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Currently envisioned extensions of the Event Horizon Telescope to space will soon target the black hole
photon ring: a narrow ring-shaped imprint of a black hole’s strong gravity produced in its images by highly
bent photon trajectories. In principle, the shape of the photon ring encodes information about the geometry
of the underlying black hole spacetime. In practice, however, whether or not this information can be
extracted from the ring shape depends on several factors, ranging from the astrophysical details of the
emitting source (such as the magnitude of its plasma fluctuations) to the specific configuration of the
interferometric array (such as the separation between its telescopes, or the level of noise in its instruments).
Here, we employ a phenomenological model to assess the impact of astrophysical fluctuations and
instrument noise on the inferred shape of the photon ring. Our systematic study of several astrophysical
profiles suggests that this shape can be measured even in the presence of instrument noise across a wide
range of baselines. The measurement accuracy and precision appear relatively insensitive to the noise level,
up to a sharp threshold beyond which any measurement becomes incredibly challenging (at least without
recourse to more sophisticated data analysis methods). Encouragingly, we find that only a few snapshot
images are generally needed to overcome the impact of astrophysical fluctuations and correctly infer the
ring diameter. Inference becomes more challenging when analyzing the visibility amplitude in a baseline
window that is not entirely dominated by a single photon ring. Nevertheless, in most cases, it is still
possible to fit a ring shape with the correct fractional asymmetry. These results provide excellent prospects
for future precision measurements of black hole spin and fundamental astrophysics via black hole imaging.
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I. INTRODUCTION

Although the individual pulses of a pulsar can display
significant variability, their average is remarkably stable.
Pulsar timing array experiments rely on this stability to test
a wide range of relativistic predictions [1,2]. While images
of a supermassive black hole can likewise exhibit large
variability, their time average is also expected to be highly
stable: individual snapshots may display plasma flares or
other prominent transient features, but such source fluctu-
ations ought to wash out in the long run, leaving an image
dominated by the signature of the black hole—its photon
ring [3,4]. This ring is a narrow image feature produced by
photons on highly bent trajectories that orbited the black
hole multiple times on their way from source to observer. It
consists of multiple subrings, each of which shows a lensed
image of the main emission, indexed by the number n of
photon half-orbits executed around the black hole [5–7].
These subrings encircle the central brightness deficit
caused by the event horizon and form the part of the

image that belongs to the black hole itself, rather than its
surrounding emission: the photon ring is a persistent
“stamp” on the image of the black hole that carries
information about its strong gravity, encoded in the shape
of the subrings. Planning is now underway for a space
mission capable of performing interferometric observations
on baselines long enough to resolve the first (n ¼ 1) rings
of the black holes M87* and Sgr A* [8–10].
As this experimental effort unfolds, ongoing theoretical

work [3,4,11–15] has focused on deriving predictions for
the interferometric signature of the photon ring. By now,
multiple studies have investigated how feasible it might be
to extract this signature from time-averaged black hole
images. Initially, the focus was on the n ¼ 2 photon ring,
which produces a very clean signal [4,13,14], but it has
recently shifted to the n ¼ 1 ring [15], as it is more easily
accessible observationally and will hence be resolved first.
Deriving a sharp, general-relativistic prediction for the

interferometric signature of the n ¼ 1 ring is nontrivial.
The reason is that, strictly speaking, general relativity only
completely fixes the shape of the limiting n → ∞ ring: an
infinitely thin ring known as the “critical curve” C̃ [16].*cardenas-avendano@princeton.edu
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Although its angle-dependent diameter d̃φ follows an
analytically known form [12], this mathematical shape is
not in itself observable. What is in principle observable are
the finite-n rings, which converge exponentially fast in n to
C̃, but can nonetheless display corrections in 1=n that
remain significant at n ¼ 1.
In particular, the first n ¼ 1 photon ring has a larger

width-to-diameter ratio than subsequent rings—of order
∼10%—and therefore lacks a sharply defined diameter in
the image domain. Nevertheless, it does admit a sharp

interferometric diameter dð1Þφ , which can be defined in the
frequency domain by the periodic ringing that the ring
produces in the radio visibility [15]. In summary, even
though general relativity (GR) only directly determines a
functional form for the angle-dependent diameter d̃φ of C̃,
this very same functional form also constrains the inter-

ferometric ring diameter dð1Þφ of the first photon ring.
Although these theoretical findings are encouraging, in

practice, photon ring measurements face several hurdles.
The main challenge arises from the very narrow width of
the rings: at our present observing frequencies, resolving a
photon ring requires very-long-baseline interferometric
(VLBI) observations on baselines extending from ground
stations all the way to a radio antenna in space [3,17,18].
Besides the considerable technological advances needed

to carry out such observations in space, the narrow width of
the photon ring also poses challenges to our existing
modeling approaches: to adequately resolve it, one has
to ray trace general relativistic magnetohydrodynamic
(GRMHD) simulations of the accretion flow onto the black
hole at very high image resolutions (for more details on
these types of simulations, see, e.g., Refs. [19–22]).
Such time-averaged GRMHD simulations have shown

that photon rings are persistent, sharp features that come to
dominate VLBI observations after averaging them over
sufficiently long timescales [3]. Because of their onerous
computational cost, however, these simulations cannot
explore the vast space of plausible configurations, which
is parameterized by many variables, including: black hole
spin, observer inclination, the plasma heating model, or
accretion flow magnetization states, among many others.
Properly accounting for the time variability of sources

presents another challenge: for instance, the variability
observed in Sgr A*, the supermassive black hole at the
center of our galaxy, is a factor of two smaller than the
source-integrated variability predicted by our GRMHD
models [23,24]. In other words, we expect photon rings
to appear in time-averaged images, but the exact details of
how this averaging is to be carried out remain unclear.
For these reasons, prior studies of the photon ring and its

interferometric signature have mostly revolved around
time-averaged images [3–5,13–15]. To forecast future
space-VLBI experiments, however, one must tackle the
time variability head-on, and do so at high resolution.

In addition, accurate forecasting must take into account the
fine details of the interferometric array: in particular, one
must choose an orbit for the space telescope, and model the
physical and operational constraints imposed by the space-
craft design and mission architecture [25]. If, for example,
the space dish observes with the frequencies of existing
ground stations (namely, 86, 230, or 345 GHz), then its
orbit determines the baseline coverage (i.e., the subset of
the frequency domain) accessible to the array.
Here, we begin to incorporate these complications into

our forecasting, using a phenomenological model built into
the adaptive analytical ray tracing code AART [26]. This
code exploits the integrability of light propagation in the
Kerr spacetime to produce high-resolution black hole
images and their corresponding visibilities, as would be
observed on long space-to-ground baselines. We conduct a
survey of parameter space to determine how accurately the
shape of the first photon ring can be inferred in the presence
of various levels of instrument noise and source variability.
The survey also varies baseline lengths and ranges as a
proxy for the yet-to-be-pinned-down orbit.
To model instrument noise, we add complex Gaussian

noise to the raw, simulated radio visibility. Meanwhile,
we model astrophysical fluctuations using INOISY [27], a
code capable of replicating many features of accretion
processes by generating realizations of Gaussian random
fields (GRFs) with tuneable spatiotemporal correlations.
That is, rather than strictly adhering to a physics-based
simulation, such as in GRMHD, we instead resort to a
stochastical model of fluctuations that allows us to vary
their power and correlation structure systematically. This
enables us to parameterize our uncertainty about the scale
of the fluctuations, and to thereby offer a broad under-
standing of the various factors that will influence future
observations. Since the amount of time-averaging required
for a future space-VLBI mission to isolate the photon ring
ultimately depends on the variability of the underlying
plasma, we consider multiple astrophysical models with
different variability and emission geometries.
The results of our analysis suggest that, even in the

presence of substantial levels of both instrument noise and
astrophysical fluctuations, it is possible to detect in the
visibility amplitude a periodicity that encodes the shape of
the first photon ring. We are able to infer this shape with an
accuracy and precision that is not significantly affected by
the level of instrument noise, up to a certain, rather sharp
threshold. Detecting any signal becomes very challenging
past this threshold, which therefore sets a clear limit on our
measurement ability within this class of models and given
our inference technique. Averaging over multiple snapshots
can increase this threshold and restore our ability to detect a
photon ring signature even in the presence of elevated noise
or stronger fluctuations.
When analyzing the visibility amplitude in a baseline

window where neither the first nor the second photon ring
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dominate the signal, it becomes more challenging to infer a
periodicity and hence an interferometric diameter. In such
transition regimes, the periodic ringing of the visibility
sometimes leads one to infer a ring shape that only differs
from the “correct” shape (the one inferred in the absence of
noise and fluctuations) by an overall scaling factor.
Fortuitously, this means that one can still infer the correct
fractional asymmetry of the ring, even when its inferred
diameter is off by some (small) factor.
The remainder of this paper is organized as follows. In

Sec. II, we briefly present the phenomenological model we
use to simulate time-averaged and time-dependent data,
and the inference scheme we use to extract ring diameters
from a visibility. Then, in Sec. III, we study the impact of
instrument noise on time-averaged images. In Sec. IV, we
move on to time-dependent models and study the effects of
astrophysical fluctuations in isolation (in the absence of
instrument noise). Next, in Sec. V, we study a highly
challenging case in the presence of both instrument noise
and astrophysical fluctuations, and demonstrate that a
shape measurement still works under adverse conditions.
Finally, we conclude with a summary of our results in
Sec. VI, relegating some details of threshold selection and
model characterization to two Appendices.

II. PHENOMENOLOGICAL SOURCE MODEL

Throughout this paper, we use natural units with GN and
c set to unity. We simulate black hole images using the
method of Ref. [4], as implemented in AART [26]. In this
section, we briefly review the key ingredients of this model,
referring the reader to Ref. [26] for further details.
We consider a disk of emitters on circular-equatorial

Keplerian orbits. The disk terminates at an inner edge that
corresponds to the innermost stable circular orbit (ISCO)
radius. Past it, the emitters plunge into the hole following
Cunningham’s prescription [28]. The intensity at Cartesian
image-plane position ðα; βÞ is computed by (analytically)
tracing the corresponding light ray back into the emitting
region. The observed intensity, Ioðα; βÞ, increases each
time the ray intersects the accretion disk, by an amount
determined by the source emissivity, Is. The total observed
intensity is then given by [26]

Ioðα; βÞ ¼
XN−1

n¼0

ζng3
�
rðnÞs ; α; βÞIsðrðnÞs ;ϕðnÞ

s ; tðnÞs

�
; ð1Þ

where xðnÞs ¼ xðnÞs ðα; βÞ denotes the (analytically known)
equatorial position where the ray intersects the equatorial
plane for the (nþ 1)th time on its backward trajectory from
image-plane position ðα; βÞ, up to a total number Nðα; βÞ
along its maximal extension. The redshift factor g is
determined by the motion of the emitters, and ζn is a
“fudge” factor, assumed to be equal to 1 for n ¼ 0 and 3=2

for n ≥ 1. This factor is included to account for the effects
of the disk’s geometrical thickness [14,29].
Under this prescription, the observed intensity receives

two contributions: one purely geometric (encoded in the
redshift factor g), and the other purely astrophysical (set by
the source emissivity Is and fudge factor ζn). It is now easy
to prescribe time-averaged equatorial models, as in
Refs. [4,13], or time-dependent ones, as in Ref. [26].

A. Time-averaged images

To directly obtain time-averaged images, we assume
that the source emissivity is a function of radius only:
Isðrs;ϕs; tsÞ ¼ JðrsÞ. A convenient parametric form for the
radial emission profile JðrsÞ may be derived from the
Johnson’s standard unbounded (SU) distribution,

JSUðr; μ;ϑ; γÞ≡ e−
1
2
½γþarcsinhðr−μϑ Þ�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − μÞ2 þ ϑ2

p ; ð2Þ

in which the three parameters μ, ϑ, and γ respectively
control the location of the profile’s peak, its width, and its
asymmetry. An example of a time-averaged image obtained
in this fashion is shown in the upper-left panel of Fig. 1.
Throughout this paper, we choose the location of the peak
to be proportional to either the outer or inner event horizon
radius, r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
(see Table I).

B. Time-dependent models

In physical simulations, source fluctuations arise from
various phenomena, including fluid turbulence, magnetic
reconnection, or inherently random interactions between
particles. Here, we model all such fluctuations using the
AART implementation [26] of the INOISY code [27], a
stochastic model capable of replicating many features of
realistic accretion flows onto a black hole. This code
outputs a spatiotemporally varying emissivity IsðxsÞ by
generating realizations of a GRF F̂ ðxs;ui; λiÞ, where the
index i∈ f0; 1; 2g ranges over multiple parameters: the
vector u0 controls the temporal correlation of the flow, with
characteristic correlation time λ0, while the spatial vectors
u1 and u2 determine its spatial structure, with characteristic
correlation lengths λ1 and λ2. The GRF is a zero-mean
Matérn field obtained by solving a stochastic partial
differential equation [27], and it defines a source emissivity
via [26]

IsðxsÞ ¼ J ðxsÞ≡ JSUðrsÞeσF̂ ðxsÞ−1
2
σ2 ; ð3Þ

where σ is a parameter that controls the amplitude of the
fluctuations. In this way, the radial emission profile
JSUðrsÞ becomes an envelope for the resulting stochastic
source J ðxsÞ, and one recovers the time-averaged image
when σ ¼ 0. Examples of time-dependent snapshots are
displayed in the bottom two rows of Fig. 1. In all of our
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simulations, we set λ0 ¼ 2π=ΩK, where ΩK is the
Keplerian orbital frequency, λ1 ¼ 5rs, and λ2 ¼ 0.1λ1.
The three-dimensional unit vectors ui are chosen as in
Refs. [26,27]—see, e.g., Eqs. (109)–(111) in Ref. [26].
In particular, we have chosen the major axis u1ðxsÞ of
the spatial correlation tensor to lie at a constant angle
θ∠ ¼ 20° relative to the equatorial circles of constant
radius rs, as this produces a spiral arm structure that is
broadly consistent with GRMHD simulations [27,30].

C. Complex visibility and visibility amplitude

Given an image produced using Eq. (1), we compute its
radio visibility as the (complex) Fourier transform

VðuÞ ¼
Z

IoðxoÞe−2πiu·xod2xo; ð4Þ

where xo ¼ ðα; βÞ=ro are dimensionless coordinates (or
angles) on the sky of a distant observer at large radius
ro ≫ M, while the sampled baseline u is a dimensionless
distance between telescopes in the array, projected onto the
plane perpendicular to the line of sight and measured in
units of the observational wavelength. As in Refs. [4,26],
instead of taking the above 2D Fourier transform, we apply
the projection-slice theorem to compute jVðu;φÞj, the
visibility amplitude along slices of fixed polar angle φ
in the Fourier plane. To model observations of M87*, we
convert the Cartesian coordinates ðα; βÞ into angles xo by
using the mass-to-distance ratio ðM=roÞM87� ¼ 3.62 μas.
This effectively fixes the horizontal scale of the snapshot

visibilities shown in Fig. 1. To fix their vertical scale, we
normalize the visibilities such that jVð0Þj ¼ 0.6 Jy, which
corresponds to a total compact source flux of 0.6 Jy [31].
In the “universal regime” 1=d ≪ u ≪ 1=w of baselines

long enough to resolve a ring of diameter d, but not its
width w, the visibility amplitude takes the universal form

jVðu;φÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαLφÞ2 þ ðαRφÞ2 þ 2αLφα

R
φ sinð2πdφuÞ

q
ffiffiffi
u

p ; ð5Þ

FIG. 1. Black hole images (left) and their respective visibility amplitudes (right) for spin-aligned (blue) and spin-perpendicular (red)
cuts across each image. The black hole spin is a=M ¼ 94% and the observer inclination is θo ¼ 20°. From top to bottom, the magnitude
σ of the astrophysical fluctuations increases. In the absence of astrophysical fluctuations (σ ¼ 0), the image can be understood as being
already time-averaged, with an underlying radial emission profile given by Eq. (2) with the parameters of JSUðrsÞ corresponding to the
profile P1 defined in Table I. These visibility amplitudes clearly show that as the amplitude σ of the astrophysical fluctuations grows, it
becomes strictly harder to identify a clear periodicity in the interferometric signal.

TABLE I. The black hole spin and inclination of the example
case we consider throughout this paper, and the parameters for
our two radial emission profiles (2). The outer/inner event
horizon radii are denoted by r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

Parameter Value

a=M 94%
θo 20°
P1 ¼ ðμ;ϑ=M; γÞ ðr−; 12 ;− 3

2
Þ

P2 ¼ ðμ;ϑ=M; γÞ ð3
2
rþ; 1; 0Þ
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where dφ denotes the projected diameter of the ring, while

the functions αL=Rφ encode its intensity profile [11].
Given a simulated visibility amplitude, we attempt1 to

extract a projected ring diameter dφ at every baseline angle
φ by fitting jVðu;φÞj to the functional form (5). Then, we
can check whether the resulting dφ follows the GR-
predicted functional form for a photon ring [12,13],

dφ
2

¼ R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1sin

2ðφ − φ0Þ þ R2
2cos

2ðφ − φ0Þ
q

: ð6Þ

This expression represents a “circlipse”: a sum of a circle
(with radius R0) and an ellipse (with axes R1 and R2).
The phase φ0 adds some flexibility to accommodate for
rotations of the image. To extract the diameters dφ from
Eq. (5), we use the fitting method described in the next
section, which is a version of the procedure presented in
Ref. [13], but generalized to take into account the effects of
instrument noise and astrophysical fluctuations.

D. Fitting method

Given any profile, we consider 36 visibility amplitudes
computed along baseline angles φ∈ f0°; 5°;…; 175°g,
where the angle φ∈ ½0; 2πÞ also parameterizes dφ and

αL=Rφ [12]. For each baseline angle φ, we use SciPy’s simple
fitting routine curve_fit to fit the sampled points of the
visibility amplitude jVðu;φÞj to the functional form (5),
resulting in some best-fit parameters dφ and αL=Rφ .
For this fitting method to work in practice, we must

provide suitable bounds and initial guesses for the three
fitting parameters. To set approximate bounds for αL=Rφ , we
use Eq. (5) to derive relations between their extrema and
those of the visibility amplitude jVðu;φÞj on the cut:

αL�max þ αR�max ≈ Vmax
ffiffiffiffiffiffiffiffiffi
umax

p
; ð7Þ

αL�max − αR�max ≈ Vmin
ffiffiffiffiffiffiffiffiffi
umin

p
: ð8Þ

Solving these equations yields the approximate bounds

αL=Rmax ¼ 1

2
ðVmax

ffiffiffiffiffiffiffiffiffi
umax

p � Vmin
ffiffiffiffiffiffiffiffiffi
umin

p Þ: ð9Þ

These vary across the different baseline angles φ, since the
visibility profile along each cut is generally different. As for
the lower bounds on αL=Rφ , we set them to zero.
For the diameter, we impose the prior dφ ∈ ½35; 45� μas,

since our analysis is based on M87*, and photon ring
diameters outside this range are excluded on physical
grounds. The initial guess for dφ is always set to 40 μas

and the initial guess for αL=Rφ to k · αL=Rmax, where k is some
positive constant less than unity. To fix a value for k, we tried
several fits with k∈ f0.05; 0.10;…; 0.95g and recorded the
average root-mean-square deviation (RMSD) for each trial,
as defined in Eq. (10) below. We found that a value of
k ¼ 0.15 consistently gave good fits, that is, it consistently
led to the lowest RMSD.
Having obtained best-fit parameters dφ and α

L=R
φ at every

angle φ, the subsequent parts of the fitting method closely
follow the procedure described in Ref. [13]. That is, we
proceed by surveying the multipeaked distribution of the
RMSD, defined by an average hiu over baselines as

RMSDuðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½jVfitðu; dÞj − jVðuÞj�2iu

p
hjVfitðu; dÞjiu

: ð10Þ

However, instead of considering an adaptive range around
dφ with a width determined by the power associated with
the baseline window, as in Ref. [13], we instead fix the
range of candidate ring diameters to ½8M; 12M�. Again, for
M87* profiles, this is justifiable on physical grounds.
Back in line with Ref. [13], we then survey diameters dφ

that maximize the goodness-of-fit gðdφÞ, defined as

gðdφÞ≡ e−RMSDuðdφÞ; ð11Þ

and retain those for which gðdφÞ exceeds some threshold,
which, throughout our analysis, we set to be gðdφÞ ≥ 0.1.
These candidate angle-dependent diameters dφ form

multiple distinct circlipses, which we denote by Ci. The
Ci are separated by a gap ΔCi ≈ 1=uw, where uw is the
length of the baseline in the middle of the chosen baseline
window. Each Ci has a joint goodness-of-fit given by

gðCiÞ ¼
Y175°
φ¼0°

gðdφÞ: ð12Þ

The most probable circlipse is the one with the largest joint
goodness-of-fit gðCiÞ. We fit it to the GR-predicted func-
tional form (6) for the photon ring diameter to find the
parameters R ¼ fR0; R1; R2;φ0g that minimize

RMSDφðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h½dfitðφ;RÞ − dφ�2iφ

q
hdfitðφ;RÞiφ

: ð13Þ

For various reasons, one must select a narrow baseline
window when performing a fit [13], and the characteristic
baseline length uw of the window is especially important.
Indeed, uw determines the specific photon ring whose
geometry the fits are probing, since different subrings
dominate different regions of the visibility domain [3].
In particular, a choice of baseline window that falls

within a transition region between regimes dominated by

1As we will later see, it is not always possible to achieve this
due to either added instrument noise or large astrophysical
fluctuations.
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one photon subring and the next is less favorable. In such
regions, interference between the signals of the two rings
prevents the emergence of a “clear” interferometric sig-
nature [15], thereby inhibiting our ability to recover
information about the shape of either photon ring.
Since we are particularly interested in measurements of

the n ¼ 1 photon ring, we consider baseline windows in the
relatively shorter range between u∈ ½0; 150� Gλ.2
This concludes our presentation of the elements needed

to investigate measurements of the first photon ring in the
presence of astrophysical fluctuations and instrument noise.
Before proceeding with our analysis, we briefly summarize
the steps in our methodology. First, we ray trace simulated
black hole images using Eq. (1), in either a time-averaged
model with no astrophysical fluctuations or a time-
dependent one. For a given image, we compute its visibility
amplitude at various baseline angles φ via Eq. (4). Then, we
use the fitting method outlined in Sec. II D to extract a ring
shape dφ from the visibility amplitude, which we compare
to the GR prediction (6).
In the next sections, we study each effect separately,

starting with the impact of instrument noise, followed by
that of fluctuations, and finally, an example with both.

III. THE IMPACT OF INSTRUMENT NOISE

In this section, we investigate the effect of instrument
noise on the inferred shape of the first photon ring. In
particular, we consider how instrument noise affects the
accuracy and precision of our fitting procedure, and how
much noise our method can handle before breaking down.
After finding its limits, we close this section by discussing
which choice of baseline window might be most conducive
to accurate measurements of the first photon ring.
Given a simulated complex visibility (4), we model the

effects of instrument noise by adding to it a realization of a
complex Gaussian distribution NCð0; sÞ with mean zero
and standard deviation s.
After we add instrument noise, we would like to know

how much of an effect it has on the underlying signal. To
understand this, it is instructive to keep track of the power
associated with a given visibility amplitude. For any given
jVðuÞj, we define the power of the visibility amplitude
across a baseline window ½u1; u2� as

Pφðu1; u2Þ ¼
jVðu1;φÞj þ jVðu2;φÞj

2
: ð14Þ

This power is a measure of the strength of the visibility
amplitude in the baseline range ½u1; u2� at fixed angle φ.
Of course, it varies with the overall normalization of the
visibility amplitude. This notion of power is especially

important when thinking about the significance of some
level of noise, since it provides—in combination with s—a
rough estimate of the signal-to-noise ratio (SNR).

A. Accuracy and precision of the inferred
interferometric diameters

We begin by assessing the effect of instrument noise on
the accuracy and precision with which we can infer an
interferometric ring diameter using our fitting method.
We consider a Kerr black hole with spin a=M ¼ 94%,

observed from an inclination of θo ¼ 20°. We choose the
time-averaged emission profile to be given by Eq. (2) with
parameters μ ¼ r−, γ ¼ −3M=2, and ϑ ¼ M=2. This pro-
file is listed as P1 in Table I.
We carry out 500 fits with distinct noise realizations, first

with a noise level of s ¼ 1.5 mJy and then again with
s ¼ 2.5 mJy, across the baseline window ½86; 116� Gλ.3
Over the 36 baseline angles φ that we examine within

this window, the visibility amplitude attains a minimum
power (14) of 0.56 mJy, a maximum value of 1.18 mJy, and
an average value of 0.84 mJy. As shown in the right panels
of Fig. 4, the instrument noise levels s ¼ 1.5 mJy and
s ¼ 2.5 mJy really do affect the visibility amplitude and its
underlying interferometric signal.
For each successful fit, we compute the maximal (and

orthogonal) ring diameters

dk ¼ 2ðR0 þ R1Þ; ð15Þ

d⊥ ¼ 2ðR0 þ R2Þ; ð16Þ

where R0 and R2 are the best-fit parameters in Eq. (6).
When φ0 ¼ 0, these are exactly the diameters parallel and
perpendicular to the projected black hole spin axis.
Together, they define the fractional ring asymmetry

fA ¼ 1 −
d⊥
dk

; ð17Þ

which characterizes the “shape” of the circlipse.
As described in Sec. II D, for each fitting attempt, we

generate multiple circlipses Ci by surveying the multi-
peaked distribution of the RMSD (10), and then we fit the
circlipse with the highest joint goodness-of-fit (12) to the
expected functional form (6) for the photon ring shape in
order to infer its angle-dependent diameter dφ.

2For example, for observations at 345 GHz, a baseline of
150 Gλ translates to a telescope separation of about 10 Earth
diameters.

3For a noise level of s ¼ 1.5 mJy, Fig. 7 shows that this
baseline window gives the lowest average RMSD over all the
profiles we study in this work (see Sec. III C for details).
Furthermore, as we will see shortly, inferring an interferometric
diameter across this particular baseline window is quite chal-
lenging when using the astrophysical parameters of the profile P1
listed in Table I.
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We draw the best-fit circlipse in the absence of noise and
fluctuations as a blue line in Fig. 2 and the upper-left panel
of Fig. 4. The first shows the relative distribution of the
goodness-of-fits for the inferred diameters, while the
second offers a more faithful representation across angles.
This facilitates a comparison of the joint goodness-of-fits
across all the candidate circlipses.
We see in Fig. 2 that for the emission profile P1 given in

Table I, which is broadly consistent with the EHT results of
M87* on Earth baselines [4], the inferred diameters dφ with
the highest goodness-of-fit can “jump” between two
circlipses at certain angles φ. These discontinuities arise
as a result of the choice of baseline window, and their
presence and location depend on the set of astrophysical
parameters under consideration. In the chosen window,
the visibility amplitude of profile P1 is always sampled

(at every angle φ) in the transition region between the
regimes dominated by the first and second photon rings
(see Fig. 3). That is, for all of the 36 sampled baseline
angles, the first photon ring never dominates the signal
across the entire baseline window in which we perform the
fits. As discussed in detail in Ref. [13], a diameter inferred
in such a setting lacks a very sharp geometric interpretation:
if neither the n ¼ 1 nor the n ¼ 2 photon ring dominates
the visibility amplitude, then its ringing is not directly
related to the physical size of either ring; rather, it is a
feature of the continuity of the signal and its periodicity
[13]. In other words, when sampling in a transition region,
one can still infer an interferometric diameter dφ by fitting
the universal form (5), but this diameter lacks a clear
interpretation in the image.
Despite this jump in the inferred diameter dφ, one can

still (in some cases) infer a “correct” circlipse shape, as
shown for instance in the lower panel of Fig. 4 of Ref. [15].
(The panel shows that a “good” circlipse can be inferred in
the baseline window ½70; 100� Gλ, but not the window
½40; 70� Gλ, for the emission profile P2 given in Table I).
This is not too surprising because the visibility amplitude is
dominated by a ring on either side of the transition region,
so its ringing encodes a circlipse shape on both sides of the
transition: by continuity, we are then led to expect the
interferometric diameter within the transition region to also
follow a circlipse shape.
Indeed, the circlipse shape we infer in this case is still the

“correct” one, that is, the one closest to the circlipse shape
associated with the critical curve (the dashed black line in
Fig. 2). As we vary the underlying astrophysical profile
JSUðrsÞ across the set of 30 parameters specified in Table II,
we continue to infer similar circlipse shapes that cluster in a
band around the same location (see the shaded gray
background lines in Fig. 2).
As shown in the upper-right panel of Fig. 4, we are still

able to infer a circlipse in the correct band, even using noisy
observations in a transition region. This circlipse, however,
is slightly distorted and displaced relative to the one
inferred in the absence of noise. Since each of the 500
fitting attempts in this survey has a different realization of
noise, we expect the circlipses inferred from each fit to be
deformed in slightly different ways. Indeed, the different
diameters dφ inferred from each fit produce the distribution
shown in Fig. 5. For example, the inferred parallel diameter
dk is given, for each realization of noise, by the ordinates of
the blue curves at φ ¼ 90° in Fig. 4.
For each realization of noise, the inferred circlipse is

slightly displaced vertically, leading to small differences in
the inferred values of dk across the 500 fits.
The distribution of diameters shown in Fig. 5 is to be

distinguished from the multipeaked distribution of diam-
eters presented in Fig. 4; the latter is due to the RMSD
having various local minima, each of which may or may not
correspond to the global minimum, while the former is due

FIG. 2. The multipeaked distribution of inferred photon ring
diameters in the absence of noise or astrophysical fluctuations,
for a black hole with spin a=M ¼ 94% surrounded by the
emission profile P1 specified in Table I and observed from an
inclination of θo ¼ 20°. For each baseline angle φ, we plot the
possible inferred diameters with dots whose sizes are set by the
relative magnitudes of their goodness-of-fit (and not their
absolute values). That is, the point sizes should only be compared
vertically (i.e., at fixed φ) in order to identify which diameter had
the highest goodness-of-fit, the second highest, and so on, at that
particular baseline angle. The dashed black line is the circlipse
that best fits the critical curve, while the background shaded gray
lines are the circlipses inferred from the same black hole, but with
the 30 different astrophysical profiles specified by the parameters
in Table II. This figure and the upper-left panel of Fig. 4 both
display the same data, including the same inferred circlipse (blue
curve). However, here we use point sizes rather than colors to
better illustrate the differences in the goodness-of-fits of the
inferred diameters and to highlight the “jumps” in the best-fit
diameters that occur at dφ ≈ 9.2M and dφ ≈ 9.8M.
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to different realizations of instrument noise, each of which
leads to an inferred circlipse that is the same as in the
noiseless (s ¼ 0 mJy) case, but slightly displaced and
distorted by the effects of noise.
To assess the accuracy of these diameter distributions,

we use as a benchmark the diameters dk and d⊥ inferred in
the noiseless case (s ¼ 0 mJy), which are plotted as dashed
vertical lines in Fig. 5. Although these diameters do not

correspond to the interferometric diameters of the n ¼ 1
photon ring (since the visibility amplitude is in a region of
transition at all baseline angles), nonetheless they still offer
insight into the accuracy of our diameter inference. This is
because, as Fig. 2 shows, the circlipse they correspond to is
remarkably close to the shape of the critical curve. In
particular, the diameters dk and d⊥ inferred in the absence
of noise differ from those of the critical curve by 0.58% and
0.61%, respectively.
Moreover, the RMSD of the fit to the functional form of

the circlipse is 0.008% in the absence of noise. The close
proximity of the inferred circlipse to the critical curve
shape, together with the low RMSD of the fit, suggest that,
at least in the absence of noise and astrophysical fluctua-
tions, our fitting scheme is capable of recovering informa-
tion about the underlying geometry, even from a transition
region. As such, we can use these diameters as a benchmark
to assess the accuracy of the distributions of diameters
inferred in the presence of instrumental noise (and astro-
physical fluctuations).
As Fig. 5 shows, adding noise causes the mean of each

histogram to shift slightly relative to the dashed vertical
lines showing the diameters inferred in the absence of
instrument noise. In particular, for dk, the means of the
s ¼ 1.5 mJy and s ¼ 2.5 mJy histograms are displaced by
0.25% and 0.46%, respectively, relative to the value of dk
inferred in the absence of noise, with shifts of comparable
size for d⊥. Moreover, the width of the histograms for dk

FIG. 3. The visibility amplitude corresponding to the direct image (n ¼ 0, green-dotted lines), the first two photon rings (n ¼ 1,
orange-dashed lines, and n ¼ 2, blue-dash-dotted lines), and the total image (0 ≤ n ≤ 2, black solid lines) for the profile P1 (see Table I),
in the absence of instrument noise and astrophysical fluctuations. The pink-shaded region corresponds to the baseline window
½86; 116� Gλ over which we attempt to infer an interferometric diameter. The left and right panels display the visibility amplitude at
baseline angles φ ¼ 0° and φ ¼ 125°, respectively. The right panel inset shows the corresponding image. In this baseline window, the
visibility undergoes at every angle φ a transition between regimes dominated by the n ¼ 1 and n ¼ 2 photon rings. Nevertheless, one
can still infer a circlipse shape for dφ, as shown in Figs. 2 and 4 (upper-left panel).

TABLE II. The 270 profiles whose time-averaged images we
survey in Fig. 7 in search for the optimal baseline window for a
shape measurement of the first photon ring. We consider three
black hole spins, three observer inclinations, and 30 emission
profiles. This wide range of parameters accounts for many
possible astrophysical scenarios in which the emission profile
peaks at different locations and exhibits different levels of
broadness and steepness. Although not all of these profiles are
realistic, the parameter space is large enough to encompass a wide
range of plausible astrophysical sources. The outer/inner event
horizon radii are denoted by r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

Parameter Values

a=M f0%; 50%; 94%g
θo f10°; 20°; 30°g
μ fr−; 12 rþ; rþ; 32 rþ; 2rþg
ϑ=M f1

2
; 1g

γ f−1; 0; 1g
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FIG. 4. The multipeaked distribution of inferred photon ring diameters for a black hole with spin a=M ¼ 94% surrounded by the
emission profile P1 specified in Table I and observed from an inclination of θo ¼ 20°. The four panels display simulated measurements
with various combinations of instrument noise and astrophysical fluctuations across the window ½86; 116� Gλ: no noise or fluctuations
(top left), s ¼ 1.5 mJy of instrument noise alone (top right), astrophysical fluctuations with σ ¼ 0.25 alone (bottom left), and a
combination of both instrument noise and astrophysical fluctuations with s ¼ 1.5 mJy and σ ¼ 0.25, respectively (bottom right). In the
absence of astrophysical fluctuations (σ ¼ 0), realizations of the complex Gaussian noise NCð0; sÞ are added to the complex visibility
across each baseline angle φ. In the presence of fluctuations (σ > 0), we carry out the same process separately across N ¼ 10 snapshots,
before taking their coherent time average. In either case, we then fit the sampled visibility amplitude across all angles to the GR-
predicted functional form (5) to obtain the ring diameter dφ that locally minimizes the RMSD (10). We also consider as possible
diameters the other local minima of the RMSD (or, equivalently, the local maxima of the goodness-of-fit) in the range ½8M; 12M�. Each
panel has its own color scale, whose limits are set by the absolute maximum and minimum of the goodness-of-fit for all the inferred
diameters across all baseline angles. The multipeaked diameter distribution gives rise to multiple circlipse shapes, and the blue lines
correspond to the circlipse with the highest joint goodness-of-fit (12) in each fitting attempt.

ASSESSING THE IMPACT OF INSTRUMENT NOISE AND … PHYS. REV. D 109, 124052 (2024)

124052-9



(or d⊥) increases by a factor of ≈1.3 (or ≈1.1) as the noise
level increases from s ¼ 1.5 mJy to s ¼ 2.5 mJy.
The changes we observe in the mean values and widths

of the histograms in Fig. 5 are quite modest relative to the
changes in their areas. In other words, the strongest effect
of increased noise levels is an increased failure rate: 95% of
the fits are successful when this level is s ¼ 1.5 mJy, but
that figure decreases to 25% when the noise grows to
s ¼ 2.5 mJy. As such, increasing the level of instrument
noise leads to a significant reduction in the likelihood of a
successful fit; on the other hand, for successful fits,
increasing the noise level only leads to a modest reduction
in the accuracy and precision of the fit. In sum, the
measurements of dφ are either good, or fail.
Since Fig. 5 includes the full range of diameters dφ

inferred from our survey, we see that increasing the level of
instrument noise never leads us (in any of the 500 fits) to
select the second circlipse, which exhibits jumps in dφ.

B. Breakdown of our fitting method

Having assessed the accuracy and precision of our fits in
the presence of a few levels of instrument noise, we now
vary the noise level s to find out how much of it our fitting
method can handle before breaking down.

We perform fits to the visibility amplitude of a black hole
with profile P1 (defined in Table I) in the baseline window
½86; 116� Gλ, in the presence of 15 realizations of noise and
for 250 different noise levels chosen to grow exponentially
from s ¼ 10−5 Jy to s ¼ 1 Jy. The results are shown in
Fig. 6, wherein the ordinate of each point in the left (or
right) plot is the average RMSD (or inferred diameter)
of the 15 fits attempted at the corresponding level of noise.
The dashed vertical lines denote the noise levels
s ¼ 1.5 mJy and s ¼ 2.5 mJy from the last section.
The last points plotted in Fig. 6 correspond to a noise

level smax ¼ 3.2 mJy, beyond which fewer than three
successful fits can be obtained for any given s. Indeed,
the overwhelming majority of fitting attempts above this
level of noise fail4: for s ≤ smax, 93% of the fitting
attempts are successful, whereas only 1% are successful
for s > smax. The particular level of noise s ¼ 3.2 mJy is
only significant insofar as it relates to the power of the
visibility amplitude across ½86; 116� Gλ: the ratios of smax
to the maximum and average powers are smax=Pmax ¼ 2.7

FIG. 5. The inferred-diameter distributions for the parallel diameter dk (left) and the perpendicular diameter d⊥ (right), for a black hole
with spin a=M ¼ 94% surrounded by the emission profile P1 specified in Table I and observed from an inclination of θo ¼ 20°. The fits
are performed in the baseline window ½86; 116� Gλ with 500 realizations of instrument noise for s ¼ 1.5 mJy (green histograms) and
another 500 for s ¼ 2.5 mJy (purple histograms). The presence of instrument noise shifts the centers of the distributions relative to the
diameters inferred in the absence of noise (i.e., s ¼ 0 mJy), denoted by the vertical dashed lines. For the inferred parallel diameters,
the centers of the s ¼ 1.5 mJy and s ¼ 2.5 mJy histograms are shifted by 0.25% and 0.46%, respectively, relative to the inferred dk in
the absence of noise. Similar shifts, but in the opposite direction, occur for the inferred d⊥ histograms. As expected, as the level of noise
increases, the widths of the histograms also increase. In particular, as the noise level grows from s ¼ 1.5 mJy to s ¼ 2.5 mJy, the widths
of the dk and d⊥ histograms increase by factors of ≈1.3, and ≈1.1, respectively. The most pronounced effect of increased instrument
noise is a higher rate of fit failure (i.e., a decrease in the area of the histograms): 95% of the fits are successful when s ¼ 1.5 mJy, while
only 25% of fits succeed when s ¼ 2.5 mJy.

4The very last successful fit we obtained had a noise of
s ¼ 0.53 Jy. The diameters dk and d⊥ that we inferred differed by
0.54% and 0.28%, respectively, from those inferred in the
absence of noise.
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and smax=Pavg ¼ 3.8. In other words, the success rate of the
fits drops below 20% when the noise level s exceeds 3.8
times the (average) power.
As the left panel of Fig. 6 shows, the RMSD starts to

grow significantly around s ¼ 0.1 mJy. By contrast, the
inferred diameters remain relatively insensitive to this
depreciation of the quality of fit (as suggested by a
higher RMSD). Indeed, the percentage change in the
diameters remains modest over the entire range of noise
levels in Fig. 6. In particular, for s ¼ 3.2 mJy (the
highest noise value plotted), the average inferred dk and
d⊥ differ from their fitted values in the absence of noise
by only 0.54% and 0.44%, respectively.
This small variation of the inferred diameters dφ with

respect to the noise level explains the shifts observed in
the histogram peaks in Fig. 5. For the largest values of
s in Fig. 6, the inferred diameters asymptote to a single
value. For even larger values of s beyond those shown
in Fig. 6, the inferred shape becomes more circular,
which corresponds to the flattening of the inferred
circlipse.
This can be visually understood from the upper-right

panel of Fig. 4: when there is a significant increase in the
noise, the inferred diameters start to oscillate around a
common value. Consequently, the ring shape and its
asymmetry get washed out, and one can only infer a
straight line corresponding to a circular radius.
Remarkably, all the diameters inferred in this survey lie

within the range delineated by the two horizontal dashed

lines in Fig. 6 (which denote the fits obtained for s ¼ 0 mJy
using the envelope fitting method in Ref. [13]), including
the fits obtained sporadically at s > smax. That is, despite
the jump in the inferred diameters dφ with s ¼ 0 mJy
(displayed in Fig. 2), the addition of substantial levels of
instrument noise does not lead us to infer a different
circlipse for any of the noise realizations.
Together, Figs. 5 and 6 suggest that as the noise level

increases, the RMSD also increases, so that the fits fail with
higher frequency, as one might expect. However, the
resulting change in the distribution of the inferred diam-
eters is, in relative terms, modest. Thus, the main effect of
increased instrument noise is a higher failure rate for
measurements of the signal periodicity, but only a modest
reduction in their accuracy and precision.
Above a certain noise threshold (smax ¼ 3.2 mJy in our

survey), the ability to reliably infer a periodicity from the
signal becomes severely limited (i.e., for s ≥ smax, the
success rate for fitting attempts drops below 20%). Finally,
the presence of instrument noise alone does not exacerbate
transition-region effects nor lead one to infer a “wrong”
circlipse.
In a real measurement, even if the noise level exceeds

this threshold, it does not necessarily follow that the shape
of the first photon ring is absent from the signal. It may still
be possible to extract the shape information using a more
sophisticated method of data analysis that uses multiple
observations and goes beyond the simple fitting method
that is implemented herein.

FIG. 6. Average RMSD values (left) and inferred diameters (right) for 15 fitting attempts across the baseline window ½86; 116� Gλ in
the presence of instrument noise ranging from a level s ¼ 10−5 Jy to s ¼ 100 Jy. The vertical lines indicate the noise levels s ¼ 1.5 mJy
(green dashed line) and s ¼ 2.5 mJy (purple dash-dotted line), and the horizontal lines on the right panel indicate the diameters inferred
in the absence of noise using the envelope-fitting method of Ref. [13]. At the largest plotted noise level of s ¼ 3.2 mJy, the average
inferred diameters dk (red crosses) and d⊥ (blue dots) differ by 0.54% and 0.44%, respectively, from those inferred in the absence of
noise. For noise levels above s ¼ 3.2 mJy, the RMSD plateaus and successful fits become much less frequent: for s ≤ 3.2 mJy, 93% of
all the fitting attempts succeed, whereas only 1% succeed for s > 3.2 mJy.
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C. Suitable baseline windows

To assess which baseline window is most suitable for a
photon ring shape measurement, we now examine several
profiles and fit their visibility amplitudes over various
baseline windows, and then analyze the corresponding
distribution of RMSDs.
More specifically, we perform fits using 270 different

time-averaged models, in which we vary the parameters of
the underlying geometry (namely, the black hole spin and
the observer inclination) and the three parameters ðμ; ϑ; γÞ
that characterize the radial emission profile (2). The precise
values that we consider for these parameters are presented
in Table II. We systematically examine a set of baseline
windows starting at f0; 2; 4;…; 100g Gλ and extending
over a range of f5; 10; 15;…; 50g Gλ.
This results in 51 × 10 ¼ 510 baseline windows. For

each one of them, we perform 4 fits per profile, each time
adding a different realization of noise with s ¼ 1.5 mJy or
s ¼ 2.5 mJy, producing a total of 1, 101, 600 attempted
fits. For each profile across a given baseline window, we
conservatively take the maximum RMSD of the 4 fitting
attempts.5 The result of this survey is presented in Fig. 7,
where each baseline is represented by a cell whose color
indicates the mean value of the 270 RMSD maxima (a
fairly conservative estimator).
The cells highlighted with dashed purple borders in

Fig. 7 correspond to the baseline windows ½86; 116� Gλ and
½88; 138� Gλ, which have the lowest average RMSD when

s ¼ 1.5 mJy or s ¼ 2.5 mJy, respectively. The average
RMSD of the fits across the window ½86; 116� Gλ is
0.012%, while the average RMSD across ½88; 138� Gλ
is 0.019%. The black cells indicate a complete inability to
recover a fit: in the baseline windows corresponding to
those cells, every fitting attempt is unsuccessful. The
white solid lines are contours corresponding to a mean
RMSD value of 0.05%, and they enclose 38% and 19%
of the baseline windows in the cases s ¼ 1.5 mJy and
s ¼ 2.5 mJy, respectively.
To demonstrate the qualitative difference in the quality of

the fits just above and below the (arbitrary) RMSD thresh-
old of 0.05%, we present in Appendix A examples of fits
performed within the baseline windows highlighted with
green and red borders in the left panel of Fig. 7.
We can see in Fig. 7 that the more favorable baseline

windows (i.e., those with a lower RMSD) are generally
concentrated in the upper-right section of the heatmaps. In
other words, longer baselines and larger window sizes lead
to better shape measurements.
The preference for larger window sizes is explained by

the oscillatory behavior of the visibility amplitudes. Each
measurement requires finding the parameters that best fit
an oscillatory function to some noisy dataset. Over a
shorter window, and in the presence of noise, a larger
proportion of the parameter space is consistent with the
observed signal. By contrast, observations over longer
windows impose stronger constraints on the parameters of
the fit, which must reproduce an increasingly specific
oscillatory (and decaying) pattern over a larger domain.
The preference for longer baselines (within this region of

the visibility domain and for the profiles considered) can be
understood in two ways. First, as the visibility amplitude

FIG. 7. The distribution of the maximum value of the averaged RMSD obtained from the fits for the 270 profiles given in Table II, in
the presence of instrument noise levels s ¼ 1.5 mJy (left) and s ¼ 2.5 mJy (right), across baselines windows ½u1; u1 þ Δu� Gλ, where
u1 ∈ f0; 2;…; 100g and Δu∈ f5; 10;…; 50g. The dashed purple cells denote the baseline windows ½86; 116� Gλ and ½88; 138� Gλ,
which have the lowest average worst-fit RMSD value for the cases s ¼ 1.5 mJy and s ¼ 2.5 mJy, respectively. The black cells
correspond to baseline windows in which no fit is ever successful. The white contours correspond to a mean RMSD value of 0.05%, and
they enclose 38% and 19% of the baseline windows in the cases s ¼ 1.5 mJy and s ¼ 2.5 mJy, respectively.

5When fitting in a given baseline window, sometimes a
periodicity cannot be recovered from the visibility, so the fit
fails and no RMSD is computed. In some baseline windows
(depicted by black cells in Fig. 7), all of the fits fail.
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decreases rapidly on baselines close to 0 mJy, fits on such
baselines frequently fail (e.g., for both levels of noise, all
the fits at baseline windows starting at 0 Gλ completely
fail). Second, as the baseline length increases, the visibility
amplitude enters the universal photon ring regime and thus
becomes increasingly independent of the astrophysical
profile [3,4], resulting in sharper probes of the underlying
geometry.
However, when the baseline length increases too much,

the steady decay of the power in the visibility amplitude
leads to a decreased SNR, which brings down the quality of
fits. All else being equal, instrument noise generally has a
stronger effect on larger baselines: by Eq. (5), the power
decreases roughly like

ffiffiffi
u

p
with increasing baseline, so the

SNR decreases like
ffiffiffi
u

p
. Since we only consider baselines

extending up to 150 Gλ in this survey, this effect is not
substantial, but if one were to consider even longer base-
lines, then a baseline-dependent noise level might be more
appropriate than the fixed levels considered here.
Since SNR generally decreases with increasing baseline,

it makes sense that regions of total failure appear in the
“better” (longer) baseline windows in the s ¼ 2.5 mJy case
before appearing in the “worse” (shorter) windows. As the
noise level s increases, we expect its effect to be strongest
on those baselines where the SNR is smallest, that is, on
longer baselines such as those appearing in the upper-right
region of Fig. 7.
The substantial increase in the fitting failure rate as the

noise level grows from s ¼ 1.5 mJy to s ¼ 2.5 mJy is
consistent with Fig. 5, and is a recurring feature in the
surveys described in the rest of this paper. Despite the
significant failure rate at s ¼ 2.5 mJy, there are still some
baseline windows in the upper-right region of the plot
whose corresponding RMSDs are comparable to the fits at
noise level s ¼ 1.5 mJy. Indeed, the maximum RMSD for
the fits across the window ½88; 138� Gλ with noise level
s ¼ 2.5 mJy is only 0.007% larger than the maximum
RMSD for the fits across the window ½86; 116� Gλ with
noise level s ¼ 1.5 mJy.
This is another recurring theme of our survey: in most

baseline windows, as the instrument noise increases, the
likelihood of detecting a periodic signal decreases, but,
provided that it is detectable, its measurement accuracy
does not vary much with the noise level.
As previously indicated, our chosen threshold RMSD of

0.05% indicated by the white contours in Fig. 7 is some-
what arbitrary (see Appendix A). We consider this choice to
be rather conservative in the sense that it corresponds to
qualitatively good circlipse fits for the photon ring shape. In
a real space mission, the actual target RMSD value would
depend on the science requirements.
If one can ignore orbital constraints and choose any

baseline window to observe in, then Fig. 7 indicates which
windows are better suited to accurate measurements of the
photon ring, on average, for the 270 profiles that we

consider here. This does not mean, for example, that in the
presence of s ¼ 1.5 mJy of instrument noise, all 270
profiles considered are optimally observed across the
window ½86; 116� Gλ. Indeed, for some profiles, a different
baseline window might be optimal. For the profile P1 (see
Table I) considered throughout this paper, for example, the
visibility amplitude in the window ½86; 116� Gλ lies in a
transition region between regimes dominated by the n ¼ 1
and n ¼ 2 rings. As such, a shorter baseline window may
be preferable in order to avoid transition effects. Besides,
Fig. 7 does not indicate the absolute quality of the fits
across each window. If a near-future experiment were to
limit us to narrower baseline windows starting on shorter
baselines, then according to Fig. 6, accurate shape mea-
surements of the photon ring would still be possible: the
least favorable regions of Fig. 7 have RMSDs comparable
to those at the upper range shown in the left panel of Fig. 6,
and as the left panel shows, fits with these RMSDs have
inferred diameters that remain close to those inferred in the
absence of noise.
Thus far, we have only studied how instrument noise

alone affects the extraction of a photon ring shape from
the visibility amplitude of time-averaged images. Next, we
study the effects of astrophysical fluctuations on our ability
to infer the photon ring shape.

IV. IMPACT OF ASTROPHYSICAL
FLUCTUATIONS

We begin this section by considering how the scale of
astrophysical fluctuations, which is characterized by the
parameter σ in Eq. (3), can affect our ability to extract an
interferometric diameter in visibility space. We then con-
sider the effect of the number N of “snapshots” over which
we time average the visibility. This averaging can be carried
out in one of two ways: either coherently, or incoherently.
Coherent averages retain phase information by first aver-
aging the complex visibility and then taking the amplitude,
whereas incoherent averages discard the relative phases by
directly averaging at the level of the visibility amplitude.
As N → ∞, astrophysical fluctuations wash out of the

average over snapshot images, and thus one recovers the
time-averaged image that corresponds to the radial emis-
sion profile (2) with the same JSUðrsÞ parameters. A
coherently averaged visibility corresponds to the visibility
of this time-averaged image. Experimentally, however, our
current technology limits us to incoherent averaging.

A. Impact of the number of snapshots averaged

We consider two emissivity profiles, six magnitudes σ of
astrophysical fluctuations, and various spin-inclination
combinations specified in Table III, comprising a total of
108 different profiles. For each of these profiles, we ray
trace a simulated black hole movie with a duration of
1000M, sampled every 10M to produce a total of N ¼ 100
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snapshots. We present the distribution of the power across
the baseline window ½86; 116� Gλ over all considered
models in Appendix B.
For each of the 108 profiles, and for N ¼ 5, 10, 20, and

70 snapshots, we conduct 10 fits, each time recording the
maximum (i.e., worst-fit) value of the RMSD. In each case,
we randomly choose N snapshots from the total of 100,
take either their coherent or incoherent average, and then
attempt a fit to the resulting visibility amplitude.
The distributions of the worst-fit RMSD are shown in

Fig. 8 for the different values of N, for both coherent (left
panel) and incoherent (right panel) averages. Since these
distributions are very similar, it follows that the phase
variations among the images are relatively small, that SNR
is high, and that the strong signal (large amplitude) features
are dominating the snapshot images.
As expected, increasing the number N of snapshots that

we average over causes the RMSD distributions in Fig. 8 to

shift toward lower values. In particular, for the coherent
averages, we find that 30% of the profiles have RMSD
values below our chosen threshold of 0.05% (drawn as a
vertical dashed line) when N ¼ 5. At the other extreme,
when N ¼ 70, this fraction grows to 59%. As expected, we
observe a similar trend for the incoherent averages.
Increasing the number N of averaged snapshots not only

lowers the worst-fit RMSD, but also improves our ability to
detect a periodicity: for the coherent averages, the percent-
age of successful fits is 53%, 55%, 61%, and 66% when the
snapshots averaged over number N ¼ 5, N ¼ 10, N ¼ 20,
and N ¼ 70, respectively, with similar values for the
incoherent average.
These results are unsurprising and consistent with the

fact that in the N → ∞ limit, one recovers a time-averaged
image dominated by a single persistent feature: the photon
ring. Increasing the number N of snapshots lessens the
impact of astrophysical fluctuations, reduces the RMSD of
the fits, and enhances our ability to recover a periodicity.
However, the precise value of N such that the RMSD dips
below a certain threshold depends on the specific details of
the fluctuations.

B. Impact of the scale of astrophysical fluctuations

Next, we survey the impact that the magnitude σ of the
astrophysical fluctuations has on our ability to infer an
interferometric diameter. For this survey, we keep all the
other parameters fixed and vary only σ.
We consider images of a black hole surrounded by the

profile P1 given in Table I, and carry out 500 fits across the
baseline window ½86; 116� Gλ, first with σ ¼ 0.25, and then
again with σ ¼ 0.45. Each fit is performed on a visibility
amplitude obtained by averaging over N ¼ 10 snapshots

TABLE III. Parameters for the 108 movies with astrophysical
fluctuations. For each of the profiles in Table I, we consider three
black hole spins, three observer inclinations, and six fluctuation
scales σ. When σ ¼ 0, the source (3) reduces to the time-averaged
model (2) with the same parameters for the radial emission profile
JSUðrsÞ. The outer/inner event horizon radii are denoted by
r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

Parameter Values

a=M f2%; 50%; 94%g
θo f10°; 20°; 30°g
σ f0.0; 0.05; 0.15; 0.25; 0.35; 0.45g
P1 ¼ ðμ;ϑ=M; γÞ ðr−; 12 ;− 3

2
Þ

P2 ¼ ðμ;ϑ=M; γÞ ð3
2
rþ; 1; 0Þ

FIG. 8. The distributions of the worst-fit RMSD among 10 fits carried out for the 108 time-dependent profiles given in Table III, when
taking the coherent (left), and incoherent (right) average of (from top to bottom) N ¼ 5 (purple), 10 (green), 20 (blue), and 70 (red)
snapshots. The vertical dashed line denotes an RMSD of 0.05%. As the number of snapshotsN increases, the RMSD of the fits generally
decreases (i.e., the histograms shift toward the left) and the number of successful fits increases.
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randomly chosen during each fitting attempt. We show the
distributions of the inferred diameters dk and d⊥ resulting
from coherent and incoherent averaging as the solid and
dashed lines in Fig. 9, respectively. In these plots, the
vertical dashed lines are the diameters inferred in the case
σ ¼ 0 (i.e., with no astrophysical fluctuations), which are
the same as those in Fig. 5.
Unlike the distributions of diameters inferred in the

presence of instrument noise (see Fig. 5), the diameters
inferred in the presence of astrophysical fluctuations now
form a multipeaked distribution (as shown in Fig. 9). As
discussed in the previous section, different realizations of
instrument noise always lead to a measurement of the same
circlipse as in the case s ¼ 0 mJy, up to a slight distortion
and displacement. By contrast, astrophysical fluctuations
can change the structure of the image in ways that instru-
ment noise cannot. For instance, as the lower panel of Fig. 9
clearly shows, astrophysical fluctuation can introduce
photon ring mimickers that can modify the periodicity in
the visibility amplitude. The impact of this effect on the
inferred circlipse shape is exacerbated across windows
located in regions of the visibility domain that correspond
to transitions between rings.
The circlipse corresponding to the smaller peak in

Fig. 9 is the one directly below the blue curve in the
lower-left panel in Fig. 4, which shows a typical fit with
σ ¼ 0.25 in this survey. This second peak arises because

the fit is performed in a baseline window ½86; 116� Gλ,
which for this particular profile lies within a transition
region between the regimes dominated by the first and
second photon rings.
We recall that in the s ¼ 0 mJy and σ ¼ 0 case, the

inferred diameters dφ jump between two circlipses (e.g., the
circlipses starting at 9.2M and 9.8M in Fig. 2). The upper-
left panel of Fig. 4 shows that these circlipses have similar
joint goodness-of-fits in the absence of noise and fluctua-
tions: the joint goodness-of-fit of the “best” one (the blue
curve in Fig. 4) is 0.0023, while that of the one directly
below is 0.0016. These two values of the goodness-of-fit
are “close” compared to the next highest value of 0.00046
(corresponding to the circlipse staring at 10.3M), a factor of
3.6 times lower than the circlipse starting at 9.2M.
Averaging over different sets of snapshots with nonzero

astrophysical fluctuations leads to changes in the visibility
amplitude to which we apply our fitting method. In a small
fraction of our snapshot averages, the visibility amplitude is
such that this second circlipse has a larger goodness-of-fit
than the one closest to the shape of the critical curve, which
leads us to infer diameters that lie close to the smaller peaks
in Fig. 9.
Interestingly, the green histogram in Fig 10 shows that

the two circlipses inferred in this survey have the same
fractional asymmetry, up to slight variations introduced by
the fluctuations.

FIG. 9. The multipeaked distributions of diameters inferred from a time-dependent black hole movie with σ ¼ 0.25 (blue) or σ ¼ 0.45
(green) and underlying parameters given in Table I. We carry out 500 fits across the baseline window ½86; 116� Gλ using a visibility
amplitude produced by taking the coherent (solid lines) and incoherent (dashed lines) averages of N ¼ 10 snapshots randomly chosen in
each fitting attempt. The dashed vertical lines represent the inferred diameters in the absence of astrophysical fluctuations (σ ¼ 0). As σ
increases, the centers and widths of the histograms do not undergo substantial changes, whereas their areas decrease significantly: in the
coherently-averaged case, 95% of the fits with σ ¼ 0.25 are successful, while that value decreases to 43% when σ ¼ 0.45. For a small
fraction of the randomly chosen sets of N ¼ 10 snapshots, we see the formation of a secondary peak corresponding to a circlipse with
the same fractional asymmetry as the one closest to the shape of the critical curve, up to variations introduced by the instrument noise
(see Fig. 10).
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In other words, for a given geometry (i.e., for a fixed
black hole spin and observer inclination), the distribution
of the inferred fractional asymmetry is not multimodal,
while the inferred circlipses all differ from each other by
some constant scaling factor. As such, even though the
diameters dφ of the secondary circlipses are farther away
from the shape of the critical curve (whose overall size is
set by the black hole mass), they nonetheless retain some
information about the spacetime geometry, encoded in the
ring asymmetry.
Even when averaging over only N ¼ 10 snapshots, the

distributions for the inferred diameters dk and d⊥ are
quite closely aligned with the diameters inferred in the
absence of astrophysical fluctuations, and indeed both
distributions display a similar width. That is, as σ grows
from zero to σ ¼ 0.25, and subsequently to σ ¼ 0.45, we
do not observe a significant reduction in the accuracy or
precision of the inferred diameters. Rather, the most
pronounced effect that we observe is a reduction in the
area of the histograms, or equivalently, an increase of the
failure rate for fitting attempts. The percentages of
successful fits for σ ¼ 0.25 and σ ¼ 0.45 are 95%

and 43%, respectively, with similar figures for the
incoherent averages.
Consistent with the effects of instrument noise, we see

that in the presence of increasingly large astrophysical
fluctuations, our ability to detect a periodic signal in the
visibility amplitude is significantly impaired, while the
accuracy and precision of our fits, when we are able to
obtain them, does not decrease nearly as substantially.
When running these simulations, we first specify the

geometrical parameters ða; θoÞ, from which we compute
the critical curve analytically. Thus, we know a priori that
the dominant peak in Fig. 9 is that of the “correct” circlipse,
that is, the one closest to the shape of the (in itself
unobservable) critical curve (see, e.g., Fig. 2).
The distance between the two inferred circlipses is

approximately equal to 1=uw, where uw represents the
length of the baseline in the middle of the window [13].
Thus, in this scenario, the size difference between the two
circlipses is only a few percent. Therefore, in a realistic
observation, one could perhaps identify the “correct” peak
provided one had a strong prior on the mass-to-distance
ratio, as is the case for Sgr A*.

V. ASTROPHYSICAL FLUCTUATIONS AND
INSTRUMENT NOISE

Having considered the effects of instrument noise and
astrophysical fluctuations separately, we now study their
combined effect on our ability to infer an interferometric
diameter. For each of the astrophysical profiles listed in
Table I, we attempt 500 fits across the baseline window
½86; 116� Gλ after averaging over N ¼ 5, 10, 20, and 70
snapshots generated from a movie with fluctuations of
magnitude σ ¼ 0.25.
In each fit, we add a separate realization of instrument

noise with s ¼ 1.5 mJy to each of the N randomly chosen
snapshots, and then take their coherent and incoherent
average to obtain a time-averaged visibility amplitude to
which we apply our fitting method. We present the resulting
inferred-diameter distributions for the coherent (solid histo-
grams) and incoherent (dashed histograms) averages in
Fig. 11. The dashed vertical lines therein represent the
inferred diameters in the case of s ¼ 0 mJy and σ ¼ 0, and
are identical to those in Figs. 5 and 9.
For the profile P1, the inferred-diameter distributions in

Fig. 11 are multipeaked, with two peaks of similar heights
separated by Δdϕ ≈ 1=uw, where uw is the length of the
baseline in the middle of the sampled window. This
suggests that in the presence of fluctuations, the addition
of instrument noise exacerbates any transition effects and
leads to the inference of a wrong circlipse almost equally as
it does the correct one. By contrast, for the profile P2, the
visibility amplitude is not always sampled in a transition
region at each of the 36 baseline angles (see, e.g., the upper
panel of Fig. 4 in Ref. [15]). As a result, the inferred-
diameter distributions for profile P2 have effectively only

FIG. 10. The distributions of the fractional asymmetry (17)
inferred from simulations of a black hole surrounded with the
emission profile P1 specified in Table I, and with various levels of
instrument noise s and astrophysical fluctuations σ. The vertical
dashed line denotes the fractional asymmetry of the “correct”
circlipse inferred in the absence of either noise or fluctuations
(see Fig. 2). This figure includes the fractional asymmetry of all
of the circlipses inferred in the presence of astrophysical
fluctuations (see Figs. 9 and 11), suggesting that even if one
infers a different circlipse due to transition effects, nevertheless
information about the fractional asymmetry may still be recov-
ered from such an observation.
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FIG. 11. The distributions of diameters inferred from a time-dependent movie of a black hole surrounded with the emission profile P1
(upper panel) or P2 (lower panel) and underlying parameters given in Table I, in the presence of a level s ¼ 1.5 mJy of instrument noise
and σ ¼ 0.25 of astrophysical fluctuations. We carry out 500 fits across the baseline window ½86; 116� Gλ using a visibility amplitude
produced by taking the coherent (solid lines) and incoherent (dashed lines) averages of N ¼ 5 (purple), N ¼ 10 (green), N ¼ 20 (blue),
and N ¼ 70 (red) snapshots randomly chosen in each fitting attempt. The dashed vertical lines represent the diameters inferred in the
absence of instrument noise and astrophysical fluctuations (i.e., s ¼ 0 mJy and σ ¼ 0). For the profile P1, the baseline window lies (at
every angle φ) within a transition region between the regimes dominated by the first and second photon rings. As a result, the
distributions are multipeaked and, for N ¼ 70, of roughly the same height. For the profile P2, which lies in the regime dominated by

the n ¼ 1 ring for most angles φ, the distributions effectively have a single peak that corresponds to the interferometric diameter dð1Þφ of
the ring. For both profiles, as the numberN of snapshots increases, the histograms become narrower and the percentage of successful fits
increases significantly.
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one peak. Indeed, Fig. 11 shows that already with N ¼ 20
snapshots, one always infers the same, correct circlipse.
This suggests that in an actual observation, if one were to

obtain two such peaks by randomly sampling different
subsets of the measured data, then one might be led to
conclude that the visibility amplitude was measured in a
transition region. But even if this happens, and one does not
have a prior that is sufficiently strong to break the
degeneracy, Fig. 10 suggests that the measured diameter
dφ still retains correct information about the fractional
asymmetry of the photon ring.
For the profile P1, Fig. 11 shows that averaging has a

very strong effect, even with only N ¼ 5 snapshots: the
peaks of the (purple) N ¼ 5 histograms corresponding to
the correctly inferred circlipse are more closely aligned
with the dashed vertical lines than are the s ¼ 1.5 mJy
histograms in Fig. 5, even if astrophysical fluctuations are
now present. For σ ¼ 0.45, however, the distributions of
diameters inferred from N ¼ 5 snapshots are quite wide,
indicating that more snapshots are required to tame this
level of fluctuation.
As the scale of astrophysical fluctuations and the level of

instrument noise grow larger, the dominant effect for profile
P1 is a reduction in the areas of the histograms. The N ¼ 5
histograms for σ ¼ 0.25 have much smaller areas than the
s ¼ 1.5 mJy histograms in Fig. 5. More precisely, in the
presence of only instrument noise with a level s ¼ 1.5 mJy,
95% of the fits are successful, but this figure decreases to
76% (or 26%) after the addition of astrophysical fluctua-
tions with σ ¼ 0.25 (or σ ¼ 0.45) and after averaging over
only N ¼ 5 snapshots. These figures, however, increase
substantially as N increases: for N ¼ 70 snapshots, 100%
of the fits with σ ¼ 0.25 are successful, and likewise, out of
the 500 fitting attempts for σ ¼ 0.45, only one fails.
However, for the profile P2, even with only N ¼ 5 snap-
shots, 99% (or 83%) of the fits are successful in the
presence of fluctuations at a scale σ ¼ 0.25 (or σ ¼ 0.45):
as expected, it is easier to detect a periodicity outside of a
transition region, and this is in fact possible even with as
few as N ¼ 5 snapshots.
In summary, the combination of instrument noise and

astrophysical fluctuations leads to two main effects: they
make it harder to detect a periodicity in the visibility
amplitude, and they exacerbate transition effects. When
observing in a transition region, the inferred-diameter
distributions may become double-peaked. This results in
an ambiguity in the overall scale of the angle-dependent
ring diameter dφ, but fortuitously, not in its fractional
asymmetry. Outside of a transition region, the inferred-
diameter distributions effectively have only one peak. In
either case, averaging over snapshots is a powerful tool: as
N increases, the periodicity of the average visibility
amplitude becomes increasingly pronounced, even when
both astrophysical fluctuations and instrument noise are
present, and the inferred-diameter distributions become

increasingly narrow. In other words, our survey shows that,
using only our simple data analysis method, it is possible to
measure the shape of the photon ring quite accurately and
precisely, even though transitions effects may result in a
loss of information about the overall ring scale, and thus
make parameter inference more difficult.

VI. CONCLUSIONS

We have conducted a systematic study to investigate how
instrument noise and astrophysical fluctuations can impact
our ability to infer the shape of the photon ring. Our
findings reveal that it is feasible to detect a periodic signal
in the visibility amplitude up to a certain threshold level of
noise and astrophysical fluctuations.
Remarkably, up to this point, neither the instrument noise

nor the fluctuations significantly compromise the accuracy
or precision of our simulated measurements. However,
our analysis also identifies a critical threshold—a sharp
transition—beyond which such a measurement becomes
intractable with our fitting method.
Measuring an interferometric diameter and comparing it

to the GR prediction is challenging in the presence of both
instrument noise and source fluctuations. However, time-
averaging over several snapshots is a potent means for
restoring the feasibility of a photon ring measurement.
Although our analysis underscores the formidable impact
of instrument noise and astrophysical fluctuations, we do
not rule out the possibility that a more sophisticated data
analysis scheme could still detect a periodic signal in the
visibility amplitude, even when our method could not.
Thus, further studies of data analysis techniques may
present avenues for overcoming the limitations imposed
by instrument noise and help refine our understanding of
future observations.
It is especially challenging to infer an interferometric

diameter from observations of the visibility amplitude in a
baseline window where the signal of the first photon ring
does not always dominate. For example, sampling the
visibility in a transition region between two regimes
dominated by different rings can sometimes result in the
inference of another circlipse. Such a secondary circlipse
may differ from the one whose shape is closest to that of the
critical curve by an overall scaling factor, but nonetheless
retains the same fractional asymmetry (up to noise effects).
In other words, even when observations are performed in a
transition region, it remains possible to measure a photon
ring shape with the correct fractional asymmetry, even if the
inferred diameter is in some cases off by a constant. Such
effects can be mitigated using various consistency checks.
For instance, when analyzing a sequence of images of a
black hole, one would expect consistent results across
different sets of snapshots, which should lead to the
inference of the same circlipse shape or consistent diam-
eters at every baseline angle. However, should discrepan-
cies arise, they could serve as potential indicators that the
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observations have been performed in a transition region,
and hence that their analysis requires a more sophisticated
approach.
This first study has only scratched the surface of the

difficulties inherent in measurements of the photon ring
shape amidst noise and fluctuations. This research is still in
its early stages, and there are many ways to improve and
refine our approach.
First, we have relied on a particular statistical method for

modeling astrophysical fluctuations. This approach has
allowed us to simulate various emission models in a less
computationally expensive way compared to running
GRMHD simulations. The fluctuations in our models all
exhibit a correlation structure governed by the highly
versatile Matérn covariance function, which enjoys broad
applicability and can even describe free scalar fields in
Euclidean field theory [26].
By assessing whether the Matérn covariance function

accurately reproduces the correlation structure observed in
GRMHD simulations, we not only probe the intricacies of
turbulence in accretion flows but also strive to bridge the
gap between mathematical models and real physical sys-
tems. Varying this covariance is an exciting prospect for
future exploration.
Our rather simplistic approach for the incorporation of

instrument noise in simulated observations—consisting of
the addition of Gaussian complex noise—paves the way for
future analyses that will consider additional factors.
Modeling detailed features of future VLBI observa-

tions with a radio dish in space (such as its size and
orbit), along with real-world conditions (such as weather)
and a realistic array of multiple ground-based stations
promises to refine our understanding of observational
constraints. Some of these aspects have been recently
studied using GRMHD simulations and several possible
configurations for an orbiting satellite in Ref. [32], which
also found that space-VLBI missions can be used to
image the variability in a black hole environment and its
extended jets.
Currently planned space missions will target M87* and

the supermassive black hole at the center of our galaxy, Sgr
A*. Observations of Sgr A* present more challenges posed
by the propagation of the emitted light through the
interstellar medium, and by the shorter timescale for
variability in the source. In particular, phenomena such
as scattering cannot be neglected, which necessitates a
reassessment of our methodologies and assumptions.
This work is a proof of concept for critical components

in the data analysis pipeline that are essential to future
missions targeting black hole photon rings. Our results are
part of the ongoing effort to transform black hole images
into precision probes of fundamental phenomena in astro-
physics, and offer encouraging prospects for future mea-
surements of black hole parameters via photon ring
observations.
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APPENDIX A: FITS ACROSS THE RMSD
THRESHOLD

In Sec. III C, we chose a threshold RMSD of 0.05% to
draw as a white contour in Fig. 7. In our survey, we find that
an RMSD of 0.05% provides a conservative value for
our simulated observations. To illustrate this, we pick a
particular profile (black hole spin a=M ¼ 94%, observer
inclination θo ¼ 10°, and emission profile parameters
μ ¼ rþ, ϑ ¼ M, and γ ¼ 0) and perform fits across two
arbitrarily chosen baseline windows, ½76; 96� Gλ and
½76; 101� Gλ, which are enclosed by the orange and red
borders in Fig. 7, respectively, and lie on either side of the
threshold RMSD region.
The minimum and average power (14) across the first

window are 1.8 mJy and 2.3 mJy, respectively, and
2.0 mJy and 2.4 mJy across the second window. In
Fig. 12, we show the best-fit circlipses obtained from a
single fit across these baseline windows in the absence of
noise, i.e., s ¼ 0 mJy (dashed lines), and then in the
presence of instrument noise at a level s ¼ 1.5 mJy (solid
lines). The RMSD of the fits across ½76; 96� Gλ and
½76; 101� Gλ are 0.058% and 0.048%, respectively. The
fit across ½76; 96� Gλ is markedly worse than the one
across ½76; 101� Gλ, with the inferred diameters for the
former deviating more from its circlipse than the latter.
Indeed, the best-fit circlipses inferred in the presence of
noise (solid lines) exhibit more significant deviations from
their corresponding noiseless analogs for the fit across
½76; 96� Gλ (dashed purple line) than for the fit across
½76; 101� Gλ (green solid line).
As an indication of the quality of fit for this profile, for

the fit across ½76; 101� Gλ, the percentage change in the
inferred diameters d⊥ and dk when going from s ¼ 0 mJy
to s ¼ 1.5 mJy is 0.044% and 0.035%, respectively,
while the inferred diameters of the first ring differ from
those of the critical curve by 0.40% and 0.28%,
respectively.
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APPENDIX B: POWER IN THE BASELINE
WINDOW ½86; 116� Gλ ACROSS ALL MODELS

To characterize the strength of the visibility amplitude
across some given baseline window and at some baseline
angle φ, we show in Fig. 13 the distribution of the power
(14) across the baseline window ½86; 116� Gλ for all the
profiles listed in Tables II and III. The notion of power is

especially important when thinking about the physical
effects of some noise level, since, in combination with s,
it provides a rough estimate of the SNR.
From Fig. 13, one can see that the instrument noise

levels s ¼ 1.5 mJy and s ¼ 2.5 mJy considered in the
main text should indeed have a significant effect on the
underlying visibility signal (as the right panels of Fig. 4
also show).
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