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In this study, we look into binaries undergoing gravitational radiation during a hyperbolic passage.
Such hyperbolic events can be a credible source of gravitational waves in future detectors. We
systematically calculate fluxes of gravitational radiation from such events in the presence of dark matter
with different profiles, also considering the effects of dynamical friction. We provide an estimate for the
braking index and show how it evolves due to the presence of the dark matter medium. We also investigate
the binary dynamics through the changes in the orbital parameters by treating the potential due to a dark
matter spike and the dynamical friction effects as a perturbation term. An insight into the effects of such a
medium on the binaries from the corresponding osculating elements opens up avenues to study binary
dynamics for such events.
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I. INTRODUCTION

General relativity has repeatedly proved to be the most
robust theory of gravity, passing various tests [1–8]. With
the advent of LIGO-VIRGO detectors, general relativity is
now being tested using the outpouring data we receive from
consecutive runs [9–18]. The detections are from inspiral-
ing compact binaries and have brought a new era in
gravitational wave (GW) precision astronomy. Compact
binary scattering events can also be credible radiation
sources in future detectors [19–21]. These events can occur
at very high eccentricities [22,23]. Studies like the one
shown in [21,24] have estimated the reasonable detection
rates for such binary encounters to be around a few to
thousands per year, comparable to that of inspiraling
coalescing binaries. If one of the objects of these hyperbolic
encounters turns out to be a neutron star, then we also have
a possibility of electromagnetic signatures. These scenarios
are astrophysically engaging as they can lead to a GW
burst, and the estimated luminosity from such emissions is
enormous [25].
The flux calculation for gravitational waves from binaries

in such hyperbolic orbits has been studied using quadrupolar
approximations in [26–29]. Then it is extended up to 1 post-
Newtonian (PN) order in [30,31] extended it further for
quasi-Keplerian parametrizations. Studies in [32] took the
calculations further to 1.5 PN invoking in the same quasi-
Keplerian parametrizations as done in [31]. Taking true

anomaly parametrizations [33,34] into account, quadrupolar
energy and angular momentum fluxes, as well as the 1PN
amplitude corrected waveform have been studied in [35–38].
Similarly, a 1.5PN amplitude corrected waveform with
Quasi-Keplerian parametrizations were also studied in [32].
Furthermore, a 3.5 PN accurate orbital dynamics for non-
spinning binaries on a hyperbolic track is given in [39].
In [28], authors gave a general analytical formula for the
GWenergy spectrum of compact binaries in unbound orbits
generalizing the computations done in the parabolic limit
by [40], and in [29], authors gave an estimation of the
expected number of such close gravitational flybys towards
different targets. However, studies like the one in [41]
suggest that LISA could be better suited for the detection
of GW burst signals associated with stellar mass compact
objects in unbound orbits around massive black hole (BHs).
Event rates for such bursts and the associated GW measure-
ments have been reported in [42–44].
Our Universe is not empty but filled with nontrivial

matter medium. Dark matter (DM) is the most ubiquitous,
whose nature has yet to be fully known, and the physics is
still speculative. One of the most sought-after avenues deals
with modeling these dark matter particles as weakly
interacting massive particles (WIMPs) and exploring their
detection prospects both directly and indirectly [45–54].
The density profile of suchWIMPs is universal, with a cusp
near the galactic Center and also forming a spike near the
central massive black hole. In recent times the advent of
data from the LIGO-VIRGO detectors has been of much
interest in probing DM with GW [55–57]. Studies in [58]
also supported the fact that phases of GWs can be modified,
and such modifications can impact future space-borne GW
experiments. In [59,60], dynamical friction effects from
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such dark matter spikes showed changes to the phase of a
GW from binaries with circular orbits.
Motivated by these, in this paper, we study flyby events

in the presence of a certain type of dark-matter halo. The
orbit is specified to be a hyperbolic one, and the para-
metrization of it is a true anomaly type [33,34]. Apart
from computing GW fluxes emitted from such binaries, in
this paper we mainly focus on studying the binary
dynamics by taking into account the effects of dark
matter, the dynamical friction provided by the medium
in which these binaries are moving, the accretion effects,
and possible GW backreaction on the binaries. The
dynamical friction and the accretion effects contribute
to the conservative sector of the binary dynamics. We
make a comparative study to see which effects are more
predominant than the other by taking the Keplerian
perturbation theory route. We model the standard
Kepler problem, which admits hyperbolic orbits as one
of the solutions for a given particle’s total energy, and then
use the method of the standard osculating elements to
calculate the rate of change of orbital parameters. These
equations come in handy to again investigate the binary
dynamics in such encounters, giving us a scope for a
comparative study with elliptical orbit cases as well, while
also giving room for one to investigate the waveform
modeling aspect of the binaries. The work is relevant since
a possible waveform model from such analysis can serve
as a good prospect for the future detectors to observe such
events and also put some insights into the parameters of
the theory from GW data coming from LIGO-Virgo-
KAGRA and the International Pulsar Timing Array
(PTA) along the lines of [61].
We organize the paper as follows: In Sec. II, we briefly

outline the basic setup for such binaries moving in hyper-
bolic tracks and compute the radiation fluxes from such
systems. In Sec. III, we briefly discuss the particular model
of the DM distribution that we will consider throughout this
paper. In Sec. IV, we compute GW fluxes due to hyperbolic
encounters by taking into effect the surrounding DM
medium. In Sec. V, we provide an estimate of the braking
index, which may provide a possible observational signa-
ture of dark matter (through its dissipative effects) via the
GW wave signal emitted from hyperbolic encounters.
Finally, in Sec. VI, we include the effect of this DM
medium (as well as the GW backreaction) as a perturbative
term in the Keplerian orbit equations and calculate the
changes in orbital parameters due to these extra effects. We
also discuss the details of the numerical method we used to
solve the simultaneous equations and list our conclusions
therein. Finally, we summarize our results and conclude
with future directions with Sec. VII.
Notation and Conventions: We use units where the

gravitational constant and Planck constant are set to unity:
G ¼ ℏ ¼ 1. Also, the solar mass value M⊙, that we have
used all over the text is taken to be 1030 kg.

II. BINARIES IN HYPERBOLIC ORBITS

We begin this section by briefly reviewing the basics of
binary dynamics for hyperbolic orbits. The problem we are
dealing with here is a typical two-body problem with
massesm1 andm2 with the massm2 at the center of force of
the trajectory and the mass m1 undergoing the scattering
track around m2. The usual way to approach such a
problem is to reduce the problem to an effective one-body
problem with a reduced mass μ ¼ m1m2

m1þm2
and total mass

M ¼ m1 þm2, such that the total energy and the angular
momentum of the system becomes

E ¼ T þ V ¼ 1

2
μðṙ2 þ r2ϕ̇2Þ þ VðrÞ ¼ const;

Lz ¼ μr2ϕ̇ ¼ const; ð2:1Þ

where the equations are written in plane-polar coordinates
ðr;ϕÞ and the potential being

VðrÞ ¼ −
μM
r

: ð2:2Þ

The solutions for such radial equations of motion are the
well-known conic sections, with r being parametrized by ϕ:

rðϕÞ ¼ aðe2 − 1Þ
1þ e cosðϕ − ϕ0Þ

; ð2:3Þ

with

a ¼ μM
2E

and e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EL2

M2μ3

s
:

The semimajor axis, defined above and correspondingly the
eccentricity e, can be expressed in terms of the binary
parameters: v0; m1; m2; b. This can be done since for
hyperbolic orbits E and L are related to the impact
parameter b and initial velocity v0 as

L ¼ μv0b and E ¼ 1

2
μv20:

Thus, the eccentricity becomes e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v4

0
b2

M2

q
and a ¼ M

v2
0

.

One can also relate ϕ0 which is the angle subtended at the
minimal distance r0, i.e., the radius at the periastron, to
eccentricity through the following relation:

e ¼ −
1

cosϕ0

: ð2:4Þ

Considering these, the above conic section form can
be written exclusively for a hyperbolic track as shown
in Fig. 1:
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rðϕÞ ¼ b sinϕ0

cosðϕ − ϕ0Þ − cosϕ0

: ð2:5Þ

This form can give the velocity of the masses moving in
such trajectories in terms of ϕ0:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ṙ2 þ r2ϕ̇2

q
¼ vo

sinðϕ0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2ðϕ0Þ − 2 cosðϕ0Þ cosðϕ − ϕ0Þ

q
:

ð2:6Þ

Given that one of the objects in the binary system is moving
in such a trajectory around the central object, we can
calculate the radiation emanated by using the orbit equation
specific to the case of hyperbolas and then use the usual
quadrupole formula to calculate the energy radiated via the
GW. We start with the usual formula for this radiated power
in the quadrupolar order, which is the lowest order
approximation and is given by [62]

Pquad ¼
1

45c5
h ⃛Dij

⃛Diji; ð2:7Þ

where Dij ¼ 3Mij − δijMkk and Mij ¼ 1
c2
R
T00xixjd3x,

with the 00-th component of the energy-momentum tensor
being given by T00 ¼ μδðx⃗ − x⃗0Þc2. In terms of Mij ’s the
expression for Pquad becomes

Pquad ¼
1

45c5
6h ⃛M2

11 þ ⃛M2
22 þ 3 ⃛M2

12 − ⃛M2
11
⃛M2

22i: ð2:8Þ

Then using (2.5) we can get the expression for the radiated
power which is [27]

Pquad ¼ −
32L6

45c5b8μ4
fðϕ;ϕ0Þ

fðϕ;ϕ0Þ ¼
sin4ðϕ

2
Þsin4ðϕ

2
− ϕ0Þ

tan2ðϕ0Þsin6ðϕ0Þ
½150þ 72 cosð2ϕ0Þ

þ 66 cosð2ϕ0 − 2ϕÞ − 144ðcosðϕ − 2ϕ0Þ
þ cosðϕÞÞ�: ð2:9Þ

Note that the above expression for power radiation is
purely due to the GW emission. It does not include the
effect of the environment, which we consider here to be
dark matter providing dynamical friction [63], and the
scenario has all the orbital parameters fixed while under-
going the dynamics. If one includes the effects of the
medium in these radiative calculations, then additional
terms will appear with the medium’s details in them. Also,
if we expect our radiation field to backreact on our system,
the usual scenarios may be nontrivial. We explore these
curiosities in the following sections, starting with calculat-
ing fluxes for such binaries and doing a comparative study
on their relative magnitudes.

III. MODEL FOR THE DYNAMICAL FRICTION
DUE TO DM SPIKE

We begin this section by exploring the dynamics of
binaries moving in a hyperbolic orbit in the presence of a
medium, more precisely focusing on the fluxes of radiation.
A natural question to ask is about the nature of the medium.
Around 27% of the Universe’s total mass seems to come
from dark matter, and there is observational evidence
in favor of it [64–87]. They are ubiquitous, and more
interestingly, BHs in such DM environments build up halos
around them due to the effect of the strong gravity. For our
studies in this paper we will consider the Navarro-Frenk-
White (NFW) profile [88] which forms spikes due to the
presence of certain overdense regions [89–93]. These
overdense regions, in turn, result from the adiabatic growth

FIG. 1. Geometry of hyperbolic orbit.
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of supermassive BHs with masses in the range 106–109M⊙
[89]. It seems logical that an object moving around a central
BH might have its orbital motion affected by such spike
structures. Optical observations of such activities can lead
to indirect tests of the existence of such DM spikes and
constrain the spike’s density profile [64,94–96]. LIGO/
VIRGO and other high-end detectors are gearing up to
detect GWs from such binaries [58,97–111], shedding light
on DM features based on GW observations.
We consider aDMminispikemodel given in [89,112–116].

The density distribution is spherically symmetricwith a power
law behavior as shown below:

ρDM ¼
(
ρsp

�
rsp
r

�
α

;when rmin ≤ r ≤ rsp

0 ;when r ≤ rmin;
ð3:1Þ

where ρsp is a normalization constant, and rsp is the radius of
the minispike. There are estimates as to what this α value can
be. Typically this range is 2.25 ≤ α ≤ 2.5 [89,91,116,117].
Henceforth we will strictly follow this range. For our
subsequent analysis we take the mass of the central massive
object as m1 ¼ 103M⊙ and the mass of the secondary as
m2 ¼ 10M⊙. Also, ρsp ¼ 226M⊙=pc3 and rsp is around
0.54 pc following [58,97,104].
Such distributions lead us to give an equilibrium phase-

space distribution function, and in our case, the halo is
spherically symmetric. The distribution function f ¼ fðEÞ,
where E is the relative energy per unit mass [118–121],

Eðr; vÞ ¼ ΨðrÞ − 1

2
v2; ð3:2Þ

with ΨðrÞ being the relative Newtonian gravitational
potential. We can get a closed distribution function for
such spherically symmetric dark matter distribution by
following Eddington’s inversion procedure [122], and for a
power law spike, it comes out as

fðEÞ ¼ αðα − 1Þ
ð2πÞ32 ρsp

�
rsp
m1

�
α Γðα − 1Þ
Γðα − 1

2
Þ E

α−3
2: ð3:3Þ

Whenever a stellar-mass object moves through the DM
minispike, it gravitationally interacts with the DM particles,
and we can expect a “drag”—a like process happening.
Indeed such “frictional” effects have a name for them,
and they are called “dynamical friction” or “gravitational
drag.” The gravitational drag force removes angular
momentum from an object in orbital motion, causing it
to spiral toward the orbit’s center gradually. In a pioneering
study, Chandrasekhar (1943) derived the classical formula
of dynamical friction in a uniform collisionless background
[63], which has been applied to several astronomical
systems. Examples include orbital decay of satellite gal-
axies orbiting their host galaxies [123–125], dynamical

fates of globular clusters near the Galactic Center [126],
galaxy formation within the framework of hierarchical
clustering scenario [127,128], and formation of Kuiper-
belt binaries [129]. The drag formula based on perturbers
moving straight in either a collisionless medium or a
gaseous medium depends on the Coulomb logarithm
logΛ ¼ logðrmax=rminÞ where rmin and rmax are the cutoff
radii introduced for avoiding a divergence of the force
integrals. While many previous studies [109,122] conven-
tionally adopted rmin and rmax as the characteristic sizes of
the perturber and the background medium, respectively, the
choice of rmax remains somewhat ambiguous for objects
moving on near-circular orbits. However, in this paper we
will focus on the hyperbolic tracks by the binaries.
The frictional force has a form [63,130–133] ,

FDF ¼ 4πm2
2ρDMðrÞξðvÞ

logΛ
v2

: ð3:4Þ

There is a particular set of values for logΛ. m2 is the mass
of the secondary. Here we take the one used in [109], which

is logΛ ¼ log
ffiffiffiffiffi
m1

m2

q
. In the subsequent sections, we have

chosen our binaries to have masses m1 ¼ 103M⊙ and
m2 ¼ 10M⊙. This choice gives the value for the
Coulomb logarithm to be around 1, which is the value
we have chosen in our analysis.1 Moving on to the other
term which needs an introduction is ξðvÞ, which accounts
for a fraction of dark matter particles having slower
velocities than the orbiting masses. An estimate for the
number of such particles can be sought by calculating the
following integral:

ρDMðrÞξðvÞ ¼ 4π

Z
v

0

v02f
�
ΨðrÞ − v02

2

�
dv0; ð3:5Þ

where the function f defined in the integral above is
expressed in (3.3). There are a few salient points to state for
the above expression. A thorough study in [109,110]
explored an analytical way to address the problem of
modeling the evolution of the binary and the dark matter
profile under some assumptions. These lead to a halo
profile evolving in a fixed gravitational potential encoded
in ΨðrÞ,2 which in turn simplifies the problem. The
evolution of the dark matter density with time will be
given by

ρDMðr; tÞ ¼ 4π

Z
vmax

0

v02f
�
ΨðrÞ − 1

2
v02

�
dv0: ð3:6Þ

1We should, however, emphasize that our results do not get
affected much by this value of logΛ, which is in line with the
analysis in [134].

2Interested readers are referred to [109,110] for further details.
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The functional form f was defined as a spherically
symmetric distribution function for the dark matter and
depended on a relative Newtonian gravitational potential
ΨðrÞwhich can be approximated to ∼ m1

r close to the central
massive black hole [118]. Putting all the expressions
together (3.5) has a closed-form expression:

FDF ¼ K
Z

v

0

v02
�
m1

r
−
v02

2

�
α−3

2

dv0 ð3:7Þ

with

K ¼ 4πm2
2

logΛ
v2

�
4π

αðα− 1Þ
ð2πÞ32 ρsp

�
rsp
m1

�
αΓðα− 1Þ
Γðα− 1

2
Þ
�
: ð3:8Þ

These expressions give us a perfect headstart to calculate
the radiation fluxes and study the behavior of orbital
elements of the binary in response to such media. We
look into these in the subsequent sections.

IV. CALCULATION OF FLUXES
IN THE PRESENCE OF DARK MATTER

While calculating gravitational radiations from binaries
in hyperbolic orbits, we assume that, while losing energy,
the orbit for the binaries remains Keplerian, and we do not
have to deal with any additional corrections. This is much
in line with the elliptic cases as well where we usually
assume they lose energy on a timescale greater than the
orbital timescale. Owing to the dark matter medium, there
will be a dissipative force FDF, as given in (3.7), and the
total energy lost due to this force will be given by

PDMðϕ0Þ ¼
	
dE
dt



¼

Z
2ϕ0

0

dϕ

ϕ̇
FDFðr; vÞv: ð4:1Þ

One can use approximation methods to have an analytical
handle to calculate this integral. To do that we expand the
integrand of (3.7) in powers of v’,

v02
�
m1

r
−
v02

2

�
α−3

2 ¼ v02
�
m1

r

�
α−3

2

�
1 −

rv02

2m1

�
α−3

2

≃ v02
�
m1

r

�
α−3

2

�
1 −

�
α −

3

2

�
rv02

2m1

�
þOðv06Þ: ð4:2Þ

Then we get

FDF ≈ K

2641
3

�
m1

r

�
α−3

2

v3 −
1

10

�
ðm1

r Þα−
3
2rðα − 1.5Þ

�
m1

v5

þOðv7Þ

375: ð4:3Þ

If we rightly concern ourselves with binary speeds to
nonrelativistic only (which it should be), one can ignore
all the higher orders in v and restrict ourselves to only
the leading order in the above expansion. Plugging in
the expression for v, which we obtained in (2.6) we get
a full (ϕ) parametrized expression for the drag force as
shown below:

FDF ≈
16π2m2

2voðb sinðϕ0ÞÞ32−α
3 sinðϕ0Þ

log

ffiffiffi
1

q

s �
αðα − 1Þ
ð2πÞ32 ρsp

�
rsp
m1

�
α Γðα − 1Þ
Γðα − 1

2
Þ m

α−3
2

1

�
×
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ cos2ðϕ0Þ − 2 cosðϕ0Þ cosðϕ − ϕ0ÞÞ
q

ðcosðϕ − ϕ0Þ − cosðϕ0ÞÞα−3
2

i
: ð4:4Þ

This expression can be directly used in our dE
dt integral:

dE
dt

¼ −v:FDF

¼ −
16π2

3

�
vo

sinðϕ0Þ
�

2

m2
2 log

ffiffiffi
1

q

s �
αðα − 1Þ
ð2πÞ32 × ρ6

�
r6
m1

�
α

×
Γðα − 1Þ
Γðα − 1

2
Þ ×m

α−3
2

1

�
× fðb sinðϕ0ÞÞ32−αð1þ cos2ðϕ0Þ − 2 cosðϕ0Þ cosðϕ − ϕ0ÞÞðcosðϕ − ϕ0Þ − cosðϕ0ÞÞα−3

2g ð4:5Þ
and upon performing the integral as mentioned in (4.1), we get the total energy radiated as a function of ϕ0:

PtotðϕoÞ ¼ Pquad þ PDM

¼ κ
sin4ðϕ

2
Þsin4ðϕ

2
− ϕoÞ

tan2ðϕoÞsin6ðϕoÞ
½150þ 72 cosð2ϕoÞ þ 66 cosð2ϕo − 2ϕÞ − 144ðcosðϕ − 2ϕoÞ þ cosðϕÞÞ�

− λ

Z
2ϕo

0

dϕ½ðcosðϕ − ϕoÞ − cosðϕoÞÞα−3
2ð1þ cos2ðϕoÞ − 2 cosðϕoÞ cosðϕ − ϕoÞÞðsinðϕoÞÞ−α−1

2�; ð4:6Þ
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where κ ¼ − 32L6

45c5b8μ4
. Here we have added the contribution coming purely from the GW radiation in the first line of (4.6)

from [27,28]. The term proportional to λ corresponds to the radiation coming out due to dynamical friction force generated
by the dark matter medium. The λ sitting in front of the integral is given in terms of the dark matter parameters:

λ ¼ v2ob
3
2
−α 16π

2m2
2

3
log

ffiffiffi
1

q

s �
αðα − 1Þ
ð2πÞ32 ρsp

�
rsp
m1

�
α Γðα − 1Þ
Γðα − 1

2
Þ m

α−3
2

1

�
: ð4:7Þ

The integral in (4.6) is being performed over the allowed
range of ϕ. To solve the integral we have to resort to
numerical means, and in so doing we can look into the
behavior of the flux as a function of ϕ0 and ϕ separately for
the part coming purely from GWand the part coming from
dynamical friction as shown in Fig. 2. Next we summarize
our results below:

To make a comparison, we focus on the ratio
PðϕÞ=Pðϕ0Þ for both gravitational waves and the radiation
in response to the dynamical friction of the medium. We
chose ϕ0 ¼ 2.44 for our analysis. The flux plots do give us
a peak at ϕ ¼ ϕ0. When we put in the appropriate values of
the parameters in the prefactors, we see that the dark matter
dynamical friction contribution is 10−2 (it is not obvious

FIG. 3. Normalized power fluxes for the choice of m1 ¼ 103M⊙, m2 ¼ 10M⊙, α ¼ 2.25, b ¼ 106m, v0 ¼ 0.1c. Left panel: purely
GW contribution. Right panel: purely the contribution due to dynamical friction.

FIG. 2. Total energy fluxes for the choice of m1 ¼ 103M⊙, m2 ¼ 10M⊙, α ¼ 2.25, b ¼ 106m, v0 ¼ 0.1c. Left panel: purely GW
contribution. Right panel: purely the contribution due to dynamical friction.
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from plot) order lesser in magnitude. This is shown in
Fig. 3. So, if we consider the net effect of radiation
from such binaries in the presence of dark matter the
dominant contribution comes from the gravitational radi-
ation counterpart.
Finally, in Fig. 4 we explore the nature of the flux due to

the dynamical friction in the presence of the medium.
Interestingly, we observe an increase in the peak of the flux
with the increase in the angle of closest approach ϕ0. This
can be understood physically as with increasing ϕ0 the
secondary is closer to the central black hole giving the
secondary to interact with the dark matter halo for a longer
period; hence the effect of the halo increases, and so does
the flux.

V. POSSIBLE OBSERVABLE SIGNATURES
IN GW SIGNAL

Having calculated the necessary fluxes associated with
the GW emission in the presence of dark matter, including
the effect of dynamical friction, we are in a good position to
explore the possibilities of detecting such effects in the GW
signal. In the context of pulsars, the so-called braking index
nb, has been a useful quantity to infer about the energy loss
mechanism, and these mechanisms are mainly mediated by
GW emissions. Since pulsars can also spin down through
GW emission associated with asymmetric deformations, it
is appropriate to take into account this mechanism in a
model that aims to explain the measured braking indices
[135,136]. The values of these braking indices can be
3.15� 0.03, as reported in [137] for PSR J1640-46301,
which was surprisingly the largest among the only eight of
the ∼2400 known pulsars measured. This is expected
from the pure magneto-dipole radiation model reported

in [138–144]. There have been many interpretations of this,
such as those that propose that it may be due to the
accretion of fallback material via a circumstellar disk [145],
or via the quantum vacuum friction effect [146] or perhaps
relativistic particle winds [147,148] or modified canonical
models [149,150]. Studies in [151,152] have also indicated
that it might be due to the effect of the change in the
magnetic moment with time, either through a change in the
surface field strength or the angle between the magnetic and
spin axes. Taking a cue from this, [153] showed that there
could be possible combinations of gravitational and electro-
magnetic contributions to spin-down, which could explain
the measured braking indices.
Once we have become familiar with the role of the

braking index in inferring the characteristics of binaries,
we can explore this in our context. Given the binaries
(and the binaries are moving on a hyperbolic track),
one can calculate the braking index using the following
formula:

nb ¼
FF̈

Ḟ 2
; ð5:1Þ

where F is the orbital frequency. In the context of elliptic
orbits, F is related to the semimajor axis: a, via the relation

F ¼ 1
2π

ffiffiffiffi
M
a3

q
. It is tricky to define the frequency for a

hyperbolic orbit. The period is essentially infinite if a
particle comes from infinity and goes to infinity after some
scattering process following a hyperbolic track. However,
there are many ways one can make a segue out of this,
like modeling the compact binaries after a semiperiodic
source [154] or maybe focusing on a finite part of the
hyperbolic track like going from point x to y and calculat-
ing the time taken for such a path. For a hyperbolic orbit,
one can still redefine the usual orbital parameters like mean
motion n and the mean anomaly M as M ¼ nt and

n ¼
ffiffiffiffiffiffi
M
−a3

q
which in turn will give us F ¼ 1

2π

ffiffiffiffiffiffi
M
−a3

q
and

the period along the finite part of the track being T ¼ 2π
n .

We also choose

r ¼ aðe2 − 1Þ
1þ e cosϕ

; ð5:2Þ

with e > 1 for the hyperbolic case. Furthermore, the energy
of the orbiting particle in these tracks is expressed as μM

2jaj
(> 0, as expected for an unbound orbit). Given these,
we can express the braking index in terms of a in the
following way:

nb ¼
5

3
−
2

3

aä
ȧ2

: ð5:3Þ

The next step toward computing the braking index is to find
a; ȧ; ä, and the method is straightforward. Assuming that

FIG. 4. Fluxes due to dynamical friction for different choice of
ϕ0. Again we have set m1 ¼ 103M⊙, m2 ¼ 10M⊙, α ¼ 2.25,
b ¼ 106m, v0 ¼ 0.1c.
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while losing energy through radiation, we neglect the
osculations of the orbit and the orbital timescale is such
that we can use the Keplerian equations while taking the
orbital average, we can calculate the dissipative forces
acting on the binaries. We can model these dissipative
forces by making them a function of r and v and then taking
the average over the hyperbolic orbit. The energy and
angular momentum corresponding to these dissipative
forces can be calculated as follows3:	

dE
dt



¼ −

Z
T

0

dt
T
Fðr; vÞv;	

dL
dt



¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Maðe2 − 1Þ

q Z
T

0

dt
T
Fðr; vÞ

v
: ð5:4Þ

Given an Fðr; vÞ we can compute hdEdti and hdLdti. In our
context, the dissipative effects that we will explore are the
effects of dynamical friction with DM spike, and the total
orbital and angular momentum loss over the orbital time-
scale is given by

dEorb:

dt
¼

	
dEGW

dt



þ
	
dEDM

dt



;

dLorb:

dt
¼

	
dLGW

dt



þ
	
dLDM

dt



: ð5:5Þ

To obtain the change in orbital parameters we take resort to
the following equations:

Eorb: ¼
μM
2a

⇒
da
dt

¼ dEorb:

dt
=
∂E
∂a

;

de
dt

¼ −
e2 − 1

e

�
dEorb:

dt
=Eorb: þ 2

dLorb:

dt
=Lorb:

�
: ð5:6Þ

Given these equations and a particular model for the
dissipative force (which is the dynamical friction force),
we can calculate these evolutions. For our context, the
dissipative force inspired is of the form F0rγvδ [103]. Here,
F0 ¼ 4πm2

2r
α
sp logΛ. This follows from (3.4). Upon using

such a form for the dissipative force we can calculate ȧ by

ȧ ¼ dEorb:

dt
=
∂E
∂a

¼ −
F0

πμ
ak1ðe2 − 1Þk1−1=2Mδ−2

2

Z
2ϕ0

0

dϕð1þ e cosϕÞ−ð2þγÞð1þ 2e cosϕþ e2Þδþ1
2 ;

ė ¼ −
F0

2π

1

e

�
ðe2 − 1Þk1þ1=2M

δ−2
2

μ
ak̃1

Z
2ϕ0

0

dϕð1þ e cosϕÞ−ð2þγÞð1þ 2e cosϕþ e2Þδþ1
2

− ðe2 − 1Þk01þ1=2M
δ−3
2 ak

00
1

Z
2ϕ0

0

dϕð1þ e cosϕÞ−ð2þγÞð1þ 2e cosϕþ e2Þδ−12
�
: ð5:7Þ

Toproceed furtherwith these expressions,we expand these integrals around e ¼ 1 to get an analytic grasp of these integrals (we
leave the general case for future study). We do this by taking e ¼ 1þ ϵ and then expanding in terms of ϵ. We also consider a
static profile, leaving the study of effect of evolution of the dar matter profile to braking index for the future. Concentrating on
the form ofFðr; vÞ for the dynamical friction force given in (3.4), we can infer that γ ¼ −α ¼ −2.25 (as defined below (3.1))4

and δ ¼ −2 (this corresponds to setting ξðvÞ ¼ 1 in (3.4).). Using these values and also expanding in ϵ, we get

ȧ ¼ −
F0

21=4πμ

a1=4

ϵ1=4M2

�
1 −

ϵ

8

�
ð6.23634 − 1.68719

ffiffiffi
ϵ

p Þ;

ϵ̇ ¼ −
F0

2π

23=4ϵ3=4

a3=4

�
1

μM2
ð6.23634 − 1.68719

ffiffiffi
ϵ

p Þ − 1

M5=2 ð0.51965 − 0.420448
ffiffiffi
ϵ

p Þ
�
: ð5:8Þ

As is evident from the definition of the braking index, nb,
given in (5.3), the above expressions are enough to infer the
braking index for our scenario.
Now, we plot the braking index as a function of time.

Figure 5 shows some interesting features worth

mentioning. Early in the evolution, the braking index is
constant with the saturation value being ∼1.666, and this is
the value of the index in “vacuum,” i.e., when the
environmental effects or the spike effects are not there.5

As they start to come closer together and enter the halo
region, the braking index shows a fall, with an estimated
time for the fall around ∼104 yr. Firstly, the plot for
eccentricity evolution serves as a consistency check that

3Later, we will convert the t integral into a integral of ϕ using
the chain rule, with the limits of integration changing from
t ¼ ð0; TÞ to ϕ ¼ ð0; 2ϕ0Þ, where ϕ0 is shown in Fig. 1 and the
corresponding expression is given in (2.3). One can use the
expression given in (2.1) to replace ϕ̇ in the integral.

4We consider only one value of α as at this point we are only
interested in getting an order of magnitude estimate for the
braking index. However, our analysis is valid for other values of α
mentioned below (3.1).

5The plot for the braking index that we show here shows a
sudden spike when the value for the index starts to decrease on
the timescale of ∼104 yr. We emphasize that this “spike” is due to
some numerical artifact and not due to any other nontrivial
physics.
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the e remains in the vicinity of unity as assumed while
deriving the relevant equations in (5.8). Secondly, it allows
us to explore the effects of the environment at large times,
which will lead to larger dephasing. The timescale for such
effects to be predominant is roughly ∼104 yr, nearly
identical to the braking index plot.
The observability of the second derivative of frequency

evolution F has been an interesting problem to deal with
like the one reported in [155], and so is the braking index
for inspiraling binaries [156]. These results have an
indication that such effects might be possible to detect if
the dissipative forces are strong enough.

VI. CALCULATION OF OSCULATING ELEMENTS

Now we focus on the study of the binary dynamics on a
hyperbolic orbit in the presence of a dark matter halo. One
quantity thatwewill be interested in studying is the changeof
eccentricity. We will do so in the framework of the pertur-
bative Kepler problem. One of the interesting things in these
perturbed Kepler problems is that Kepler’s third law still
holds on a shorter timescale. In the absence of perturbations,
we know from basic central force problems that the motion
will have six orbital constants. However, owing to the
perturbing forces, these orbital elements, constant earlier,
start to vary “slowly.” The method of osculating elements
then gives us the equations governing these changes. For a
more comprehensive treatment, the reader is requested to
look into [157] for a textbook treatment.
To tackle a Keplerian perturbation problem we use two

coordinate systems—one is the orbital frame (OF), and the
other one is the fundamental frame. Each frame comes with
its own set of orthonormal basis vectors fex; ey; ezg for the
orbital frame while the fundamental frame has its own set
feX; eY; eZg, each of them sharing a common origin, and
as usual the choice of the fundamental frame is arbitrary.

This is shown in Fig. 6. The two-body problem which we
study in the presence of perturbation looks something like
this:

a⃗ ¼ m
r2
r̂þ f⃗; ð6:1Þ

with the perturbing force f⃗6 being decomposed into a
radial, cross-radial, and another one perpendicular to the
orbital plane in the form

f⃗ ¼ Rn̂þ Sλ̂þW bez; ð6:2Þ
where n̂; λ̂; êz all depend on the various orbital parameters.
These are all time dependent basis vectors in the OF.
For detailed expressions of these basis vectors, interested

FIG. 5. Plots showing the evolution of eccentricity and the evolution of the braking index for an initial eccentricity e0 ¼ 1.01, initial
semimajor axis a0 ¼ 100 and mass ratio q ¼ 10−5. Inside the figure in the right panel, we have included an inset showing an
enlargement of the fall-off part of the braking index. The spiky behavior is due to the limitation of our numerical precision. (Note that “e”
inside the figure represents 10).

FIG. 6. Orbital motion viewed in fundamental reference frame.

6We would like to remind the readers that f⃗ is actually force
per unit mass of the perturber.
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readers are referred to [157]. Taking up true anomaly,
ϕ̃ ¼ ϕ − ϕ0, as our independent variable the equations
governing the change of the orbital parameters are

dp

dϕ̃
≃2

p3

M
1

1þecos ϕ̃
S;

de

dϕ̃
≃
p2

M

�
sin ϕ̃

ð1þecos ϕ̃Þ2Rþ2cos ϕ̃þeð1þ cos2ϕ̃Þ
ð1þecos ϕ̃Þ3 S

�
;

dι

dϕ̃
≃
p2

M
cosðϕ0þ ϕ̃Þ
ð1þecos ϕ̃Þ3W;

sin ι
dΩ
dϕ̃

≃
p2

M
cosðϕ0þ ϕ̃Þ
ð1þecos ϕ̃Þ3W;

dϕ0

dϕ̃
≃
p2

eM

�
−

cos ϕ̃

ð1þ cos ϕ̃Þ2Rþ 2þecos ϕ̃

ð1þ cos ϕ̃Þ3 sin ϕ̃S

−ecot ι
sinðϕ0þ ϕ̃Þ
ð1þecos ϕ̃Þ3W

�
;

dt

dϕ̃
≃
�
p2

M

�
3=2 1

ð1þecos ϕ̃Þ2
�
1−

1

e
p2

M

×

�
cos ϕ̃

ð1þecos ϕ̃Þ2R−
2þecos ϕ̃

ð1þecos ϕ̃Þ3 sin ϕ̃S
��

:

ð6:3Þ

These equations as can be seen would have been constants
had there been no perturbing force. They are controlled by
the various components of the perturbing force and also
parametrized by several orbital elements: the angle of
pericenter (closest approach) is ϕ0, the angle of the
ascending node is Ω, the eccentricity is e, the semimajor
axis is a, the semilatus rectum is p, and the inclination
angle is ι. We intend to extend this formalism for the case of
hyperbolic orbits which is also a solution to the Kepler
equations of motion. For this, we have to put in relations
specific to the case of hyperbolic motions. The orbital
elements that we are going to focus on are impact parameter
b, eccentricity e of the track, and the angle of closest
approach ϕ0. Note that ϕ is the angle subtended between
m1 and m2 with the horizontal line passing through m2 and
parallel to the asymptotic line whenm1 is very far and ϕ0 is
the angle when binaries are in closest approach or at
pericenter. As mentioned in (2.3), the eccentricity is related
to this angle ϕ0 through the relation e ¼ − 1

cosϕ0
.

Given this parametrization for hyperbolic orbit, the
osculating equations implying the change in the eccentric-
ity and ϕ0 due to the perturbations become the following7:

dp

dϕ̃
≃ 2

p3

M
1

1þ e cos ϕ̃
S;

dϕ0

dϕ̃
≃

p2

eM

�
−

cos ϕ̃

ð1þ cos ϕ̃Þ2Rþ 2þ e cos ϕ̃

ð1þ cos ϕ̃Þ3 sin ϕ̃S

− e cot ι
sinðϕ0 þ ϕ̃Þ
ð1þ e cos ϕ̃Þ3W

�
: ð6:4Þ

As e ¼ − 1
cosϕ0

and b ¼ p
e sinϕ0

for the hyperbolic orbits,
evolution of the eccentricity e and the impact parameter b is
governed by the following equations,

de

dϕ̃
¼ −

sinϕ0

cosϕ0

dϕ0

dϕ̃
;

db

dϕ̃
¼ − cotϕ0

dp

dϕ̃
−

2b
sin 2ϕ0

dϕ0

dϕ̃
: ð6:5Þ

Apart from the conventional GW backreaction effects, the
perturbations we will introduce are purely environmental
effects like force due to the gravitational potential generated
by the dark matter spikes and the dynamical friction and
accretion associatedwith it.We discuss these sections step by
step with relevant equations in the subsequent sections.

A. Effect of gravitational potential due
to the dark matter minispike

To proceed further, we consider a binary system where
the mass of the central black hole is larger than that of its
companion so that the reduced mass μ is approximately
equal to the mass of the smaller companion. The barycenter
position aligns itself with the position of the central black
hole. By fixing a frame at the central black hole position or
the barycenter position (they are both the same here), we
can write out an equation of motion for the relative
separation between the binaries in the following form:

a⃗G ¼ d2r⃗
dt2

¼ −
Meff

r2
r̂ −

F
rα−1

r̂: ð6:6Þ

The parameters in the above equation depend on the
parameters of the dark matter minispike model as men-
tioned in (3.1). They are defined as [97]

Meff ¼ M −
4πρsprαspr3−αmin

3 − α
and F ¼ 4πρsprαsp

3 − α
:

The unit vector r̂ is directed from the central black hole to
the smaller companion.
The first term in (6.6) is the familiar gravitational

interactions between two masses as mentioned, and the
second term purely originates due to the gravitational
potential generated by the dark matter halo, which described
a minispike model for our case. The term is like a perturba-
tion to the usual Keplerian equation of motion [97]. Hence,
we can use the formalism for osculating elements but of

7We want to point out that the other dynamical equations
involving Ω and ι can also appear in principle, but since we are
focusing on studying the change in eccentricity, we mainly focus
on those two equations only and the other associated equations
needed to solve it numerically.
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course specialized to the case for hyperbolic orbits. As
mentioned earlier, the orbital elements here are fe; b;ϕ0g—
not all of them being constant anymore due to the
perturbation.
The above equation (6.6) tells us the perturbing force

spans the plane in which the binaries are moving, and the
components contributing to the perturbing force can be
easily read off by comparing with (6.2) and identifying n̂
with r̂. Then from (6.4) and (6.5) we get

de

dϕ̃
¼ 1

cosϕ0

b3−αF
Meff

sin4−αϕ0 cosðϕ̃Þ
ðcosðϕ̃Þ − cosϕ0Þ3−α

;

db

dϕ̃
¼ b4−αF

Meff

sin2−αϕ0 cosðϕ̃Þ
ðcosðϕ̃Þ − cosϕ0Þ3−α

;

dϕ0

dϕ̃
¼ −

b3−αF
Meff

cosϕ0

sin3−αϕ0 cosðϕ̃Þ
ðcosðϕ̃Þ − cosϕ0Þ3−α

;

dt

dϕ̃
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3sin3ϕ0

GMeff j cosϕ0j3

s
cos2ϕ0

ðcosðϕ̃Þ − cosϕ0Þ2

×
�
1 −

b3−αF
Meff

cosϕ0

sin3−αϕ0 cosðϕ̃Þ
ðcosðϕ̃Þ − cosϕ0Þ3−α

�
: ð6:7Þ

B. Dynamical friction and accretion effects

Given a binary moving through a medium (which for us
is a dark matter medium) it will experience a drag or
dynamical friction force. Having discussed the effects of
dark matter as a perturbing force, we can now focus on the
effects of such matter medium on the overall dynamics in
such hyperbolic tracks. To this end as we discussed in

Sec. III the “frictional” force of the medium can be modeled
after a force law which takes the form

f⃗DF ¼ −
4πm2ρDMξðvÞ lnΛ

v3
v⃗; ð6:8Þ

where fDF is the perturbing force (per unit mass). At this
point, we will make a simplifying assumption. We will
choose the halo density to be static, i.e., ρðr; tÞ ∼ ρðrÞ by
setting ξðvÞ ¼ 1 following [104]. In general, as shown in
[103,109], the dark matter density will evolve in time, and
the ρðr; tÞ can be found from (3.6). But for our subsequent
study, we will not consider this. Rather, we will leave it for
future investigation.8

Not only can a body experience these frictional effects
but there can also be nontrivial accretion effects. For
that, considering the Bondi-Hoyle accretion effect and
the velocity of the body in the medium to be in the range
v ≫ cs we can come up with a force law modeling the
perturbating contribution [104]:

f⃗acc ¼ −
4πm2ρDMBacc

v3
v⃗; ð6:9Þ

where Bacc is the term appearing from the model itself; we
set it to unity for our analysis following [104].
The dynamical friction and accretion force laws are in the

direction of v̂, which is just the unit vector of the binary

velocities, namely, v⃗ ¼ ṙ n̂þr ˙̃ϕ λ̂. Upon using these radial
and cross-radial directions, the radial and cross-radial com-
ponents of the perturbing force can be again read off from the
expressions by comparing with (6.2), and they are

R ¼ 4πm2rαspρspðξðvÞ lnΛþ BaccÞ
b1−α

M
sin1−αϕ0 cosϕ0 sin ϕ̃ðcos ϕ̃ − cosϕ0Þα

ð1þ cos2ϕ0 − 2 cos ϕ̃ cosϕ0Þ3=2
;

S ¼ −4πm2rαspρspðξðvÞ lnΛþ BaccÞ
b1−α

M
sin1−αϕ0 cosϕ0ðcos ϕ̃ − cosϕ0Þαþ1

ð1þ cos2ϕ0 − 2 cos ϕ̃ cosϕ0Þ3=2
: ð6:10Þ

Once we have these components, we can plug them in the osculating equations (6.3) and (6.4) and find the change in the
orbital parameters:

dϕ0

dϕ̃
¼ 8πm2ρsprαspðξðvÞ lnΛþ BaccÞb3−αsin3−αϕ0cos2ϕ0ðcos ϕ̃ − cosϕ0Þα−1 sin ϕ̃

M2½1þ cos2ϕ0 − 2 cos ϕ̃ cosϕ0�3=2
;

de

dϕ̃
¼ −

sinϕ0

cos2ϕ0

dϕ0

dϕ̃
;

dp

dϕ̃
¼ 8πm2ρsprαspðξðvÞ lnΛþ BaccÞb4−αsin4−αϕ0 cosϕ0ðcos ϕ̃ − cosϕ0Þα−2

M2½1þ cos2ϕ0 − 2 cos ϕ̃ cosϕ0�3=2
;

db

dϕ̃
¼ − cotϕ0

dp

dϕ̃
−

2b
sin 2ϕ0

dϕ0

dϕ̃
: ð6:11Þ

8For hyperbolic it will be interesting to figure out the nature of the phase-space distribution function as mentioned in (3.6) following a
similar numerical analysis performed in [109,110] in the future.
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C. GW backreaction effects

The system’s dynamics are dominated by the Newtonian
gravitational attraction between the two bodies, and the
radiation-reaction force creates a perturbation. The hyper-
bolic orbit solution emerges as a solution to the central
force problem with 1

r potential. To include the effect of GW
backreaction, we model it as a perturbing force to two body
Kepler problems as [157]. Also, we are working in the post-
Newtonian limit. To include leading order PN correction,

we first have to modify the expression of the acceleration,
which is given below [157]:

a⃗GW ¼ 8m1m2

5c5r3

��
3v2 þ 17M

3r

�
r:n⃗ −

�
v2 þ 3M

r

�
v⃗

�
:

ð6:12Þ

The radial and cross-radial component of this force in
terms of b, ϕ0, and ϕ̃ in the hyperbolic orbit case is given as

R ¼ 16m3=2m1m2

15c5b9=2
ð−3þ 10 cos ϕ̃ cosϕ0 − 7cos2ϕ0Þðcos ϕ̃ − cosϕ0Þ3 sin ϕ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−sin9ϕ0cos3ϕ0

p ;

S ¼ −
64m3=2m1m2

15c5b9=2
ð−1þ 5 cos ϕ̃ cosϕ0 − 4cos2ϕ0Þðcos ϕ̃ − cosϕ0Þ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−64sin9ϕ0cos3ϕ0

p : ð6:13Þ

Once we have these components we can plug them in the osculating equations and find the change in the orbital
parameters:

dϕ0

dϕ̃
¼ −

16m1=2m1m2

15c5b5=2
ðcos ϕ̃ − cosϕ0Þ sin ϕ̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−sin5ϕ0 cosϕ0

p ½cos ϕ̃ð−3þ 10 cos ϕ̃ cosϕ0 − 7cos2ϕ0Þ

− ð3=2Þð1 − 5 cos ϕ̃ cosϕ0 þ 4cos2ϕ0Þð2 cosϕ0 − cos ϕ̃Þ�;
de

dϕ̃
¼ −

sinϕ0

cos2ϕ0

dϕ0

dϕ̃
;

dp

dϕ̃
¼ −

16m1=2m1m2

5c5b3=2
ðcos ϕ̃ − cosϕ0Þð−1þ 5 cos ϕ̃ cosϕ0 − 4cos2ϕ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−sin3ϕ0cos3ϕ0

p ;

db

dϕ̃
¼ − cotϕ0

dp

dϕ̃
−

2b
sin 2ϕ0

dϕ0

dϕ̃
: ð6:14Þ

D. Results: Numerical analysis and inferences

Now that we have all the relevant equations for studying
the binary dynamics, we proceed with the study of the
effects of dark matter on the rate of change of the
eccentricity. Before discussing our result, please note that
we have used the fourth-order Runge-Kutta method to
solve the coupled differential equations for each case
separately, as mentioned in (6.7), (6.11), and (6.14). For
each case, three coupled differential equations govern the
evolution of eccentricity e and impact parameter b and the
angle of closest approach ϕ0 with respect to the true
anomaly ϕ̃. Since we have taken the true anomaly as our
independent variable instead of time, all the plots are with
respect to ϕ̃. The range of the true anomaly is from ϕ̃ ¼
−ϕ0 to ϕ̃ ¼ ϕ0 indicating the fact that the second object
comes from infinity and means binaries after the encounter
flies to infinity again. For the net effect, we first add the
right-hand side of (6.7), (6.11), and (6.14) and then solve
the resulting coupled differential equation using the fourth-
order Runge-Kutta method.

Now we discuss our findings. The results show some
interesting features to comment upon, which we list below.
Before that, we would like to comment on the values of the
impact parameter b that we have chosen for our numerical
analysis. The values of b are of OðpcÞ, which is approx-
imately 1016m, the reason being that we are concentrating
on the motion of binaries in the dark matter medium itself,
which is distributed from rmin (defined previously) to rsp
which is approximately of Oð1016mÞ.
(1) Let us first focus on the behavior of eccentricity in

the presence of gravitational potential due to the dark
matter spike alone. This is shown in Fig. 7. The
figure shows a decrease in the eccentricity of the
hyperbolic track. We started with an initial eccen-
tricity e0 ¼ 5 and turned on the dark matter param-
eter α to look for the change in the eccentricity. The
fall of eccentricity is evidently due to the dissipative
nature of the dark matter medium itself, causing the
binaries to lose energy in the form of radiation and
eventually a change in eccentricity. Also from Fig. 8
we can see that if we increase the initial impact
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parameter for a fixed value of α, the change of e is
more pronounced.
Furthermore, as evident from Fig. 9, the eccen-

tricity falls off even more when we increase the
dark matter parameter α: 2.25,2.33,2.5, for a fixed
value of impact parameter b. The range of values for
α that we have chosen falls in the allowed range of
constraints for α [97,158].

(2) Note that the eccentricity is related to the angle ϕ0

through the relation e ¼ − 1
cosϕ0

. Owing to the
perturbation arising from the dark matter profile,
the eccentricity e changes. Then this will, in prin-
ciple, lead to a change in the angle ϕ0. Given a
hyperbolic track, the angle ϕ0 is what the binaries
make with the horizontal hyperbolic axis. A change
in the angle ϕ0 would also cause a shift in the
horizontal hyperbolic axis. We have numerically
checked that the change in ϕ0 is negligibly small.

(3) Now, coming to the part where we study the effect of
the drag force due to the presence of the dark matter
medium, we see a stark change in results. Whereas
previous studies have shown the dynamical friction
to play an important role in the behavior of orbital
parameters, we see a notable change here in this
study. Eccentric binaries with elliptic orbits have
shown an increase in eccentricity owing to the drag
of the medium leading to the orbit getting wider
[104]. However, we observe that the effect of the
dynamical friction is subdominant compared to the
effect due to the gravitational potential of the dark
matter medium itself. Our analysis is done for
several values of the initial impact parameter b,
and we have observed negligible changes in the
eccentricity arising due to the dynamical friction. As
shown in Fig. 10, for b ¼ 1014m, the change is of
the Oð10−4Þ.

(4) Finally, we turn to the effect of the GW back-
reaction. For this case, we see a steep fall in the
eccentricity values before it increases again, as seen

FIG. 9. Effect of gravitational potential of DM spike for initial
eccentricity e0 ¼ 5, initial impact parameter b0 ¼ 1014m, and
α ¼ 2.25; 2.33, and 2.5.

FIG. 8. Effect of gravitational potential of DM spike for initial
eccentricity e0 ¼ 5, α ¼ 2.25, and different values of initial
impact parameter b0 which is of the order 1014m.

FIG. 7. Effect of the gravitational potential of DM spike on the
eccentricity for initial eccentricity e0 ¼ 5, α ¼ 2.25, and different
values of initial impact parameter b0 which is of the order 1013m.
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from Fig. 11. The analysis is done for a fixed value
of the initial impact parameter. A plausible reason
for this dip in eccentricity can be accounted for by
the increased backreaction effects when the binaries
approach each other and scatter off, the backreaction
effects being the strongest when they are closest. We
can infer this as the variable controlling the param-
eters via the osculating equations is the true anomaly
factor ϕ̃ ¼ ϕ − ϕ0. The sign of the true anomaly
dictates whether the binary is closer to the secon-
dary. This can be explained very logically since

when the secondary is very far off ϕ̃ is negative, and
as it approaches the central massive black hole then
ϕ̃ approaches zero and then starts increasing again as
the secondary is scattered off.

(5) Also like the previous cases as e ¼ − 1
cosϕ0

, a change
in e implies in general a change in ϕ0. But again this
change in ϕ0 is negligible.

(6) We can see by comparing Figs. 11 and 12 that
eccentricity changes due to GW backreaction are
more when the initial impact parameter value is
small. Also, if the initial eccentricity e0 is large, then
the rate of change of the eccentricity is also larger
compared to the smaller initial eccentricity, as shown
in Fig. 12.

(7) Finally, we comment on the net effect when con-
sidering all the perturbing forces. The gravitational
potential due to dark matter minispike and the GW
backreaction force mainly contributes to the rate of
eccentricity change. When the impact parameter b is
of Oð1012–1015Þ the initial decrease of e is mainly
governed by the gravitational force generated by the
dark matter halo, but when b is of Oð106–107Þ then
the dominant contribution comes from the GW
backreaction. Also, the increase of e at later times
is entirely governed by the GW backreaction effect.

E. The “curious” case of baryons

In most cosmological models, numerical simulations
regarding the formation of structures show an inner core of
the dark matter halo, which survives and gives way to more
intricate structures like “subhalos”within their hosts. These
subhalos boost gamma-ray production from dark matter

FIG. 10. Effect for dynamical friction and accretion for initial
eccentricity and impact factor e0 ¼ 5, b0 ¼ 1014m.

FIG. 11. Effect for GW backreaction for initial eccentricity and impact factor e0 ¼ 5 and 8, b0 ¼ 106m.
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annihilation and have also been known to enhance local
cosmic ray production. However, all these estimates
regarding such boosts and enhancements assume that
baryon’s gravitational effects on the dark matter substruc-
ture are negligible. However, studies in [159,160] have
been able to show that there are viable feedback effects that
can significantly alter distributions. In [161] it was shown
that given a dwarf galaxy setup, there could be dark matter
heating due to baryons’ adiabatic compression of dark
matter. If ρ is the dark matter density and vd is the velocity
dispersion of the gas particles, we can define F ¼ ρ

v3d
as the

phase-space density. Unlike the ρ for the dark matter
density and vd, this phase-space density is unaffected in
dark matter simulations. However, hydrodynamic simula-
tions give a different picture for F, the trend being a gradual
decrease with time due to stellar feedback. This decrease is
on a factor of 10 as compared to dark matter simulations.
The stellar feedback only in the Galaxy’s central region
strongly affects the dark matter density. This is the region
where the enclosed gas mass occasionally dominates that of
the dark matter and is where the feedback most strongly
affects the gas. At the end of the hydrodynamic simula-
tions, the dark matter density at the smallest resolved radius
becomes a factor of 7 smaller than in the dark-matter-only
simulations.
Given the particular shape of the halo profile, novel

mechanisms like “resonant heating” can introduce changes
to the cusp profile. Dark matter simulations suggest such
cusp profiles, consistent with predictions from the standard
model. However, “resonant heating” due to stellar feedback
in hydrodynamic simulations turns these “cuspy” profiles
into a “flat” core. One of the effects of this flattening is to
reduce the efficiency of dynamical friction in the central

regions. Again, this flattening is due to the stellar feedback
[primarily arising out of baryons (stars and gas)]. Such
feedback may induce some heating in the globular cluster
systems until stars stop forming. The velocity distribution is
isotropic within the core and shows some radial anisotropy
outside, which is not observed if massive gas clouds drive
the mechanism. In that case, there are tangential anisotro-
pies in addition to radial ones.
Given these effects, the response of dark matter distri-

butions to baryons is topsy turvy. While the above studies
have shown a flattened curve to the profile, there are
scenarios where the effects are otherwise. To resolve these
discrepancies, theoretical arguments and simulations have
proposed baryonic processes that can produce an expansion
of the dark matter halo. Gas bulk motions, possibly
supernova-induced in regions of high star formation activ-
ity, and the subsequent energy loss of gas clouds due to
dynamical friction can transfer energy to the central dark
matter component. In [162], it has been pointed out that
there is another (possibly more relevant) effect, namely that
the gas bulk motion can induce substantial gravitational
potential fluctuations and a subsequent reduction in the
central dark matter density. In [163], it was shown that
supernovae can eject matter from halos up to 100 km=s, but
it has yet to be seen what impact this might have on dark
matter profiles, nor how the addition of radiation pressure
feedback might change things. So, while observations show
evidence for flattened dark matter density profiles up to L*
galaxies, the question remains whether there is enough
energy input from baryons in more massive objects for
these processes to be effective in altering the dark matter
density profile of spiral galaxies with a dark matter mass of
the order of 1011–1012.

FIG. 12. Effect for GW backreaction for initial eccentricity and impact factor e0 ¼ 5 and 1.5, b0 ¼ 107m.
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In light of these lessons, we focus on the density
distribution and their related effects in our case, speaking
of which we slightly change our profile following [164].
The new profile looks like the following:

ρDM ¼

8>><>>:
0 when r < rmin;

ρsp
rsp
r

�
α when rmin ≤ r < rsp;

ρcoredDM-HALO when r ≥ rsp;

ð6:15Þ

where the cored halo profile has the following structure:

ρcoredDM-HALO ¼
(
ρNFWhalo ðrcÞ


r
rc

�−γc when r < rc;

ρNFWhalo when r ≥ rc;
ð6:16Þ

where ρNFWhalo ¼ ρsð rrsÞ−1ð1þ r
rs
Þ−2 is the ubiquitous NFW

profile with rs ¼ 18.6 kpc and ρs ¼ ρ⊙ðR⊙=rsÞ×
ð1þ R⊙=rsÞ2, where R⊙ ¼ 8.2 kpc is the Sun position
and ρ⊙ ¼ 0.383 GeV=cm3, being the local DM density.
Upon “correcting” the profile taking into the baryonic
effects as discussed before into consideration, we observe
the following features:
(1) The eccentricity of the orbit shows a sharper falloff

than the one without the halo, as can be seen in
Fig. 13. This can be understood logically since the
spike and halo now dampen the hyperbolic binaries,
leading to a greater fall for the eccentricities.

(2) Another interesting feature we observe in our profile
is when we vary the dark matter parameter α. As we
increase the index—the variation being in the
permissible range of 2.25 to 2.5—we see the two
profiles merging. This is evident from Fig. 14. To
remind the readers again, these two profiles are the

dark matter spike with the halo and the one without
the halo.

1. Including the “annihilation” region

We can also do better and include some other effects
too. As can be rightly inferred, the spike radius saturates
due to DM annihilations. One can look into the physics of
such an annihilation in our orbital parameter behavior.
These annihilations happen in a region which is the
innermost of this halo plus spike domain, weakening
the density profile there. When considering models like
the WIMP ones, the annihilation cross section hσvi is
constant, flatting the dark matter profile. Let r ¼ ranni be
this “plateau” region and ρanni be the corresponding
density; then [165]

ρanni ¼
mξ

hσviT ; ð6:17Þ

where mξ is the dark matter particle mass and T is the
galaxy age.
A possible explanation for these plateaus was given in

[166], due to DM particles moving in strictly circular orbits
around the central black hole. In [166], it was shown that if
the dark matter distribution is isotropic (which was likely so
in all the simulations and analysis), the density shows a
steep rise and eventually forms a cusp and not a plateau.
The density varies as ∼r−1=2, and the cusp is maintained as
the particles outside r ¼ ranni continue to contribute to the
density inside r ¼ ranni. The distinction between a plateau
and a cusp has important observational consequences,9 and

FIG. 13. The above figures show the variation of eccentricity as a function of true anomaly parameter for different values of impact
parameter b0. The blue one is the one with the presence of spike only, and the orange one is the one with an additional halo region
covering it. The set of values we take is MDM ¼ 106M⊙, MBH ¼ 103M⊙, rs ¼ 23.1 pc, ρs ¼ 3.9 × 10−19 kg=m3, rsp ¼ 0.54 pc,

ρsp ¼ 226M⊙=pc3 and rmin ¼ 6GMBH
c2 .

9For a brief review see Ref. [167].
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hence an analysis including such subtle but nontrivial
physics is somewhat lucrative:

ρDM ¼

8>>>>><>>>>>:

0 when r < 2rS;

ρanni


r
ranni

�−0.5 when 2rS ≤ r < ranni;

ρsp
rsp
r

�
α when ranni ≤ r < rsp;

ρcoredDM-HALO when r ≥ rsp:

ð6:18Þ

Upon including these effects, the behavior in eccentricity
shows the usual trend as demonstrated previously, meaning
that it shows a sharper falloff with the changes of Oð10−2Þ
than the one without them. Also, as seen in the case of halo,

the profiles show a typical merging behavior at the high
values of α. This is shown in Fig. 15.

VII. CONCLUSION

In this work, motivated by its astrophysical significance
and the prospect of its detection by future GW detectors and
PTA [61], we studied the dynamics of hyperbolic encoun-
ters in the presence of the dark matter medium. Our
approach to studying this involved computing radiation
flux and the orbit dynamics of these encounters by treating
the effect of the medium as a perturbative term in the
Keplerian equations of motion. We observe that the power
radiation due to the GW dominates over the radiation due to

FIG. 15. Variation of eccentricity upon the addition of the “annihilation” region (green curve). We take ranni ¼ 3.1 × 10−3 pc and
ρanni ¼ 1.7 × 108M⊙ pc−3. The set of values we take is MDM ¼ 106M⊙, MBH ¼ 103M⊙, rs ¼ 23.1 pc, ρs ¼ 3.9 × 10−19 kg=m3,
rsp ¼ 0.54 pc, ρsp ¼ 226M⊙=pc3 and rmin ¼ 6GMBH

c2 .

FIG. 14. Plots showing the behavior of eccentricity as a function of impact parameter for different values of α, the dark matter
parameter index. The blue one is only for the spike profile, and the orange one is the one with an additional halo region covering it. The
set of values we take is MDM ¼ 106M⊙, MBH ¼ 103M⊙, rs ¼ 23.1 pc, ρs ¼ 3.9 × 10−19 kg=m3, rsp ¼ 0.54 pc, ρsp ¼ 226M⊙=pc3

and rmin ¼ 6GMBH
c2 .
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the dynamical friction generated by the dark matter halo.
Next, while computing the change of eccentricity by
computing various osculating elements, we observe again
the effect of dynamical friction force felt by the secondary
while interacting with the dark matter halo, and the effect of
accretion force is negligible. But, the effect of the gravi-
tational potential generated by the dark matter halo and GW
backreaction effect is significantly more. There is a genuine
falloff for eccentricity for the binaries due to these two
effects for a certain time, while there is an eventual increase
of the eccentricity due to the GW backreaction effect at late
times. Interestingly, we observe that the change in eccen-
tricity is more due to the dark matter potential for larger
values of impact parameters. On the other hand, change in
the eccentricity due to the GW backreaction increases with
the decrease of the impact parameter for a given value’s
initial eccentricity. This can be attributed to the fact that, as
we increase the initial impact parameter the secondary
object gets to interact with the dark matter halo more,
thereby increasing the effect of the dark matter potential in
the change of the eccentricity. On the other hand, as we
decrease the impact parameter, the GW backreaction effect
is larger. These results are encouraging as the effect of the
dark matter potential, which also depends on the parameter
of the underlying model, provides a change in eccentricity
and consequently can be constrained by observing such
flyby events in future detectors. Furthermore, we extended
our analysis by considering the effects of baryonic matter
that may be present inside the halo. As discussed, it leads to
the change of the profile, and we have considered one such
model and analyzed the evolution of eccentricity.
Curiously, it shows a sharper falloff due to the extra
damping provided by the presence of such matter.
However, this analysis paves the way for only so much

that can be done in these contexts. In doing the above study,
we have made a number of simplifications, the foremost
being the PN order in which it is to be computed. We have
neglected the higher-order Post-Newtonian effects for these
systems. For the flux calculation, we have only used the
leading order PN results. The shape of the halo, which is
taken here to be spherically symmetric, also needs to be
relaxed, but we leave that for future work. Furthermore,
while computing the osculating elements, we have
neglected the evolution of the dark matter density profile.
We have used only the static profile. But in general, the
dark matter density profile evolves over time which is
captured through the phase space distribution function
[109,110]. Also, the dark matter profile mentioned may
not remain the same during the entire duration of binary
motion and merger [168]. It will be interesting to find a way
to set up our computation done in this paper and investigate
the evolution of eccentricity for that case. We would like to
include this in our future analysis as this will help us to
make contact with a more realistic scenario. Furthermore,
generalizing the analysis to include spinning binaries in this

halo is also an interesting avenue to pursue in the future.
Also, throughout our study, we have only focused on the
NFW dark matter profile. Recently, there have been other
interesting dark matter profiles [169]. It will be interesting
to extend our study to those cases. Last but not least, it will
also be interesting to use the tools from the effective field
theory to study this problem, perhaps along the lines
of [87,170].
We have also looked for observational tools like the

braking index. The braking index is a useful tool for
binaries at large separations and also in regimes where the
environmental effects are dominant. We find that it starts
from a constant value when the binaries are in vacuum and
start to decrease when they come close together inside
the dark matter halo region. The study of eccentricity
evolution complements it while also helping us to infer
about environmental effects. Of course, our dissipative
model was a simplistic one, F ¼ F0rγvδ, with more general
forces having a dependence on spin, tidal deformability,
etc. If we want to include more complex effects like halo
feedbacks [109,110], there can be a possibility of a new
equilibrium [110] from the phase parametrization they
develop. Eventually, one should go for studying relativistic
and post-Newtonian effects in this framework, and this is
something we would definitely like to take over in some
future study.
Our analysis of osculating elements provides us with a

platform to construct the GW waveform [61]. By solving
the osculating equation, we can solve for the evolution of
the binary’s orbital parameters, which in turn can be used to
construct a waveform [104]. Then it will give us a route to
understand and probe into the effects of dark matter
contributions in such systems and possibly put some
constraints on the parameters using the GW data. In fact,
following the analysis of [110], one can possibly comment
on the dark matter environment by analyzing the dephasing
of such a GW waveform. We are currently in the process of
constructing such a waveform for flyby events in the
presence of dark matter and hope to report on that issue
in the near future. This will also help us to put constraints
on the dark matter using multimessenger astronomy similar
to what has been done for the circular orbit [171]. Note that
the analysis presented in this paper is valid for any mass
ratios of the binary. It will be interesting to analyze the
dephasing of gravitational waveform in the extreme mass-
ratio limit [172]. This will be an interesting study in the
context of gravitational wave phenomenology using future
detectors like LISA.
To summarize, in this work, we provide a setup for the

realistic modeling of binaries in hyperbolic orbits sur-
rounded by dark matter, which can be useful to probe into
some new information in future detectors capable of
detecting flyby events. Detecting “dark dresses” would
have an impact beyond astrophysics and cosmology since
their density profiles depend on the dark matter’s
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fundamental properties. Hence their detection (both from
the closed and the open orbits) would therefore provide a
powerful probe of the particle nature of dark matter.
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