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We consider the Penrose process with the charged particles in the Reissner-Nordström background. Let
parent particle 0 decay to particles 1 and 2. With the assumption that all three particles move in the
equatorial plane, the exact formulas for characteristics of particles 1 and 2 in terms of those of particle 0 are
derived. We concentrate on scenarios in which particle 1 and 2 are ejected along the trajectory of particle 0.
It is shown that such scenarios correspond to the extrema of energies E1 or E2 of daughter particles with
respect to the angular momentum L1 or L2. We derive bounds on the values of angular momenta L1 and L2.
We give classification of these scenarios and discuss their properties including decay in the near-horizon
region. We find that the maximum of efficiency is achieved on the horizon for some of these scenarios but
not for all of them and with additional constraints on particle parameters. The results are reformulated in
terms of velocities of daughter particles in the center of mass frame. The approach is applicable also to
collisional Penrose process, in which a combination of particles 1 and 2 is considered as one effective
particle. If the mass of particle 0 m0 → ∞, then the situation corresponds to the Bañados-Silk-West effect,
the results agree with the ones known in literature before. In addition, we consider special cases when decay
occurs in the turning point for one or all three particles. The formalism developed in this work has a
model-independent character and applies not only to the Reissner-Nordström metric.

DOI: 10.1103/PhysRevD.109.124053

I. INTRODUCTION

The Penrose process (hereafter PP) means that a parent
particle 0 decays to two daughter ones 1 and 2 in such a
way that one of them (say, 1) has a negative energy whereas
particle 2 returns to infinity with an energy bigger than an
initial energy E0 of particle 0. This process becomes
possible if in a space-time there exists the region (called
ergoregion or ergosphere) inside which gμνξμξν > 0, where
gμν are metric coefficients and ξ is the Killing vector
responsible for time translation [the signature of a metric is
chosen to be (−;þ;þ;þ)] [1,2]. Meanwhile, a counterpart
of the original PP in the Reissner-Nordström (RN) back-
ground was found due to the properties of particle dynam-
ics even in spite of the absence of such an ergoregion [3,4].
Instead, in this metric negative energies are possible in
some region (called generalized ergoregion) whose border
depends on the electric charge, angular momentum and
mass of a particle.

More recently, we have seen a new wave of interest to the
PP in new contexts. This includes the collisional version of
it [5], confined one [6,7], the relation between the so-called
Bañados-Silk-West (BSW) effect [8] and the PP, the PP for
spinning particles [9], binaries [10,11], the PP in the back-
ground of the Vaidya space-time [12]. In case of getting
formally unbounded energies, the PP is called super-Penrose
(SPP) effect (see, e.g. [13] and references therein). The
subtleties connected with the difference between power and
efficiency of the PP was discussed in [14].
As a rule, the investigations of the BSW effect were

based on the careful analysis of the vicinity of the horizon.
If we characterize the proximity to the horizon by the value
of the lapse function N, then this implies that there is a
small parameter N ≪ 1. Meanwhile, there is another
approach that is based on exact formulas describing decay.
For neutral particles this was realized in [15]. The mean-
ingful difference between (i) collisions near a rotating black
hole and (ii) a static charged one consists in that in case
(i) there is an upper bound forbidding the SPP near black
holes but there is no such a bound for (ii) [16,17].
The emphasis in [3,4] and the main part of subsequent

works of this trend (see Ref. [18] for review) was made on
the properties of negative energy states for a given particle
in the presence of the electromagnetic field for a concrete
metric [19]. Meanwhile, we are going to focus on another
aspect connected with the relation between an initial state
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and its products after decay. We elucidate how character-
istics of particle 0 and those of particles 1 and 2 are related
with each other, which scenarios are possible in principle
and what are their properties.
Although for a realistic process in astrophysics it is

necessary to take into account both rotation and electro-
magnetic field that includes not only the electric but also
the magnetic one [20–24] (see also a useful list of
references on the subject in [25]), it looks reasonable at
the first stage to consider a simplified problem and separate
two different factors—rotation and electric charge. In the
previous work [26] we gave full classification of possible
scenarios for the particle decay and PP with neutral
particles in the rotating background, provided all processes
occur within the equatorial plane. In the present work, we
consider a similar problem for electrically charged particles
in the static black hole metric with the charge, i.e. the
Reissner-Nodström (RN) one. It is worth noting that a
similar problem was considered recently in [27] but for
weakly charged black holes only and one scenario whereas
in our approach we take into account this charge exactly
and give classification of all possible scenarios. What is
more important, our results are qualitatively different (see
discussion below).
Although the main area of application is the RN metric,

practically all formulas do not use its particular form. This
means that our results apply to the wide class of spherically
symmetric static metrics described by Eq. (1) below.
Although they do not apply to axially symmetric stationary
ones directly, we hope that general idea is useful for them as
well, even under the presence of the electromagnetic field.
The reason is that our scheme is quite general. (i) We do not
restrict ourselves by a particular scenario in which decay
occurs in a turning point of radial motion but build
classification scheme of all possible scenarios, (ii) we find
explicitly the expression for a velocity of fragments after
decay, (iii) we trace the relation between the electromag-
netic version [28] of the Wald approach [29] and particle
dynamics of decay, thus relating the velocities and masses,
(iv) we find explicitly the angular momenta of daughter
particles. We will see that the roles of rotation and electric
charge are very different and some scenarios of the PP
forbidden inside the ergosphere of the rotatingmetric [26] are
allowed in the generalized ergosphere of the static charged
metric. Thus the present work and the previous one [26]
constitute the mutually complementary pair that we hope to
combine in a unified picture later.
A separate question is the dependence of the efficiency

of the process on the position of the decay point. There is a
popular approach in which this point is chosen as close to
the horizon as possible, with point of decay coinciding with
a turning point of particle 0 (see, e.g., Sec. 5.1 of [20]).
Meanwhile, we show that this is not always so and depends
strongly on a type of scenario the list of which we discuss
carefully case by case. Bearing in mind future application

to astrophysical process, this seems to be important enough
since it allows to describe different cases without additional
artificial assumptions about a particular type of decay.
The paper is organized as follows. In Sec. II we list

equations of particle motion in the RN background. In
Sec. III we give the exact formulas that related character-
istics of particle 0 and particles 1, 2. In Sec. IV we suggest
classification of scenarios when particle 0 is ingoing. In
Sec. VI we make emphasis on a type of decay when
particles 1 and 2 are ejected along the trajectory of particle
0. In Sec. VII we consider a special case when an escaping
particle is massless. In Sec. VIII we consider some proper-
ties of scenario I including bounds on the energy and
angular momentum of an escaping particle and decay in the
near-horizon region. In Sec. IX we discuss the situation
when the point of decay coincides with the turning point of
radial motion for particle 0, particle 2 or with a common
turning point of all three particles. In Sec. X we derive the
conditions necessary for the PP process in the scenarios
under discussion. In Sec. XI we reformulate our result
kinematically, using the velocities of particles and their
Lorentz gamma factors. In Sec. XII we consider the
scenario in which particle 0 is outgoing. In Sec. XIII we
consider the conditions under which the maximum of the
efficiency is achieved on the horizon depending on sce-
nario. In Sec. XIV we summarize the main features of the
considered scenarios with short comments. In Sec. XV we
compare our results with some other ones recently pub-
lished and explain the origin of discrepancy. In Sec. XVI
we display the relation between our approach and that used
in literature for the description of the BSWeffect before. In
Sec. XVII we give the summary of main results. In the
Appendix we derive some useful inequalities relevant for
the PP near the horizon.
We use system of units in which fundamental con-

stants G ¼ c ¼ 1.

II. CHARGED PARTICLES IN THE METRIC
OF REISSNER-NORDSTRÖM BLACK HOLE

We consider the metric that has the form

ds2 ¼ −dt2f þ dr2

f
þ r2dω2; ð1Þ

with dω2 ¼ dθ2 þ sin2θdϕ2. We will mainly deal with the

RN metric, then f ≡ N2 ¼ 1 − 2M
r þ Q2

r2 ¼ ðr−rþÞðr−r−Þ
r2 .

Here, M is a black hole mass, Q is its electric charge
(for definiteness Q > 0), rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
being the

event horizon radius, r− ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
the inner

horizon radius. Meanwhile, basic results are extendable
to an arbitrary f outside the event horizon.
Let us consider motion of a charged particle in this

space-time without additional forces. Then, there are two
integrals of motion. As the metric does not depend on time
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and angle ϕ, the energy E and angular momentum L are
conserved. Motion occurs within a plane which we choose
to be θ ¼ π

2
. Then, equations of motion read (dot denotes

derivative with respect to the proper time τ)

ṫ ¼ X
mf

; ð2Þ

X ¼ E − qφ; ð3Þ

ϕ̇ ¼ L
mr2

; ð4Þ

mṙ ¼ σP; ð5Þ

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2m̃2

p
; ð6Þ

m̃2 ¼ m2 þ L2

r2
: ð7Þ

Here, q is a particle’s charge, φ ¼ Q
r is the Coulomb

potential of the RN metric, σ ¼ �1. The forward-in-time
condition ṫ > 0 requires

X ≥ 0; ð8Þ
outside the horizon X > 0.
From P2 ≥ 0 we have a more tight condition than (8):

X ≥ m̃N: ð9Þ

III. DECAY TO TWO PARTICLES:
GENERAL SCENARIO

Let in some point r ¼ rd particle 0 decay to particles 1
and 2. For simplicity, we assume that all three particles
move within the same plane. In the point of decay the
conservation laws give us

E0 ¼ E1 þ E2; ð10Þ
L0 ¼ L1 þ L2; ð11Þ
q0 ¼ q1 þ q2: ð12Þ

It follows from (10)–(12) that

X0 ¼ X1 þ X2: ð13Þ

The conservation of the radial component of momentum
reads

σ0P0 ¼ σ1P1 þ σ2P2: ð14Þ

Let particle 0 move with decreasing r, so σ0 ¼ −1. It is
clear that combination σ1 ¼ σ2 ¼ þ1 is impossible since

this would contradict Eq. (14). For definiteness, we assume
that particle 1 moves after decay with σ1 ¼ −1. Moreover,
we imply that in the frame comoving with particle 0 (which
is the center of mass frame of particles 1 and 2 in the point
of decay), particle 1 moves in the inward direction as well.
Meanwhile, σ2 can have any sign. In the center of mass
frame particle 2 moves in the outward direction with some
velocity v2. However, if we pass to the frame comoving
with particle 0 that moves in the inward direction with the
velocity V2 in the static frame, both cases are possible:
σ2 ¼ −1 or σ2 ¼ þ1 depending on which value of the
velocity is bigger (below we will discuss this issue in
more detail).
Then we have

P0 ¼ P1 − σ2P2: ð15Þ
Solving equations of motion, we obtain

X1 ¼
X0

2m̃2
0

b̃1 − δ
P0

ffiffiffĩ
d

p

2m̃2
0

; ð16Þ

X2 ¼
1

2m̃2
0

�
X0b̃2 þ P0δ

ffiffiffĩ
d

p �
; ð17Þ

P1 ¼
�����P0b̃1 − δX0

ffiffiffĩ
d

p

2m̃2
0

�����; ð18Þ

P2 ¼
�����P0b̃2 þ δX0

ffiffiffĩ
d

p

2m̃2
0

�����: ð19Þ

Here, δ ¼ �1,

b̃1;2 ¼ m̃2
0 þ m̃2

1;2 − m̃2
2;1; ð20Þ

d̃ ¼ b̃21 − 4m̃2
0m̃

2
1 ¼ b̃22 − 4m̃2

0m̃
2
2: ð21Þ

For what follows, it is also convenient to introduce also
corresponding quantities without tilde:

b1;2 ¼ m2
0 þ ðm2

1;2 −m2
2;1Þ; ð22Þ

d ¼ b21 − 4m2
0m

2
1 ¼ b22 − 4m2

0m
2
2: ð23Þ

Then, it can be obtained from (11) that

b̃1;2 ¼ b1;2 þ
2L0L1;2

gϕ
; ð24Þ

d̃ ¼ dþ 4b1
L0L1

r2
−
4L2

1

r2
m2

0 − 4
L2
0

r2
m2

1; ð25Þ

d̃ ¼ dþ 4b2
L0L2

r2
−
4L2

2

r2
m2

0 − 4
L2
0

r2
m2

2: ð26Þ

Equations (16)–(19) are the counterpart of Eqs. (19),
(20), (26), (27) in [15] obtained there for rotating metrics.
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The essential difference consists in the expression for X.
Now it is given by (3) and does not depend on L.
Meanwhile, in [15] X ¼ E − ωL, the ω is the metric
coefficient responsible for rotation. It is the fact that L
does not enter the expression for X that allows some
scenarios which were forbidden in the rotating case
(see below).

A. Unconditional bounds on mass

From the condition d̃ ≥ 0 one can deduce that

m̃0 ≥ m̃1 þ m̃2: ð27Þ

The same condition requires that, according to (25), (26)

Lð−Þ
1;2 ≤ L1;2 ≤ LðþÞ

1;2 ; ð28Þ

where

Lð�Þ
1;2 ¼ b1;2L0

2m2
0

�
ffiffiffi
d

p
rd

2m2
0

m̃0: ð29Þ

If one takes into account the definition (7) and the
conservation law (11), then one can obtain by straightfor-
ward algebraic manipulations that

m0 ≥ m1 þm2 ð30Þ

as well.
One can also use the conservation law for four-momenta

in the covariant form

pμ
0 ¼ pμ

1 þ pμ
2: ð31Þ

Then, taking the square and taking into account that for
future-directed four-vectors p1μp

μ
2 < 0, it is easy to obtain

m2
0 ≥ m2

1 þm2
2: ð32Þ

This is just Eq. (4.11) in [20] and Eq. (3.11) in [21],
written in our notations. Meanwhile, Eq. (30) is more tight
than (32). It can be derived if one uses the property
p1μp

μ
2 < −m1m2, which is more tight than p1μp

μ
2 < 0 used

in [20,21].

IV. CLASSIFICATION OF SCENARIOS WITH
RESPECT TO PARAMETERS IN GENERAL

Each scenario of decay can be characterized by the set
(σ2; h2; h1; δ), where

h1;2 ¼ signðb̃1;2N − 2m̃1;2X0Þ: ð33Þ

The quantities h1 and h2 arise in a natural way, when we
sort out combinations with different signs inside the

absolute values in (18) and (19) and determine which term
dominates. As a result, one obtains the following types of
scenarios:

(I) (σ2 ¼ þ1, h2 ¼ 0 or h ¼ þ1, δ ¼ −1)

P1 − P2 ¼ P0; ð34Þ

P2 ¼
ðX0

ffiffiffĩ
d

p
− P0b̃2Þ

2m̃2
0

; ð35Þ

P1 ¼
P0b̃1 þ X0

ffiffiffĩ
d

p

2m̃2
0

; ð36Þ

X1 ¼
X0

2m̃2
0

b̃1 þ
P0

ffiffiffĩ
d

p

2m̃2
0

; ð37Þ

X2 ¼
1

2m̃2
0

ðX0b̃2 − P0

ffiffiffĩ
d

p
Þ: ð38Þ

(II) (σ2 ¼ −1, h2 ¼ −1, δ ¼ −1)

P1 þ P2 ¼ P0; ð39Þ

P2 ¼
�
P0b̃2 − X0

ffiffiffĩ
d

p �
2m̃2

0

; ð40Þ

P1 ¼
P0b̃1 þ X0

ffiffiffĩ
d

p

2m̃2
0

; ð41Þ

X1 ¼
X0

2m̃2
0

b̃1 þ
P0

ffiffiffĩ
d

p

2m̃2
0

; ð42Þ

X2 ¼
1

2m̃2
0

�
X0b̃2 − P0

ffiffiffĩ
d

p �
: ð43Þ

(III) (σ2 ¼ −1, h1 ¼ 0 or h ¼ −1, δ ¼ þ1)

P2 ¼
X0

ffiffiffĩ
d

p
þ P0b̃2

2m̃2
0

; ð44Þ

P1 ¼
P0b̃1 − X0

ffiffiffĩ
d

p

2m̃2
0

; ð45Þ

X1 ¼
X0

2m̃2
0

b̃1 −
P0

ffiffiffĩ
d

p

2m̃2
0

; ð46Þ

X2 ¼
1

2m̃2
0

ðX0b̃2 þ P0

ffiffiffĩ
d

p
Þ: ð47Þ

Scenarios II and III can be obtained from each other by
interchange of particles 1 and 2. In this sense, they are
equivalent, so for definiteness we will consider scenario II.
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V. TYPES OF SCENARIOS
AND THEIR MEANING

Formulas of the previous section describe general
relations between a parent particle and daughter ones.
Meanwhile, for physical purposes, we are interested in
more concrete scenarios. The most simple and popular one
consists in such a decay of particle 0 to 1 and 2 that all three
particles are located in the corresponding turning points.
Meanwhile, in any real process, one cannot guarantee the
validity of this condition and, therefore, one is led to
considering more expanded set of possible scenarios. In the
first place, this concerns the situation when all three
particles are moving and the products of decay are ejected
along the trajectory. This is of special interest since this
leads to the most effective (for a given state if particle 0)
kind of process. (This will be proven in the next section.) In
turn, here there are different cases depending on how a
daughter particle move after decay, whether it moves
towards a black hole or towards infinity. There are also
intermediate cases when some of particles (but not all of
them) are in their turning points.
The key ingredient of the Penrose process is the

existence of the ergoregion (in the standard PP) or
generalized ergoregion (in the electric version of PP),
where particle energy can be, in principle, negative. In
this respect it was noticed earlier [26] that for a rotating
black hole some kinds of decay, which seem to be
compatible with the existence of negative states for an
individual particle, were forbidden in the ergoregion. It is of
interest to elucidate, whether or not this happens for
charged particles in the generalized ergoregion of a static
charged black hole.
More precisely, we consider the following scenarios.
I: particle 2 moves in the outward direction, particle 1

moves in the inward one. Further, particle 1 can fall in a
black hole while particle 2 can escape.
II: particles 1 and 2 move in the same direction as

particle 0, i.e. inward direction.
In scenarios I and II it is implied that before decay

particle 0 moved in the inward direction, so it follows from
the momentum conservation that both particles 1 and 2
cannot move after decay in the outward direction.
B (“bounce”). Particle 0 bounces back from the potential

barrier, moves in the outward direction and decays after-
wards. Preliminarily, this scenario gives us the most
efficient possibility when a daughter particle moves in
the same direction as particle 0. Formally, this is similar to
scenario II but in scenario II both particles move towards a
black hole whereas in scenario B they start to move to
infinity.
For completeness, we take into account also the exist-

ence of a turning point.
TP2: point of decay of particle 0 coincides with the

turning point of decay of particle 2.

TP0: point of decay of particle 0 coincides with its
turning point but not with the turning points of particles 1
and 2.
TP3: decay occurs in the common point of decay for all

three particles.
Below, we consider all these scenarios case by case.

Bearing in mind potential applications to processes near a
black hole, of primary interest is the near-horizon behavior
of particles in these processes. The results are collected in
Sec. XIV below where we also indicate near-horizon
properties. A special questin about the role of a horizon
in achieving the maximum of efficiency is considered in
Sec. XIII.

VI. EJECTION ALONG TRAJECTORY:
MAXIMIZATION/MINIMIZATION OF ENERGY

AND CLASSIFICATION OF SCENARIOS

Now, we consider a special type of decay in which
products of decay are ejected along the trajectory of the
original particle.
In doing so,

P1

P0

¼ L1

L0

; ð48Þ

whence

�
P0b̃1 − δX0

ffiffiffĩ
d

p �
L0 − 2m̃2

0L1P0 ¼ 0: ð49Þ

For definiteness, we assumed that signs of angular
momenta of particles 0 and 1 coincide.
The interest to such a type of trajectory is motivated by

the fact that it is the most efficient process (with other
parameters of scenario fixed). The particle that moves in the
same direction as particle 0 acquires the maximum possible
energy, the other one that moves in the opposite direction
has the minimum one. To show this, one can consider, say,
energy E1 as a function of L1:

E1 ¼
X0

2m̃2
0

b̃1 − δ
P0

ffiffiffĩ
d

p

2m̃2
0

þ q1φ: ð50Þ

In the case of extremum, we have

∂E1

∂L1

¼ 0: ð51Þ

After taking the square and performing a number of
algebraic manipulations, we obtain just expressions for
X1 and X2 that can be obtained from (48). We list them
below explicitly.
There are two different possible scenarios here. We

consider them separately.
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A. Scenario I, σ2 = + 1, δ= − 1, h2 = + 1

Remarkably, it turns out that after somewhat long
algebraic manipulation, one can get rid off tilted quantities
and express the results in a rather simple form in terms of
quantities without tilde:

X2 ¼ X0

b2
2m2

0

−
ffiffiffi
d

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

p
2m2

0

; ð52Þ

X1 ¼ X0

b1
2m2

0

þ
ffiffiffi
d

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

p
2m2

0

; ð53Þ

P2¼
P0

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0−m2

0N
2

p �
X0

ffiffiffi
d

p
−b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0−m2

0N
2

q �
; ð54Þ

P1¼
P0

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0−m2

0N
2

p �
b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0−m2

0N
2

q
þX0

ffiffiffi
d

p �
: ð55Þ

In general in Eqs. (16)–(19) one of angular momenta
(say, L1) was a free parameter. However, now this is not so
since there is an additional constraint (48) that leads to

L2 ¼
L0

2m2
0

�
b2 −

ffiffiffi
d

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 − N2m2

0

p X0

�
; ð56Þ

L1 ¼
L0

2m2
0

�
b1 þ

ffiffiffi
d

p
X0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
0 −m2

0N
2

p �
: ð57Þ

One can check that Eqs. (6) and (48) do hold for each
particle 1 and 2.
The requirement d ≥ 0 entails the inequality

m0 ≥ m1 þm2; ð58Þ

similar to (27) and coinciding with (30).
It follows from P2 ≥ 0 that

b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q
≤ X0

ffiffiffi
d

p
; ð59Þ

whence

X0 ≤
Nb2
2m2

: ð60Þ

As the expression inside the square root should be non-
negative, X0 ≥ m0N. It holds automatically, if (9) does so.
Combining the above inequalities and (9), we have

m̃0N ≤ X0 ≤
Nb2
2m2

: ð61Þ

For L0 ¼ 0 (so m̃0 ¼ m0) this is consistent with (60)
automatically since

b2 ≥ 2m0m2 ð62Þ

due to (58).

B. Scenario II

σ2 ¼ −1, δ ¼ −1

P1 þ P2 ¼ P0; ð63Þ

L1 ¼
L0

2m2
0

�
b1 þ

ffiffiffi
d

p
X0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
0 −m2

0N
2

p �
; ð64Þ

L2 ¼
L0

2m2
0

�
b2 −

ffiffiffi
d

p
X0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
0 −m2

0N
2

p �
; ð65Þ

X1 ¼
X0b1
2m2

0

þ
ffiffiffi
d

p

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q
; ð66Þ

X2 ¼
b2X0

2m2
0

−
ffiffiffi
d

p

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q
; ð67Þ

P1¼
P0

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0−N2m2

0

p �
b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0−m2

0N
2

q
þX0

ffiffiffi
d

p �
; ð68Þ

P2¼
P0

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0−N2m2

0

p �
b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0−m2

0N
2

q
−X0

ffiffiffi
d

p �
: ð69Þ

It follows from P2 ≥ 0 that

X0 ≥
b2N
2m2

ð70Þ

and

Nm2 ≤ X2 ≤
b2
2m2

0

X0; ð71Þ

where we took into account (70) and (22), (23).
It is worth noting that in scenario I L2 has the sign

opposite to that of L0, in scenario II they coincide.
If Q → 0, then we arrive at the Schwarzschild metric.

Then, our formulas agree with [30]. In this case, there is no
the PP and the energy of an escaping particle E2 < E0

but E2 ≠ 0.

VII. MASSLESS CASE

A special case arises when particle 2 is massless since
condition (70) is no longer valid if m2 ¼ 0. In turn, this
means that scenario II fails. This can be explained as
follows. In general, scenario II is realized when particle 2 is
ejected in the outward direction in the frame comoving with
particle 0 (that is also the center of mass frame for particles
1 and 2). However, when we pass to the stationary frame, it
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is drifted in the inward direction due to motion of particle 0
(see Sec. XI below for discussion of local Lorentz trans-
formations). However, if particle 2 is massless, it moves
with a speed of light and inward motion of particle 0 cannot
overcome outward motion of particle 2. As a result, particle
2 moves outwardly that corresponds to scenario I, not II.
Therefore, we must use Eqs. (52) and (54), in which we

putm2 ¼ 0 that gives us b2 ¼ d ¼ m2
0 −m2

1. Thus we have

X2 ¼
b2
2m2

0

�
X0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q �
; ð72Þ

P2 ¼
P0b2

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

p �
X0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 − N2m2

0

q �
: ð73Þ

In the horizon limit N → 0,

X2≈
b2N2

4X0

; E≈
q2Q
rþ

þb2N2

4X0

; ð74Þ

X1≈X0−
b2N2

4X0

; E1≈E0−
q2Q
rþ

−
b2N2

4X0

: ð75Þ

From another hand, if we put m1 ¼ 0, this does not give
rise to any difficulties since particle 1 moves inwardly in
both frames, so scenario II is valid as well.

VIII. PROPERTIES OF SCENARIO I

We are interested mainly in scenario I since it is this
scenario in which particle 2 can escape to infinity. First of
all, we would like to stress the difference between scenario
I and its counterpart for processes with neutral particles in
the background of rotating black holes. In the latter case,
decay of type I is impossible in the ergoregion at all [26].
Meanwhile, now it is allowed inside a generalized ergo-
region. Below, we discuss some details concerning just
scenario I.

A. Upper bound on the angular momentum

For scenario I, there are restrictions (61). Both inequal-
ities here are consistent with each other, provided

m̃0 ≤
b2
2m2

: ð76Þ

Taking the square, we obtain the restriction on a value
of L0:

L2
0 ≤ L2

m ¼ dr2d
4m2

2

: ð77Þ

Let d → 0. This entails

m0 ¼ m1 þm2: ð78Þ

Then, scenario I is possible if L0 → 0 only. According to
(56) and (57) this entails that L1;2 → 0 as well, so all three
particles move radially. This scenario is realized in the
confined Penrose process [6,7]. There is no similar restric-
tion on L0 in scenario II.

B. Upper bound on the energy of escaping particle

It follows from (60) that scenario I can be realized for
ðX0Þd ≤ Ndb2

2m2
only. Then, from (52) and (22), (23) we have

Nm2 ≤ X2 ≤
b22N

4m2
0m2

: ð79Þ

Thus for the escaping particle we have the upper bounds

q2
Q
rd

þ Nm2 ≤ E2 ≤ q2
Q
rd

þ b22N
4m2

0m2

: ð80Þ

C. Near-horizon limit

Assuming that m2 ≠ 0, let us consider

ðX0Þd ¼ a
Ndb2
2m2

; ð81Þ

where according to (61) the coefficient a (pure number)
obeys inequalities

am ≤ a≤ 1; am¼ 2
m2m̃0

b2
ð82Þ

in combinations with inequalities (76), (77).
If Nd → 0 while keeping a constant, then we obtain an

approximate equality:

E2 ≈ q2
Q
rþ

þ cm2Nd; ð83Þ

where

c ¼ b22a −
ffiffiffi
d

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b22 − 4m2

0m
2
2

p
4m2

2m
2
0

: ð84Þ

One can check that ∂c
∂a ≤ 0. Therefore,

1 ≤ c ≤ cðamÞ ¼ cm; ð85Þ
where

cm ¼ m̃0ðrþÞb2
2m2m2

0

−
jL0j

ffiffiffi
d

p

2m2m2
0rþ

: ð86Þ

In particular, if L0 ¼ 0, then

cm ¼ b2
2m2m0

≥ 1; ð87Þ
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which agrees with (80). If L0 ¼ Lm, then we obtain
from (77)

cm ¼ 1: ð88Þ

If a ¼ 1, then it follows that c ¼ 1 and we return to (80)
with equality instead of inequality, so E2 ≈ q2

Q
rþ
þm2Nd.

Thus the correction to the main term in X2 has the order
N. We arrive at an important conclusion. If decay occurs
near the horizon, the particle that moves to infinity should
be near critical with X0 ¼ OðNdÞ. Usual particles cannot
escape from the horizon at all.
In the massless case m2 ¼ 0 the correction has the order

N2 according to (74).
For particle 1 we have in the near-horizon limit

E1 ≈ q1
Q
rþ

þ Nd

�
ab2
2m2

− c

�
: ð89Þ

IX. SPECIAL TYPE OF SCENARIO:
DECAY IN TURNING POINT

There are special cases to be considered separately. They
arise when decay occurs in the turning point. (Hereafter, by
turning point we imply for brevity a turning point for radial
motion, a particle can have in general an angular moment
and nonzero angular velocity.) It follows from the con-
servation law (14) that the point of decay cannot coincide
with the turning point for two particles precisely. Either it is
the turning point for (i) only one particle or (ii) for all three
at once. It follows from (14) or (55), (68) that in scenario I,
case (i) is possible if there exists a turning point for particle
2, not for particle 1. Now, we will discuss (i) and (ii) case
by case.

A. Case (i), turning point for particle 2 (TP2)

Let particle 2 arise in its own turning point, soP2 ¼ 0 but
P0 ≠ 0. We call it scenario TP2. It follows from (16)–(19)
that

X2 ¼
2m̃2

2X0

b̃2
; ð90Þ

X1 ¼
X0

b̃2
ðm̃2

0 − m̃2
1 − m̃2

2Þ; ð91Þ

X0 ¼
b̃2N
2m̃2

: ð92Þ

For ejection along the trajectory, the case under dis-
cussion is realized in scenario II and we obtain from (54)
and (69) with P2 ¼ 0, P0 ≠ 0 that

X0 ¼
b2N
2m2

: ð93Þ

X2 ¼ m2N ¼ 2m2
2

b2
X0: ð94Þ

Then, (13) gives us

X1 ¼
X0

b2
ðm2

0 −m2
1 −m2

2Þ: ð95Þ

From (56) and (65) we have

L2¼ 0; L1¼L0: ð96Þ

One can check using (93) and (94) that we can also
rewrite X2 in the form

X2 ¼
b2
2m2

0

X0 −
ffiffiffi
d

p

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q
: ð97Þ

B. Case (i), turning point for particle 0 only (TP0)

In general scenario we take the limit P0 → 0. This means
that decay occurs in the turning point of particle 0. For
shortness, we call it TP0. Particles 1 and 2 may have
nonzero P1 and P2, so the point rd is not the turning point
for them. It is clear from the conservation law (14) that
scenario TP0 can be realized in scenario I but not in II. We
obtain from (16)–(19) that

P1 ¼ P2 ¼
N

ffiffiffĩ
d

p

2m̃0

; ð98Þ

X1 ¼
N
2m̃0

b̃1; ð99Þ

X2 ¼
N
2m̃0

b̃2: ð100Þ

Three quantities E0, L0, N are related by one equation

X0 ¼ m̃0N: ð101Þ

It follows from (101) immediately that

L2
0 ¼ r2d

X2
0 −m2

0N
2

N2
: ð102Þ

In general, L1 (or L2 ¼ L0 − L1) is a free parameter. It is
only restricted by the condition (28).
Let particles 1 and 2 be ejected in point rd along the

trajectory of particle 0. Now, it follows from (48) that either
L0 ¼ 0 or P1 ¼ 0 ¼ P2. By assumption, the second sit-
uation is now impossible and will be considered in the next
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subsection. Now, we put L0 ¼ 0, whence m̃0 ¼ m0, so

X0 ¼ m0N: ð103Þ

Then, it follows from (52)–(57) that

X1 ¼ X0

b1
2m2

0

¼ b1
2m0

N; ð104Þ

X2 ¼ X0

b2
2m2

0

¼ b2
2m0

N: ð105Þ

C. Case (ii), turning point for all three particles (TP3)

Let us call this scenario TP3. It follows from (6) that

X0 ¼ m̃0N; ð106Þ

X1 ¼ m̃1N; ð107Þ

X2 ¼ m̃2N: ð108Þ

With (13) taken into account, this leads to

m̃0 ¼ m̃1 þ m̃2: ð109Þ

Then, after some algebraic manipulations, we can again
obtain the same expressions for X1 and X2 as in scenarios I
and II, but with one important difference. In scenario I, the
expression for X2 and, correspondingly, energy E2 for
particle 2 that is enable to escape to infinity, contained sign
“minus” before the square root. This was due to the
necessity to have non-negative factor in (54) inside paren-
theses. Meanwhile, now this is irrelevant since P2 ¼ 0 due
to the factor P0 ¼ 0. As a result, escaping particle 2 can
have not only sign “minus” but also sign “plus,” so we are
free to take

E2 ¼ q2φþ b2
2m2

0

X0 þ
ffiffiffi
d

p

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q
: ð110Þ

If so, for particle 1 we have

E1 ¼ q1φþ b1
2m2

0

X0 −
ffiffiffi
d

p

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q
: ð111Þ

Equivalently,

E2 ¼ q2φþ b2
2m2

0

m̃0N þ
ffiffiffi
d

p jL0j
2m2

0rd
N; ð112Þ

E1 ¼ q1φþ b1
2m2

0

m̃0N −
ffiffiffi
d

p jL0j
2m2

0rd
N: ð113Þ

From (109) we have, taking the square and solving the
quadratic equation that

L2 ¼
L0b2 þ signL0

ffiffiffi
d

p
m̃0rd

2m2
0

¼ LðþÞ
2 ; ð114Þ

L1 ¼
L0b1 − signL0

ffiffiffi
d

p
m̃0rd

2m2
0

¼ Lð−Þ
1 ; ð115Þ

where LðþÞ, Lð−Þ are defined in (29). Distinction between
particles 1 and 2 is almost conditional now but with the
reservation that the sign in the second term in (112) or
in (113) correlates with that in (114), (115).
In a sense, when from scenarios I and II we pass to

scenario TP3, there is an exchange of branches “plus” and
“minus” between both particles in the point where P0 ¼ 0
for nonradial motion. The aforementioned difference dis-
appears if L0 ¼ 0. Then, it follows from (106) that
X0 ¼ m0N. If also d ¼ 0, then we return to the process
described in [6,7]. However, for nonzero L0 the case under
discussion is more general.
When both P0 → 0 and d̃ → 0, all scenarios discussed in

this section agree with each other.

X. THRESHOLD FOR THE
PENROSE PROCESS

Now, we are going to elucidate, when the Penrose
process is possible. For rotating black holes, this requires
the existence of the ergoregion where, by definition,
g00 > 0 [1]. In the RN case, g00 does not change the
sign outside the horizon and there is no ergoregion
in a usual sense but there exists its analog—so-called
generalized ergosphere [3,4] where negative energy are
allowed. It is sensitive to the properties of particles. When
E1 < 0, the PP becomes possible and particle 2 with an
excess of energy goes to infinity. Meanwhile, in scenario
II both particles fall in a black hole. Therefore, we
consider scenario I. The condition E1 < 0 leads to

X0

b1
2m2

0

þ q1φþ
ffiffiffi
d

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

p
2m2

0

≤ 0: ð116Þ

For q1 ≥ 0 this is impossible. Let q1 ¼ −jq1j < 0. Then
this condition takes the form

2jq1jm2
0φ ≥ X0b1 þ

ffiffiffi
d

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q
: ð117Þ

Moreover, the SPP is now possible as well. Indeed, for a
fixed q0, the energy E2 ¼ X2 þ q2φ formally grows
unbounded when q2 → ∞. The fact that the electromag-
netic field can significantly enhance the efficiency of the
Penrose process was pointed in [20,21]. Meanwhile, for
sufficiently high q2 this is quite generic feature that does
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not require the presence of a black hole. This can happen
even in the flat space-time [31].
Let us consider an important particular case. If, in the

framework of scenario I, decay occurs in the turning point
of particle 2, we can substitute here (93) in the point of
decay and obtain

E2 ¼ q2φþ Nm2; ð118Þ

E1¼ q1φþN
ðb1b2þdÞ
4m2

0m2

¼ q1φþN
m2

0−m2
1−m2

2

2m2

: ð119Þ

It follows from (119) and (22), (23) that in this case (117)
can be rewritten in the form

jq1jφ > N
m2

0 −m2
1 −m2

2

2m2

: ð120Þ

If all qi → 0, then the results coincide with those
obtained in the static limit of a rotating black hole—see
Eq. (111) in [29,30], Eq. (3.30) in [26,32]. Then, the
Penrose process is impossible as it should be. For jq1j ≠ 0,
the PP is possible in the scenario under discussion, if the
point of decay, according to (120), is located sufficiently
close to the horizon.
In the particular case, when d ¼ 0, we have m0 ¼ m1 þ

m2 [6] and the above condition turns into

jq1jφ > Ndm1; ð121Þ

typical of the PP for pure radial motion, if decay occurs in
the turning point [6].
Equation (121) can be interpreted as the statement that

the electrostatic energy of particle in an external field
should be bigger than the red-shifted energy measured by a
local observer. It is worth noting that in the case under
discussion rd is the turning point for particle 2, but not for
particles 0 and 1. In particular, Eq. (78) is not satisfied in
general.
It is instructive to note, for comparison, that in the case of

rotating metrics extraction of energy in scenario I inside the
ergoregion cannot be realized at all (see Ref. [26],
Sec. VI A).

XI. VELOCITIES AND GAMMA
FACTORS FOR SCENARIO I

The above results are given in terms of particles’masses.
Meanwhile, the approach can be reformulated kinemati-
cally in terms of velocities. For definiteness, let us consider
scenario I, so σ2 ¼ þ1. Then, one can check using (130)
and (52) the validity of the equation

V2 ¼
v2 − V0

1 − v2V0

ð122Þ

that is nothing but the Lorentz law of adding velocities.
Now, the gamma factor of relative motion for particles 0
and 2 γ02 ¼ −u0μu

μ
2, whence

m2m0γ02 ¼
X0X2 þ P0P2

N2
−
L0L2

r2
: ð123Þ

In (123) we used equations of motion (2)–(6) and took into
account that both particles move in the opposite direction
that gives us sign “plus” in the numerator of Eq. (123).
Then, one obtains

γ02¼
b2

2m0m2

; v2¼
ffiffiffi
d

p

b2
: ð124Þ

Thus we can rewrite the formula for X2 in the form

X2 ¼
m2

m0

γ02
�
X0 − v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q �
: ð125Þ

In a similar manner, we find

m2m0γ01 ¼
X0X1 − P0P1

N2
−
L0L1

r2
; ð126Þ

γ01¼
b1

2m0m1

; v1¼
ffiffiffi
d

p

b1
; ð127Þ

V1 ¼
v1 þ V0

1þ V1V0

; ð128Þ

X1 ¼
m1

m0

γ01
�
X0 þ v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q �
: ð129Þ

Here, γ0i (i ¼ 1; 2) has the meaning of the standard
Lorentz factor of relative motion. For an individual particle
we have

Xi¼mγiN; γi¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1−V2
i

p ; i¼ 0;1;2; ð130Þ

so

Vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
miN
Xi

�
2

;

s
ð131Þ

Vi is the velocity is measured in the stationary frame.
The expressions for the energy can be rewritten as

E2 ¼ q2φþ γ02
m2

m0

�
X0 − v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q �
; ð132Þ

E1 ¼ q1φþ γ01
m1

m0

�
X0 þ v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q �
: ð133Þ

For the existence of the PP, the key restriction on the
electric charge (117) is required. It can be written in terms
of velocities

O. B. ZASLAVSKII PHYS. REV. D 109, 124053 (2024)

124053-10



m1

m0

�
X0 þ v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q �
< jq1jφ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v21

q
; ð134Þ

whence

1þv1V0 < ρ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−v21

q
; ρ¼ m0

X0m1

jq1jφ: ð135Þ

Using (130), we can also write ρ ¼ jq1jφ
m1Nγ0

. Taking the square
of (135), we obtain

v21þ
2v1V0

V2
0þρ2

þ 1−ρ2

V2
0þρ2< 0

¼ðv1−vþÞðv1−v−Þ< 0;

ð136Þ

vþ ¼ −
V0

V2
0 þ ρ2

þ ρ

V2
0 þ ρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ V2

0 − 1

q
; ð137Þ

v− ¼ −
V0

V2
0 þ ρ2

−
ρ

V2
0 þ ρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ V2

0 − 1

q
< 0; ð138Þ

whence

v1 < vþ: ð139Þ

One can check easily that vþ < 1.
The requirement vþ ≥ 0 gives us

ρ2 ≥ 1: ð140Þ

In particular, for the Schwarzschild metric ρ ¼ 0, vþ < 0
and the PP is impossible as it should be.
Equation (140) can be rewritten in the form

jq1jφ ≥
X0

m0

m1: ð141Þ

Thus in the present section we suggested description of
decay and PP in kinematic language by analogy with the
rotating case [29]. However, there is qualitative difference.
For the existence of the PP, in the rotating case the relative
velocity between a new fragment and particle 0 should be
quite high, the particle being ultrarelativistic [29]. In our
case, there is no restriction on velocity that can be
arbitrarily low. Moreover, instead of the lower bound
typical of the rotating metric and process with neutral
particles, now there exists the upper bound (139).

XII. SCENARIO B AND THE MAXIMUM
OF EFFICIENCY

Both scenarios I and II imply that the parent particle 0
moves from infinity towards a black hole. Meanwhile, of
interest is also another situation when particle 0 bounces
back from its turning point and only afterwards decays to

particles 1 and 2. Particle 1 flies towards a back hole,
particle 2 moves in the outward direction. We call this
scenario B (the first letter of the word “bounce”). Then, the
formulas for the energies read

E2 ¼ q2φþ γ02
m2

m0

�
X0 þ v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q �
; ð142Þ

E1 ¼ q1φþ γ01
m1

m0

�
X0 − v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q �
: ð143Þ

If we assume that in the frame comoving with particle 0,
then it is particle 2 that moves outwardly but is drifted in the
inward direction due to motion of particle 0, then instead
of (122) we have

V2 ¼
V0 þ v2
1þ v2V0

: ð144Þ

One can check using (142) and (130) that (144) is indeed
satisfied.
For particle 1 now

V1 ¼
v1 − V0

1 − V1V0

; ð145Þ

Here, as before, particle 2 moves to infinity (now in the
same direction as particle 0) and particle 1 moves in the
inward direction (opposite to particle 0). However, now
the signs before the radicals are opposite to those in (132)
and (133). The condition for the PP gives us now

γ01
m1

m0

ðX0 − v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

q
Þ < jq1jφ ð146Þ

instead of (134). This entails

v21 −
2v1V0

V2
0 þ ρ2

þ 1 − ρ2

V2
0 þ ρ2 < 0

¼ ðv1 − v−Þðv1 − vþÞ < 0;

ð147Þ

v� ¼ V0

V2
0 þ ρ2

� ρ

V2
0 þ ρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ V2

0 − 1

q
: ð148Þ

It is easy to check that vþ < 1. Here, there are two
different cases.
If

1 − V2
0 ≤ ρ2 ≤ 1; ð149Þ

then v− ≥ 0 and

v− < v1 < vþ: ð150Þ
If

ρ2 > 1; ð151Þ
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then v− < 0 and

v1 < vþ; ð152Þ

so we have an upper bound on v1.
If ρ → ∞, then vþ → 1, so actually bound (152) is

satisfied automatically.
One can also choose TP3 as a scenario intermediate

between I and B. Then, again signs can be arranged
according to (112) and (113) with the same conclusions
about restrictions on the velocity of particle 1 that are
necessary for the PP to exist.
The significance of scenario B consists in that it enables

us to attain the maximum efficiency η ¼ E2

E0
of the process.

Indeed, in this case the energy of particle 2 is given by
Eq. (142) with sign “plus” before the radical.
It is seen from (110) or (142) that E2 is monotonically

decreasing function of r since φ ¼ Qq2
r with q2 > 0 and

dN
dr > 0. Therefore, the most possible maximum of E2 is
attained when decay happens near the horizon. One should
bear in mind that in this case X0 should have the order Nd,
so this is possible for near-critical particle 0 only.
However, some important reservations about near-

horizon decay are in order. For a nonextremal black hole
there is a potential barrier of a finite height that prevents a
near-critical particle with X ¼ OðNdÞ in the near-horizon
region from approaching the horizon. Moreover, if a
particle is exactly critical near the turning point rt from
which a particle bounces back, X2 ¼ Oðrt − rþÞ2 near the
horizon. But for nonextremal black holes N2 ∼ ðr − rþÞ
near the horizon, so X2 ∼ N4. As a result, it is seen from (6)
that the condition P2 ≥ 0 cannot be satisfied and a particle
cannot penetrate into the near-horizon region at all. If it is
not exactly critical but near critical, a particle is able to move
in the near-horizon region but such a particle can exist only
between the horizon and the turning point, so it cannot arrive
from infinity anyway. The situation is completely similar to
that for rotating black holes [33–36]. However, if a black
hole is extremal (or at least near extremal) this becomes
possible—see Sec. III of Ref. [16] for more details about
motion near turning points in the case of the extremal RN
black hole.

A. Near-horizon limit for scenario B

It is worth noting what happens in the near-horizon limit
N → 0 within the scenario under discussion. On the first
glance, it follows from (142) that X2 ≡ E2 − q2φ in this
limit can be arbitrary nonzero. However, this is not the case.
The point is the correlation between initial conditions and
the type of a horizon. Let a particle move away from the
nonextremal horizon with finite nonzero X2 (so-called
usual particle). Then, if we continue its trajectory in the
past, it turns out that it appeared there some small proper
time τ ago from the region behind the horizon. But this

would be a white, not a black hole and is beyond the scope
of our work. See also on details [13] (there, q ¼ 0, but this
does not matter in the context under discussion).
From the other hand, if the proper time required for

crossing the horizon τ → ∞, such arguments do not work.
This happens if the horizon is extremal. Then, a particle can
move in the outward direction from the immediate vicinity
of the horizon. But, in doing so, it must have X ¼ OðNÞ
(see Ref. [37] for details). Returning to our issue, we see
from (142) that both X0 ¼ OðNÞ and X2 ¼ OðNÞ.

XIII. EFFICIENCY, PROXIMITY TO
HORIZON, AND TYPE OF SCENARIO

Usually, when considering decay, it is assumed that it
happens in the turning point of all particles. In doing so, it is
often stated that the efficiency reaches its maximum if
decay occurs near the horizon (see, e.g. the review [23]).
Meanwhile, these statements are not quite accurate and
require some essential reservations. Also, they apply to
scenario TP3 but, in general, not to all other ones. As this
concerns the important aspects of process near a black hole,
this needs more careful discussion that is given below. Let
us consider different types of scenarios in this context case
by case.

A. Scenario I

It is shown above that, according to (60) this scenario
requires X0 ≤

Ndb2
2m2

in the point of decay rd. This means that
for a usual (not fine-tuned) particle that has X0 ≠ 0 on the
horizon separated from zero, the horizon limit cannot be
taken at all, provided m2 is a massive particle. If it has
almost vanishing mass, m2 ¼ μ2Nd with μ2 ≠ 0, then the
situation changes since (60) gives us

X0 ≤
b2
2μ2

: ð153Þ

If this criterion is fulfilled, then the horizon limit is
indeed possible for a usual particle. Otherwise, the fine-
tuning of particle 0 is required.
Let, for simplicity, particle 0 be neutral. Then, if

q2 > q�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
E0Q

ffiffiffi
d

p
rþ; ð154Þ

the maximum is indeed achieved on the horizon (see the
Appendix for details). At the same time, condition (117)
should be fulfilled as well. On the horizon it reduces
to (A6).
However, if q2 < q�2, then the horizon corresponds not to

the maximum but to a local minimum of E2.
If m2 ¼ 0 exactly, then the horizon limit is also possible,

but according to (74) this entails a quite strong condi-
tion X2 ¼ OðN2

dÞ.
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B. Scenario II

Here, there are no difficulties with decay near the horizon
since inequality (70) can be satisfied easily. However, in
this scenario both particles fall in a black hole, so this
option ceases to be “profitable.”

C. Scenario B

Now, it follows from (142) that for any q2Q > 0, ∂E2

∂r < 0,
so maximum is indeed achieved on the horizon. However,
another difficulty comes into play here. A usual particle
cannot start its motion near the horizon in the outward
direction—see Sec. XII A above, Sec. I A in [13,37]. This
is allowed for fine-tuned or near-fine-tuned particles only,
with X2 ¼ OðNdÞ. The same reasonings apply to sce-
nario TP3.

D. Scenario TP2

According to (94),

E2 ¼
q2Q
r

þm2N: ð155Þ

Let us, for simplicity, consider the case of the extremal
black hole, so N ¼ 1 − rþ

r ; Q ¼ M ¼ rþ. Then,

∂E2

∂r
¼ rþ

r2
ðm2 − q2Þ: ð156Þ

Thus the biggest value of E2 is achieved on the horizon
under the condition m2 < q2 only.

E. Scenario TP0

According to (105),

E2 ¼
q2Q
r

þ b2
2m0

N: ð157Þ

Then, for the extremal black hole we have

∂E2

∂r
¼ rþ

r2

�
b2
2m0

− q2

�
: ð158Þ

The horizon corresponds to the biggest value of E2 for
q2 >

b2
2m0

only.

We see that one should be very careful making the
statement about maximum of efficiency. This necessarily
includes indication of scenario and reservation about
relation between parameters.

XIV. DIFFERENT SCENARIOS:
COMPARISON OF PROPERTIES

Now, it is convenient to summarize the main features of
all scenarios in Table I.
We included in it scenarios in which particles 1 and 2 are

ejected along the trajectory of particle 0. However, this is
done with one exception in a degenerate case. In scenario
TP0 not only P0 ¼ 0 but also L0 ¼ 0 — see Sec. IX B.
Then, all the components of the three-momentum vanish,
so particle 0 is in rest in this point and there is no tangent
vector to the trajectory.
We can write a unifying formula for the energy of

particle 2. If it moves in the outward direction after decay of
particle 0, then it can, in principle, escape to infinity and is
potentially subject to the PP. Otherwise, it falls in a black
hole:

E2 ¼ q2φþ X0

b2
2m2

0

þ δ

ffiffiffi
d

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

p
2m2

0

: ð159Þ

If immediately after decay particle 2 moves in the outward/
inward direction, we use shortening “out”/“in.” If it is in the
radial turning point, then we write “0.” In scenario TP0 the
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0 −m2

0N
2

p
¼ 0, so δ is irrelevant.

The full trajectory of particle 2 is model dependent and
cannot be found without specifying the metric. The
efficiency η ¼ E2

E0
. In the fourth column we indicate whether

or not some low bound v1 ≥ ðv1Þmin > 0 is required for the
PP to occur. In scenario II particle 2 falls in a black hole, so
the low bound on v1 is pure formal since it has nothing to
do with the PP. The general feature consists in that there is
such a bound for δ ¼ þ1 and it is absent if δ ¼ −1.
In principle, a combined scenario is also possible. If in a

point of decay both particles move in the inward direction
(scenario II) but after bouncing back in the turning point
particle 2 changes direction and moves outwardly. In
particular, this can happen in the near-horizon region of
the extremal black hole with X2 ¼ OðNÞ [16,17].

TABLE I. Classification and main features of scenarios.

Scenario Particle 0 Particle 2 δ ðv1Þmin mandatory X2 near horizon

I In Out −1 No OðNÞ for m2 ≠ 0, OðN2Þ for m2 ¼ 0
II In In þ1 Yes Oð1Þ
TP2 In 0 −1 No OðNÞ
TP0 0 Out No OðNÞ
TP3 0 0 �1 No if δ ¼ −1, yes if δ ¼ þ1 OðNÞ
B Out Out þ1 No OðNÞ
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In all cases, formally E2 → ∞ when q2 → ∞. However,
in realistic situations q2 is bounded [16,17].

XV. DISCREPANCY WITH TWO PREVIOUS
WORKS ON THE SUBJECT

The Penrose process with charged particles was also
considered in [27] where an additional assumption that the
black hole charge Q is small was made. Our results do not
agree. The authors of [27], according to their Eqs. (34)
and (35), obtained that the outgoing particle after decay
near the horizon has a finite nonzero energy. Meanwhile, it
follows from our formulas that in this case the energy of an
escaping particle (if we neglect Q) tends to zero. If we take
the charge Q into account, in a similar way the difference
X2 ¼ E2 − q2

Q
rþ

tends to zero. Actually, the subtlety in the

issue under discussion consists in the necessity to take into
account correlation between dynamics and kinematics.
This means that in scenario I (where particle 2 escapes)
the sign before the radical in (52) comes with minus, not
plus. Instead, one can consider scenario II with finite X1

and X2 where one of particles has the sign plus but this
particle falls in a black hole and does not escape. These
features can be seen in Table I.
One more attempt of considering the PP for charged

particles was made in [38] with a magnetic field B taken
into account. In our view, the results for efficiency η ¼ E2

E0

(in our notations) described by Eqs. (31) and (32) of
Ref. [38] are incorrect. In the neutral case q ¼ 0, Q ¼ 0,
and B ¼ 0 they give η ¼ 0 instead of the Schwarzschild
value ηSch. Therefore, for the RN metric, it also does not
reproduce the formulas like (110) of the present paper.
The reason of discrepancy can be explained as follows.

The results (31), (32) of [38] are based on their Eq. (30) that
contains the angular velocity of a particle. Therefore,
account for angular momentum is necessary. For a decay,
say, in the turning point of radial motion for all three
particles, the correct values are given by our Eqs. (114)
and (115).Meanwhile, in [38] all angularmomenta are put to
be zero. This leads to contradiction.
Alternatively, one may consider a scenario in which all

particles move radially with L0 ¼ L1 ¼ L2 ¼ 0. However,
in this case Eqs. (19), (20) of [38] from which (31) and (32)
were derived, loose their sense since (19) is obtained for
motion along a circle. Again, we obtain contradiction.

XVI. RELATION TO THE BSW EFFECT

Up to now, we discussed the standard Penrose process
based on particle decay. Meanwhile, the aforementioned
properties are applicable to the collisional version of the
PP as well, when particles 1 and 2 collide to produce
particles 3 and 4. This is due to the fact that particles 1
and can be considered as a combined one with character-
istics obeying (10)–(13) and m0 equal to the energy Ec:m:
in the center of mass frame [39]. The BSW process and

properties of debris were considered before in somewhat
different approach in which consideration was restricted
from the very beginning to the immediate vicinity of the
horizon and approximate formulas were used [40]. Now, it
is instructive to compare it with the present approach when
one starts from exact formulas from the very beginning.
We are mainly interested in the situation when collisions

lead to the BSW effect. To make comparison possible, we
assume that the RN black hole is extremal and consider
pure radial motion like in [16]. For the extremal RN black
hole, the Coulomb potential φ ¼ 1 − N. Let particle 1 be
critical. By definition, this means that on the horizon
X ¼ 0. Then, in this setting, X1 ¼ E1N. We want to show
that our exact formulas in the limit when Nc → 0 turn into
the results of [16]. (Here subscript “c” denotes the point of
collision.) It is sufficient to trace correspondence with
Eq. (26) of [16] which is the key point of the analysis there.
According to the BSW effect [8] and its electric

counterpart [41], the energy Ec:m: in the center of mass
of two colliding particles grows unbounded if (i) one of
particles (say, 1) is critical, (ii) collision happens near the
horizon, when N → 0. In our context,

m2
0 ≈

β

N
; ð160Þ

where β is a constant [15] equal to

β¼ 2ðX2ÞcA; A¼E1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1−m2

1

q
: ð161Þ

This formula can be obtained in the near-horizon limit
directly from (123), if it is applied to particles 1 and 2. As a
result, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
0 −m2

0N
2

q
≈ X0 −

βN
2X0

; ð162Þ

where X0 ¼ X2 þ E1N ≈ X2 near the horizon.
Particle 4 falls in a black hole, particle 3 is a near-critical

particle. Similarly to [16], we define

q3 ¼ E3ð1þ δÞ; ð163Þ
where

δ ¼ CNc ≪ 1; ð164Þ
subscript “c” means the point of collision, C is a constant.
Then, X3 and X4 are given by our formulas in which 1

should be replaced by 4 and 2 should be replaced by 3. We
have

X3 ¼ E3 − q3 þ q3N ¼ E3ðN − CNcÞ; ð165Þ
X3ðNcÞ ¼ E3Ncð1 − CÞ; ð166Þ

P3ðNcÞ ¼ Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
3ð1 − CÞ2 − β

q
: ð167Þ
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From the other hand, it follows from (126) with γ01
replaced by γ ≡ γ12 that

γm1m2 ≈
ðX2ÞcðE1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 −m2

1

p
Þ

Nc
; ð168Þ

b3 ¼ m2
0 þm2

3 −m2
4; ð169Þ

d ¼ b23 − 4m2
0m

2
3: ð170Þ

Taking into account (52) for Nc ≪ 1, we obtain

E3ð1 − CÞ ¼ m2
3

2A
þ 1

2
A: ð171Þ

This agrees completely with Eq. (26) [16], so further
analysis from the aforementioned paper applies. See
also [40]. If particle 1 moves from the vicinity of the
horizon in the outward direction (so-called Schnittman
process [42]), consideration runs along the same lines.

XVII. SUMMARY AND CONCLUSIONS

Thus we considered the Penrose process for motion of
all three particles within the same plane. We relied on
exact formulas for characteristics of daughter particles in
terms of a parent one. In doing so, we gave full
classification of possible scenarios and derive the bounds
on possible values of angular momenta of daughter
particles. We selected those scenarios for which ejection
occurs along the trajectory of a parent particle.
Significance of scenarios of such a type consists in that
we obtain maximum (minimum) value of energy. This is
confirmed by direct computation of extrema of the energy
of corresponding particles with respect to the angular
momentum of one of them.
We formulated the results in two forms. The first one

includes the dependence of the outcome on masses of
particles. The second form expresses them in terms of
velocities and gamma factors of relative motion between a
parent particle and daughter ones. The corresponding
formulas obtained for a static charged metric are similar
to whose obtained in [29] for rotating metrics and neutral
particles. Meanwhile, there are some essential differences.
For the Penrose process to occur in the Kerr or other
rotating metric, there is a lower bound on velocity of a
daughter particle in the center of mass frame, this bound
being rather high [29]. This creates obstacles for using this
process. Meanwhile, in our case, the situation is more
diverse and there are scenarios in which the velocity obeys
the upper (not lower) bound, so the Penrose process can be
realized more easily.
We discussed in detail an important question how the

efficiency of the Penrose process depends on a point in
which decay occurred. The results depends in general on a
scenario and in this sense classification of scenarios

developed in our work enables to elucidate this issue in
general setting. One may think that this will be useful for
analysis of diverse process near astrophysical black holes
since we did not restrict ourselves by a separate scenario or
special set of date.
Although we discussed decay, the results are applicable

to other reactions between particles including the colli-
sional Penrose process in which particles 1 and 2 collide to
create new particles 3 and 4. In particular, this can lead to
the BSW effect. We traced how the current approach based
on exact formulas agrees with the previous one used before
for description of the aforementioned effect.
In our consideration, we implied that the metric is the

Reissner-Nordström one. However, the approach can be
applied to a more general metrics of type (1).
Our goal consisted in the present article not in consid-

ering some concrete astrophysical problem but in develop-
ment of general formalism. We carried out the analysis of
possible types of scenarios in the simplest case of processes
with charged particles thus developing general approach.
This implied consideration of a static metric and electric
field. The next step is supposed to be inclusion of rotation,
electric charge and a magnetic field altogether into
consideration.
We hope that the corresponding formalism will be useful

for solving realistic problems in astrophysics. This is
supposed to include processes in the accretion discs,
extraction of energy from magnetized black holes, proper-
ties of ionization of neutral particle falling into a black hole,
etc. This needs separate treatment. We hope that model-
independent approach developed in our previous work [26]
and the present one, will be useful for a diverse set of such
problems.

APPENDIX: DEPENDENCE OF
EFFICIENCY ON A POINT

For simplicity, we consider here a neutral particle 0.
Then, q0 ¼ 0, q1 ¼ −q2, and X0 ¼ E0. After decay the
energy E2 (and thus efficiency η ¼ E2=E0) is given by an
equation of the type

E2 ¼ q2
Q
r
þ b2
2m2

0

E0 þ
ffiffiffi
d

p

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 −m2

0N
2

q
: ðA1Þ

Here, q2 > 0. As dN
dr > 0, it follows that dE2

dr > 0 and the
maximum is formally achieved for decay on the horizon but
with all necessary reservations made in Sec. XIII above. A
more involved case arises if

E2 ¼ q2
Q
r
þ b2
2m2

0

E0 −
ffiffiffi
d

p

2m2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 −m2

0N
2

q
: ðA2Þ
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Then, direct calculation shows that on the horizon

�
dE2

dr

�
þ
¼ 1

r2þ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
E0

ffiffiffi
d

p
− q2Q

!
: ðA3Þ

Thus if the biggest value of E2 is required to occur on the
horizon, it is necessary that ðdE2

dr Þþ < 0, whence

q2 > q�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
E0Q

ffiffiffi
d

p
: ðA4Þ

However, if

q2 < q�2; ðA5Þ
the horizon corresponds to the smallest value.

Simultaneously, the threshold for the PP (117) gives us
on the horizon for jq1j ¼ q2

q2 ≥
E0rþ
2m2

0Q
ðb1 þ

ffiffiffi
d

p
Þ; ðA6Þ

where we have taken into account that now jq1j ¼ q2. Both
inequalities (A5) and (A6) are compatible with each other,
provided

E2
0

m2
0

≤ 2

ffiffiffi
d

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
ðb1 þ

ffiffiffi
d

p Þrþ
: ðA7Þ
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