) TMZ; (u) _
Drel (# = —ng’ﬁ”k +O(c 5),

(7.39)

where again, because of the power of 1/r, it is obvious that
the 1/¢ expansion of this term in the overlap will not lead to
any near zone harmonics at 2.5PN. In (7.34) we have, of
course, also ignored terms that are higher order in the
multipole expansion but these only come with higher
powers in 1/r, so they will not contribute to the near zone
harmonics either. Thus, we conclude that the particular
solution for hg] does not give rise to near zone harmonic
terms at 2.5PN order.

Similar analysis can be carried out for the ij and #¢
components in which case we find

2 2
2 _ w2 M= -
hij = Wij +5ijw+ﬁn n/++(9(c 5), (740)
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oM 4M? AMn%) 9T (w) 9TV (u) 270 (u
B2l = w2 M AMn k16< u) kls( ) _ u g)
cr cr C r Ccr cr

16M 7 16Mnle;,,, 7o)
_ ’ k]; (:t) + n €lz1n5j (M) 4ot O(C_S). (741)
3¢c= c°r c'r

Following similar arguments as for the it components we see that the particular solution for the ¢ and ij components will
not produce near zone harmonic terms at 2.5PN. Hence, those can only come from the homogeneous solution.

2. Matching with the 2PN metric

With what we have learned in the previous subsection we are ready to determine the 2.5PN near zone harmonics. If we
1/c¢ expand the homogeneous solution in (7.24a)—(7.24¢) in the overlap region, we get

WO () 178

Clgi) =+ ——2 ®) +3 [gxka;‘wg‘”(t) @) = —=x 31 (1 )} +0(c™®), (7.42a)
1y 2 4 . 4 .

Clef) =+ [—gxka;vﬁ?’ — AW (1) + gaﬁwﬁ(’)(r) - 4Y5°><r>] +0(c™0), (7.42b)
1

Clgf) =~ 320?1,(;?)(0 +O(c™), (7.42¢)

where the dots here denote any term that is not a near zone harmonic.
Using that the particular solutions will not contribute to the near zone harmonics up to 2.5PN order we find from the
matching condition that

. 2 . 4 1
HD (1) = 4W® + §xkek,mJ§fj} - gxka;*wﬁj” (1) + %x<kl>a§1§§> (1), (7.43a)
. 4 2 4 .
H (1) =47 (1) =3 AW (1) + St + WO o), (7.43b)
5 0
HE (1) = 2001 (1), (7.43¢)

where Hl 7 Hm and H") are the near zone harmonics defined in Egs. (7.21), (7.22), and (7.23).

Using Eq. (7.28) we see that all of the multipole moments in the above expressmns have already been determined w1th the
exception of W?)(¢) and Y( )( 7). So the goal now is to determine W(?(¢) and Y< >( t). These both appear at order ¢=*r~! in
the 1/c expansion of g5, and g, respectively. Therefore, we need to match with the 2PN metric up to the monopole order,
r~!, in the multipole expansion. The multipole expanded 2PN metric is derived in (F47) and (F39) and given here at the
monopole order,

M 472

M(giPN) = 3 +5 akl(rz ) 24akl(r 641— (ki) ) _ﬁaklm(r 641— (klm) )
1 2

+ maklmn( 3641- klmn)) +§ra?z-kk) __ak< a4zknn)

3 2 97 2 1
168 akz(r&I (kD)) 45 T 35k(r€kubjab) —*akz(”ekabjabl)

4 g P
+36k,(r77 )+§M+O(r 2), (7.44)
+(0)
4G 1 (0 1 (0 1 () 1 (0 1 Itnn 1
MG =73 |30 + 50,0 T5) = 5 0a0 L) =360 (L) =352+ gOulreunT ) | +O0).

(7.45)
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Next, we collect the ¢~ terms in the 1/c expansion of the exterior zone metric

. © (? 1 (35) 1 (42)
C(Qﬂl/) = Nw + g/iu + ?g/w + ?gﬂv + F.gm/ + (746)
where the it and #f components of the 2PN term are given by
@ 2GI® 1 1 0
g ==+ 52 0u(GrI () + 170u(Gro! 1) (1)
1 1 0
-3 4, 4aklm(Gr 3, (1) +12'—4!c46k1mn(Gr3a?I§clznn(t))
WO 4oy 4o 00 1 2 g (i ]
7+ W) = Za(r W (1) + S 0u (Wi (1) + O 2). (7.47)
o 3 7(0) L 2 11/(0) 4Y,(1) )
g5 = 0,(ra} 1}, (1)) — ga,d(ra lk,(t)) +20,(ra?WO (1)) — 20, (ra? W, (1)) + — +0O(r =), (7.48)

where we used that the particular solutions given in the

previous subsection are all O(r~*) in the multipole ex-

pansion and thus do not contribute to the equations above.
The matching condition tells us that

) (4)

gi = M(git™). = M(g;IN). (749

where W((f) is a constant, which can be shown to be zero by
matching at higher order in the multipole expansion.
However, this is not necessary as we are only interested
in W) (). Thus, at this point we can use Eq. (7.43) to fix
the undetermined function in the 2.5PN metric. Finally, we
find that the 2.5PN metric variables are given by

If we use this along with what we learned in (7.28), we can W — o a;I( ) (7.52)
conclude that i (i) :
Y, = __a3I(kk -z pqaszq (7.50) 2 4 2
i i €; ’ 0 0 0
30 6 7 = —53?1513{ - §€ikla?j§d) +§xka?I§k)’ (7.53)
@ (1) = _Ikk 180 a4:zllnn +3 Pkkll + W(() ! (7.51)
|
m_1 roSTY) — 42GPIE 2 v 1h<5> 0.0,X + 2 x¥e,y, 0 T
Tt § A G [ (3)}_§Ut kk — A Mk (1)0k0, +§xek1m ' T im
4
0
- Exkaﬁ(k,} 2 T 3 2818 + EaSIEC,j,, + 2P (7.54)

This along with the lower-order fields has been checked
against and is in agreement with the result from [28].

VIII. OUTLOOK

This work leads to a number of natural follow-up
questions which we discuss here in turn.

The first concerns the use of new gauge choices. In [15]
we will work out the details of the matching process in
transverse gauge. Are there other useful gauge choices with
particular computational advantages? Is there a systematic
set of conditions at every order in 1/¢ and G that singles out
a preferred gauge choice?

Going beyond the scope of this work a natural question is
to what extent it is possible to further covariantize the
approach taken here. As is well-known, the Newtonian
description is a gauge-fixed version of Newton-Cartan
gravity, and so it would be natural to extend this work
in the direction of a fully covariant post-Newton-Cartan
gravity theory. In the near zone something like that is
certainly possible at the level of the expansion of Einstein’s
equations. The question is whether something similar can
be done for the G expansion and the matching process. At
which point does one have to choose a gauge to make
progress?
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Then there is the issue of tail terms and the associated
breakdown of the 1/c¢ Taylor expansion. Is there a
systematic way to incorporate these radiation reaction
effects into the 1/c¢ expansion framework?

Is it possible to reorganize the 1/¢ expansion, by expand-
ing around a nonvacuum configuration? We know that
nonrelativistic gravity is not necessarily a weak field approxi-
mation, and so it might be interesting to explore this option
further.

It would also be interesting to change the vacuum to, say,
an Friedmann—Lemaitre—Robertson—Walker (FLRW) space-
time, which can be incorporated into the framework for
Newtonian gravity, and to develop similar techniques in such
a setting.

Finally, post-Newtonian theory is also used in the study
of quantum theory in curved gravitational backgrounds
(see, e.g., [57-61] and [12] for the use of post-Newtonian
methods in that context). These applications require a
different class of sources, and so it would be interesting
to see if we can extend our methods to include more general
sources such as scalar fields and electromagnetic fields.
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APPENDIX A: NOTATION, ABBREVIATIONS,
AND CONVENTIONS

For indices we use the following:
(1) Lowercase Greek indices are coordinate indices,
u=20,....d or uy=t,...,d depending on whether
X =ctorx’=t
(i1) i, j, k, etc., are spatial indices in Cartesian coor-
dinates. (n)
A superscript of the type X corresponds to the coef-
ficient of ¢~ in a Taylor series expansion in 1/c¢ of X.
Likewise, unless explicitly stated otherwise, a superscript

n
of the type X denotes the coefficient of a Taylor expansion
in G of X at order G".

We denote a totally symmetrized collection of indices
with round brackets, (ijkl---), and a totally antisymme-
trized collection with square brackets, [ijkl---]. The
symmetrization and antisymmetrization of indices is done
with the following normalization:

where o is a permutation of 1 - - - /. We use angle brackets,
(ijkl---), to denote the traceless part of the totally
symmetrized pair of indices (ijk/---). Finally, we use
vertical bars to indicate that the (anti)symmetrization does
not affect the enclosed indices. Sometimes we use a multi-
index L to denote a collection of [ indices i ---i;, so
instead of writing 77, ..; we simply write 7.

We will use mostly plus signature for g,,. We define the
Riemann tensor as

[vw VU]X(T = R;wrrpo - Tp;wvﬂxo‘v (A3)

[V, VX7 = =R, X° —

nve Ta;w VHX/’ ’ (A4)
where V, is any affine connection with connection coef-

ficients I,. Explicitly, this means that

Ruo’ =006 +0,Th = 7,05 + 1,00, (AS)
7, = 217 J (A6)

The Ricci tensor is defined as
R, =R,,’. (A7)

We frequently use the following two abbreviations:
(1) STF: symmetric trace-free;
(ii) TT: transverse traceless.

APPENDIX B: THE 1/¢ EXPANSION OF THE
EINSTEIN EQUATIONS

In this appendix we will provide some details regarding
the 1/c expansion of the Einstein equations using the PNR
variables (2.23) in the KS gauge which means I1,; = O [see
below Eq. (2.51)]. In this paper we will perform this
expansion to 2.5PN order. This appendix provides some
background to the derivation of the results presented in
Sec. IV B.

1. KS gauge

We start with the left-hand side of (2.23), which is given
by (2.14)—(2.18). The main objects are W1, Chy, Sy, and
V. We will first study these in KS gauge and then consider
how they behave in the 1/c¢ expansion in the next
subsection.

We will first consider the objects V7, and S}, defined in
(2.13) and (2.12). The nonzero components in the KS
gauge are

1
Vzt'j = TT%atHip (Bl)
. 1
Sti = ?Titv (BZ)
t
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1 1
T+ (T,T; +T,T,), (B3)

Slo—
i o, 2172

where we remind the reader that 7, = d,T, — 0,T,. The
nonzero components of the C connection are

1
Ci = iazTn (B4)
C. :ia T,_LH"ZT 011 (B3)
ti Tt thi 2Tz kYt il
y 1 -
C, = F,aiTt - 2_T,H Tio11,, <B6)
C! —idT _iCkT _LH"IT T,011 (B7)
i =, O T, e T e kO
k _ o~k 1 kl
C”- = Cit = EH atnli’ (BS)
- 1
_ rk
Ci{‘] — Clj + Z_Y,IHlelatHij’ (Bg)
where we defined
- 1
C{(j = EH"I((),-HJ-I + 0jH,-l - alHij>7 (BIO)

which is the Levi-Civita connection for a Riemannian
manifold with metric I;;. The components of Wi, are all
generically nonzero without any obvious simplification but
it is useful to note that

Wk = T4, (B11)
Wk = 121087 (B12)
From this it follows that in KS gauge we have
RZ =0, (B13)
RZ =0, (B14)
RO = R, = —o.ct, + el —Clct. (BIS
1t 23 1~ kt + kt ™t kt~It° ( )

(0] © k Qt kst © k Qt kst
R = R+ CpS—WiVig = Ri + CiSy — Wit Vi,

(B16)

-2
RL I = Y, + Hlekthp (B17)
RL'_Z] =Y,;- W;tSii - HleltTik, (B18)

where we defined

©)

Y, =V W, (B19)
and where
Q k 1k k ol k k
R = 0,Cy; + CCr — CCoy + 0,Ci + C, Chy. - (B20)
We left out the spatial components RB], RE-(])-], and RE;Z] as

the main simplification for those objects comes only once
we start 1/c expanding.

2. The equations of motion up to 2.5PN
The Einstein equations (2.23) are repeated here for
convenience:

_2]

Rm/ — c4 RI[4;4] + C2 R/[l [0] (2]

+ R+ 2Ry =42GS,,,  (B21)

where S, is a compact perfect fluid matter source. The

goal is to expand these to 2.5PN, i.e., to ¢=>. This requires
knowing

R = 0(c1),
RY = 0(c™),

R = 0(c).
R = 0(c™). (B22)

Based on results from the previous subsection we have in
general for the t¢, ti, and ij components of (B21),

-4
AR 4 (Y, + TIMT,T),) — 9,Ck, + Ck.Ct, — CLCh

=4zGS,,, (B23)
4 pl-4] 2 ki @
R+ (Y = WS, —TINT, Ty) + Ry
+ Ck St — WhVi. = 4zGS,;, (B24)
4 pl-4] 2 pl-2] (0] —2pl2] _

Explicitly, the expansion of the metric variables to 2.5PN
in KS gauge is
T, =14 20 + o4 4 ¢5¢5) 4 6,0

+ 74 4 0(c?), (B26)

T, =M + 7 4 79 4 T L O(c?),
(B27)

(2

I, =6;;+ c‘zhij) + c‘3h,(~]3~) + c‘4hl(~j) + C‘Sh,(-j) +0(c79).

(B28)
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Using these expansions we see that

N%1°T,,Tsy = O(c™8), (B29)

which appears in RL_;‘]. Since we only need to know the
Einstein equations up to terms that are O(c™%), we can
discard R£;4] and RE;M but not RE;‘”. Furthermore, we can

determine

Wi, = O(c™0), (B30)
Wi = O(c™8), (B31)
Wi = O(c™0), (B32)
WE = O(c2), (B33)
Wk = O(c™), (B34)
Wi = 0O(c™®). (B35)

This allows us to write a version of (B23)—(B25) that is only
correct to 2.5PN, which is

AR 4 (Y, + TIMT,T),) — 9,Ck, + Ck.Ct, — CL Ch
=42GS,; + O(c™®), (B36)
|

(o)
(Yll - H Tlt lk) + R ti + Ck St W;(tvfﬂ
= 47GS,; + O(c™), (B37)
) 0 _ 2 -
where
Yy = 0,Wi + Wy, + (Ch —2C, + Cvgk)Wft
_ 2CitW;‘, + (’)(C_S), (B39)
Y= DyWh + (Cly = G ) Wh = ClWh + O(c ™)
1
:Dka +2Hlel Ty —TI* TltDkT +0(c _8)’ (B40)
g 1 ; -
R = = THVINT, T, + O(e™0). (B41)

In here Dy is a three-dimensional covariant derivative with
connection Cifj and Wk is viewed as a three-dimensional
(1,1) tensor.

By inserting the expressions for the relevant components
of W and C, the ¢ component, Eq. (B36), can be further
rewritten as

1., 3 3
¢ S TIITT ) + CTH(=0,T10,T, = T19,0,T, + T, Do/ T, = T,Dyd,T))

2

Performing a similar rewriting for the #i component leads to

1 kl 32 1 kiTTlj
5 TG}, + ST IY0 T, ank,+2

o 1 1
c? (DkW]t(i + EH“(aleaiT, + 1,019, T; + T;0,0,T, — athaiTk)) - ﬁnlenazHik
t

s 1 1
+ D CK — = 0,(TMo,1T;) + ﬁn’da,nkla,.T, = 47GS,; + O(c79),
t

2

where we defined

- 1
Wk = ET,H“T,,-.

(B44)
To simplify the ij components of the Einstein equation
we need to use

R? = T202H +O(c™),

3] 2 (B45)

049,11,0,T, = 4xGS,; + O(c°). (B42)
(B43)
R = 0(c®) (B46)
12 ’
1 _
+ T akT,cﬁf,. +0O(c™®), (B47)
t
where
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(©)

R;; = 0,C}; — 0,Cy; + C.Ch — CL.CF. (B4B)
This allows us to write
(I?ij + L 0,(0,T; +0;T;) — 1 0,0;T, + S 0,T,Ck.
2T, T, T, J
+ ¢ %T%a,zn,» ;= 41GS;; + O(c™). (B49)

We have so far focused on the left-hand side of
the Einstein equation (B21). The source in (B21) is given
by (2.6) with a perfect fluid energy-momentum tensor
given in (2.52). In the PNR variables the right-hand side is
as in (2.23). For a perfect fluid in KS gauge using the
leading order 1/c¢ behavior of all the fields involved we can
write for the various components of the source S, the
following:

2 N |
Sy =— (E+P)THI;U'U’/ +— (E+3P)T?,  (B50)
C C
2 j 1 j kyrl
Si = _F(E—’— P)TII;U _EETtHijU I, U°U
1
+—=T,T;(E +3P) + O(c™), (B51)
C
1 2 k 1 -6
where we used that
1 L
(T, U*)? =1+ =1I1,;UU/. (B53)
C

We are now ready to insert the explicit 1/c¢ expansions
(B26)—(B28) for the PNR variables as well as (2.55)—(2.57)
for the fluid variables leading to (4.7)—(4.9) with the source
terms given in Sec. IV B.

APPENDIX C: MULTIPOLE EXPANSIONS

In this appendix we collect some standard results
regarding the multipole expansion of the solution to the
free wave equation LJf = 0. We suppress any potential free
indices f might have.

Using three-dimensional spherical coordinates the wave
equation reads

1 2 1
where Vg is the Laplacian on the round two-sphere. Going

to Fourier space by writing y = e~®'y/(x) we obtain the
Helmholtz equation for v,

(k> + *)yw = 0, (C2)
where k?> = w?/c?. This equation can be solved by the
method of separation of variables, and the well-known
solution is given by

&) l
w() =3 (A Y0 (0. 0)h" (kr)

=

0
+ B1y Y1 (6, 0)1 (kr)),

m=-—1

(C3)

where A, and B, are constants and Y,,,(6, ¢) are the usual
spherical harmonics with respect to spherical coordinates
(0, ) that are such that the round sphere metric is
d6 + sin? 0dg?. Finally, the functions A\"(kr) and

h§2)(kr) are the spherical Hankel functions of the first
and second kind, i.e.,

=1 (2)(2)

and with h;z) (x) the complex conjugate of h;l)(x).

Since we use inertial coordinates, it will be useful to
write this in terms of Cartesian coordinates. This can be
achieved by the following useful map35:

(C4)

l
rl E Alelm f di|-~-i1xil .o .xil’

m=—

(C5)

where the constants d;..; are STFE. Using a similar
expression for the B,,, coefficients and by absorbing some
k-dependent constants into these STF coefficients we can
write

Using

. (1 d\![er e
x]...xl(;a) (T)Za(il'“am(T)’ (C7)

*This map is a consequence of the fact that both the left- and
the right-hand sides of (C5) represent the most general solution to
the Laplacian on R for solutions that are homogeneous of degree
[. Alternatively, STF polynomials (on the unit sphere) form a
finite dimensional irreducible representation for the group SO(3),
but so do the spherical harmonics. Since these irreps are unique
(for a given finite dimension), there must exist a map relating
them.
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we can also write the solution to the free wave equation
with a single frequency as
e—ia)(t—r/ c)
< l] l[ r )

e—i(u(H»r/c)
0, (42, ) (o

Integrating over @ we then obtain the most general solution
to the free wave equation as a multipole expansion (in
Cartesian coordinates) that is given by

—l(l)[ zo.j all
=0
¥ i 9,

1=

¢(x):§:ail..-a ( i >+Za,] ,1< i ”(”)>,

(C9)

where we used retarded u =t — r/c and advanced time
v=t+r/c and where the functions U; and V;
are STE.

Asymptotically, at leading order in 1/r, the solution
behaves as

—1\!
Z iy (T) Ul(.]l?_,il(u)
1 /1\!
—1 0 i_ [ Z V(l) )
+ ; r'x X . (c) ll_,,,](v),

where Ufll)ll(u) denotes the /th derivative of U; ..; (u) and

1l iy

(C10)

similarly for Vl(»ll?,,l-l(v).
Hence, if we impose the Sommerfeld boundary con-
dition of no-incoming radiation at Z~, i.e

lim 0,(r¢) =0, (C11)

v=cst
then this leads to

I+1

Vi) =o, (C12)

so that
I
11 11 ZA” t, ’ (C13)

which is a polynomial in v of degree [. By using the
following observation

(C14)

This follows from the fact that " — v" is an odd function of
r so that (" — v")/r only contains even powers of r. The
function (4" — v")/r is a polynomial in x’ of degree n — 2
for n = even and n — 1 for n = odd. Thus, for the solution
in (C9) we can replace the v by a u in the second term when
we impose Sommerfeld, and then subsequently absorb this
term into the first one. We thus conclude that the most
general solution obeying Sommerfeld is given by

=0, 0, (Yt

At leading order in 1/r this solution is given by

0 _ 1 /=1\!
Z ity <—) UEI?..,' (u).
r\ c v

Another boundary condition that we will impose is that
¢ = O(r7") for large r. We can send r to infinity in
different ways depending on what we do with . We can
keep ¢ fixed in which case we approach spatial infinity, we
can keep v fixed in which case we approach past null
infinity, or we can keep u fixed in which case we approach
future null infinity. We want that ¢ is order r~! in all these
cases. This means that U; ..; (u) and all its derivatives must
be bounded for large negative values of its argument.

Regarding the Laplace equation ¢ f = 0 we can use very
similar arguments to show that the most general solution
that decays to zero for large r is given by

I Y (]

where now the coefficients are STF functions of 7. If we
want the function to go to zero close to » = 0 the solution is
given by

(C15)

(C16)

(C17)

(C18)

f= Zgi,--~i,(t)xil el
=0

where the g; .., (¢) are STF functions of 7.

APPENDIX D: FLUID CONSERVATION
EQUATIONS AND IDENTITIES

In this appendix we will consider the matter equations of
motion and how to extract useful identities that play a
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crucial role in the multipole expansion and the subsequent
matching procedure for the near zone metric.

There is more than one way to write down the equations
of motion for the matter source in general relativity. For the
multipole expansion of the post-Newtonian metric it is
beneficial to express the fluid equations of motion in the
form of conserved -currents, i.e., 6”’]7‘” =0 where
the derivatives are with respect to inertial coordinates.
This can be achieved with the help of the Landau-Lifshitz
energy-momentum pseudotensor as follows:

9,TH =0, (D1)

T = ()T + TS (02)

4 4

C C
T = —
LL 8nG

o 1671'G(_g) apazf((_g) (9’“’9” —gﬂpgva)).

(D3)

The reason this is a useful way of expressing the fluid
equations is because the multipole moments of the near
zone metric are time derivatives of expressions of the form

/ dBxTrxl,

Because of the conservation equation (D1) these are not all
independent.

We can use Eq. (D1) to derive the following set of
identities that will relate time derivatives of different
multipole moments upon integration:

(D4)

Ttiyl — 14%1@(7"’61) + H%eim(klA\m\kz‘“kz) + H_Llam(']’tmxll)’ (D5a)
TV = %0,2(7"16”) + %6,,, (T™"P0,(xV) + 0,7"™x"), (D5b)
Tiixk = %O,Z(Tt’xi/k) + %emk“a[Al'"lﬁ + édm(T””’()p (xK) 4 9, T ™ x1k) — %()m(’f’”kx"j —Tmlixiky (D5c)
TijyL — matz(TttxijL> n H%at(eim(klA\m\krnk,)j + eimlki glmlk-h)i)
i 8((ll+_ 11)) B 1)1(1 12y TG ) 0T
+ 2 0, (Tmlix)L — ik ko k)i, (D5d)

[+2

where the last identity, Eq. (D5d), only holds for / > 2 and
where we defined

AL — giik itk L BikL — xlkgilljylIL (D6)
where €* is the Levi-Civita symbol with €'>3 = 1.

For the purposes of this paper all multipole moments that
we will work with can be expressed as time derivatives of
the following set of multipole moments: Z;, 7., Pjjur
which are defined as

IL ::/d3tht, jiL ::/d3xAiL, P,‘jle ::/d3.xBijle.
(D7)

Finally, we use the 1/c-expand 7+ as well as the
multipole moments

[

v 1 v 1 v 1 v —
T :T’(‘O)+?T§2)+?T’(‘4)+§T‘(‘5)+O(c %), (D8)

1 1 1
Q=0 +597+50"+ 50 +0(c). (DY)
for Q;=7;,7.,P,. Additionally, we define

M := () In harmonic gauge the coefficients are given
by (see, for example, [28])

TEB) = E(_z), (DlOa)
Ty =E

(_z)vi, (Dl()b)

) N 1 !
Ty =E2v 1;-/+P(0)5ij+4”G(aanjU_z‘sijakUakU)’

(D10c)
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7
T@) = E(O) + E(_2)(112 + 6U) - %G,Ua,U, (D]Od)
, ‘ < 1 . 1
Tl(tz) = (E(O) + P(O))Ul + E(_z)’l)lz -+ <§ Uz + 5U> ’UlE(_z) +R [3atU6,U + 4(6,Uk - 0kU,-)0kU)], (D]OG)
Ty = 2E(_2)v<iu{;) + (Eqg) + 4UE(_y) + P(g))v'v/ + 8;;(P(a) + 2UP(g))

1

1 3
-5 (ak UOY + 3 0,U0.0X — 40,U,0,.Uyy +40,U,0,U + 5 9,U0, U)] , (D10f)

T{yy=E@) +Eq0)v* +6E(0)U+P(o)* + E() 391X ~8U 0" + 20y 0" + 1707 +8U 7]

+47TGE<_2)P[6E(0) —ZP(O) + 14E(_2)U+4E<_2) 122]

1 (5 1
+4”G{za,Ua,U—4Ua?U—|—4atUk0kU—70kUak <w+2a%X> —8U0,0,U +20,U(30,U; +0,Uy) — 10U0, U, U
1
_4(P[E(_2) ykyl] +P[0kUa,U])akalU} +80, U0y (P |:3P(0) +E(_2)1)2 _EE(_2> U:| ) s (DlOg)

I o
Tl = Ep) + ZI,E)a,dU, (D10h)

where X is the superpotential given in Eq. (6.65) and where W is
¥ = —4zGP[E ) + 3P() + 2E(_yv* + 2E_5U]. (D11)

In writing down the expressions for 7” ’(':) (for a given n) we used the matched near zone solution to the metric at lower
orders. For example, in computing TE{)) and Tftz) (which appear for the first time as source terms at 1PN) we used the 0PN

near zone metric. Likewise, when computing T’@ and 7 212) we used the 1PN near zone metric (after matching). It would be
interesting to compute both the 1/c and G expansions of (D2) for the general class of gauges used in Secs. IV and V.

APPENDIX E: HOMOGENEOUS SOLUTION TO THE PROPAGATING SECTOR

In this appendix we derive the homogeneous solution to (5.18). First, we differentiate (5.18) twice with respect to x° and
then use Egs. (5.51) and (5.52) to obtain

n n n n 1 n n n n
O (aghE "I(TT) + 0,9,M " (T) + 0,0,M""(T) - 20,0,M" + 30 ,agH[”J> = 037, + 0p0izy, + 990;z) — 0,070 (E1)

The homogeneous part of the equation can then be written as

72

0 =0 (th](TT) +o,U + 0,U!" + 0,0;(x* U} - 20,0,U" + .

2., 2.
0i0;H" +20,(JHI) + 20;(x'H ["])> . (B2)

7]

where we defined the functions U" and U;" that satisfy

Rull =i Ul = B (E3)
The functions F and H; are harmonic and appeared for the first time in (5.54) and (5.55). Recall that H; obeys the condition

(5.56), which can now be written as
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n 1
9 <0,~ Ul +HY + 5xkakH["J) =0.  (E4)
Integrating this we find that
1 -
P) Ugn] 4+ g 3 xko HIM = gl (ES)

where U is some time-independent function that is not a
new function as it is entirely determined by the left-hand
side. It is merely a useful shorthand notation.

If we define ;?E"] and 7" as follows:

Sl gyl o [n}_l, kyslnl _li [n]_LZ_ [n]
X U, +0,U 26,()6 U,") 2xH U 0;H",

(E6)
= Lpg g Lagtd g pm ()
12 2 i ’
then we can write
HI = 20,50 + 400 — 22U + Xi?UY,  (ES)
My = —ag", (E9)
MI(T) = 067" = 021", (E10)

This is almost of the form of an ambiguity transformation
(5.23)—(5.28). Referring to Egs. (5.29) and (5.30) we see
that we have

2ol Lo ol S s m gl L4
>y, +3a,a,;(] = 3a,U 0*U, +3aIaU

2
—ga,»(xfawﬁ.]), (E11)

Pl 4+ 9,04 = 0. (E12)
We thus see that the failure for this to be an ambiguity
[]

transformation is measured by U, *U, and 0*U;".

Furthermore, we have

QUM + 0,0V + 0,0,(x Uy — 20,0,UM
2
2
00, + 20 ()

2. n NO
+30(H") = ~0" — 9,71 + 20t (E13)

so that we can write (E2) as

n Al Al 2’ Al
0 =03 (h[.j](TT) — 0 a3 + géi.,-ak;([k ]), (E14)

where we used that

RHI = 202050 (E15)

The second time derivative of the term in parentheses in
(E14) is transverse traceless. The most general solution to
Eq. (E14) necessarily must be of the form™®

n n Aln Aln 2 Al n n
h (TT) = Wi +04" + 0,4 =38, + Al +°B].

(E16)

where AE';] and BE'}] are time-independent and traceless and

where WE;] is traceless and obeys the free wave equation.
[n]

We can decompose W;;

less part as

into a TT and longitudinal trace-

n n n n 2 n
W = wi(TT) + 0,¢1" + 0,C1 - Z5,0,C).

: (E17)

Since aga<,.;?£.';] is TT, it follows from (E16) that aga<,.c£.’>’]
is also TT. This means that we have

n 1 n
2 (ach + gaja,-cﬁ. ]> = 0. (E18)

Since I:IWE';] = 0, if we act with [Jd; on the decomposition

(E17), the result (E18) also tells us that 82C"") + 10,0,C}" is
harmonic.

The decomposition (E17) suffers from the following
ambiguity transformation:

[n] _ wlhl [n]
W’ (TT) = W, (TT) + 20,y

o, (E19)

ol = eyl

(E20)

where in order for W’ E';](TT) to be TT we need that

n 1 n
Pyl + gajakw,[] —0. (E21)

We have just proven that both 2C" and 0*C!" are
solutions to (E21). Let us define these solutions as

ggc,  gP=gdl @

[n]

These are not independent since we have %" = a2y/".

We use here that the solution to an equation of the form
0d3f =0 is a sum W+ T where OW =0 and 937 = 0. We

checked this for the class of solutions that can be obtained by the
method of separation of variables.
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Under an ambiguity transformation (E20) we have

oc = oc! + Oy = -+ + Ow.

(E23)

Hence, if we can write —17/["] —I—I/A/E"] = DXE”] where X;

solves (E21) (up to a solutim; to the free wave equation),
then we can without loss of generality set C1C’ [»"] =0 by
taking w!” such that O(y!" + X)) = 0. The equation
—I/V/E»”] + l/A/E»n] =0x E”] implies that O; jDXE-"] = 0 where we
defined the operator O;; = 51-]02 + gaiaj. Since O;; and [

commute and are different operators, it follows that X E"] isa

sum W + 5" where W!" obeys OW!" =0 and "
solves (E21). We thus conclude that without loss of
generality we can set CIC") = 0 and thus DWE?] (TT) =
0 as follows from (E17).

As an intermediate result we now know that hg;](TT)
must take the form

WTT) = WHICTT) + 20,7y + €+ A+ 0B

(E24)

where DWE?] (TT) = 0. On this result we still have to
enforce that the right-hand side is transverse and that the

original equation for A (TT), ie., Eq. (5.18), is satisfied
|

(where as usual we ignore the nonlinear sources described

by r,[,"y]). We start with the latter. Equation (5.18) can
alternatively be written as

n all 1 n
DA} (TT) = —2030,77) - F00H". (E25)
We substitute (E24) into (E25) which leads to
) 5 sl 2 o ol In]
62<0i;(. +a] i —g(sijak){k ) +02Aij
w1 " _
+x00°B + ga,-ajHl I=o0. (E26)

If we differentiate this equation with respect to x°, we

(]

obtain an equation for B;;" that is solved by

(E27)

(7] _ zgln] a2 .
B} = H,}' —20,0,0,;U" +§5,~j0062U[ 1,

where H E;l] is harmonic and traceless. Substituting this into
[n]
ij
with AE-;] it will prove convenient to write the right-hand
side of (E24) as follows:

(E26) we obtain an equation for A; .. Rather than working

n n n ~ln n 1 n 2 irrin irrin 2 n
h(TT) = WI(TT) +20,C) + Al + 20H]] - ¢ 700H! =2 |0 HI) 4 0,('H) ~25,0,(+*HIM) | (B28)
where we defined Agl] which is traceless as
Aln n n n 2 n n 1 n
AE’j] = AE’j] - aiUE‘ - ajUE - §5ijakUL] - aiaj(kal[c ) +§5ij52(ka1[<])
2
+20,0;(UM = X0, U — 30 (UM = X0, Ul (E29)
I
Equations (E26) and (E27) then lead to % Agﬂ — —2x%9, 9; Flrl — g, 9, (xk chn]) —9, Hgn]
), 4 @
— 0H" + 3 6,00HY (E32)

" 1
PAT =200, (H0 + you ). (E30)

From the fact that AE;?] and BE-?] are time-independent and
the redefinitions (E27) and (E29) we see that

doH, = 20,0,F"". (E31)

We still need to require that the right-hand side of (E24)
is transverse. By taking the divergence of (E28) and
differentiating with respect to x° we find that H E';] obeys

1
OH" + (5,-,-02 + 5aja,') C" =0.  (E33)
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Substituting this into the divergence of (E28) we learn that

~n 1 n n
GA + <5ij62 + §aja,-> (! = x09,ct"

5

1
=20, <HW + gxkakH[”]> . (E34)

3 J

We recall that CE"] obeys (E18), and so the C-dependent
terms in the above two equations are time-independent.
To summarize, the solution for hg'}] (TT) is given by

(E28). In here HE;] is traceless and harmonic and obeys

Egs. (E31) and (E33). Furthermore, AE?] is traceless and
obeys Eqgs. (E30), (E32), and (E34).

APPENDIX F: SOLVING FOR THE EXTERIOR
ZONE METRIC

In the first part of this appendix we will focus on the
exterior zone metric. We will go through some generalities
and then make consistency checks of our treatment of the
exterior zone metric. In doing so we need to also perform
the multipole expansion of the near zone metric which will
be done in the second half of this appendix.

However, we will begin by discussing how to get a
consistent treatment of error terms in the double expansion
that we perform on the exterior zone metric. The relativistic
multipole expansion schematically takes the following
form:

700, ,(£20)
0 (T 4 gy (Pt ey

where the F; (1) are associated with near zone multipole
moments through the matching procedure; thus we can
assume that F;, ~ (I.)'F and F; ~ tLL»FL' Using this we see
that for the /th order term in the expansion we get

5,-,...,,(LM)
. <If>l{1+i+ (ﬂ—i>2+...+ (AL)[]’—E o

Now, in general [./r is going to be completely unrelated to
the post-Minkowskian expansion parameter, ¢ = S/, Thus,

a priori there is no good answer to the question of how
many orders in the multipole expansion one needs to keep
if we truncate the G expansion at nth order. At the very least
the answer will be r-dependent. In other words there is no
consistent analogy to the nPN metric for the exterior zone;
it simply depends on what one is interested in calculating.

However, if we restrict ourselves to the wave zone,
Ao < r, then we know that (%)2 < e. This allows us to put an
upper limit on the order in the multipole expansion that we
need to keep for any finite order in the G expansion. For
example, if the highest-order correction we are interested in
is the monopole correction to the nPM metric, then we
know that we at most need to keep up to the 2(n — k)th
order correction in the multipole expansion of the k\PM
metric (k < n). Anything higher in the multipole expansion
of the kPM correction is guaranteed to be subleading.
However, this is often much more than what is actually
needed.

For example, in gravitational wave physics the goal is
usually just to compute the waveform for which we only
need the 1/r piece of the metric.”’ More precisely, the
waveform is constructed by taking the transverse traceless
projection of the 1/r part of g;;. At leading order the
waveform is given by the famous quadrupole formula

2GILTT

AT = cTrj +O(c™). (F3)

Using this along with (F2) we see that in order to compute

the full nth order 1/c¢ corrections to the quadruple moment,

one needs to keep up to n + 2 — 2m orders in the multipole
expansion of the G™ correction to &;;.

Now, returning to the main aim of this appendix, in
Sec. VII. 2 we have laid out how to compute the particular
solution to the exterior zone metric, but we have only made
very limited use of it since it does not contribute to the
determination of the near zone harmonic functions.
Therefore, we want to give more examples of the matching
process. One way to do this is to compute the relevant part
of the wave zone metric (following the counting argument
laid out above) to a given order and match it against the
2.5PN near zone metric. We have chosen to do this to up to
the order where we get the leading order (in the multipole
expansion) contribution to the 3PM particular solution for
the 7# component and the leading order 2PM particular
solution for the it and ij components.

1. Solving the inhomogeneous wave equation

We know from Eq. (5.45) that the 2PM equations of
motion are given by

OnlZ = si2, (F4)
2 2 a 1 a 1 a 1
S,I[UJ == _T/[u] +ay(h[1/]30ah[ﬁj) +ab (h[lﬂ]aahgj/b _aﬂ(h[lﬂ]avht[xﬁ])'
(F5)

The subleading correction to this is completely negligible for
any physically relevant sources.
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We also already matched the exterior zone metric to 1.5PN order (see Sec. VII B), and from this we know that

2G(M +c2MP)  _G*M? 4G 7(0) 70
£=-24+ (M +c )_2 ML 39 (eklmjlm (”)) +G0k1< ki (M)>
r cr 3¢ r r
(0) +(0) +(0)
G T GL 1. (GI
__aklm< kzm(”)> Wi (”)__ak< kll(”)) e (F6a)
3 r r 3 r
7(0) (0) (0)
LU 0wy 1 TN\ 1 (19w
g = 2 Lezub : +2‘31< lr +§€iubalau % —gakz % +oey (Féb)
2GM
gfj:éij< r>+~, (Féc)

where the dots denote terms that are subleading according to the wave zone counting. This is not all we know; for example,

the I(LO) have been fixed for all / in the Newtonian expansion [see Eq. (7.26)]. Equation (F6) is simply stated here for
convenience when computing the source terms for the 2PM equations.

a. 2PM spatial components

Starting with the spatial components, we find that the leading order correction to S;; 2l i given by
2] Am? (ij) 2
Sij =——za\" —35,'; +--, (F7)

where the dots denote terms that are either higher order in the multipole expansion or O(c %) as in this section we are not
interested in the part of the wave zone metric that we cannot match with the 2.5PN metric. Using the integral equation in
(7.32) we find

t—|x—x'|/c x) M? o 8 . r 4l
—— | B l/ _ ind £65.. =5 — ¢ plid) - F8
/ e — ] c4r2<("” Foy) =38ty )+ (F8)

The first two terms make up the particular solution while the last two terms above are boundary terms that are assumed to be

canceled by Bg].

Adding the homogeneous solution to the 2PM particular solution we find that the exterior zone metric is given by
E _
o= o1+ 2 o AT

cr
. . 0
2 IE;))( ) M2 P 18 <€ab(,~Jb|j>(u)> l 2 (I( )(u)>
+= S —A PR =pR
c'r c r 43 r

2M+ M) 1 <I§j;>(u)> w2 fﬁfg(u)}

0 0 - (0
165, L() M _La Igck)(”) i 2 P Ilill)(u)
Fl5c27mmI\ "y 327y 15¢475

124058-63



JELLE HARTONG and JORGEN MUSAEUS PHYS. REV. D 109, 124058 (2024)

To match with the near zone we go to the overlap region and 1/c¢ expand

2AM +c2M@) 1 (T 1 M 1130
C(9§>:5ij<1+T+gakl< ) 240k1( kz (f>)+ﬂ P )
(0 . (0
319(0 +ﬁn"nf L 18, €ani b (1)) 1 20 If-,-,i(t)
Ao ctr? 437 r T A3k r
L (ZROY 1 (T 1 )
+6;j [ﬁ%( p _ﬁaklm p ~6c 45klm(rIk1m( )

b. 2PM mixed components

Next, we want to compute the leading order contribution to the particular solution for hg] using Eq. (5.140), and we find
that

§2 _ 8€ikbj§)0)Mnk 8Mnka I,(((P(u) 6Mn ") f(0>(u) -
it — ot + ) il P ki B +oee ( )

To use the integral equation in (7.32) we decompose the source into irreducible representations

0)as &
2 e, Mn M - (0 T 172 ;
SE't] == 5b4 +c4r5 6 I/(d)(“) +;Z§cl)( )+§_I§d)( u) | ntito

2
) r .. 0 e - 0
(361,§k>(u) +36- 2 (u) + 2c—zz,ik)(u))
2.
- % (282§2>(u) + 28215,?)(@ - 4%15,?)(@)] T (F12)

We then apply the integral equation in (7.32) to each term individually. Using integration by parts and dropping boundary

terms that are expected to be canceled by B[t], we find

2] 0 (0 (0
! fﬂxwwﬂmw:jmﬂw_w%%>ﬂwvwm,gw%%>ﬂﬂva
4z |x — x| c*r 4 5 A7

-(0) ; B
_gM(I,. ()4:31 ()/) S (F13)

Adding the homogeneous solution to this we get that the exterior zone metric is given by
4G 1 n dy, 1 (I;(u) 1 Jo(u)\ 1. (Ty(u)
s _ a’b il bl ikl
gn—?{ﬁ%bT‘FE@( " ) +§€iabala< p —gakz -
w w 1 I; 1 J
19 (u) — 0y k() O ikim (1) — iyt bk (1)
r r 41 r 8 r
1 Wi (u) 1 Ligimn (1) 1 I piim (1)
2 5 0iul < p 5 Oktmn p + %eiabaaklm p
1 |14 1 (X 1Y; 1 avZ
azklm klm(”) _ 7201. (u> - l(u) + 76(1 €iab (u)
6 r c r cc r 2 r
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3 A3 5 A3

GQM( Kk (”)+rzkk( )/C)
5 4 3

If we then go to the overlap region and 1/c¢ expand the metric, we get

() =29 s 2t 20 (D) L (222) - Lo, ()

+ %@(F.fﬂ(t)) + %emhaza(rjbl(f)) O (r (1))

1
4¢ 6¢ 12¢2
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At e 5 AP
762MTY (1
- —47’;‘()#‘ + -+ 0(c9).
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c. 3PM time components

Finally, we move on to the ¢ component. Using Eq. (5.140) we find

o AM? AMnlD {91,&) +9i,(j;> 21y 2f§f}>] _16M Fg}} +i§}2}
2

czr4 62 7'6 cr5 62r4 6‘37'3 36‘2 C I‘4 C3r3

_4Mn%im) 12024 . 2073, . 32, 11T,
2 r! cr® cr 33
Mn* 1620 16791 16Mnley, 0 r )
2 {? 503 r‘J ctr [ onn (1) + Ejm"(u)] e

c

Meanwhile, the source term for hg] is given below

B3] 12M3
A
Solving these equations we find the following particular solution:

2M3

Bl _
Ijre% S - W ’
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mps? = O _ Mt ) = T (r/e)  8MELE () + Tk (w)r/o)
ret~rr T

272 5043 3ctr
0 (0 - (0 (0
M 67 () | 6L () | BT () | 4T (u)
cr r cr? c*r c?

klm
rc? rt cr’ c2r?

~ Malim 1102 . 1024 . 87 14T,
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4M ne j<0) —|—j(0)r c
+ 2 abt (T i . b 7/€) ' (F19)
c r
The final expression for the exterior zone metric is then given by

2G1 GI 1 GI 1 Gl
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We then 1/c¢ expand in the overlap region to find
2GI Gl (t 1 Gl (t 1 Gl (1
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For convenience we have not explicitly expanded the
multipole moments /; and W;.

2. Multipole expanding the near zone metric

In this subsection we will multipole expand the 2.5PN
near zone metric. We start with some generalities. First of
all, for integrals with some compact source term (x, ¢) that
are of the following form:

/d3x’,u(t, xX|x = X", (F22)
we use that for |x| > [,
/\n < (_>l n /L
|x — x| :ZT()L(rx ). (F23)
=0

The other type of term we will run into is the Poisson
integral over a noncompact source term, o(z, x),

/ Bx

In this case we split the domain of integration in the integral
over the interior and one over the exterior

o(1,x')
|x — x|

(F24)

/ d3x/ O-(t’ x//) — / d3x/ G(I’ x//> + / d3x/ G(Z’ x//) ,
lx=x'|  Jzo, lx—x'| * Je |x — x|
TO0n = {¥ eR3}/ < I.}. (F25)

The integration over the interior can be treated as a compact
term and so we use what we learned in (F23). For the
exterior zone integral, we use that the source term itself can
be multipole expanded, so we find

1 & 6™ ()n®
U(t, x) — E g.

(F26)
Each of these terms can be solved using a simpler version
of Eq. (7.32), which can be derived in a similar fashion and
results in

L o(tx) & el ()

/dx
£

-] mI=0 r
I, o
X [/ A(s,r)ds—l—/ B(s,r)ds}
0 L
(F27)
s L Pi(e) s g 1)
- / = /

A(Syr) '_ja dr r,(m_l)? B(s,r) = s dr r/(m—l)'

(F28)

This integration will naturally lead to terms that depend
explicitly on /. but these will be canceled by boundary
terms from the integration of the interior.

For the integral over the interior one often makes use of
the conserved currents in (D10) as well as the associated
identities in (D5), which when integrated over will lead to
the aforementioned boundary terms.

a. Multipole expanding the spatial components

We wish to perform the multipole expansion of the
2.5PN near zone metric. First, we note that

e

Low 1.6 1
?hij +c—5hij + O %) (F29)
where

@ _
h = 28,U,

(F30)

4
h) = 6,;;(2U + %X + 8aGP[E(g) — Pg) + 2E(_5U))
+ 162GP[E(_pv'v'] + 4P[0;Ud; U], (F31)
L)

ij

— 140

=M (F32)
Using what we learned in the first part of this section, we

see that the multipole expansion of the near zone metric in

(F29) is given by

XM+ c2MP) (TP M1 T
g :5"’{1 A +W+Fa“(rz’d () s
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220 a2 FON 18 fewnd (0
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ctrootr? 3¢t r 4374 r
.. 0 0 . 0
s [ (EROY 1 (T 4 (e
34y 32 kim r 3¢t r
1 L0 1 s
—@le(rI/((n)n(t))} +_5H1(1) + (F33)
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We see that the matching with (F10) is consistent and fixes for us

HI) (1) ==27", v, __1yo_

1
y wr TV, (F34)

(ij)? J 30 jil 6 Jk

b. Multipole expanding the mixed components

The it components of the near zone metric up to 2.5PN order are given by

1PN 2PN

1 1 1
9it = zgn + 4911‘ + 5912t5PN‘ (FSS)

We know that ¢%°N is just a harmonic function that we determined in Sec. VII. So for the purpose of this appendix, g2 is
already fully matched and can be ignored. Meanwhile we know that

gzltPN _ 4Ui, <F36)

. 1 .
gzthN = —16zGP |:—E(_2> U; + E(_z)vzz) + (EE(—Z)UZ + 4E(_2)U + E(()) + P(O)) 1)’:|
—20%X; + 4P[20, U0, U; — 40, U0, U — 30,U0,U) + 4U'U. (F37)
Multipole expanding these we find
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We find that the matching with the metric in (F15) is consistent.
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c. Multipole expanding the time-time component

The #t component of the near zone metric up to 2.5PN order is given by

1 1 1 1
= =+ 20+ gl + g+ N g,

where we know from previous sections that
gt = 8aGP[E () + 3P() + 2E(_y)(v* + U)] + 07X — 2U?,
4
i = 31,
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2 0 8 0 0
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(F40)

(F41)
(F42)
(F43)

(F44)

(F45)

We then multipole expand, express the integrals in terms of conserved currents and apply the fluid identities of Appendix D.

In the end we find
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We find that the matching with the exterior zone metric in (F21) is consistent.
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