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I. INTRODUCTION

Dp-branes or more generally p-branes are (pþ 1)-
dimensional nonperturbative solitonic objects appearing
in string theory and supergravity [1–3]. Such brane
configurations were applied in the contexts of brane world
models and brane cosmology [4–20]. In particular, in
applications to cosmology such as an inflationary universe,
branes cannot be static anymore, and dynamics of branes is
essential [5–7,9–13,15,16]. In black hole physics, dynami-
cal branes are essential for black hole dynamics such as
their collision [4,8,12,17,19]. The dynamical p-brane
solutions in a higher-dimensional gravity theory were
studied in Refs. [4–20] and have been widely discussed
ever since. However, some aspects of the physical proper-
ties, such as having a quadratic order of time dependence
and its dynamics in the context of string theory, have
remained unclear.
Although a large number of static supergravity solutions

have been investigated so far, there is still no systematic
construction method for dynamic solutions. Hence we need
as many examples as possible for dynamical solutions,
which are especially important in applications to cosmol-
ogy. We do not also have any dynamical orbifold solutions
while there is a lot of work covering the static model on an
orbifold due to not only theoretical interest but also

applications to particle phenomenology or cosmology.
Our aim in the present paper is to construct a cosmological
model on an expanding orbifold.
There is also interesting recent work to find the dynami-

cal p-brane solutions giving the dynamics of supersym-
metry breaking [20] and the issues of spacetime singularity
such as cosmic censorship conjecture [18]. Since some
dynamical solutions preserve supersymmetry, we can find
the relation deeply between the expansion of the Universe
and breaking of supersymmetry [20]. The dynamical branes
have been found by classical solutions of supergravities
which are the low-energy effective theories of superstring
theories or eleven-dimensional supergravity [6]. Since the
dynamical p-branes are extensions to static p-branes in
string theory that have been objects of intensive research,
these objects have been treated as dynamical objects in
general relativity as well as string theories. The dynamical
p-brane solutions give interesting results and important
descriptions of their dynamics in supergravities.
In this paper, we find new dynamical p-brane solutions,

which are classified into the two classes. In the first, we
promote p-brane solutions on the orbifolds Cn=Zn [21,22]
to dynamical ones. In this case, the orbifolds expand in
time. The second is a dynamical solution on the complex
projective space CPn.
This paper is organized as follows. Section II gives a

brief introduction to dynamical p-branes in gravity theory.
The ansatz of fields and the various field equations are then
discussed. Section III is presented for constructing dynami-
cal p-brane solutions on the orbifold. The setup is a simple
extension of the static p-brane system. Section III is
devoted to constructing new dynamical solutions carrying
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one antisymmetric tensor field charge. We discuss extremal
(black) p-branes and dynamical solutions. When the space
to which gauge potential does not extend is non-Ricci flat,
the function in the metric is no longer linear in time like
dynamical p-brane system but quadratic in it. We will show
it in Sec. IV. Although solutions we find in Sec. IV do not
describe a p-brane, it will allow us to obtain dynamical
solutions in D-dimensional gravity theory. Finally, we
conclude in Sec. V.

II. CHARGED EXTREMAL AND DYNAMICAL
BLACK p-BRANES

We briefly summarize the results for (pþ 2)-form field
strength in the D-dimensional theory. We consider a gauge
field strength Fðpþ2Þ in the action [22]

S ¼ 1

2κ2

Z
dDx

ffiffiffiffiffiffi
−g

p �
R −

1

2ðpþ 2Þ!F
2
ðpþ2Þ

�
; ð1Þ

where κ2 is the D-dimensional gravitational constant and g
andR denote the determinant, theRicci scalarwith respect to
theD-dimensionalmetric gMN , respectively.We assume that
theexpectationvaluesoffermionic fieldsarevanishing in this
paper. The D-dimensional action (1) describes the bosonic
part of D ¼ 10 with trivial dilaton or D ¼ 11 supergravity.
The field equations are given by

RMN ¼ 1

2 · ðpþ2Þ!
× ½ðpþ2ÞFMA1���Apþ1

FN
A1���Apþ1 −gMNF2

ðpþ2Þ�; ð2aÞ

dð�Fðpþ2ÞÞ ¼ 0: ð2bÞ

We review the properties of the p-brane to simplify the
field equations. The p-brane has p spacelike directions
which are longitudinal to the p-brane. It contains also
ðD − p − 1Þ spacelike directions that are characterized by
transverse space to the p-brane.
The longitudinal spacetime to the p-brane thus gives the

timelike direction. We will consider a single dynamical
p-brane solution with a single charge. The dynamical
p-brane does not have a translational invariant with respect
to the longitudinal spacetime to the p-brane. Since they are
localized at a point in the transverse space to the p-brane,
there is also no translational invariance.We suppose spherical
symmetry in the ðD − p − 1Þ-dimensional transverse space
for the dynamical p-brane without any angular momentum.
We take a single p-brane ansatz for the D-dimensional

metric

ds2 ¼ haðx; yÞqμνðxÞdxμdxν þ hbðx; yÞuijðyÞdyidyj; ð3Þ

whereqμνðxÞ is a (pþ 1)-dimensionalmetricwhich depends
only on the coordinates t, xα with α being the spatial

coordinates, and uijðyÞ is the ðD−p−1Þ-dimensional metric
which depends only on the coordinates yi. The coordinates
of D-dimensional spacetime are divided by two sets,
xM ¼ ðxμ; yiÞ, with μ ¼ 0;…; p and i ¼ 1;…; D − p − 1.
Here, the yi’s denote the coordinates of the transverse space.
We divide again the coordinates xμ into two parts, the time
coordinate t and the spatial coordinates xαðα ¼ 1;…; pÞ,
where the xα’s span the directions longitudinal to the brane.
We choose the timelike direction x0 ¼ t and assume that the
metric depends not only on t and yi, but also on xα. The
metric form (3) is a straightforward generalization of the case
of a static p-brane system [4–6].
The parameters a and b in the dynamical brane system

are given by

a ¼ −
D − p − 3

D − 2
; b ¼ pþ 1

D − 2
; ð4Þ

while the gauge field strength Fðpþ2Þ is also assumed to be

Fðpþ2Þ ¼ dðh−1Þ ffiffiffiffiffiffi
−q

p ∧ dt ∧ dx1 ∧ � � � ∧ dxp; ð5Þ
where q denotes the determinant of the ðpþ 1Þ-dimen-
sional metric qμν. Under our ansatz, the Einstein equations
become

RμνðXÞ−h−1DμDνh−
a
2
h−1qμνð△Xhþh−1△YhÞ¼0; ð6aÞ

RijðYÞ −
b
2
uijð△Xhþ h−1△YhÞ ¼ 0; ð6bÞ

∂μ∂ih ¼ 0; ð6cÞ

where Dμ denotes the covariant derivative with respect to
the metric qμν,△X and△Y are the Laplace operators on the
(pþ 1)-dimensional world-volume spacetime X and
ðD − p − 1Þ-dimensional space Y spaces, and RμνðXÞ
and RijðYÞ are the Ricci tensors of the metrics qμν and
uij, respectively. From Eq. (6c), the function hðx; yÞ has to
be in the form

hðx; yÞ ¼ h0ðxÞ þ h1ðyÞ: ð7Þ
The other components of the Einstein equations (6a) and
(6b) can be rewritten as

RμνðXÞ − h−1DμDνh0 −
a
2
h−1qμνð△Xh0 þ h−1△Yh1Þ ¼ 0;

ð8aÞ

RijðYÞ −
b
2
uijð△Xh0 þ h−1△Yh1Þ ¼ 0: ð8bÞ

Next we consider the gauge field strength. From the
assumption (5), we find that the Bianchi identity is
automatically satisfied while the equation of motion for
the gauge field (2b) becomes △Yh1 ¼ 0, and ∂μ∂ih ¼ 0.
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If Fðpþ2Þ ≠ 0, the function h1 is nontrivial. The Einstein
equations thus reduce to

RμνðXÞ ¼ 0; ð9aÞ

RijðYÞ ¼
1

2
bðpþ 1Þλ uij; ð9bÞ

DμDνh0 ¼ λ qμν; ð9cÞ

△Yh1 ¼ 0; ð9dÞ

where λ is a constant. We see that the space Y is not Ricci
flat, but the Einstein space such as CPn if λ ≠ 0, and the
function h can be more nontrivial.
Let us consider the case

qμν ¼ ημν; ð10Þ

where X is (pþ 1)-dimensional Minkowski spacetime. If
Dμh0 ≠ 0 and ðDμh0ÞðDμh0Þ ≠ 0, the solution for h0 is
given by

h0ðxÞ ¼
λ

2
xμxμ þ āμxμ þ ā: ð11Þ

Here we have introduced constants āμ and ā satisfying
the condition āμāμ ≠ 0. However, if Dμh0 ≠ 0 and
ðDμh0ÞðDμh0Þ ¼ 0, there exists a solution only when λ ¼ 0.
Before concluding this section, we should comment on

he ansatz for fields (9). The simplification to the field
equations (2) strongly depends on choosing parameters for
the metric. With this choice, the metric can be written by
the function hðx; yÞ multiplying a flat metric for the
(pþ 1)-dimensional longitudinal spacetime. Note that
the function hðx; yÞ depends on ðD − p − 1Þ-dimensional
transverse space to the p-brane as well as the (pþ 1)-
dimensional longitudinal coordinates. Hence, the p-brane
is fully characterized by time. Moreover, in the context of
cosmology, the dynamical p-brane is most of the time
related to the fact that the solutions describe an expansion
of the Universe.

III. DYNAMICAL p-BRANE ON ORBIFOLD

We now construct the solution of the dynamical p-brane
on orbifold explicitly. This case is interesting because field
equations are analytically solved (9).
The Einstein equations (9b) can be solved when we start

with a CPðD−p−3Þ=2 metric in ðD − p − 1Þ dimensions,
namely, a ZðD−p−1Þ=2 orbifold of CðD−p−1Þ=2 [23–27]:

uijðyÞdyidyj ¼ dr2 þ r2
��

dρþ sin2ξðD−p−3Þ=2

�
dψ ðD−p−3Þ=2 þ

1

ðD − p − 3ÞωðD−p−5Þ=2

��
2

þ ds2
CPðD−p−3Þ=2

�
; ð12Þ

where we have used ω0 ¼ 0, r is a radial coordinate, ρ is a coordinate of S1, ξðD−p−3Þ=2 and ψ ðD−p−3Þ=2 are coordinates of the
CPðD−p−3Þ=2 space with the ranges 0 ≤ ξðD−p−3Þ=2 ≤ π=2, 0 ≤ ψ ðD−p−3Þ=2 ≤ 2π, and ωðD−p−3Þ=2 and ds2CPðD−p−3Þ=2 state a one-

form and a metric on the CPðD−p−3Þ=2 space, recursively defined as [28–30]

ds2
CPðD−p−3Þ=2 ¼ ðD − p − 1Þ

�
dξ2ðD−p−3Þ=2 þ sin2ξðD−p−3Þ=2cos2ξðD−p−3Þ=2

�
dψ ðD−p−3Þ=2 þ

1

ðD − p − 3ÞωðD−p−5Þ=2

�
2

þ 1

ðD − p − 3Þ sin
2ξðD−p−3Þ=2ds2CPðD−p−5Þ=2

�
; ð13Þ

and

ωðD−p−5Þ=2 ¼ ðD − p − 3Þsin2ξðD−p−5Þ=2

�
dψ ðD−p−5Þ=2 þ

1

ðD − p − 5ÞωðD−p−7Þ=2

�
; ð14aÞ

ds2CP1 ¼ 4ðdξ21 þ sin2 ξ1 cos2 ξ1dψ2
1Þ; ð14bÞ

ω1 ¼ 4sin2ξ1dψ1: ð14cÞ

Here ðr; ρÞ describes a complex line, and ρ together with
CPðD−p−3Þ=2 denote a orbifold action of the ðD − p − 2Þ-
dimensional sphere SD−p−2=ZðD−p−1Þ=2, which is actually
an event horizon [21,22].

One remark is in order before we continue. In Eq. (12),
we assume RðYÞ ¼ 0, which is constructed from the metric
uijðyÞ. Such an assumption would give λ ¼ 0 in the
Einstein equations (9b).
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We impose on the condition h1 ¼ h1ðrÞ in the field
equations. If we introduce the dependence of radial
coordinate r for the function h1, we have reduced the
problem to the equation (9d)

△Yh1 ¼
1

rD−p−2
d
dr

�
rD−p−2 d

dr
h1

�
¼ 0: ð15Þ

This is solved to give for D − p − 3 ≠ 0

h1ðrÞ ¼ b1 þ
b2

rD−p−3 : ð16Þ

Here b1 and b2 are constant parameters. The gauge field
strength is asymptotically vanishing according to the
limit r → ∞ in the function h1ðrÞ. We have assumed
D − p − 3 > 0 in Eqs. (15) and (16) giving zeroth of the
gauge field strength asymptotically and a Kasner spacetime
at infinity. We will discuss them more detail later. One can
show that the solution (16), when D − p − 3 ≠ 0 is
replaced for D − p − 3 ¼ 0, is a direct consequence of
Eq. (15). The solution is then shown to be

h1ðrÞ ¼ b3 þ b4 ln r; ð17Þ

where the function h1 diverges both at r → ∞ and r → 0.
Since there is no regular spacetime region near the p-brane,
such solutions are not physically relevant. We will here
consider the case D − p − 3 > 0 in the following. We have
constructed dynamical solutions depending on parameters,
āμ, â, and b2. The solutions are characterized by the function
which is harmonic in ðD − p − 3Þ-dimensional space:

hðx; rÞ ¼ āμxμ þ âþ b2
rD−p−3 ; ð18Þ

where â is defined by â ¼ ãþ b1.
The surfaces of constant t are spacelike everywhere. The

geometry resembles the infinite throat familiar from the
asymptotically flat extremal Reissner-Nordström solution
near r ¼ 0. This can be expressed by the spatial metric in
spherical coordinates centered at r ¼ 0. Near the origin of
these coordinates, this metric becomes

ds2 ≈
�

b2
rD−p−3

�
a
ημνdxμdxνþ

�
b2

rD−p−3

�
b
r2
�
dr2

r2
þdΩ2

�
;

ð19Þ
which is the metric for a warped cylinder of infinite spatial
extent having cross sectional area. Here the metric dΩ2

takes the form of

dΩ2 ¼
�
dρþ sin2ξðD−p−3Þ=2

�
dψ ðD−p−3Þ=2 þ

1

ðD − p − 3ÞωðD−p−5Þ=2

��
2

þ ds2
CPðD−p−3Þ=2 : ð20Þ

If we set D − p − 3 ¼ −1 and āα ¼ 0ðα ¼ 1; 2;…; pÞ,
then we have hðt; rÞ ¼ ā0tþ âþ b2r. Hence, any points on
the branes are regular and time dependent.When we take the
limit of hðt; rÞ → 0 (or finite) as r → ∞ for D − p − 3 > 1
(or r is finite for D − p − 3 ¼ 1), the D-dimensional
spacetime metric becomes

ds2 ¼ ðā0tÞaημνdxμdxν þ ðā0tÞbðdr2 þ r2dΩ2Þ; ð21Þ
where we set â ¼ 0 without loss of generality. One can note
that the spacetime turns out to be time dependent. To see its
dynamical behavior, we introduce a new time coordinate

τ ¼ τ0ðā0tÞa2þ1; ð22Þ

where τ ¼ 2
ā0ðaþ2Þ. The asymptotic dynamical solution is

rewritten as

ds2 ¼ −dτ2 þ
�
τ

τ0

�
aða

2
þ1Þ−1X

α

ðdxαÞ2

þ
�
τ

τ0

�
bða

2
þ1Þ−1

uijdyidyj: ð23Þ

Hence, we find a Kasner-like expansion:

a
2

�
a
2
þ 1

�
−1
pþ b

2

�
a
2
þ 1

�
−1
ðD − p − 1Þ ¼ 1; ð24aÞ

a2

4

�
a
2
þ 1

�
−2
pþ b2

4

�
a
2
þ 1

�
−2
ðD − p − 1Þ ¼ 1: ð24bÞ

Equation (24a) is always satisfied for any dynamicalp-brane
configuration while Eq. (24b) is true only forM theory or the
D3-brane system because there is no or trivial dilaton in the
background [6].
The dynamics of brane is also correct when we fix the

position in the transverse space to the p-brane, even if the
metric is locally inhomogeneous in the bulk space.
The curvature of Eqs. (3) and (18) can be singular at

zeros of the metric function h. This can be seen from the
square of the (pþ 2)-form field strength,

F2
ðpþ2Þ ≡ FA1���Apþ2

FA1���Apþ2 ¼ −hγð∂rhÞ2; ð25Þ

where γ ¼ −4þ ðD−p−4Þðpþ1Þ
D−2 < 0. If the function h ¼ 0

and ∂rh does not vanish like h2 or faster, then F2
ðpþ2Þ

diverges and the curvature is singular.
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According to these elements, we can find a behavior of
how the background geometry develops in time. Here we
assume ā0 ≠ 0 in the D-dimensional spacetime. One can
note that the D-dimensional metric (3) exists for h > 0.
Otherwise, the solution has curvature singularities at h ¼ 0
while the metric gives complex geometry for h < 0. We
expect a type of singularity may appear at hðt; rÞ ¼ 0.
Since hðt; rÞ is a linear function of t for ā0 ≠ 0, it vanishes
once for any position r at t ¼ −ðâþ b2r−Dþpþ3Þ=ā0. Since
the function h is positive everywhere for ā0tþ â > 0, the
spatial surfaces are not singular. They are asymptotically
time dependent spacetime and have the cylindrical form of
an infinite throat near r ¼ 0. The spatial metric is not
singular and the cylindrical form everywhere. When
ā0tþ â is slightly increased, a singularity appears near
r ¼ ∞. As ā0tþ â increases further, the singularity cuts off
more and more of the cylinder.

IV. DYNAMICAL SOLUTION ON CPn SPACE

In this section, we present the dynamical solution on the
CPn space which happens when the Einstein equations
become Eq. (9). As seen from the Einstein equations, the
internal space Y is not necessarily Ricci flat, and the
function h0 is no longer linear in the coordinates xμ but
quadratic in them.

A. Dynamical solution on CP1 space

First, we consider the case in which Y is a simple CP1

space

ds2CP1 ¼ ð1þ r̃2Þ−2ðdr̃2 þ r̃2dθ̃2Þ: ð26Þ

Note that CP1 space can be expressed by the Fubini-Study
metric because of a diffeomorphism CP1 ≅ S2. The metric
of four-dimensional bulk transverse space is thus given by

uijðyÞdyidyj

¼ dr2 þ r2
��

dρþ 1

2
sin2

�
1

2
arctan r̃

�
dθ̃

�
2

þ ds2CP1

�
;

ð27Þ

where we have usedω0 ¼ 0. Let h1ðr̃; θ̃Þ be a function on Y
of the form

h1ðr̃; θ̃Þ ¼ H̃ðr̃Þ þ K̃ðθ̃Þ: ð28Þ
Then, the equation △Yh1 ¼ 0 gives

∂r̃ðr̃∂r̃H̃Þ þ 1

r̃
∂
2
θ̃
K̃ ¼ 0: ð29Þ

If we assume that functions H̃ðr̃Þ and K̃ðθ̃Þ obey

r̃∂r̃ðr̃∂r̃H̃Þ − ε ¼ 0; ∂
2
θ̃
K̃ þ ε ¼ 0; ð30Þ

we find

h1ðr̃; θ̃Þ ¼
1

2
εðln r̃Þ2 þ c̃1 ln r̃ −

1

2
εθ̃2 þ c̃2θ̃ þ c̃3: ð31Þ

Here ε and c̃iði ¼ 1;…; 3Þ are constants.
The metric we found as the solution (11) and (31) is not

of the product type. The existence of a nontrivial gauge
field strength forces the function hðx; yÞ to be a linear
combination of a function of xμ and a function of yi, which
is not the conventional assumption. The function in
Eq. (11) implies that we cannot drop the dependence on
the world volume coordinate for a nonvanishing Ricci
scalar RðYÞ. This solution gives the inhomogeneous uni-
verse due to the function h1 when we regard the bulk
transverse space as four-dimensional space.

B. Dynamical solution on CP2 space

Next, we discuss solution on CP2 space, whose metric is
given by [31]

ds2CP2 ¼ ð1þ ρ̄2Þ−2dρ̄2 þ ρ̄2

4
ð1þ ρ̄2Þ−2ðdψ þ cos θdϕÞ2

þ ρ̄2

4
ð1þ ρ̄2Þ−1ðdθ2 þ sin2 θdϕ2Þ: ð32Þ

If we set

h1ðρ̄; θÞ ¼ H̄ðρ̄Þ þ K̄ðθÞ; ð33Þ

the equation △Yh1 ¼ 0 yields

ð1þ ρ̄2Þ3
ρ̄3

∂ρ̄

�
ρ̄3

1þ ρ̄2
∂ρ̄H̄

�
þ 1

sin θ
∂θ

�
4ð1þ ρ̄2Þ

ρ̄2
sin θ∂θK̄

�

¼ 0: ð34Þ

For example, we require that the functions H̄ðρ̄Þ and K̄ðθÞ
satisfy

ð1þ ρ̄2Þ2
ρ̄

∂ρ̄

�
ρ̄3

1þ ρ̄2
∂ρ̄H̄

�
− ε̄ ¼ 0;

1

sin θ
∂θðsin θ∂θK̄Þ þ ε̄ ¼ 0: ð35Þ

Here, ε̄ denotes constant. The solution to these equations is
thus

H̄ðρ̄Þ ¼ 2ε̄ − c̄1
2ρ̄2

þ c̄1 ln ρ̄þ c̄2; ð36aÞ

K̄ðθÞ ¼ 1

2
ðε̄þ c̄3Þ ln ð1 − cos θÞ

þ 1

2
ðε̄ − c̄3Þ ln ð1þ cos θÞ þ c̄4; ð36bÞ

where c̄iði ¼ 1;…; 4Þ are constants.
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The scale factor of the Universe again includes the
inhomogeneity due to functions h0 and h1. We live in the
(pþ 1)-dimensional spacetime. In this case, since we fix
our Universe at some position in the CP2 space, the line
element is given by

ds2 ¼
�
λ

2
ð−t2 þ xαxαÞ

�
a
ð−dt2 þ dr̄2 þ r̄2dΩ2

ðp−1ÞÞ

þ
�
λ

2
ð−t2 þ xαxαÞ

�
b
ds2ðYÞ; ð37Þ

where we set āμ ¼ 0, â ¼ 0, dΩ2
ðp−1Þ denotes the metric of

(p − 1)-dimensional sphere Sp−1, and

ημνdxμdxν ¼ −dt2 þ δαβdxαdxβ

¼ −dt2 þ dr̄2 þ r̄2dΩ2
ðp−1Þ; ð38aÞ

ds2ðYÞ ¼ dr2 þ r2
��

dρþ 6sin2ξ2

�
dψ2 þ

1

4
ω1

��
2
�
:

ð38bÞ

The D-dimensional spacetime (37) is regular for h0 ¼
λ
2
ð−t2 þ xαxαÞ > 0. We find again curvature singularities if

h0 ¼ 0. Since the function h0 changes sign somewhere in
the D-dimensional spacetime, the metric is restricted to the
h0 > 0 region bounded by curvature singularities.
Although it looks inhomogeneous at first glance, in

terms of the coordinate transformation for λ > 0,

t ¼
ffiffiffi
2

λ

r
T sinh R̄; r̄ ¼

ffiffiffi
2

λ

r
T cosh R̄; ð39Þ

we can rewrite the metric (37) as

ds2 ¼ 2

λ
T2a½−dT2 þ T2fdR̄2 þ R̄2dΩ2

ðp−1Þ þ ds̄2ðYÞg�

¼ 2

λ

�
−dT̄2 þ

�
pþ 1

D − 2

�
2

T̄2fdR̄2 þ R̄2dΩ2
ðp−1Þ þ ds̄2ðYÞg

�
; ð40Þ

where we have defined

T̄¼
�
D−2

pþ1

�
Tðpþ1Þ=ðD−2Þ; ds̄2ðYÞ¼ λ

2
ds2ðYÞ: ð41Þ

One can note that the metric (40) represents an isotropic
and homogeneous spacetime. The scale factor of the
Universe is thus proportional to the function T̄ of the
cosmic time, which is known as the Milne universe.

If λ < 0, we should use the coordinate transformation:

t ¼
ffiffiffiffiffiffiffi
−
2

λ

r
R̄ cosh T; r̄ ¼

ffiffiffiffiffiffiffi
−
2

λ

r
R̄ sinh T: ð42Þ

Then we have

ds2 ¼ 2

jλj R̄
2a½dR̄2 þ R̄2f−dT2 þ R̄2dΩ2

ðp−1Þ þ dŝ2ðYÞg�

¼ 2

jλj
�
dR̂2 þ

�
pþ 1

D − 2

�
2

R̂2f−dT2 þ R̂2dΩ2
ðp−1Þ þ dŝ2ðYÞg

�
; ð43Þ

where R̂ and dŝ2ðYÞ are given by

R̂¼
�
D−2

pþ1

�
R̄ðpþ1Þ=ðD−2Þ; dŝ2ðYÞ¼ jλj

2
ds2ðYÞ: ð44Þ

The metric (43) describes a conformally flat and inhomo-
geneous spacetime, but it is different from aMilne universe.
The D-dimensional background is described by static
spacetime when we fix a position in the CP2 space. The
solution gives a parameter λ coming from the curvature of
Y space. Note that it makes a contribution similar to the
cosmological constant in the Einstein equations. Since λ is

not a D-dimensional cosmological constant, it does not
actually give de Sitter (dS) or anti–de Sitter (AdS) space.
In our setup, the solution for λ > 0 gives an expanding
universe similar to dS while we find a conformal flat static
solution like AdS spacetime in the case of λ < 0.

V. CONCLUSION AND REMARKS

We have found two new dynamical p-brane solutions.
The first is p-brane solutions on the orbifolds Cn=Zn
[21,22] expanding in time. The second is dynamical
solutions on the complex projective space CPn.
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Our new solutions have been obtained by replacing a
constant c in the function h ¼ cþ h1 of a static solution
with a quadratic function of the coordinates xμ. We have
obtained dynamical p-brane solutions on the orbifold
whose spacetime metric depends on the coordinates of
both the world volume and the space transverse to the
p-brane. The field equations normally indicate that
dynamical solutions can be found while two functions in
the metric depends on both the time and overall transverse
space coordinates. We have constructed a solution explic-
itly in the case of λ ≠ 0 beyond the examples considered in
the previous works. The ansatz for fields to solve the field
equations have been chosen by the extension to the static
solution or the supersymmetric static p-brane solution,
which is the extremal case. We have proceeded the
construction further with respect to the D-dimensional
action (1) and considered a time-dependent gauge field
strength in the background. Since the field equation with
our ansatz of fields allows the time-dependent solution, the
supergravity theories, for instance, realize the dynamical
p-brane at the classical level. We could present dynamical
solution explicitly in Eqs. (31) and (36). We note that the
no-force condition for the dynamical p-brane on the
orbifold is the same as dynamical branes which have been
discussed in [16].
Constructing dynamical p-brane solutions on the orbi-

fold are most interesting issues of the string cosmology
because the evolution of universe is derived from brane
configurations. We then find cosmological models from

those solutions by smearing some dimensions. We have the
cosmological solutions with a power-law expansion.
However, the solutions of Einstein equations cannot give
a realistic expansion law. Although our solution gives the
dynamics of the various branes in D dimensions, we have
to specify the compactification to construct the four-
dimensional cosmology. The time-dependent solution we
have obtained here would give a key to construct in more
realistic cosmological models.
The metric in Eq. (12) in our paper denotes the orbifolds

Cn=Γ with a discrete group Γ. When Γ ¼ Zn the orbifold
metric is well known including the case that its orbifold
singularity is resolved, in which case the space is a certain
complex line bundle over CPn−1. The metric with an
arbitrary Γ is in general difficult to solve or unknown.
In this paper, we concentrated on the simplest case, but it
remains a future problem to consider more general cases.
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