PHYSICAL REVIEW D 109, 124050 (2024)

Melonic radiative correction in four-dimensional spinfoam model
with a cosmological constant

. * . .
Muxin Han'*" and Qiaoyin Pan

LT

'Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, USA
*Institut fiir Quantengravitation, Universitit Erlangen-Niirnberg,
Staudtstr. 7/B2, 91058 Erlangen, Germany

® (Received 29 January 2024; accepted 17 May 2024; published 21 June 2024)

Infrared divergence is a common feature of spinfoam models with a vanishing cosmological constant but
is expected to disappear in presence of a nonvanishing cosmological constant. In this paper, we investigate
the spinfoam amplitude with cosmological constant [1] on the melon graph, which is known as the melonic
radiative correction. The amplitude closely relates to the state-integral model of complex Chern-Simons
theory. We prove that the melonic radiative correction is finite in presence of a nonvanishing cosmological
constant, in contrast to the infrared divergence of spinfoam models with a vanishing cosmological constant.
In addition, we also analyze the scaling behavior of the radiative correction in the limit of small

cosmological constant.
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I. INTRODUCTION

Spinfoam quantum gravity [2,3] provides a covariant
formulation to loop quantum gravity (LQG) and can be
viewed as a discrete path integral of quantum gravity. A
spinfoam model is based on a cellular decomposition,
conventionally chosen to be a triangulation, of the space-
time manifold. By virtue of LQG, the geometrical areas
in (3 4 1)-dimensional (or 4D) spinfoam models have

discrete spectra a = yff, Jj(j+ 1) where y is called the

Babero-Immirzi parameter, £, = /8zGh/ c? is the Plank
length and j is an SU(2) irreducible representation label.
This setting directly leads to the consequence that spinfoam
models are free of ultraviolet divergences. However, infrared
divergences are still present in spinfoam models with a
vanishing cosmological constant A. Such divergences
are called the radiative corrections or self-energies of the
spinfoam models. Understanding these divergences is essen-
tial for studying the renormalization of the theory, which
should lead us from the quantum spacetime dynamics at the
microscopic scale to physical predictions at large scale.

In 241 dimensions (or 3D), the divergence of the
spinfoam model with A =0, called the Ponzano-Regge
model [4], is related to the diffeomorphism symmetry [5]
and implicit sum over orientations of the spacetime mani-
fold [6]. This divergence is regularized in the Turaev-
Viro model [7], which is a deformed version of the
Ponzano-Regge model corresponding to A > 0. However,
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divergence in 4D spinfoams with A = 0 remains an open
question. Group field theory (GFT) (see e.g. [8,9]) suggests
that spinfoam amplitude corresponding to the melonic
spinfoam graph (see Fig. 1) contributes the most divergent
part for the radiative correction (at least for simple enough
spinfoam graphs) [10,11]. The melon graph is the first-
order correction of a spinfoam amplitude for a spinfoam
edge, or a spinfoam propagator in the GFT language.
Radiative correction corresponding to the melon graph has
been studied for the Engle-Pereira-Rovelli-Livine—Freidel-
Krasnov (EPRL-FK) model [12,13], which is one of the
most studied 4D spinfoam models with A = 0. A recent
study based on numerical method [14] reveals that the
EPRL-FK spinfoam amplitude of a melon graph scales as
| Ameton| ~ |A|~! at small A provided a standard choice of
the face amplitude. It is consistent with earlier results of its
lower bound |Apeion| ~1n (JA|™") [15] and upper bound
|Amelon| ~ |A|_9 [16].

Another way to target the radiative correction is to study
the spinfoam model with a nonvanishing A and consider its
amplitude at small |A| limit. Inspired by the Turaev-Viro
model, it has been conjectured that a 4D spinfoam model
with A # 0 should be free of divergence by construction.
A natural way to manifest finiteness is to consider the
quantum group deformation of the Lorentz group in the
spinfoam models [17-19] as they provide a cutoff in
representation by definition. On the other hand, a valid
spinfoam model is supposed to reproduce discrete gravity,
i.e. Regge calculus [20-23], at its semiclassical limit. This
has been realized in 3D spinfoam models [4,7] and 4D
spinfoam models with A = 0 [24-27]. Then a 4D spinfoam
model with A # 0 is legitimately expected to bring out,
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FIG. 1.

at the semiclassical regime, the Regge calculus for
4-simplex with constant curvature. Due to the formulation
complexity, however, the semiclassical approximation for
the quantum group deformation of 4D spinfoam models is
difficult to examine.

Recently, a 4D spinfoam model with A #0 [1] was
proposed and shown to be featured with both finiteness
and the expected semi-classical approximation. This spin-
foam model is defined by the SL(2,C) Chern-Simons
partition function on the boundary of a 4D manifold
coupled with Chern-Simons coherent states. It is capable
of describing 4D quantum gravity with A in either positive
or negative sign, which is not fixed a priori but emerges
from the equations of motion semiclassically and the
boundary states. This spinfoam model is a modified version
of that introduced in [28], wherein the role of coherent
states are played by the projective SL(2, C) spin network
states and the spinfoam amplitude expression therein is
only formal hence finiteness is doubtful. Therefore, it is
promising to study in more detail on this new spin-
foam model.

In this work, we analytically study the radiative correc-
tion corresponding to the melon graph of the spinfoam
model introduced in [1] at the A — O approximation. In the
line of analysis, we improve the spinfoam model by
proposing a concrete face amplitude given by a function
of the spin associated to the face, consistent with the face
amplitude in EPRL-FK model at A — O limit. As an
important result, we prove that in the presence of nonzero
A, the spinfoam amplitude on the melon graph is finite.
Moreover, the convergence of the amplitude is even
stronger than the general discussion in [1]: We show that
the finiteness still holds after removing an exponentially
decaying factor inserted in the edge amplitude there. This
result is in contrast to the divergent melonic radiative
correction in the spinfoam models with vanishing A. This
finiteness is one of the inviting features of the spinfoam
model with cosmological constant.

We also discuss the scaling behavior of the melonic
amplitude Ao, suppresses as A — 0. in the small A limit.
The scaling behavior can be analyzed by applying
the stationary phase approximation to the amplitude. The
amplitude in the small A regime is dominant by the
contributions from the critical points. The scaling behavior
is obtained by a power-counting argument. We find that the
scaling behavior of the melonic amplitude has the lower

The melonic spinfoam amplitude as the correction to the spinfoam edge amplitude.

bound as | Apeon| ~ 1/|A]'3+% where u is an undetermined
power in the face amplitude.

This paper is organized as follows. In Sec. II, we give a
rather self-consistent review of the spinfoam model with A
focusing on the vertex amplitude. We modify the way to
impose the second-class simplicity constraints compared
to the original work which we believe can simplify the
construction. In Sec. III, we consider the full spinfoam
amplitude for the melon graph in a similar way as for the
vertex amplitude. That is to first consider the Chern-Simons
partition function on the boundary then impose the sim-
plicity constraints through Chern-Simons coherent states.
Semiclassical approximation of the full melonic spinfoam
amplitude is analyzed separately in Sec. IV and Sec. V
according to different scaling behaviors of different parts
of the amplitude. The result of the melonic radiative
correction is then drawn. Finally, we give a geometrical
interpretation of critical points in Sec. VI and we conclude
in Sec. VIL

II. 4D SPINFOAM AMPLITUDE WITH A # 0 FROM
BOUNDARY CHERN-SIMONS THEORY

In this section, we review the spinfoam model introduced
in [1] which corresponds to four-dimensional quantum
gravity with a nonvanishing cosmological constant A.

A. From 4D gravity to Chern-Simons path integral

The construction of the spinfoam amplitude is motivative
by the formal path integral formalism of 4D gravity with
A # 0. We start from the Plebanski action [29], which is a
first-order formulation of 4D gravity expressed as a con-
strained SL(2, C) BF theory, adding a cosmological term.
Consider an s((2,C) two-form B and an sl(2,C) connec-
tion A which is a one-form on a 4-manifold M,. The
topological BF action, denoted as Spgg, 1S

Sagr[B. A :/M4Tr[<*+71/>3/\ (]—"(A)+|/6\|B>},
(1)

where F(A) is the curvature 2-form of A, % is the Hodge
star operation satisfying *> = —1 in Lorentzian signature
and y is the Barbero-Immirzi parameter which takes a real
value. The trace is taken in the s((2, C) Lie algebra and it
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evaluates as Tr[X A Y] = X/Y,;." S,pr depends on the
absolute value of the cosmological constant |A|.

By imposing the simplicity constraint, which relates B to
the cotetrad one-form e by

~sgn(A)e A e, (2)
one recovers the first-order action of general relativity with

a cosmological constant A, written in terms of the cotetrad
e and the connection A

Sorle, Al —/A44Tr[<* +%)(m )

A(f@0+%@AeO} (3)

The equations of motion of (1) from varying the B field
|

LS ABE 3i
Z:/Mwﬂ :/@mx<
P\222IA] S,

i

leads to a linear relation between the F field and the B field,
which transfers to the equation between the curvature and
the cotetrad after imposing the simplicity constraints.

OSABF

‘Al Bxsgn(A)ene
—0= F=
aBIJ

A
?B—>.7-'E§e ANe. (4)

The rightmost equation above is the simplicity constraint
that we will implement to the theory.

The path integral of the action (1) contains a Gaussian
integral for the B field, performing which constrains
F = |3A‘B and leads to two (conjugation related) second
Chern-forms when separating the s((2, C)-valued curvature
F into its self-dual part F and anti-self-dual part . By
manipulating path integral,2

T{@+Q?de%w)

i

—/k“M“PQEéK[M<Iy>m”MAF“”‘O+Zﬁﬂ”®AHMD’ (5)

where A and A are the self-dual and antiself-dual parts of A respectively and ?p is the Planck length. (Throughout this paper,
we take the convention that the gravitational constant G = 1 and that the speed of light ¢ = 1.) As the exponent is a
topological term, (5) becomes a path integral of SL(2, C) Chern-Simons action with complex level on the boundary d.M,.

When M, is topologically trivial,

Z — =iScs[AA] , !

T

T

. 2 i 2
S@MAFL—/ T{AAM+§AAAAA}+—/ T{AAM+§AAAAA}(®
oM, oMy

where the level 7 and its complex conjugate 7 can be separated into real and imaginary parts as

t=k-+is, f=k—is,

where k =

127

——€eZ,, =ykeR,. 7
K§V|A| + s 4 + ()

Therefore, the quantization of gravity on a 4-manifold M, with a cosmological constant A now relates to quantization of
the SL(2, C) Chern-Simons theory with complex coupling constant on the 3D boundary dM, of the manifold:

- t
Scs[A,A] :g/;M Tr
4

The connection A (as well as A) is now restricted to the
3-boundary dM,, where the simplicity constraints will be
imposed.

When constructing the spinfoam amplitude, we consider
M, to be a 4-simplex and quantize the Chern-Simons

'"The form of the action (1) relies on the self-dual and antiself-
dual decomposition of a complexified s[(2,C) element which
gives two commuting copies of complexified s1(2) elements, i.e.
(s1(2,C))c = su(2){ @ su(2)z. See [28] for a detailed deriva-
tion, wherein the global sign of the action is taken differently.

2 1
A/\dA—I——A/\A/\A:|+—/ Tr
3 oM,

- 2.
A/\dA+§A/\A/\A. (8)

T

theory canonically on the boundary, followed by suitably
imposing the (quantized) simplicity constraint. The result
of the construction is the spinfoam vertex amplitude A,
Due to the fact that the simplicity constraint requires

*The first equality of (5) is formal. Indeed, the integration of
B-field gives a divergent factor that corresponds to vacuum
contributions in the field theory language, which would be
cancelled out when one computes correlation functions. Same
as the result of (6) when one integrates out the A and A fields in
the bulk of M.
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nontrivial magnetic flux by (4), certain defect has to be
introduced to the Chern-Simons theory (otherwise the
Chern-Simons theory would imply F = 0 by the equation
of motion). Some details about the quantization of the
Chern-Simons theory with defect and the construction of
A, are reviewed in the following.

B. Chern-Simons partition function
on the triangulated 3-manifold

Consider a 4-simplex which is topologically equivalent
to a 4-ball B, whose boundary is a 3-sphere S°. The
triangulation T of S® contains five tetrahedra sharing 10
triangles. The dual graph, equivalently, contains 5 nodes
connected by 10 links and is denoted as I's (See Fig. 2).}
Upon triangulation, the simplicity constraints take the form
of smeared 2-forms hence it is natural to impose them on
the triangles of T;. In the dual picture, the violation of
flatness occurs only on the links of I's. This means one can
first study the quantum Chern-Simons theory on the graph
complement M5 := S3\I's which is the complement of an
open tubular neighborhood of I's in $* and then impose
the simplicity constraints on the boundary oM; as certain
boundary conditions. In this subsection, we review the
main ingredients to perform the former step. Reference [1]
applied the method developed in a series of works [30-35]
to construct the Chern-Simons partition function Z,,, in
terms of finite sums and finite-dimensional absolutely
convergent state integral. Under this construction, Z,
carries a complex gauge group SL(2, C) and describes the
quantization of the moduli space My, (M3,SL(2,C)) of
flat SL(2,C) connection on M3.

The quantization of complex Chern-Simons theory
uses the ideal triangulation of the graph-complement
3-manifold, say I'-complement of Mj; denoted as
M;\I'. The building blocks of the ideal triangulation are
the ideal tetrahedra /\’s, which are tetrahedra with vertices
truncated into triangles as shown in Fig. 3(a)." The original
boundaries of an A before truncation are called the
geodesic boundaries of A and the truncated vertices are
called the cusp boundaries (or disc cusp) of A. The
boundaries of M;3\I" can also separated into two types:

*Throughout this paper, unless specification, we use the
terminology that a O-simplex and a 1-simplex in the triangulation
of a manifold are denoted as a vertex and an edge respectively
while a O-complex and a 1-complex in the dual graph of the
triangulation are denoted as a node and a link respectively. Note
that the dual graph is different from the spinfoam graph, e.g. the
melon graph (see Fig. 1), where we denote the 0-, 1- and
2-complexes as spinfoam vertices, spinfoam edges and spinfoam
faces. In the context with no ambiguity, we denote them simply as
vertices, edges and faces for conciseness.

*An ideal tetrahedron can be lifted to the hyperbolic 3-plane
H3 with all the vertices located at infinity and all faces along
geodesic surfaces of H3. See e.g. [36].

FIG. 2. The I's graph as the dual graph of the triangulation
T3 of SS.

(i) Geodesic boundaries—boundaries created by re-
moving open balls around vertices of I', which
are holed spheres;

(ii) cusp boundaries or annulus cusp—boundaries cre-
ated by removing the tubular neighborhood of edges
of I', which are annuli.

An ideal triangulation decomposes M;\I" into a set of ideal
tetrahedra such that the geodesic boundaries are triangu-
lated by the geodesic boundaries of A’s while the annulus
cusps are triangulated by the disc cusps of A’s. An example
of the ideal triangulation of a four-valent-node-complement
of 8% is illustrated in Fig. 4. It is part of the ideal
triangulation of M.

The triangulation of M; can be decomposed into five
ideal octahedra (see Fig. 5), then each ideal octahedron can
be further decomposed into 4 ideal tetrahedra by adding an
internal edge [see Fig. 3(b)]. As a result, the triangulation
contains 20 ideal tetrahedra in total. (One should not
confuse the ideal tetrahedra from triangulating M3 with
the tetrahedra from triangulating S* as the boundary of
the 4-simplex.) The boundary dM5 of M5 is made of five
4-holed spheres {S,}>_, and 10 annuli {(ab)|a <
b,a,b=1,...,5} connecting these holes. The triangula-
tion of M5 induces the ideal triangulation on 0M5. The ideal
triangulation of a 4-holed sphere S, contains four triangles
located at the holes and four hexagons as illustrated in
Fig. 4(b). On the other hand, an annulus is triangulated into
the boundary of a triangular prism whose two triangles
are identified with the cusp discs the annulus connects
and the four parallelograms are split into four triangles.
Combinatorially, 0M5 is triangulated into 20 hexagonal
geodesic boundaries and 30 quadrangular cusp boundaries.

The building block to construct the partition function
Zyy, is therefore provided by the SL(2, C) Chern-Simons
partition function for an ideal tetrahedron A, which is
identical to the Chern-Simons wave function on A given
boundary condition. The Chern-Simons wave function can
be defined following the canonical quantization of the
moduli space of framed flat connections on /A, which has
been well studied in the literature (see e.g. [31,33,36]).
Here, we use the result of [1] to write the partition function
for M5 and sketch the necessary steps in constructing this
partition function in Appendix A.
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FIG. 3.

(a) An ideal tetrahedron whose edges are dressed with edge coordinates (z, 7/, z”). Each pair of opposite edges are dressed with

the same coordinate. The disc cusps are filled in gray. (b) An ideal octahedron. Choose the equator to be edges dressed with x, y, z, w.
Adding an internal edge (in red) orthogonal to the equator separates the ideal octahedron into four ideal tetrahedra, each of which is
dressed with different copies of coordinates (x, x’, x"), (v,y',y"), (z,2',Z"), (w,w',w"). For edges shared by different ideal tetrahedra,

coordinates are multiplied together.

Yo

(a)

FIG. 4. (a) Illustration of part of the S*\I's. A four-valent node
v, €T's and its neighborhood is removed from S* and generates a
part of the boundary as a 4-holed sphere S, whose holes are
connected to annuli. (b) The ideal triangulation of (a). Vertices
created by edges of the graph piercing through the sphere are
truncated into triangles. Each such triangle is connected to the
boundary of a triangular prism which is the ideal triangulation of
an annulus in (a). (The triangulation of the parallelograms in
triangular prisms is not shown for a clear visual effect.) In the full
triangulation of S*\TI's, each triangular prism is connected to a
pair of truncated vertices from two different triangulated 4-holed
spheres.

As shown in Fig. 5, the triangulation of S*\I's contains
five ideal octahedra (see Fig. 5) with all edges on the
boundary 9(S*\I's). The phase space Py ), which is the
moduli space Mg, ((S*\I's),SL(2,C)) of SL(2,C) flat

connection on d(S*\I's), has 15 holomorphic position

coordinates, which we group into a vector Q, and 15
holomorphic momentum coordinates, which we group into

a vector 73 as well as their antiholomorphic counterparts Q

and P. Their elements are denoted as

0= ({2Lab} (avy- {Xatomr)s

P ={Tw}an Valimn)-

0 = ({2Ly} - (HaVon).

P = (T b (V3. 9)

They can be parametrized in terms of two complex vectors
U, 0€CY and a vector with discrete-valued entries
m,n € (Z/kZ)" where k = 122 €7 . Precisely,

£3rIA]
= 27 N = 27 - S
O="""(—ibii—n), P="T(=ibi—ii).
k k
2 2mi o | o 2 2 1o, o
QZT(—zb U+ m), ’P:T(—lb v+n), (10)

where b is a phase parameter related to the Barbero-
Immirzi parameter satisfying
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o

(@1

3

oct(5)

=1

FIG. 5. The decomposition of the ideal triangulation of M5 = S3\T's into five ideal octahedra (in red), each of which can be
decomposed into four ideal tetrahedra. The cusp boundaries of the ideal octahedra are shrunk to vertices in this figure. [See Fig. 3(b) for

the ideal octahedron with unshrunk cusp boundaries.] Numbers 1,2, 3,4,5 with bars denote the 4-holed spheres on dM5. The faces
a,b,c,d,e, f,qg,h,i,j (labeled in green and each is on a boundary triangle of the tetrahedron in gray) are the faces where a pair of
octahedra are glued. Two ideal octahedra are glued through pairs of faces having the same label (with different subscripts). In each ideal
octahedron, x, y, z, w (labeled in red) are chosen to form the equator of the octahedron. The same figure appears in [1,37].

1—iy
2 _
b* = e Re(b) > 0, Im(b) # 0,
Conversely,
- kb - 2
P ) @t
ik = 2
A —b2
M= e 1) 29
S kb > 2
1/—2”(b2+ 1)(774-77),
ik p
= —b2
= P

Ib] = 1.

(11)

(12)

(2L, T ,p) are associated to the annulus (ab) and
(X,,Y,) are associated to two edges connected to a
common hole of the ideal triangulation of the 4-holed
sphere S, (see Fig. 4). 2L, and T ,;, are called the complex
(logarithmic) Fenchel-Nielsen (FN) length and FN twist,
respectively.” The FN length 2L, is related to the squared
eigenvalue of the meridian holonomy for the annulus
22, =e*e. X, and Y, are called (the logarithm of) the
Fock-Goncharov (FG) coordinate on S, [38]. Same as
their antiholomorphic counterparts. In fact, each of the six
edges in the ideal triangulation of each 4-holed sphere
S, €0(5°\I's) is addressed with an FG coordinate, denoted

eTa’s are the coordinates of M, (d(S3\I's), SL(2,C))
because they involve square roots of FG coordinates due to
the 1/2 entries in (BT)~!.
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as )(E;) when the edge is shared by two ideal octahedra Oct(i) and Oct(j).

We also denote the continuous and discrete parametrization of the new set of coordinates as follows:

k
27rQ

ik =,z k-
2an(Q_bQ)’ v 2;:Q(73

We will also use the notations p,, m,;, (resp. v,p, n,) to denote the coordinates corresponding to 2L, (resp. T',;,) and use
My, My, (resp. v,, n,) to denote the coordinates correspondlng to X, (resp. V).
The partition takes the following expression [11°%

o

= _(0+

), m=

fi= (P-pP).  (13)

53\r 15
e (zZ/kz)?

2 (ilm) = ﬂ Z / dlSI—j(_1)h’.ABT-ﬁe%(—U'ABT.Z-&-H-ABTﬁ)e%[—v (1) +ii-m] e BT17| _ BTr_i), (14)
c

where A and B are 15 x 15 matrices with integer entries and 7 is a vector with integer elements. See (B2) for the explicit

expressions of A, B and 7. They correspond to the order {(12), (13), (14), (15), (23), (24), (25), (34), (35), (45)} of the

annuli (ab)’s. We will use this ordering throughout this paper. Z, is a product of five partition functions Z.’s for ideal

octahedra:

5
Zx(/_ﬂﬁ%) = HZO(:I('xavyavZa;xavyavZa>’ (15)

a=1
where each Z is a product of four partition functions for ideal tetrahedra:

1+1 ll—qj+157_11—ék+12_1 l_qlxyz
1—g*z " 1—qg " xyz

(16)

o

f o~ 1-g

Zoct(x,y,z;x,y,z) = || 1
k=

ki L= a7 =gy

On the right-hand sides of both (15) and (16), the variables x, y, z and X, ¥, Z are the edge coordinates on the ideal octahedra.
Their logarithmics are parametrized in the same way as in (10). That is,

2ri 2 . - "~
3q = exp |—— (—ibp,, — n)} 34 —eXp[k (=ib™ 'y +my )|, with 3, =X Y20 30 =% VeZa.  (17)

k

These parameters give the entries of the variables ji, 71 on the left-hand side of (15). We refer to Appendix A 1 and A 2 for a
more systematic derivation of these partition functions.

Observe that ABT is a symmetric matrix with integer entries, (—1)"AB"7 in (14) can be simplified to be (—1)5"7 where
D := diag(ABT) is a vector whose elements are the diagonal elements of ABT. The sign (—1)"AB"# depends on the parity
of elements in D and 7. Also notice that the parity of D; is the same as the parity of t;, V I =1, ..., 15. Combining these

facts, we rewrite the sign factor (—l)ﬁ'ABT‘H in (18) to be (—l)?"ﬁ’.7 Different from [1], we will use the following expression
for the Chern-Simons partition function on $*\I's:

Zgop (i) = k_ / 4155 ?7 F(-TABT-T+iABT-ii) -0 (=) +itii] 2 (-BT7| - BTi). (18)
e(z/k2)"

We will see in Sec. IV that such a change will not alter the equations of motion compared to [1].

®The integration contour C*'5 in (14) is chosen to be on the plane R'S + iG, where @, is within the first vector component of the
positive angle structure 3, after the U-type and T-type transformations. 3, is related to the positive angle structure $3(oct)*> of five
ideal octahedra in the following way (see Appendix A):

Py = ToUoP(oct)* = If (d. fo) € Ploct)>,  then (& f,) = (—(B~") d. —Bfy — Ady) € P>

"One can check using the explicit expressions (B2) of matrices A, B and vector 7 that the odd elements of D and 7 are both the 1st,
2nd, 6th, 8th, 11th, 12th and 13th elements.
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The finiteness of Z g r (|m) is guaranteed by the so-called positive angle structure PB(S*\I's) which is proven in [1] to
be nonempty. Given an 2N-dimensional positive angle structure 3 we define the functional space,

Fy = {holomorphic f: CV — C| V(@ f) € P, e i f(ji + id) € S(RV) is Schwartz class}. (19)

Combining a discrete representation part (C*)®V we define,

Fy = Fy ®c (CH2V. (20)

In our case, N = 15. By the theorem [34,39,40] that the
Chern-Simons partition function converges absolutely as
long as the 3-manifold admits a nonempty positive angle
structure, the finiteness of the Chern-Simons partition
function on $*\I's is manifest. This means, given any

(@) € P(S*\T's) and let Im(ji) = @, the integration con-

tours C*!5 satisfying Im(7) = § renders the finiteness of

Zgnr, (H|m), or in other words, Zg\r, € F _(S‘lg)\l“{
C. Impose the simplicity constraints towards
a spinfoam vertex amplitude

The second step in constructing the vertex amplitude is
to impose the simplicity constraints. Reference [1] applies
the spinfoam techniques, especially those applied to the
EPRL-FK model [12,13]. As discussed below, the sim-
plicity constraints contain the first-class and second-class
|

first-class (diagonal constraints): e;;x, B (1)Bf"(t) = 0,

second-class (off-diagonal constraints) : €,k By (1)B}"(t) = 0,

|

pieces, according to the Chern-Simons symplectic struc-
ture. The first-class constraints are imposed strongly on
Zg\r, Which amount to restricting the FN coordinates on
the annuli. On the other hand, the second-class constraints
are imposed weakly on the nodes of I's. This is done by
firstly coupling Zg\r, with five coherent states, each on
one node of I's which is peaked at certain phase space point
in Mg, (S*\I's, PSL(2, C)), then imposing constraints to
the allowed phase space points where the coherent states
are peaked.

The simplicity constraints (see below) imposed on the
Chern-Simons theory on S*\I'y can be seen as the gener-
alization of the simplicity constraints in the EPRL-FK
model. Recall that, at the classical discrete level, the
simplicity constraints in the (Lorentzian) EPRL-FK model
are [12,13,41]

Vfet, (21a)

V. flet,f#+f, (21b)

where f and f denote a triangle and a tetrahedron, respectively, and f € ¢ denotes that f is on the boundary of 7. B}J (1) =
f 7 BY (1) is the discretized B-field associated to f with I, J = 0, 1, 2, 3 being the internal labels and 0 is identified to be the
time direction. These quadratic constraints can be strengthened to a single set of linear constraints,

linear constraints: 3N, such that N,B} (1) =0,

The replacement from (21) to (22) is for the purpose of
selecting a single solution sector and is beneficial for
quantization. We will treat (22) as the full set of simplicity
constraints, different from the original papers [12,41] while
following [42], and generalize it in the new spinfoam
model.

The simplicity constraints then imply that the discretized
B-field B} (1) measures the area ay = | ¢, N'Bf* (1) of
the triangle f. One can gauge fix the vector N; = N to be
timelike, then (22) is equivalent to the statement that the
tetrahedron ¢ is spacelike. Moreover, the SU(2) gauge
symmetry implies the closure condition in the EPRL-FK
model. That is, for each tetrahedron ¢:

Vfert. (22)

Y BY(1)=0e aml =0, (23)

fet fet

where n}- is the normal vector to f satisfying |n/| = 1. By
Minkowski’s theorem, the simplicity constraint (22)
together with the closure condition (23) allows us to
identify a convex tetrahedron whose face areas and normals
are given by a;’s and n}’s.

The generalization of simplicity constraints to the A # 0
case at the discrete level can be implemented as follows.
Consider the (nonideal) triangulation, denoted as 7,, of a
4-holed sphere S, such that each hole, denoted by p, is
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1

Z12 = 6 214

ZQ3

3

FIG. 6. The ideal triangulation (in black) and the (normal)
triangulation z,, (in red) of a 4-holed sphere S,. Numbers 1, 2, 3,
4 label the holes of S,,. A choice of dressing e« = 7,5, €Y« = 715
in terms of the edge coordinates is given. The relative location of
holes is consistent with the Poisson relation of X, and )/,. The
arrow in blue dressed with a fin—called a snake—is used to
calculate the holonomies around holes by the snake rule [33]. See
also Appendix E for a brief description of the snake rule.

inside a triangle f,. See the red lines in Fig. 6. Define the
discretized B- ﬁeld associated to f, as in the EPRL-FK
model, i.e. B f =/ £ B(z,). One the other hand, let us

recall the relation F = ‘%‘B discussed in (4). The discre-
. . . . . A

tization of this relation gives F,(S,) = %th (7,) X
5(¥)dx! A dx? at the local coordinate (x', x?) on one patch
of §, with the hole p at the origin. it allows us to write the
simplicity constraints in the same form as (22) in terms of

the Chern-Simons curvature. That is, for all holes p’s of S,
|

Mﬂal(Sa ’ PSU(2))

The correspondence between PSU(2) flat connection and
constant curvature tetrahedron has been established in [43].
The simplicity constraint on O 7, (z,) can be expressed in

terms of the coordinates (é 73) defined in (A33). We will
classify the constraints into first- and second-class parts and
treat them differently in the following.

1. The first-class simplicity constraints
The first-class constraints are obtained by the commu-
tative functions of the holonomies {Oy (z,)}. In 9(S°\I's),
a hole p of S, is connected to a hole of S,(# S,) via a
annulus cusp. Classically, Oy, (z,) €PSU(2) implies that
A =22, = o with some 6,, €R. Reference [43] has
shown that 6,, encodes the area a; of the triangle f,

surrounding p in the triangulation z,. Therefore, the first-
class simplicity constraints can be formulated as

3N, such that N, F}/(S,) = 0. (24)
By the non-Abelian stock’s theorem, the holonomy around

each triangle f, of 7, takes the form Oy (7,) =

1Al
e3bn () g PSL(2, C). Equation (24) can be translated into

constraints in terms of {Oy (7,)}y—;,

AN; such that N,(Ofp){(ra) =N, Vf,€r,. (25)
Similar to the EPRL-FK case, (24) [or (25)] means that the
4-holed sphere S, or its triangulation 7, is orthogonal to a
common vector N/ € R*. Gauge fixing N, = (1,0,0,0)
implements that all the holonomies {O f,,(Ta)}g:1 are
in a common PSU(2) subgroup of PSL(2,C). In other
words, the simplicity constraints restrict the moduli
space M, (S, PSL(2,C)) of flat PSL(2,C) connection
to a moduli space Mg, (S,,PSU(2)) of flat PSU(2)
connection, which is a symplectic submanifold of
Mﬂat(sa’ PSL(Z’ C))

The flat connection in M, (S,,PSU(2)) defines a
representation of the fundamental group of S, into PSU(2)
modulo gauge transformations. Let the holonomies
{0y, (z,)} have the same base point b€S,. Then they
satisfy the nonlinear closure condition (we fix the ordering
of the holonomies here and for the rest of this paper),

Ofl (Tu) sz (Ta)O,f3 (Ta) 0f4 (Ta) = 1PSU(2) (26)

due to the isomorphism,

= {0y, 0,,05,04,€PSU(2):0,0,030, = lpgy() }/PSU(2). (27)

2mwi |, .
v (=ibpgp

quantlzatlon

= 0" Reayy) Zgoy (i) = 0, (28)

2Lab = - mab) €ER< Hab

where the rightmost quantum constraint is written in terms
of Re(u,,) as the analytic continuation of pu,, to C is
allowed at the quantum level. If the requirement
‘4d area = 3darea’ [42] is further imposed, the first-class
constraint is  strengthened to g, Zenr, (H[) = 0.
Following [1], we keep the weaker condition
Im(p,;,) = a,, # 0. Then et €U(1) is realized only at
the classical level. Define the “spin” j,, such that

k—1

s (29)

N[ =

2jab = Mgp = jab =0,

124050-9
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Ja» €ncodes the area as, of the triangle f, in a tetrahedron
(when we fix the orientation of f,) by [431®

|A| 4z

?ﬂfp = Jab (30)
The quantum states satisfying the constraint (28) are then
labeled by

ZS3\F5({iaab}(ab)’ {/’ta}|{jab}(ab)’ {ma})‘ (31)

Therefore, the first-class simplicity constraints can be
seen to be imposed on the FN coordinates on the annulus
cusps on the triangulation of d(S*\I's). The remaining
(second-class) simplicity constraints will be imposed on
each S,.

2. The second-class simplicity constraints
and the Chern-Simons coherent states

The moduli space Mg, (S,,PSL(2,C)) is not a sym-
plectic manifold but a Poisson manifold, due to the presence
of Poisson commutative {47 3:1- Fixing {lg}gzl by (30)
reduces the moduli space M, (S,,PSL(2,C)) to a two-
complex-dimensional symplectic space M with symplectic
coordinates (X,,),), on which we should impose the
second-class simplicity constraints.

It will be more convenient to work with the trace
coordinates of flat connections rather than the FG coor-
dinates (X,,),) when analyzing these simplicity con-
straints.” Consider the triangulation 7z, of S, as described
above. Label the holes by numbers 1, 2, 3, 4 and denote
each edge connecting the holes p; and p, (p; =1, 2, 3, 4)
by e, ,,- Denote the (exponential) FG coordinate on ey, ,, as

|

_ Va3 + V13330 + 3533 + 330t + vt + 5+

Yo and

Zp,p,- With no loss of generality, let z, =e
713 = €Y« as shown in Fig. 6. (If this choice is taken for
all the five {S,}>_,, the way of gluing different 4-holed
spheres is unique. See Appendix D for details of the
gluing.) We choose a lift by defining y, ., = /=2, =
exp (5(Z,,,, +ir)) for all edges {e,,,} and work with
SL(2,C) flat connections in stead of PSL(2,C) flat

connections.

Trace coordinates of Mg, (S,, SL(2,C)). In order to write
the trace coordinate explicitly, we now work on one 4-holed
sphere and lift the holonomies Oy (z,) €PSL(2,C) to
h, €SL(2,C) for all holes. They describe solutions to
Mi.(S4, SL(2,C)) by the closure constraint,

hihyhshy = 1g10.¢)- (32)

{hy,} can be calculated by the snake rule [33] (see
Appendix E) based on the ideal triangulation of S, (see
Fig. 6). Their traces are determined by commutative eigen—
values {4,} when we choose the lift y, ,, = /=2, 0

my = Tr(hy) = 4 + 47",
mjy = Tr(h3) = /13 + /1;1,

m, = Tr(hz) = /12 + /1_1,
my = Tr(h4) = 14 + AZI
(33)

Apart from {m,, }, two more trace coordinates are needed

to describe My, (S,,SL(2,C)). They correspond to hol-
onomies A, , around two holes p; and p,. The snake
rule gives

Tr(hyy) = ’ (34a)
Y13Y14Y23Y24
Tr(hys) = _YDYhY3aVi T VDY TaYh T YhY3Vh VY +yh +yh + 1 (34b)
Y12Y13Y24Y34
202 .2 2 2 2.2 222 2 .2 2 2 1
Tr(hy3) = _Y1Y1aY23Y3a + V1 Y1aYas + ViaY23Y34 + ViaYas + Yia + Y3 F ' (34c)

Y12Y14Y23Y34

These expressions are consistent with those in [30,44]. On the other hand, the traces of monodromies around one hole are

fixed by the first-class constraints, i.e.

Yi2Y13Yia = 41, V12Y23Yo4 = 4o,

Vi3Ya3ys = 43,

Y14Y24Y3a = Ay, Where 4, = el (35)

Equation (35) can be inserted into (34) to rewrite the trace coordinates in terms of {/1,, }gzl and 7y, 213,

¥If the orientation of f p is not fixed, there is an ambiguity for the area a;, for a given j,;,. More precisely, the area is related to j,, by

(30) or 27 — @afp —tnj

%See [1] for using spinors instead of trace coordinates to impose constraints on (X, Va).
10[f we choose the other lift Yo = =/ Zorpas the traces become m, = —/lp - /1;'.
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2
Ady | =z1pzi3 + 212 T 43213

t) = Tr(hy) = e My

N 14212(21%3/13— Dzi3 ’1‘213 ’ (36a)
S

. mxj%w (360)
ty = Tr(hy3) = - /lzi(;%l;; 2 /ljzzu

N Al(zg(z;;l—z Z11)3+ 213) n fﬂz . (360)

The algebra functions on My, (S,,SL(2,C)) can be
described by the polynomial ring generated by the trace
coordinates {m;, m,, mz, my, t;, t,, t3} quotient by a poly-
nomial relation [44-46]

P =ttty + £+ & + £ + mmomymy + m? +m2
+m3 4 mg — (mymy + mymy )t
— (mymy +mymy)t, — (myms + mymy)t; — 4.
(37)

It can be easily verified that {m;, m,, m3, my, t;, ¢, 3}
defined by (33) and (36) is a set of solutions to P = 0. The
second-class simplicity constraints are implemented by

t., ; e[-2,2], (38)

where only two are independent as they are functions of
212, 213- Inversely solving zj,, z;3 from given {m;, m,,
m3, my, t;, t, } satisfying the simplicity constraints, one can
find two solutions. Indeed, P is a quadratic polynomial of t;
hence there are generally two roots to t; given data of
{my, my, m3, my, t;,t,} which corresponds to these two
solutions of {zy5,23}. However, further knowing t3
uniquely fixes to one of the solutions.

Darboux coordinates of M (S, SL(2,C)). The trace
coordinates are not the symplectic coordinates on the
moduli space of flat connection on the 4-holed sphere
(see e.g. [44,46,47] for the discussion about their Poisson
brackets). In order to have a well-defined state integral for
the spinfoam amplitude, one needs to replace them with a
new set of symplectic coordinates, which can be defined as
follows.

The holomorphic Darboux coordinates (6, ¢) of M;
relate to t; = Tr(h;,), t, = Tr(hy3) and t3 = Tr(hy3) by
(see e.g. [46]),

2cosf = ty, (39a)
2 cos ¢\/C12C34 = tz(t% - 4) + 2<m1m4 + m2m3>
=t (mymz + mymy), (39b)

sin ¢\/C12C34 = (21(3 + tltz —mms — m2m4) sin 9,
(39¢)

where

cij = +m +m; — tymm; — 4, ij=1,...4

(40)

Generically, we can solve for (t;,t,,t3) as functions

of (6,¢):

t; = 2cos0, (41a)
I s 0 .0
b =—5cesc 9<COS¢ C12¢54 + cos O(mym; + mymy)
—mw—wm) (41b)

1
t = 50520 (/e cos(8 — ) - cos Bl m + mymy)

+mlm3+m2m4>, (4]C)
where
;= m} +m? +2cosfmm; —dsin®0, i, j=1,....4.
(42)

Therefore, given (6, ¢), the solution to t5 is fixed from the
two solutions solved from P = 0. The FG coordinates
{2p,p, } become functions of (6, ¢), since they are uniquely
determined by (t;,t,,t3). Therefore, the simplicity con-
straints (38) can be converted to functions of (6, ¢).

We denote the Darboux coordinates satisfying the
simplicity ~constraints to be (9, (25) Together with
{my, my, m3, my}, they uniquely determine the geometry
of a (curved) tetrahedron on S° as follows.

Consider four points {v;}*_; on SU(2) = $* located at

U3 :h1h2, 1)4:h1h2h3.

(43)

vy =1gyp), V2 =hy,

A 4-gon is formed by four geodesic curves 7| = e,
Uy =ey, 3 =e3, 4=ey where ¢;; is the geodesic
connecting v; and v;, as shown in Fig. 7. The geodesic
length a; €[0, 7) of #; satisfies,
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v3 = hlhz

Vg = h1h2h3

U1:1

FIG. 7. A 4-gon on SU(2) = S° formed by geodesic curves
{¢;}{_, connecting four points v; = 1, v, = hy, v3 = hyhy, vy =
hyihyhs in cyclic order. The geodesic curve e connecting v; and
v3 (in red) has length 6. Further connecting v, and v, with a
geodesic curve ey, (dashed) forms a curved tetrahedron on 3
whose faces are geodesics. 71153 and 71134 (one-way arrows in
blue) are outgoing (relative to the tetrahedron) normal vectors of
the geodesic triangle f,3 bounded by ¢, &5, ;3 and the geodesic

triangle f 34 bounded by 7, 7, 13, respectively. ¢ € [0, z] is the
dihedral angle between f,; and f;34 around e 5.

cos(a;) = m;/2 = cos (%J;) (44)

fori=1,...,4.0€ [0, z] is then the length of the diagonal
geodesic curve e;3 connecting v; and vz, which separates
the 4-gon into two (curved) triangles f,3 bounded by
fl’ fz, €13 and f134 bounded by f3, f4, €13. Here
Jji=0,1/2,...,(k—1)/2, but since our discussion here
is semiclassical, we may extend j; to be continuous and
belonging to [0, k/2).

On the other hand, ¢ € [0, z] describes the bending angle
between the two triangles. Adding the other diagonal
geodesic curve [whose geodesic length is arccos(t,/2)],
one forms a curved tetrahedron in S3. Given fixed lengths
{a,,a,,ay,ay} of the four geodesic curves of the 4-gon, 0
and (2) uniquely determine the shape of this curved
tetrahedron embedded in S3. See [1,46] for more discus-
sion. From their geometrical interpretations, we restrict
(9, zz)) to be real with the range,

—ay|. |as — ay) <0 <min(a, + ay, a3 + ay).

pel0,x]. (45)

max(|a,

The range of 0 corresponds to ¢y, ¢33 < 0 by (40), which
fixes the orientation of the two geodesic triangles separated
by the e;3. In this way, a solution to the simplicity
constraints can be geometrically described by a curved
tetrahedron in $3. We denote the above range of (0, ¢) by
M;. Note that the definition of ﬂ; is valid for continu-

ous j €10,k/2).

Let us now consider a special limit when a; — 0 thus £
in Fig. 7 shrinks to vanishing. The result will be useful later
in the asymptotic analysis (see Sec. V). Under this limit, the

triangle inequality restricts 0 to equal a,, so M; becomes
1-dimensional, in which case ¢ is the only degree of
freedom. Therefore, we have t; = m, as well as m; =2
when a; — 0. Inserting them in (41) gives the simple result
t, = my and t; = mj. The result is also expected since t, =
Tr(hy3) and t3 = Tr(h3) while ; — Igy(y) is trivial in this
limit. An interesting observation is that the traces t;, t,, t5
are independent of c,;ﬁ in this limit, and the same is true for
the FG coordinates z;,, 213 since they are functions of t;, t,,
t3, i.e. they are constants on ./\/la Moreover, when 71, ¢»,
?5, ¢4 all shrink
t, 6, t3 — 2 and 213 ™

to vamshlng,
Zip—1 1

Zn °
As second-class constraints, we will impose them

weakly by using Chern-Simons coherent states, which
we define in the following. By definition, coherent states
are peaked at the classical phase space points hence the
labels of coherent states are given by both the position
variables {X,} and the momentum variables {), }. Recall
the notations,

ap,a,ds,dy — 0

2mi 27n

Xy == (=ibpg —m,), — (=ibvg—ng). (46)

Chern-Simons coherent states on S,,. After fixing the FN
coordinates { Ly, } (45 to be given by the spins {jq; } (), the
Hilbert space of each 4-holed sphere S,, is locally C*. We
also fix Im(p,) = @, and consider the degrees of freedom
Re(u,) €R and m, € Z/kZ. To simplify the notation, we
will denote Re(u,) by p, € R in the rest of this subsection.
The Hilbert space for S, is

ng - Lz(R) ®C Ck.

Firstly, the coherent state y? (1) on L?(R) is defined as

1/4
we,(n) = (@ iR i Bt (47)

with the overcompleteness property

Sy (48)

HoH

Zi / dRe(z,)dIm(z, )y? (u)iw? (1) =

The coherent state label z, € C parametrizing a complex
plane is related to the classical coordinates by z, =
T (pa + iva).

Secondly, the coherent state &, , )(m) on C* is labelled
by (x4, y4) €[0,27) x [0, 27), which can be viewed as the
angle coordinates on a torus T2. Tt is defined as [48]
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X4, Y, are related to the classical coordinates by x, = mod(¥m,.2x), y, = mod( ng,2x). The over-completeness
property of &, y(m) reads,

k -
@Az dxadyaé (v, v, (M)Ex, v, (M) = 56%'"*”’/),1' (50)
The coherent state in Hg, is the tensor product of these two coherent states,''

\P/OJ,I (/4‘771) = l//ga ® é:(xa,ya) EHS(I’ Pa = (Za’xmya)’ (51)

with the overcompleteness relation,

k \2 -
(4—”2> A) T dpa 11124 (/4|m)\112a (/’lllm/) = 5ﬂ,ﬂ/5e%(nx—m/)yl , (52)

where dp, = dRe(z,)dIm(z,)dx,dy,. It will be convenient to define p, = (Z,, x,, —y,) [still with y € [0, 27)] then we can
write W (u[m) =W (u|m). It is easy to confirm that the expectation values of the operators g, ¥, m, n calculated by the
coherent state ‘I’gu (u|m) are given by the coherent state labels, or the classical phase space coordinate at the large-k limit, i.e.

—0 — 0 2 ] — 00 2 ] 2 j
(u>k—>/4a, (1/>k—>va, <exp (% m) >k—> exp (%l ma> , <exp (%l n) > = n,. (53)

It is only valid at the large-k limit since the torus part of the coherent state &, (m) is normalized only at this limit. We give
a derivation for (53) in Appendix F.
The transformation from

2 - 2wl 2 _ 21
B by =my). Ry= T (mib b)), Va= o (mibu=ng), Va=r(ib ) (54)

X, =
¢ k

to 6, 0, ¢, ¢ is canonical [46], so the following change of variables in the integral has only a constant Jacobian,

1 2 2 2 2
/dpa...zz/d(g@Adgya)m(;ma)m(g >...

1 1
dX, A dX, AdY, nd e dQ, A dQ,
ZQZ/ Yo rda: 2Q2/
dg, A db, A dgp, A d , 55
2 Q2 ¢a ¢a ( )
where Q, is the holomorphic Atiyah-Bott-Goldman symplectic from on S, with fixed {4,}, and --- stands

for W0, (u|m) P, (4.
The imposition of the simplicity constraints inserts the delta functions 5(Imé,,)5(Img, ) in the above integral followed by
restricting the range of (Ref,,Reg,) to ﬂf. We denote the coherent state label satisfying the constraints by p, and the

corresponding coherent state by \Pga (p|m). Tmposing the simplicity constraints reduces the above integral to

[ 08, )8 ) =
M=

37 | 9B 08 ) ) (56)

""The coherent state used in [1] to define the vertex amplitude is a rescaled version. We change in this paper to use (51) as this does not
change the finiteness of the melonic amplitude, as shown below in Sec. III. Apart from that, the coherent states defined in this paper is
the complex conjugate of those defined in [1].
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Since M; is compact, any integration on ﬂ; is finite as
long as the integrand is bounded. This fact is important to

guarantee the finiteness of the spinfoam amplitude defined
below in Sec. III.

3. The vertex amplitude: Finiteness and semiclassical
approximation
With the second-class simplicity constraints imposed on
the coherent state labels, one can define the vertex
amplitude by the inner product of partition function (31)

and five coherent states (51), each associated to one S,,.
That is

5
A, (1) = <H PO Zss\rs>

a=1

= Z A{S Phig Zsnr, ({iap } (an)»
{m.} € (z/kz)

{ﬂa + iaa}|{jab}(ab)’ {’/ha}) H‘Pga (ﬁa|m0)7 (57)

a=1

where 1 = ({aab7jab}(ab)’{ﬁa}2:l’ {aavﬂa Z:l)' Ref. [1]
has proven that A,(:) is finite for given {p,}>_, with
finite {Re(2,)}>_,.

The large-k approximation of the A, (i) reproduces the
form as given in [49,50],

A () Z W e € N _e™Shas™C) (14 O(1/K)),
(58)

where N are factors related to the Hessian of the effective
action when performing the saddle point analysis, C is a
geometric-independent integration constant and Sﬁegge is
the Regge action for a 4-simplex with constant curvature

determined by the value of A. Explicitly,

Aky
A —
SRegge - 127 ((azb:)aab@ab - A|V4|> ’ (59)

where a,, is the area of the triangle f,, shared by
tetrahedron a and b on the boundary of the 4-simplex,
0, is the hyperdihedral angle hinged by f,, and |V,]| the
volume of the 4-simplex.

The finiteness of A, (1) and the appearance of the Regge
action for a curved 4-simplex at the large-k approximation
(58) renders the eligibility of the spinfoam model con-
structed with the vertex amplitude defined by (57). By a
valid choice of edge amplitude and face amplitude, one can
define a finite amplitude for a general 4-manifold. Such a

choice of edge and face amplitude was not given in the
original paper [1]. We will give a proposal in the next
section that is suitable for a simple spinfoam graph
containing two spinfoam vertices and can be easily gen-
eralized to a general spinfoam graph.

III. MELON GRAPH AND SPINFOAM AMPLITUDE

We now consider the spinfoam amplitude corresponding
to two 4-simplices with four boundary tetrahedra identified.
In the dual picture, the spinfoam graph is called the ‘melon
graph’, which contains two spinfoam vertices, four internal
spinfoam edges and two external spinfoam edges as shown
in Fig. 1. It is the one-loop self-energy correction in the
quantum field theory language. For the EPRL-FK model, it
has been shown using GFT techniques that it is the most
divergent part of the radiative correction of a spinfoam
amplitude (at least compared to other simple enough
spinfoam graphs, e.g. a ‘starfish graph’) [11,51].

The way to define the spinfoam amplitude for the melon
graph is similar to the way to define A, (1) reviewed in
Sec. II. That is to first write the Chern-Simons partition
function for the boundary of the manifold corresponding to
the melon graph then impose the simplicity constraints
(strongly for the first-class types and weakly for the second-
class types). The first step is described in Sec. III A and the
second step is sketched in Sec. III B. The partition function
for the melon graph can be separated into a pair of partition
functions Z g, (4i|nn)’s for one spinfoam vertex defined in
(18) as well as some extra terms (which can be absorbed in
the two vertex amplitudes), as explained in Sec. III A 2. The
spinfoam amplitude for the melon graph is completed by
adding a face amplitude for each internal spinfoam face.
We write the full amplitude in Sec. IIIC and prove its
finiteness.

A. Constraint system and the Chern-Simons
partition function

Denote the two three-manifolds S*\I's’s as M, (con-
taining 4-holed spheres S 5345 on its boundary) and M _
(containing 4-holed spheres Sj,34¢ on its boundary).
They are glued through identifying S;, S,, Sz, S4 on their
boundaries and form the three-manifold M, ,_ whose
spinfoam graph is a melon graph. See Fig. 8 for the
GFT graph after gluing, where each blue line corresponds
to an identification of holes from different spheres. After
gluing, the connected holes become annuli or tori as
boundaries of M, ,_. The blue lines can also be seen as
the defects of an ambient 3-manifold of M.,  which
possesses noncontractible cycles. The ideal triangulation of
M ,_ is obtained by the ideal triangulations of M, and
M _, which leads to 60 edges in total. On each edge, we
assign an FG coordinate as we did in the previous section.
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FIG. 8. The GFT graph denoting the manifold M, _ after
gluing two spinfoam vertices corresponding to M, and M_. The
4-holed spheres S|, S5, S3, Sy from 0M | and oM _ are identified.
Each blue line relates to the identification of a pair of holes and
becomes an annulus or a torus boundary of M, ,_. (There are no
intersections among the blue lines.) M, ,_ is a graph complement
of an ambient 3-manifold which has noncontractible cycles.

To be consistent, we dress the edges on M, with FG
coordinates in the same way as in the previous section (and
as in [1]). M_ and its ideal triangulation is simply given by
the mirror of M, (see Fig. 9). The (logarithmic) FG
coordinates are listed in Table I. Consequently, in
Table I, the relations for M_ are translated from the ones
for M, by changing each i to i +5, where i =1, ..., 5,
labels the octahedra in M.

1. Gluing constraints and the Darboux coordinates

When gluing S, S», S5, 84, we let the edges on the ideal
triangulations of M, and M_ dressed with the same FG
coordinate be identified if they become internal edges in the

|

gluing process. Indeed, if we parametrize all the edges on
M and M_ in the same way, there is a twist between the
Poisson brackets from the two three-manifolds due to the
opposite orientations. Each edge E of an ideal tetrahedron
is dressed with an edge coordinate zz = €%, as illustrated
in Fig. 3(a). Let Z} be a (logarithmic) edge coordinate on
one ideal tetrahedron A, of M, and Z be one on an ideal
tetrahedron A_ of M_. Then,

{Z+,Zg,} = €EE’6A+,A’+7 {ZE,ZE/} = _€;5E’6A_,A’_’

{z}. 2.} =0, (60)

where e = 0, =1 counts the oriented triangles shared by
E, E' and egp = 1 if E' occurs to the left of E in the
triangle, and 55, o, = 1 if Ay =/, and 0 otherwise.

Or equivalently, one can keep the Poisson brackets for
M and M _ the same [as in (A2)] but parametrize the edges
differently for all ideal tetrahedra on M, and M_, as shown
in Fig. 10. This is the way we treat the two 3-manifolds in
this paper. Such a parametrization has been used in Fig. 9
where edges with the same FG coordinate were glued. The
algebraic curve for ideal tetrahedra on M, and M_ written
in terms of the edge coordinates on ideal octahedra [see
Fig. 3(b)] are, respectively,

:xv 7Z’W
onM,:3'+3'-1=0 3 ’

, =Xy, 7w . (61
onM_: 3 '4+3—-1=0 3 Y (61)

" 1o I
J =x.y.,.T,w

It is easy to see that 3" and 3”, which are the logarithms of 3/
and 3" respectively, shift their roles on M_ versus M_.
Therefore, we define the momenta on M, in terms of 3”
[see (A24)] while in terms of 3’ on M_. That is

Py =X/ -W/!, Py =Y/-W/  P,=2Z/-W/, T;,=W/ fori=1,..,5, (62a)
Py = X =W, Py = Y, - W, Py = Zi =W, r;=Ww, forj=6,..,10. (62b)
They are momenta conjugate to X,;,Y,,Z,,C;, =X, + Y, +Z;,+ W, i =1, ..., 10, respectively, and satisfy
{Xi»PX/-} = {szPY,} = {Zi»PZ,-} = {Ci’rj} = 0jj. (63)
The procedure of gluing triangulated 3-manifolds is @ terms of the FG coordinates {)(z(';)}a,i#:j' Here, ){l(;l) dresses

generalization of the treatment for an ideal octahedron;
every internal edge of the ideal triangulation corresponds to
a (classical) constraint restricting the sum of the involved
(logarithmic) FG coordinates at the edge to 2zi [31]. The
gluing of M, and M_ leads to 24 constraints {C%}3*, in

the edge of the ideal triangulation of S, that is shared by
octahedra Oct(i) and Oct(j) (see Table I in Appendix C for
their explicit expressions in terms of the edge coordinates).
They are explicitly,
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FIG. 9. The decomposition of M, and M _ into ten octahedra (in red). The notations are the same as in Fig. 5. The labels of faces (in

green) in Oct(i 4 5) is the same as those in Oct(i) (i = 1,...,

(1)

1 .
onS;: &4 :)(4(‘5) + X910 — 27,

(0

ij =X + X710 — 27,

(2)

2 .
onS,: 4 :)(4(‘5) + X910 — 27,

2 .
6)1{0 = gs) ‘H(ézl)o — 27l
onS;: C13 —)(45) +)(é 30 — 2,

®3) 3)

C)fe =X1s +Xe10 — 27,

4 4 .
onS,: :)(gs) +)(§3 20 — 27i,

Ch —)(15 +)(é 1)0 — 2z,

(1)

1
CX:X35 (1)

+ X510 — 27,

Ch = i + 2% — 27,

Cg = ng) ‘H(é 1)0_27”
¢ :)((14) +Zé9) — 2,

Cly —)(25> +)(§ 1)0 — 2z,

Cly :)(<14) "‘Zéb) — 2xi,

4 4 .
C)z(o :)(és) +Z§ 1)0 — 2ni,

i3 —)(13> +)(és) 2z,

5) except for the subscripts.

1 I :
&4 :)(54) + 2k =2,

Ct = )(23 —|—)(() 27i,

Cs :)(34) +)(é9) — 2ni,

2 2 .
Ch 21(13) ‘H(és) — 2xi,

3 3 .
Cls :)5;4) +X§9> = 2xi,

3 3 .
Cls :Zgz) "‘)((67) — 2ni,

4 4 .
G :)5;3) ‘H(;s) = 2ni,

Coa —)(12) +Z<(57) 2ni.

(64)

It is easy to check that there are only 18 independent first-class constraints out of these 24 constraints. The dimension of the
Chern-Simons phase space Py, on the boundary of M ,,_, as the moduli space of framed flat PSL(2, C) connection on
oM, ,_,1s 60 — 2 x 18 = 24. To single out the first-class constraints, using the FN coordinates as the Darboux coordinates

of P0M+u—

1S more convenient.
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z
on M_

on M+

FIG. 10. Different parametrizations of edges of ideal tetrahedra
on M, and M _.

We denote the FN coordinates on Py, (resp. Py ) as
{L.} (resp. {L!,}) where a, b denote the 4-holed spheres
S, and S;,. They are indeed the linear combinations of the

|

C,=2L;, +2L}, =0,
Cs = 2Ly; + 2L, = 0,
Co = 2L35 + 2L, = 0,

C, =2L;3+2L}; =0,
Co = 2Ly + 2L}, =0,
ClO = 2L45 + 2Lﬁ16 = O

Denote the Darboux coordinates on oM, as (Q;, Pi"),_,
coordinates from M_ with prime)

Q;r = {{2Lab}(ab)’ {XH}Z:I}’
Qi = {{2L, } ) 1Xaomi )
with the Poisson brackets

{95 P} =1{Q7. P} =4,

The Darboux coordinates for the M, are thus
Q1. %P1) =1 30 with °Q; ={Qf,Q;} and °P; =
{PF,P;}, which span a 60-dimensional phase space.
The explicit choices for (Q;,P;) and (Q;,P;) are as
follows:

Loy ={L12, L13. L1a, L1s. Las, Loy, Los, Lag, L3s, Las}
(69a)

[ l l l l / / / ! l /
Lab - {L12’ L13’ Ll4’ L16’ L23’ L24’ L26’ L34’ L36’ L46}’

(69b)
D2 () @4 5
Xo = {%535155)’%(15),1(15),){5 )}, (69c¢)
I ) (3) (4 (6
Xo = {Ig,fo’léjo’){é,1)0712.1)()’)((6 )}, (69d)

Tab = {712’ T137 T147 TIS’ T23’ T247 TZS’ T34’ T357 T45}7
(69¢)

Cy = 2Ly + 2L}, =0,
C7 — 2L25 + 2L/26 = O,

15 and those on oM _ as (Q7,P;7);

.....

FG coordinates {)(Ej‘-‘)}?’jzlgi# (resp. {)(,(ja) }3:6#].). {L.}
are defined in the same way as in Sec. II. The definition of
each L/, is copied from that of L, followed by shifting all
the octahedron labels therein by 5,i.e.i > i +5,j = j+ 5
(see (C1)).

The FN coordinates can be naturally understood as
assigned on the annuli connecting holes from different
spheres as they, by definition, satisfy the relations

Lah = Lba’ L;b = L/ba’ Va, b. (65)

The gluing constraints (64) can be then partially written
in terms of these FN coordinates:

C4 - 2L15 + 2L/l6 — O,
Cg - 2L34 + 2Lg4 — O,
(66)

15- Where (we denote

Pl ={T b} ap) Vi )

P = {Tw - {Valomi}

(67a)

(67b)

{95, 95}y ={P/ . P;} ={Q/ . P;} ={Q7.P/} =0, Vij=1,..,15  (68)

|
T;b - {T,IZ’TIIS’T/M’T,I@T/%’T/24’T,26’T/34’T/36’T216}7
(69f)

2 3 . 4 . 5 .
Vo= {08 d3 A = 2mi, =5+ 2mi 4 ) - 2ai},
(69¢g)

1 2 3 . (4 . 6 .
Vo= {_ng)’_)(é;’_)(é,l)o +27”J(§;,1)0 _27[“_1549) +27”}'

(69h)

Following (68), the Darboux coordinates on dM__ also
satisfy the desired Poisson brackets:

{OPIaOQJ} = 0yy» {OPI’OPJ} = {OQIvOQJ} =0,
vI,J =1,...,30. (70)
Apart from the 10 constraints (66), we need to define the

remaining eight independent first-class constraints. We
choose them to be
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Ch=X1+X|-27i=C, Cp=X+X)-27i=C, Ci=X;+X,-27i=C, Cu=X,+X,-2rni=C%,
C15:y1—y/1—271'i56)6{, Cie ==V —2mi=C4,, 017:))3—))’3-}-27;1'5(2}1(3, 618:y4—y£;—277i5_c)1{9'

(71)
The 18 constraints (66) and (71) are all independent and can be verified to be first-class, i.e.

{CiCsl =0 VAB=1,...18. (72)

The relation between {C, }}¥ | and the original constraints {C% }2*_| can be understood in the following way. If we add six
more constraints such that C4_9 24 = 2L, + 2L with a < b and a,b = 1,...,4, there is a nondegenerate linear
transformation relating {C, } and {C%}. The redundancy in the set of constraints {C% } is reflected by the fact that {C, }3* o
are not independent of the rest of {C,}, since L., = L;, and L, = L} by definition. This is related to the topology of
M ,,_. One can find one linear relation among the constraints for every torus cusp (depicted by a closed blue loop in Fig. 8)
and there are in total six of them which remove six constraints from {C%}2*_|. The generality of this topological relation is
argued in [33,52].

The reduced phase space Py, , therefore, is the symplectic quotient of the tensor product of phase spaces from oM |
and 0M_ by the gluing constraints, i.e. Pay = (Payr, @ Pon_)//{Ca}il,.

2. Symplectic transformation and the partition function

After imposing the 18 first-class constraints (66) and (71), one is left with a 24-dimensional phase space with 12 positions
and 12 momenta variables. We perform a series of symplectic transformations from (°Q;, “P;),_; . 30 to (Q,.B,),—1. .30
parametrized as

Q; = ({2035 }ap)» X5: X5, {Ca} a2 By = {75 Haw) Vs Vs ATa iy ;- (73)
We choose the first 10 position variables to be
2L, = {2L13,2L13,2L4,2L15,2L53,2L04, 2L s, 2L 34, 2L35, 2L s}, (74)
then
T =AT0o-TnTi-T3Tu-T1Ti5—T16 T3 T53.T04=T50. Tos =T T34 =T34 T35 = Th6. Tus — T }-
(75)

The explicit expressions of {I4}8, will calculated by the symplectic matrices [see (87)]. The transformations from

(°Q,,°P;) to (Q,,B,) contains one U-type transformation, one partial S-type transformation and one affine translation
illustrated as follows.
(1) The starting point is the product of the partition functions for M and M_:

Zu(flm) = Zy (fylmy) 2y (i-|m-), (76)

where i = {ji ,ji_}, m = {m,,m_} and the two distinct partition functions are defined in terms of different
symplectic transformations,

Zy, (fielmy) = ((67, 080T L oUL)>Z, ) (i) (77)

. . . . . A B )
The symplectic transformations are encoded in the transformation matrices ( (B%r)_l Oi ) and the affine
—\By
translation vector 7,.. We use the expression (18) for both partition functions Z m, and Z), since A, Bl are both
symmetric matrices with integer entries.'> Note that the “+ sector is the same as in Sec. Il while the ‘—’ sector is not

>There are the same number of odd elements in diag(A Bl) and these elements are at the same locations, i.e. the 1st, 2nd, 6th, 8th,
11th, 12th and 13th elements, as can be checked from the explicit Egs. (B2) and (B3) of A, and B, respectively.
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(@)

3

due to a different choice (62b) of momentum variables in P, for oM _. See Appendix B for the explicit expressions

for A, B, and 7. We denote the positive angle structures for Z,, L (fy|my) by By, then Z, € F %{L %, -
OBy

First, we perform a U-type transformation:
Liox1o 0 0 0 0 0
0 0 1 0 0 0
10 U 0 09 ) 0 0 | o 0 0 | 1
=1 = =L ) where U = 78
(7)) = (o) (o oo | 0 | 0 towo | 0 0|
0 Liyg | 0 0 Liyg | 0
0 1404 0 0 0 0
The new positions {!Q,;} and momenta {'P,} read,
'Qp = {2Lap. X5, X5, 2L + 2L0 { X + XYooy {XaYasr 1
Pr={Ta = Tip- V5. V. Top {ViYamr- {Va = ViYim -
Since det(U) = 1, the amplitude is transformed to
Z,(ji|m) = (U>Z.) (jiln) = Z, (U~ E[0 ), (79)
when (@.5) € By, ® By . (Ua. (U)7F) €y with B, = Uo(Py, ® By ). and
e UNTBZ (U (ji + iU&)|m) (80)

)

g

We then perform a partial S-type transformation on the last four positions of 1Q, and the last four momenta of 'P,.
That is

is a Schwartz function. Therefore, Z,; ej'-‘%

16426 0 0 0

ZQ IQ 0 0 0 14><4
=) _g _1> here § = : 81
@ﬂ) <% where 0 0 | Lgos | 0 ®1)

0 Ty 0 0

The new coordinates after this transformation are

QQ[ - {2Lah7 XS? X/Sv 2Lab + 2L;h? {Xa + Xﬁ; 2:17 {ya - y; 2:1}a
2,P[ = {Tab - T;h’ y5’ /S’T;h’ {y; 2:1’ {_Xa}2=1}' (82)

This partial S-type transformation corresponds to a Fourier transform on the amplitude to change the coordinates
corresponding to the last four constraints {C, }1'48:1 s while keeping the rest of the coordinates unchanged. Explicitly,

= = e s 1 = 2 27t 30 —H U myn d e
Zo(lm) = (S>2,)(ln) = -7 > /m ¥y (H 5;4,~y,5m,,n,>ek 2o harrtmin) 2 (3]77). (83)
ie(z/kzy /" =1

Define (@, /) such that

{(X/I:_/}Iv ﬁ/]:al VI:l,,26 ’ (84)

& =a. B=p VI=27,..30
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“

and set a = Im(j), B = Im(7). Then when (—E a) € P, or equivalently (5’,5') €P, :=8SoUo(Py, @ B )s

T E 2l 2, ({138 w0 {m Y28 {130, (85)

is a Schwartz function in {Re(v;)}3%,,. When {Im(y;) = a;}32,, and the integration contour C**° is defined such
that {Im(v;) = ;}3%,,, Z, converges absolutely hence Z, € F ng
Finally, we perform an affine shift o7 to arrive at the final coordinates (£, 13;) defined in (73)—(75). The symplectic

transformation is
Q, ) (29, + in?)
fnd A -, 86
( ml 2P1 ( )

where the vector 7 of length 30 is composed with integer elements. According to the constraints definitions (66) and
(71), there are only eight nonzero elements in 7, which are (note a different sign in f,9)

)3 = by = bys = lyg = Iy = Iyg = —lyg = 130 = —2.

Therefore, one can write down the conjugate variables {I'y} of the constraints {C,} (66) and (71) in terms of

(OQI’ (}7)1):

I =T, [ =T, I3 =T, Ly =T [s =T,

Lo =T, 7 =T, Iy =77, Ty =T, T =Tl

Ty =V, T =M, I3 =), Ty =Y,

r‘15 = -4, F16 = -4, Iﬂ17 = —XS» F18 = —X}. (87)

Define a translation map to the positive angle variables

a a+9r7
6/;: m2 - q:;neW1 <ﬁ> = E .

The final positive-angle structure is

PBrew = O-;*OSOUO(mM+ ® ‘BM,)‘

In order to write the final amplitude in a simple way, we pick out parts of the nonzero elements in 7 and define a length-30

vector 7

whose only nonzero elements are ty; = 15, = ths = ths = —2. The resulting amplitude is written as

2y, (Hlin) = (67080 U)>2,) (jil)

/ d30*<H5,,,D, m)e S s <U—lﬁ—§?|U—1ﬁ>. (88)

e(z/kz)*

Let us also write out the positive angle structure. If (@, ﬁ) € Py, ® Py, then

where

(s o) = ((U)T) + 57,0 ) €y (59)
the prime variables are defined in the same way as in (84). Therefore, when (e, ,Enew) EPBrew> 2%, €F %()W

M,
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The 18 constraints {C,} require that the corresponding elements in @, are zero. These requirements impose further
constraints on the initial positive angle structures for ideal octahedra on top of (A30). One can show that the positive angle is
still nonempty through examples, some of which are collected in Appendix G.

Let us now fix at once the notations of the parametrizations for the new symplectic coordinates ()5 ‘ﬁ) Label the
constraints {C,}}, for the FN coordinates (66) by C,, := 2L, +2L!,, and the constraints {C4}\¥,, for the FG
coordinates (71) by Cy = X, + X, —2xiand Cy, =), =V, = 2mis,,a = 1---,4, where§ = {1,1,~1,1} is a vector of
signs. We parametrize,

2L, = % (=ibpay, — map), 2Ly, = % (—ibpy, — my). (90a)
T = % (—ibvay — nap), T = % (=ibVy, = ngp) (90b)
X, :%(—ibﬂa —m), X :%(—ibﬂ; —ml), a=1,..5, (90c)
V, :%(—ibva - ng,), V, :%(—ibyﬁ,—n;), a=1,...,5, (90d)
Cor =22 (mibpcy, —me,). Co, = m(mibp, = ma). Cy, = (mibpy, ~my). a=1..4  (90¢)
Fup = (mibuey, =ne,). Tu = o (cibvg, =nx). Ty, = (mibuy, ~ny). a=1...4  (900)

Combine the parameters on the right-hand sides into vectors i, v, m, n with elements
- !/ A /
H = {Haps Hss U5, Hey,» B, My, }s m = {mgy, ms,ms, me,, ,my, ,my }, (91a)
= / /! - !/ !/
U= AUy =V Vs, Us, g, Vx, Uy, }» n={ng, —ny,, ns,ns,ne,.ny ny }. (91b)

Then constraints {C4}, and their conjugate momenta {I';}| | give the following relations'’:

Hap = Hc,, = Hab: me, = mod(me,, — mgp. k). ve,, = Vap: ne, = Nap: (92a)
My = Py, + 10 — g, my, = mod(my —m, k), Va=1,..,4, (92b)
Uy = —py —i0s, + 1, n, = mod(-my, +n,. k), Va=1,..4, (92¢)

Vy, = v, vy, = —Ha ny, = n, ny =-m,, Va=1,..4 (92d)

Also denote the imaginary parts a,, =Im(u,,), o, =Im(y,), a, =Im(u,), a, =Im(u,) and g, =Im(v,,),
'» =1Im(,), p, =Im(v,), p, = Im(v),).
Apply these notations, the amplitude (88) can be written more explicitly. To shorten the notation, we denote

fe = {pap {paoys e ={uc, = taps {ux, +1i0 — pato_y H5},

my = {ma. {moni b mo={me, —mgp. {my, —mg}o_, ms}. (93)

“In general, the quantization of the constraints is implied by e*/*% = ¢; = exp (251 (=ibpu; — my)] = q and therefore y; = iQ and
my = 0. In the case of Cy, and Cy, , due to the addition of +27i in the definitions (71), it implies g letatXe = |, g saesaVatYo) = |
hence wpy, =py =0 and my =my =0. In the case of C,, which involving FN coordinates, we use the relation
2L = x| + y2 + 3 = 3mi, 2L = | + ¢ + x, — 3zi and derive the constraint for FN coordinates; ¢?**2!" = ¢3¢ c,c3 = 1. Then
we also obtain pe =0 and m¢, = 0 from Cp,.
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Then,
0 = = 1 M(z:“(»-%-t'Qs)—m my)
B @) =z S [ e 2 () 2y (), (94)
(m,}ez/kz)*’C

where [dy,] = du;du,dpsdu, denotes four copies of measures for p,. The integration contour C is along 4, = Re(u,) + ia,
with fixed a,. When constraints are imposed, i.e.

Ch=0, VA=1,...8puc, =py, =py =0=me, =my =my, (95)
we obtain the partition function of Chern-Simons theory on M, _:
= = 1 270 ¢ C1C ClC
Zy, (i) =— > ldua]exp _TZ Saka | Zm, (UG |mS) Zy_ (= |mE), (96)
{m}ez/kz) ¢ a=1

where the following notations are used:

1S = {ap Yo iomste 1 = {—pap. {iQ — paYo_ | us 3,

m§ = {map {myYa_y.ms},  mE = {=my {-m.}5_. ms}. ©7)

Zy, €F gg ML) implies that the following two functions:

2z 4
FoiimS) = EX bz, (i mS),  fo(mC) = F Pz (), (98)

are Schwartz functions on C**. With the following constraint on the positive angle structure resulting from Cy,=0
[see (92¢)]

ﬂa _ﬁ; = SaQ’ (99)
the partition function (96) can be rewritten as
. 1
B ) = 3 [l SIS ) ). (100)
{m.}ez/kz)t 7€

It is manifest that Z), _(i|m) is absolutely convergent.

B. Coherent state representation

The amplitude (96) is now written in terms of coordinates shared by the two manifolds M, and M_ due to the gluing
constraints. We would like to separate the variables from Zy, and Z,, so that it is easier to relate to vertex amplitudes of

spinfoam. We make use of the overcompleteness relation (52) of the coherent states. Then we apply the procedure as in
Sec. IIC2 to impose the simplicity constraint to the coherent state labels.

To shorten the notation, we denote Re(u) simply by u € R and specify its imaginary part by o = Im(y) if any in this
subsection. For each gluing 4-holed sphere S,,, we need to use the relation (52). First, we rewrite the amplitude (96) as (we
omit here the labels not relevant to {S,}4_, for conciseness)

N 1
ERCOEE DS / (i) ]

{myml,} € (z2/kz)®
X H W~y %mﬁm f+ ({ﬂa + l(xalma}u 1) —({ﬂ; + l(Q - (xa)lm;}izl)' (101)

Then we express the delta distributions by the coherent states through (52),
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1)

s 2

—(ma+m ) 1

47?

where p, = (—Z,, —x
Lastly, take the inner product of Z;

@ YVa) given p, = (z4,X,,y,) and we have identified ‘PO (ulm) =

k \2 _
() [ a0 Gl 8, il =) = [ 008 b ). (102)

W), (=ul = m).

_(|m) with coherent states ¥} (s |m5) on S5 and ‘I’gs (u5|m5) on Sg that are not

glued. The full partition function for M Lu— can now be written as

: k\8 . .
Zpon s+ sbmak) = (353) [ 02, o) 2 o). (10)
where p = {p,}4_, with p, = (X, Y4 2,) € T> x C and similar for ps, ns. 2y, in (103) read,
ZM+(ﬁ’ ’75) = Z / {d:ua HLIIOa /"a|ma |p5—>;75f+({:ua =+ laa}a 1:H5 + la5|{ma}a lva) (1043')
{m,} € (z/kz)’
ZM,(ﬁaﬁS) = Z / {d/’la} HLPO Iua|ma <{/’la + Z(Q aa) i:l’/"s + laSl{ma}a 1’ mls)’ (104b)

(m'Y e (z/kz)

where {du,} = du; - --

dus denotes five copies of measure for u, and similarly for {du/,}.

Lemma HI.1. Both |2y, (5.ns)| and |2, (7.ps)| are bounded from above on (C x T?)** for any given boundary

data (’Iuh’ M5, ﬁS)

Proof. Recall the expression of the coherent state W9 (u|m) =
because &, ,)(m) relates to the Jacobi theta function by &, (m) =

»(m). |& ) (m)] is bounded on T2 for all m’s,
_ fk 3/4 _ky(y=ix)

T 95(3 (- 2”7’"+x+iy),e_f), and

Wl (w)é

95(z, e7%) is analytic on C and x, y are bounded. On the other hand, |f. | is bounded on R for all /i, since they are Schwartz

functions. Therefore,

|ZM+ (ﬁ ’75)|
{ml,}e (z/kz)’

/ {du}If ] H ¥ | <

(Za))z> — C+k5/2 (105)

for some 0 < C, < co. The same argument also holds for Z,, which leads to |2, (p.ps)| < C_k’/? for some

0<C_< oo

C. The face amplitude and the full amplitude for M, _

After obtaining the Chern-Simons partition function in
the coherent state representation, we are left to impose the
simplicity constraints as described in Sec. II C to define the
spinfoam amplitude for M, ,_. That is, to impose the first-
class constraints, we require Re(u,,) = 0, V(ab) and that
my;, depends on j,, in the way of (29). The second-class
constraints, on the other hand, are imposed by requiring that
the coherent state labels p, = (z4, X4, Va), Ya=1,....5,
are parametrized by (,,¢,) €[0,z] x [0, ] satisfying the
triangle inequality (45). We denote these coherent state
labels as p,,.

One last ingredient to include for completing the
amplitude for M, ,_ is the face amplitude, since there
are torus cusp boundaries in the manifold M, ,_ and each
torus cusp corresponds to an internal face in the spinfoam
melon graph. There are in total six torus cusps, each of
which contributes a face amplitude depending on a spin

(from the lesson on 3D spinfoams and the EPRL-FK
model).

Denote j = {Ja} = {;f;b} with j, being the spins
for annuli connected to the boundary i.e. for (ab)=
{(15),(25),(35),(45)} and }f for the internal tori i.e.
for (ab) = {(12),(13),(14),(23), (24),(34)}. The form
of the face amplitude should relate to the boundary
Hilbert space and the amplitude behavior under the
decomposition [53]. According to the combinatorial quan-
tization of the Chern-Simons theory [54-56], the quantum
states of Chern-Simons theory at level k is described by the
quantum group deformation of the gauge group. After
imposing the simplicity constraints, the gauge group is
reduced to SU(2) (as we impose the reality conditions on
the trace coordinates). Therefore, we expect that the
boundary states are g-deformed spin network states of
the quantum group SU,(2) with g = ¢**/* a root of unity
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depending on the Chern-Simons level k. We postulate a face amplitude

2i 1
Ap(2js) = [2j; + e 8200 peR, Jr=05 (106)
with an undetermined power , where [n], = % is a g-number. The limit [n}qlﬂfn relates [2j, + 1]5 to (2j, + 1)* used

in the EPRL-FK model. F is a real function that is determined in a moment. The reason of including %77 is that the
Chern-Simons partition function is a wave function (of position variables £;), which is determined up to a phase.
The full spinfoam amplitude for the melon graph then reads,

-1)/2 6
7]5/)5 |]h Z H 2]f //\/1 dpu]AU,Jr(&vj’ﬁvﬁS)Av,—(&9jvﬁv

where & = {{aahvﬂah}(ab)’ {aavﬁa}izl’ as, a/svﬁS’ﬂ/s} are
all the positive angle dependence of the full amplitude.

Each integral [dp, is over ﬂjf satisfying the simplicity
constraints on S,. The vertex amplitude A, . is obtained by
restricting the variables in Zj, to satisfy the simplicity
constraints.

Theorem IIl. 2. The melonic spinfoam amplitude
Z, 5.(alj h) is finite for any given boundary data {#s. ps. j b}

Proof. Both |A,.| are bounded in the integration
domain, since |Z), | are bounded by Lemma IIL.1. Then
the integral is absolutely convergent since the domain of p,,
is compact. Moreover, the sum over j is a finite sum. We
then conclude that Z; 5 (a| J,) is finite. L]

The sums over dlfferent J¢’s in (107) are independent.

However, the range of (0,.¢,),_, 4 which has been

.....

6

Zigps(alim) =

{m;€2/kz} f=1

5), (107)

v

[
denoted by M}, is constrained by the triangle inequality
(45) (thus M; depends on both j; and the boundary
data j,). For certain j; in the sum, M} may become
measure-zero, then the integral vanishes. For instance, it
happens for j,’s violating the triangle inequality or j, =0
at some f.

IV. THE LARGE-k BEHAVIOR OF THE MELONIC
AMPLITUDE

In this section, we use stationary phase analysis to
analyze the large-k (equivalently A — 0) behavior of the
melonic amplitude (107). The sum over j,’s is subject to
the triangle inequality. Recall the relation 2j,, = m,,
we have

[ [y + et /M [dPa} A s+ ({ma oy {PaY ot Ats) A - ({0} ay {Pa Yo Ps)-

where M, = ﬂj. The vertex amplitudes for M are explicitly given by

v+({mab} ab)» {pa}u 177]5)_ Z /{d//ta H‘PO ﬂa|m ps—is€ T”

{m,}€(Z/kzZ)®

A"-—({muh}(ab)v {ﬁa}i:] 355) =
{m,}ye(z/kz)

(108)
i:lﬁa(ﬂu+iau)
X ZMJr(laabv {,ua + laa}uzl » M5 + la5|mabv {ma}izl ’ mS), (1093)
Z / {dﬂa}H‘PO /"a|m e kz Palia=ia,
X ZM_ (_laab’ {:uu + l(Q - au) a:l?ﬂj + la5| - Mgp, {ma}a l’ ) (109}))

We are interested in the scaling behavior of the amplitude (108) when k — oo, while the boundary data is fixed. Here, the

boundary data includes j, = {j,, = 5} ) for (ab) =

(15), (2

5).(35),(45) and the coherent state labels 75 and ps

(corresponding to S5 and S in Fig. 8). However, the parameters {y;, vy, my, n;} of {9;, 9, } involved in the integrals and
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sums all scale linearly in k& as can be seen from their
definitions (A10). This motivates us to change variables to
the scale-invariant ones so that the large-k approximation
can be analyzed by the stationary phase method. In
Sec. IVA, we first make such a change of coordinates,
with which we rewrite the amplitude (108) for the melon
graph. At the large-k regime, an effective action of the
amplitude can be formulated. In Sec. IV B, we apply the
stationary analysis on the effective action to find the critical
points which dominate the contributions to the amplitude.

kb z
K = m(QI +9),
kb .
vy = 2B+ 1) (Br + By).

The effective action at the critical points turns out to be a
pure phase as analyzed in Sec. IV C. The scaling of the
amplitude in k partially comes from (the determinant of) the
Hessian matrix of the effective action, which we analyze in
detail in Sec. IV D.

A. Change coordinates and take the large k
approximation

We convert the parameters {u;,v;, m;,n;}}2, into the
coordinates {£;, ‘BJ’}L by the relations,

- i

mp = m (Q, - 2)), (110a)
ik .

”1:m(ml—b L), (110b)

which are the generalization of those in (A10) by allowing analytic continuation of 4, v; to C [hence Q ; (resp. ) is not the
complex conjugate of 9, (resp. ;) in general]. The constraints u), + ial, = iQ — (u, + ia,), m,, = —m, (Ug, i, ER) is
translated to constraints on A”, and X”, as [recall the definitions (A12) of A and 7]

X, =-X, +27Ti<1 +

b2+ 1
k b

(111)

b2 +1
. )

X =-X, +2m‘<1 +

When the first-class simplicity constraints are imposed, we demand Re(u,;,) = 0 for all annuli (ab)’s. Each of these
constraints is translated into a constraint between the annulus variables L, and L,

2L,, = —2L,, + O(k™),

where O(k™!) relates to a,,.

(112)

Recall that the boundary data j,,;, = “ are held fixed for (ab) = (15), (25). (35), (45) when we take k — oo. It implies
that we scale some boundary L,,’s to zero at the same time, i.e.

Lab = O(k_l)’

for (ab) = (15), (25). (35). (45).

(113)

In order to deal with Z,, at large-k in a uniform way, it is convenient to define the following FN and FG coordinates

9, = {2L s}y (X} } = Q7.
Q= {{-2Las}any {XeFim} = Ol oan
"ﬁ#» = {{Tab}(ub)’ {ya}fz:l} = 73+,

B = {T 0 ) IV} =P

9y = {{-2La} iy AX P} = O oty car (114a)
Q= (2L} (XY} =Q bty or,. (114D)

By = (Tud i DY) =P (114c)
B = (T} (T} =P (114d)

One can then define the parameter vectors jiy, Uy, m, and 71, of these coordinates accordingly. We will also extensively

use the notation a* := a + 10 in the rest of the paper.
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The amplitude Z;_5 (@) involves some sums » , ¢ 747 - - - Where n € {my, m,, my, i }. We need to relate the sums to
integrals in order to apPIy the method of stationary phase. The trick is choosing a representation of the sum followed by the
Poisson resummation,

Z _ szf n) Z /k 5dnf Q2ipn 27[ /Zn 6/k djf (%j) eikpj’ (115)
pPEZ

nez/kz n—= pez 5/k

where J = 2zn/k and 6 > 0 is arbitrarily small. The application of this formula to the sums of n.. ; and m .« in A, ; and
combining the Lebesgue measure dv, ; or dp, ., we obtain forall / =1,...,15, a =1, ..., 5, that

k k
dl/e,l A dje,l - o Q( ldmel A dmel) d:ue,a>< A dK:e,a = o’ Q( ldQeaX A dDea ) €= :i:v (116)

where J,; = 2zn.;/k and K., = 2xm, ,«/k. Similarly, the sum over m; becomes

27— 5/k
/ e kury . f=1,...6, (117)
u ez o/k

mpE€Z/kZ
where iQQ, = 2zm/k. This procedure makes choices of the lift from eFer) ¢Fer, e | Qe e to PBes» Berr Qe
De,a , Q. The integration domain M, of {0,.$,} is well-defined with continuous 7.

1. The large-k approximation of the vertex amplitudes

Let us first consider the large-k approximation of the vertex amplitudes A, .. We apply the result in [1] and write the
partition functions Z),, in the form of path integrals at large k:

ZMEZNOZ/CW A (=idB; A A p)es BFA80[1 £ O(1/k)], Ve =+, (118)

Pz’ Cpoap. !

The overall constant Ny = (2;‘)15% and the effective action can be separated into four parts as
P & & & ) > Ze z 1 - = 2
Sﬁé = S(e)("pev mwQS’QE) + Sel (_B;r ’ me) + Sl (_B;r : %e) - bz—Hpe : (me - bz"pe)' (119)

The vector p, comes from the Poisson resummation of 7, [recall the expression (18)]. The first three terms in (119) are
explicitly [1]

- =z - 2 1. > = | > > - pog pos pog
S(e)(;'pw mm Qev Qe) = _%te : (‘Be + ‘Be) - m |:q3€ : (AGB;‘F : ‘Be + ZQG) + b2q3€ : (AEB;‘F . %e + 296):|
1 Z

“gry (B PR 200
i 5

SE(=B[ -P,) = T Z Liy(e~X) + Liy(e™) + Liy(e7%) + Liy(e™™1)], (120b)
1=1

- . 5 _ _
S¢(-BT -B,) = b = Z Liy(e7X¢) + Liy(e7"") + Liy(e™%) + Liy(e™"1)], (120c)

We use the P01sson resummation formula in [57]; Y520 f(n) = > <7 e2irle=d) [Kdnf(n+ a—1)e? P for any a € R satlsfymg
|| < . Take a = 5 — 6 with 6 > 0 bemg arbitrarily small Equation (115) is obtained by a change of variable. The sum of m/, after
1mposmg the glumg constraint m/, = —m, becomes > 0, .- However, f(my) involved in our discussion are periodic in my, i.e.

f(ml, + k) = f(m,), hence it does no harm to shift to 5;_;1:0 then (115) can still be applied.
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where —B] - B, = (X¢,Y¢, Z¢)3_, with notations (X7, Y/, Z") = (X;. Y. Z;) and (X7,Y7.Z7) = (Xips. Yies. Zivs). i
here denotes the octahedron Oct(i). Similarly for the tilde sectors. Li, appearing in (120b) and (120c) is the dilogarithm
function defined as

u

Lis(z) = —Azwdu (121)

for z€ C. B] transforms the momenta ‘Be and ‘Be on the 3-manifold M, to position variables on the octahedra {Oct(i)} of
M.. This is the reversed version of the coordinate transformation (A33). W¢ and W¥¢ are obtained from the constraints on an
octahedron:

2ni o e 2ri
X§+ Y5+ Z o+ Wi =20+ = - L2+ 1), X§+Y§+Z§'+W§':2ni+%(b‘2+1). (122)

The effective actions S and ¢ as in (120b)—(120c) are obtained by taking the large-k approximation of all the quantum
dilogarithm functions within Z, . As an example,

ik ik

mLiz(e‘Xf) - mLiz(e—fff) [14 0(1/k)]. (123)

W, (uy Imy. ) = exp [—

Let us consider now the inner product of Z,, (resp. Z,, ) with coherent states. Firstly, we use the change of variables
(110a) to express the coherent states P} , = ¥} (04 4. Q. ) into functions of the new variables, where

/A)+,a = (2+,a73%+,a7 57+,a) = (211’5511’ .)Aja)
. R . . N o fora=1,...,5,
P-a = (Z—.avx—.uv y—,u) = (_Za’ —Xas yu)
Pis= (245 %05945) = (Z5, &5, 9s)s Pos=(2-5.%_5.9_5) = (=25, =35, 9%). (124)

We then perform the Poisson resummation for the sums over m, , := m, and m_, := m;, in the inner product. We also
denote p, , = pg p_q=p, fora=1,....5.

. . =\ . .
As a result, the inner product takes the form (we omit the factor e * D Peattea g5 it is subleading at large k)

Av,s(ﬁs’ﬁ%’;e) = / {dﬂea}ZM (/’lea|mea <H\Psa(ﬂea|msa)>
{mf U}E Z/kZ
= Nl Z / dM exp kSCOhe ("Be’ me’ _)e’ée):| ’ (125)
CXAO Pes é‘ﬂe

PRV ANN=VA

2 5
where | = -N’O(4,];—2Q ) = 1640*/;20 k*/2 and

15 - 5 ~
/ dMe = /\ (_idme,l A dme.l)/ /\ (_idﬁ)e.aX A dQe.aX)' (126)
C;;to CXZO (I;E‘ =1 Cifllo ><><L-7. X

The effective action in the exponent is

- -

SCOhe (‘Bw mev € ﬁe) = S;’J}(%m ‘i;e’ Qe’ ée)

Pes E‘pf‘

- - 1 -
+ Z |:S2“, (}:le.aX s Qe,ax) + S(fcg_a&m) (5:1641X s Qe,ax) - bZ——H Ueq (Lﬁle.,aX - sze,aX) s (127)

a=1
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where u,, in the last term comes from the Poisson resummation of m, ,. Then the first two effective actions in the
summation Y >_, of (127) takes the form,

= b

Sz (Qeas Qear) = L GE) Re(Z.,)%, (128a)

- b 4, .
(De,ax + Qe,ax) |: (Qe,a + Qe.a ) _ \/Eze,a:| —

1
20 + 1) 27

< _ i-%e,aj\)e,a _ i |:l (Qe‘,ax - bz}j&‘sax) - % u:| ’ i (Qe’“x — bzﬁe'”x)ye a (lng)

S5 @y Mea*) = -
(xg,a,yé.v,,)(ﬂe,a Q . ) Ar 4 b2 1 20 b? +1

The expression (128b) comes from the simplified version of i 5 ) when restricting m., =0,....k—1,
(€Xeq, Yeq) €10,27] and neglecting the exponentially decaying contribution at large k. We keep in mind that, when
converting the variables {me,ﬁs.ax} in (128) back to y,, using (110a), we should replace y,., by Re(u.,) as these
actions are form the coherent state ‘I’g (Re(peq)|meq)- [See (155) below.] The same expressions as in (125)-(128) have

been obtained in [1] when considering one 3-manifold S*\I's, to which we refer for detailed derivation.

2. The full amplitudes
Lastly, we take into account the Poisson resummation (117) for me and change the variables from m, to
Qp €{2L13,2L13,2L14,2L3,2L 4, 2L34}. In the large-k regime, the g-number [m, + 1], is approximated by the integer
my + 1. With the simplicity constraints (112) imposed, they are related by

ik ik 27\ k>0 Tk
=—89y VYVf=1,..6 +1=— — |~ —Q. 129
mf 277:53/ f = mf + P <Qf + lk> 2”53]0 ( )

Since the discussion is in the large-k limit, we often identify 2L, € iR and do not distinguish it with Q.
The total amplitude can be written as

6 o - 2 =
Zhp E) =N D / dMa.p / [d7.] (Hﬁﬂf)”)eks‘“(Q'°"“B‘°"D‘°"““‘°‘)[1+0<k‘1>], (130)

ipez8 %86 S=1
iy ez’ qu}
pyezld

where ngfm is the integration contour for all the 86 = 30 x 2 4 10 x 2 4+ 6 momentum and position integration variables

[recall (126)]:

6
A M gyq =AM A dM_ A (f/\ld(isafv)). (131)

The prefactor N has three sources and reads,

16 2k45/2 2 k2 4 k O\ 6+6u 512k59+6u
N = \/;0 0| 3) *\5, = (37102461 ()40 ° (132)
(27)*0 (2x) 2r (2m)'9*+orQ
where the first term comes from the two vertex amplitudes A, . [see (125)], the second term comes from the delta

distributions for the four glued 4-holed spheres (see (102) and the last term comes from the six face amplitudes and the
change of integration variables dm, = X d(th) The total effective action S, is a function of 30 position variables

(th, th) 60 momentum variables (&Bm, ‘Btot) and six sets of coherent state labels {{p,}*_,, s, s}, where [recall (114)]

Do ={0..9} Qu={2,9} Pou={F. 5} PBo={P P} requiring2L,,=-2L, V(ab).
(133)
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The total action is

Stot(Qtoh ;‘Btotv étot’ Si;’tot ('pe’ ;‘Be’ é )

Zsi‘fhi 5
+Z ( Fp(2Ly) —ufﬂf>

(134)

where Si(’h; 3 (‘ﬁg,‘ﬁg,ﬁg,ﬁe) is defined in (127) and

{us} ez°

of {mf}?:l .
Note that although the leading-order behavior of Sy is

linear in £, it does not scale uniformly as k — oo, because

(113) and the term — (‘136 + ‘,Be) in S§ result in some
terms in Sy, not scahng in k. In performing the stationary
phase analysis, one may firstly extract the terms in S, that
is linear in k, denoted by S}, and derive the critical equation
051 = 0, whose solutions denoted by x,. make dominant
contribution to the integral (130). However, we can also use

|

come from the Poisson resummations

Siot and the express (130) for the stationary phase analysis.
The critical equation dS,,; = 0 will contain some terms of
O(k™!). The solution to dS,,, = 0 is denoted by x.. The
difference between x. and x/. is of O(k~!). Therefore, the
dominant contributions of (130) computed respectively
from x. and x. are different only by some subleading
contributions of O(k~!), which does not affect our dis-
cussion since we focus on the leading asymptotic behavior.

B. Stationary phase analysis of the effective action

75,55 fOT

variables

Now that we have written the total amplitude Z;

M. ,_ in terms of the scale-invariant

{‘ﬁe,‘ﬁe,ﬁe,ﬁg}, stationary analysis can be performed
on the effective action (134). Denote for short S°he —

S;Oh; ; and SOf _ S+ + S + ff(sz) — quf Notice

that the dependence of S, on (‘}36, ‘}36) is allin S defined
in (119), the dependence on 9y is in Sy, and the
dependence on (9, ,, Q. ) is in S°M one can simplify
the critical equations to be

9. _ 955 _ 95, _ 95 =0, VI=1,...15, (135a)
0Py 0P-; 0Py, P,
08 s
——L =0, Vf=1,...6, 135b
o0, f (135b)
asche  ggeohe - ggeohe - ggeohe
= =t ——- =0, Va=1,..,5. 135¢
0, 0 o 09, 0Q_ ( )

1. Momentum aspects

We first analyze the derivatives (135a) of 3. ; and ‘J~3€, foralll =1,...,

of the action),

aSijC _ te,[ l

15, (recall the explicit expressions (119)—(120)

- . 1 -

- [(AB/ - B, Qer| — el B.-P.), — , 136
0B..s 2k 2z(b*+1) { Pe) s+ el 2(h? +1) +2ﬂ(b2+ 1)( )i b +1 (136a)
On _ et 1 (ABT.P), 4D bl L (g B D (136b)
0B, 2k 2+t T T2 ) T aa(b 24 ) ¢ T b

where we have used the fact that A_B/ is a symmetric matrix for both € = & and that
- 1 — e 1—e ¥ 1 —e %
P.:=11 ,1 ,1 , 137
¢ { Og(l - e_Wi> Og(l - e‘W"> Og(l - e_Wi> }il,.“.s if e=+ ( a)
i=6,...,10 if e=—
2 1_8—5(,-> (l—e‘?t) (l—e‘zl)}
P.:=<lo — |, 1o — |, 1o - , 137b
{ : (1 - e_Wi : 1- e_Wi : 1- e_Wi 6 ..... 1solffts—+ ( )
which comes from the derivative of the dilogarithm function %ﬁ(ﬁ”’) = —ilog(l —3;) for 3; = x;,y;, z;, w; and i labels the

octahedron Oct(i). Here the imaginary part of log(x) is fixed to be in [0,27z). W;, W; are defined as
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27i = 2mi 7
W,-:=2m’+%l(b2+1)—X,-—Y,-—Zi, W,»:=2m'+%l(b‘2+1)—X,»—Y<—Z-.

The critical equations (136) look complicated at first sight. However, as explained below, they are simply the reformulation
of the algebraic curve equations (61) for ideal tetrahedra

3;14—3;’—1 :0©3§’:10g(1—e‘3i), with 3; = e, 3§’Ee3:’", Vi=1,...,5, (138a)
57+ —1=0s 3 =log(l—ed), with 3 = e, si=e%, Vi=6,..,10. (138b)

For notational simplicity, we define W = {W,}12, and W = {;}19, such that W; = W/, W, = W/ if i = 1, ..,
while W; = W/, W, = W/ if i = 6, ..., 10. Replacing the logarithm function log(1 — ¢~"i) by W, in (137a) and log(1 —
¢="i) by W; in (137b), we rewrite P, and P, into

P, = {log(1 — ™) =W, log(1 — ™) = W, log(1 — e™%) — Wititsites, (139a)

Ij’s = {log(1 — %) =W, log(1 — e~ o) =W, log(1 — e™%) — 17\/,-};::61 ..... it . (139b)

Denote the original position and momentum coordinates for the ideal tetrahedra by

q_se = {Xi, Yl-, Z’}l::sl ..... Isoi'ffe-::t’ and ﬁe = {PX,-’ PY’,, le_}_i::él ..... IS()i'ffE-::t’ (140&)
d)e = {Xi, Yi’ 21}1::61 ..... Sie=t and 1:I€ = {P)'(i, P)'/i, Pzi}_i::é.....lsoig'fe::t. (140]3)

They are related to the new coordinates {}36 ‘,fié} and {Q,. P, } by linear transformations that can be formulated neatly by
the following matrix multiplications [1],

8, - in, (™) 3, 8, +ird, (™) > (141)
g, ) e o)\i ) § ) \-m) o)\F)

Or inversely,

3, 0 -BI\ (9, —id 3, 0 BT\ /9, +irL,
= |~ \ p-i T > ' = | gt AT 2 : (142)
He B€ A ‘Be IT B€ ‘,]3

Therefore,

oS - - . -
—27i(b? + 1) Wm} =—(AB! -B.), - (Q. —int.), +27ip.; + (B - Pe),

= (A @), = (A @), — (B 1L), + (Be - o), + 27ipes

= [B.- (P, - T.)], + 2zip.; =0, (143a)

— [B, - (B, —11,)], - 27ip., = 0. (143b)
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where we have omitted the first term — t—k’ in (136) at large k. The critical equations (143) are then equivalent to the following

2
equations,

el =1 — 73 PtV — 1 — o3 Ji€{X. Y. Zi}, 3.€{X.Y,.2;}. (144)

’

If we defined 3} := P5 + W, and 3= Ps + W;, then these equations are nothing but the algebraic curve equations (138)

P, ,

for ideal tetrahedra. It is clear that p, relates to different lifts from e, ¢"i to the logarithmic variables P53, W;. By the

procedure in (115), we have fixed the lift ambiguities of all s oFer g0 the lifts of eF3, ¢"Vi have already been fixed in the
integral representation of the amplitude. Therefore, (143a) and (143b) uniquely determine the values of p..

2. Position aspects

Let us now move on to consider the derivative of S, ; w.r.£. the position variables. We first consider those (135b) w.r.z. the
positions on the torus cusps {Q,}. The critical equations are
950 i
09, 2z(b>+1)

(B = *B_y) = (B = 0B y)] +%f}(>3f) —up =0, (145)

where . , and 2]~3i,f correspond to the momenta conjugate to Q and F'(2Qy) == dF ;(Qy)/dQ;. The critical equation
solves,

ik
n_,f—n+‘f+;—”f;(2Lf)—kuf:0, Vf=1....6. (146)

The conjugate momenta of {QQ;}2, = {2Lap } (ap) are { P — B ={Tw - T} (ap) @s shown in (75). Ten pairs
of conjugate variables (2L, 7 ,, — 7",) associate respectively to six torus cusps f’s and four annulus cusps b’s of M, ,_
(blue lines in Fig. 8). {7, — 7", } equal to six B-cycle holonomy eigenvalues on f’s and four FN twists on b’s calculated
by the snake rule for cusp boundaries up to a constant nzi with n € Z (see Appendix H for details and for a generalized
argument):

Tab - T;h = Tab + gab’ iab - T;b = Tab - gab’ (147)
where

(=0, Cu=mi, C{u=mni, {s=nri, {3=0, {yu=-27i, {s=0, {y=-ni, §{5=0, C{i5=-ni.

(148)
Note that (ab)’s involving 5 label the annuli, while others label the tori.
When we parametrize
277.'i . = 27” .71
TfZT(—lbl/f—nf), TfZT(—lb l/f—'—nf), UfelR, nfe[(),k), (149)
and by (147), we can rewrite (146) to be
ik ik
where 5= ¢, € 7. We may set F; for f = (13), (14), (34) such that
i . Fi(2Ly) .
z—ﬂ[Cf—F}-(ZLf)]GZ, ie. pn is odd, (151)

and F; = 0 for f = (12),(23), (24). Absorbing this integer into u, the critical equation (146) becomes
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The solutions of n, and u; € Z are both unique, since n, ; and n, have been restricted into a single period [0, k):

Setting ' = izZ and a vanishing constant term in F leads to a sign factor,
sl = (=1)2r, (154)

in the face amplitude for f = (13), (14), (34).
For the remaining position variables {Q, ,«, Qe,ax}fl:l defined in (114a) and (114b), the critical equations (135c) give

gSeehe P, 4~ bk™! k . ik™! k Vea + 2mu

- == = - R, €,a* _—_ea 32, 1 eax__Aea _ug()» 155
. 22 +1) 1 [ Slear) = 5 % } P+ 1 {m 2 } 22(b% + 1) (155a)
gScohe P, - bk™! k. ik™! k Dea +2mu

de ea* R ) ——— % - «——3X sea L2704 (0, (155b
age’ax 27I(b_2 + 1) b2 +1 [ e(/‘e,a ) \/En’ze’a:| + b_2 T |:me,a zﬂxe,a:| 2Jr(b_2 T 1) ( )

u., only shifts n., by multiple of k. By the same argument below Eq. (146), n,, € -6, k — 6] fixed in (115) uniquely
determines u,, = 0. Use the notations in (90c) and (90d), and recall the notation (124) for (2 4, X..4. J.4) the solution is

given by

k
Re(/"a) —Re(zu)7 Re(l/a) = _—Im(za)’
2r 2r
ko , koo
Re(/"a) = _—27[Re(zu)7 Re(ya) = _—ZJ'[Im(Z“%

k k
mu_ﬁkav na:_gija, Va: 1’ ’5’ (1563)
k k
my=—-—%,. ny=—>-9,. Ya=1..4  (156b)
20 2
k| k.
L= —gx’s, ng = —gy/s- (156c)

The critical points (156a)—(156b) immediately reproduce the gluing constraints on the position parameters and also
match the momentum parameters on {S,}*_, from M, and M_:

Re(/’l;) = _Re(/’la)’ miz = —myg,

Note that the coherent state &, ) (m,,) is invariant under a
shift m/, - m/, — k, which corresponds to shifting Q_ ,« —
Q_ 4+ 27 while Q_ « — Q_ « — 2zi. Performing this
shift for {m/,}4_, would shift the solution to m/, in (156b)
to ml, =k — %x;; hence, critical solutions m, and m/, =
k — m,, can both be taken to be in the range of [-8, k — §] so
that the Poisson resummation (115) can be applied with no
ambiguity.

To summarize, the above discussion shows that a part of
the critical equations recovers the algebraic curve equation
for ideal tetrahedra under the octahedron constraints and
recovers the gluing constraints between M, and M _. These
critical equations indicate that the critical points of the
amplitude are SL(2, C) flat connections on M, ,_ satisfy-
ing the simplicity constraints. Moreover, because of the

Re(v,) = Re(v,), n, = ng,

a=1,...4. (157)

|
sum over j,, the variation of £, imposes an addition
constraint (153) to the flat connection. This additional
constraint is an analog of the ‘flatness constraint’ [58—60]
in the EPRL-KF spinfoam model for the following reason.
m; encodes the area of an internal triangle dual to the
spinfoam face f. Its conjugate variable n; then encodes the
deficit angle around this triangle. The solution to n is
interpreted as bulk simplices being glued such that the bulk
curvature is a constant. Given my, the solution to ny is
unique. It is a feature different from the case in EPRL-FK
model, where there may be infinitely many critical sol-
utions to the deficit angles separated by 4xZ. This
ambiguity seems to able to be resolved by adding a
nonvanishing cosmological constant, from the experience
of the spinfoam model we study in this paper.
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C. Amplitude at the critical points

At the critical points (156) solved from the derivative

w.r.1. the position variables of the actions S and Sz 5 )
(128), we obtain the critical actions
0 _ i 5 IS 0 _ i A A
Szea - ;Re(zg’a)lm(ze’a)7 S(’%e.avye'.a) o Exe’aye'a’
(158)

As the imaginary parts of zi, and 7, do not scale with k,
(159) is also imaginary at large k. Therefore, et
contributes to the amplitude only a phase at the critical
points.

Pe

Lastly, enls only contribute a sign to the total amplitude.

The above stationary phase analysis is carried out for all
integrals except the integrals of p,. This means we study
A; 5 ({Pa}) with {p,} as parameters and we can write,

Zg = [ WA WGD. (60

m

Note that we can interchange the order of integrations
since Z; s is absolutely convergent. The above analysis

assumes the existence of critical point(s) at certain
{pa = ;35,0)}. At {/320)}, we have the purely imaginary
critical action being S, evaluated at the critical point.
We denote the critical point by a and the critical action

by S The critical action Sg,; € iR is scaleless in k. Each a

(0)

is associated with a unique p,~. The asymptotic of A,

UH ﬂs
at ,32‘”
N
A(0)
A (P27 2 det(~H,/(2x))

aassociated with {/35,0)}

x eSall + 0(1/k)], (161)
where H, = 0*(kS,)|, is the Hessian matrix evaluated at
the critical point @ and N is given in (132). We have also
assumed that a are isolated and H, are nondegenerate.
Then the sum of « is finite because all critical equations are
polynomial equations of certain degree in terms of expo-

nential coordinates ¥, 2, e‘i‘, 2. Other situations are
going to be discussed in a moment in Sec. IV D. We have

which sum to zero when considering both ¢ =+ by
definition (124).

On the other hand, e*57 is a pure phase at large k for the
following reasons. Firstly, the imaginary parts Im(u)’s for
all u’s are not seen at large k and b~! is the complex
conjugate of b by definition. Therefore, 3 is the complex
conjugate of 3¢ for 35 € {x¢, y¢, z5,ws} in Oct(i). We then
conclude that the sum S{ + S¢ is pure imaginary for both
€ = = from the expressions (120b) and (120c). For the rest
of S5, we rewrite them as

removed the summations for p_, i, ii; which come from
the Poisson resummations, because at the stationary points,
the following conditions must be satisfied,

=0, iy, Py are unique. (162)

The conditions pick up only one term in the sums of p .,
iy, iy

However, it is generally possible that for some p,, the
critical point does not exist in the integration domain. In
this case, the asymptotics becomes

O(1/kY), VN >0,

As s {Pa}) = (163)

i.e. it suppresses faster than any polynomial of k=!. Then
we can generalize the formula (161) for {p,} in a

neighborhood of {5{"} [61],

N
2 det(—-H,/(2x))

aassociated with {/320 >}

x eSaB({p,})[1+ O(1/k)].

A s ({Pa}) =

(164)

where B* satisfies that B* =1 at {p, :f)(ao)} and of
O(k™N) for any N >0 elsewhere. B* is smooth and
bounded on M.

The asymptotics of Z; s can be expressed as

Ziis bs (4|m) ZW ks“"/ [dpa|B*({Pa})
x [1+ O(1/k)]. (165)

124050-33



MUXIN HAN and QIAOYIN PAN

PHYS. REV. D 109, 124050 (2024)

The p,-integrals are dominated by the contributions from
the neighborhoods of {ﬁgo)}’s and is bounded. Here we

D. The Hessian matrix

To obtain the total scaling of Z; 5 (si|n) with k, we are

recall that left to calculate the scaling of the Hessian H,, at the critical

points. Let us first determine the dimension of the Hessian
matrix. This is given by the number of integration variables
in the expression (130) of the amplitude after imposing all
the simplicity constraints. These variables are summarized
as follows:

5 12k59+6”
<2”) 102+6u Q4O :

N = (166)

Note that the above formula clearly assumes that the

critical point a exists at some {ﬁflo)}.

{Df}?:l ={2L15.2L3,2L14,2L53,2L54,2L3,},
{Q+,ax}2=1 = {X), Xg, X5, Xy, X5}, {é+,ax}g=1 = {lejfz’;fyj(mjfs}’
{Q o b = {1 X XL X0 {Q ) = {0 A, A AL A,
B2 =T whaw Vi B2 = U T whay Vadosi )
{m—,l }il = {{Tizb}(ab)7{yil Z=1}» {;i;—J 1111 = {{Ij-itb}(ab)?{j)il Z=1}-

Therefore, H, is an 86 x 86 matrix. The entries are given by the second derivatives of the effective action S,,, with the
simplicity constraints imposed. We now calculate the Hessian entries.

Second derivatives with respect to momenta.

Firstly, consider the second derivatives of S, with respect to {*B, ;, ‘i?e, 7}~ The nontrivial results are all from the action

(167)

S5.. Since S,—,+ and Sj_ are not entangled, we can consider them separately. From (120), we get, for all I,J =1, ..., 15,
&5 : op, &5 : ob
Pe fry 21 (Bg Té_AeB;‘r> ’ A pf’ = —l2 (BE TS_AGB;‘F) ’ (168a)
0B 0Py  27(b° + 1) o, i 0P 0P, 27(b77+1) oP, 1
S
P _, (168b)
5‘»]36,10‘136,1

where % <resp. a_{;) is a block diagonal matrix in terms of <13€ (resp. ®) and 135, P, are defined in (139). Explicitly,

€ e

oP oP. . . . 3 1.5 ife=+
e ((%,¥,.2,)) = ~diag({E,}) - BT, ¢(%,.¥,2) = ~diag({E,}) B, i= { te="
P oF. 6,...10 ife=—
(169)
where
o Xi o Vi o2 XiHYitZ; b
E — dlag<1 T e—z,) sl NERER P (170a)
111
N e—f(i e—f’,. e—Z,- e)"(,~+)7,»+2,» 111
Ei:diag< _ _ ) R (170b)
l—eXi 1—ei 1—e?% 1 — eXitYitZi
111

Second derivatives with respect to positions.
Secondly, we calculate the second derivatives of Sy, w.r.t. the position variables {Q, <, Q. .« }. (There are no nontrivial
second derivatives with respect to {Q}.) The nontrivial results are all from the action S, = S; + S(;_, 5. ,) and there are

no entanglement between different a’s or different ¢’s. From the definitions (128),
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’Sp,  1-D? S, _ b*(b*-1)

()Qg,ax - 277.'(b2 + 1)2 5 a{]iux - 2ﬂ(b2 + 1)2 5
S, b’

Pea Vazl,...,S- (171)

09, 09, #BT+ 1T

Second derivatives respect to positions and momenta.
There are cross-terms of positions and momenta in S§.
Therefore, they contribute nontrivial second derivatives of S,
|

S s —ie
0B, 222+ 1)

We observe that all the nonzero second derivatives
(168)—(172) are scaleless with k. Assume that the
Hessian is nondegenerate, then the power of its determinant
in k must be the same as the dimension of the integration,
which is the sum of 30 momenta {3, ;,B.,}}2, and 10
positions {Qi,ax,éi,aX}Zzl from both vertex amplitudes
as well as 6 position variables {Q/}%_, from the face
amplitudes. That is,

det(H,) o k%. (173)

Combining the power of k in A/ (132), we conclude that

23,5, = KOS Coe% [ @B (pa)) 1+ 0(1/0)
(174)

where C, does not scale with k

The result (174) is based on the assumption of the non-
degeneracy of the Hessian H,,. In the case of det(H,) = 0
for some a, one needs to separate the part of the integral
corresponding to the degenerate directions and only applies
the stationary phase analysis to the rest of the integral,
where the Hessian is nondegenerate. Let us first consider a
simpler case when there exists a degenerate critical point a

associated with {ﬁgo)}, whereas the degeneracy is caused
by continuously many critical points in a neighborhood of
a. From the argument of the geometrical interpretation,
as will be discussed in Sec. VI, this case happens in our
model. Let us focus on a neighborhood U, of « in the
integration domain. We change the integration variables
into two subsets (¥,7) where 7= (t,...,1,) satisfying
1, = 0 corresponds to all the degenerate directions of
Hessian, i.e. ati(),ijt|a = 0 and the submatrix h,, whose

with respect to both the momentum variables {3, ;, ‘is‘e,,}
and the position variables {9/}, {9, }. The
momenta corresponding to the internal tori are the elements
with indices I = 1, 2, 3, 5, 6, 8 while others correspond to
the boundary annuli; hence, it is convenient to define
indices f* = {1,2,3,5, 6,8} one-to-one corresponding to
the indices f = {1,2,3,4,5,6}. There is no correlation

between ¢ = + and ¢ = —; hence, we consider them
separately:
aZSe .
.,70 — 5[-f>< + N (1723)
0‘1?6,,053]‘- 2z(b™* + 1)
0%S¢ ]
0 : (172b)

e N S
a‘l;e,laj:le,a>< . 27[([9_2 + 1)

I

entries are (h,);; = 05,0, Siotly> is nondegenerate. By the
assumption that there are continuously many critical points
in the 7-directions, we have 0,iStO[(a+?) =0, Vi=
1,....d 50 Sip(a@+1) = Si(a) = St(;? is constant on the
submanifold V, of 7in U,,. Performing the stationary phase
approximation for the X-integral results in that the con-
tribution from U, to the partial amplitude A;_ 5 ({ﬁg))}) is
given by the following integral:

d?t
v, \/det(—h,/2r) 1

~ K16+ )2 / druy D[ + Ok,
V

a

N kS +0(k™)]

(175)

where u,(7) does not scale with k. The last integral must be
finite since the amplitude is finite at any k. As a result, the
degeneracy of the critical point increases the exponent of k
by d/2:

o (717 o f16+6utd/2 kS, o 1RaA(f 7
B3, ) ~ K152 [ (g B ((pa)). (176)

mn

where d is the maximal number of degenerate directions in
the set of critical points. We discuss the possible existence
of such degenerate directions from the geometrical point of
view in Sec. VL

V. INTEGRATION OVER COHERENT
STATE LABELS

We now discuss the integration of the coherent state labels
satisfying the simplicity constraints | 1, [4Pa|B*({Pa})- The
integral of the coherent state label p, = (9a, $a) is over the
subdomain M, C [0, z] x [0, ] constrained by the triangle
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inequality. Recall that fixing the boundary configuration 15
at large k leads to L,s = O(k™!) for all annulus connections
on Ss and Sg. It results in that one of the holes of each S,
a =1,...,4, has the monodromy nearly trivial up to O(k7"),
ie. one of {a;}¢ , in the triangle inequality (45) is of
O(k™"). Let a; = ck~! without loss of generality. It indi-
cates that
ay—ck ' <O < ay+ck, (177)
where ¢ = 2zj, for certain fixed j,. It means that M is
very narrow in O-direction and shrinks to measure-zero as
k — co. The g?ﬁ—integral is not constrained. The integration
domain M, depends on k, so the p,-integrals cannot be
studied by using stationary phase analysis.
Let us first consider the @,-integrals. The critical point
only associates with 0= a, in (177). The integral is
confined to an arbitrarily small neighborhood of @,,.

Recall that 5% is smooth in the neighborhood, so, by the
mean value theorem,

B ({Dus ba}) = B({01

b} +Z 6, - 6.
ok,

Fo({0a})

=B ({6 . d.}) + (178)

where 920) is the one associating to the critical point [, in
(177)], and F,({0,}) equals to the derivative 03%/d0,

evaluated in the interval [90,920)]. Therefore, the @a—
integrals behave as

O vk, O rek N n
(04
o d91 e 0) d94B ({aav ¢a})
09— k! 00—, k!

1 4

= CkHB ({6, d})[1 + O(k™)].

where C =2*T[%_, ¢,

When a; — 0 and 0 is fixed to be a,, all ¢ €|0,7]
correspond to the same SU(2) flat connection on a 3-holed
sphere (see the discussion in Sec. II C 2). Therefore, the flat
connections on all §,’s and thus the flat connection on

M’ ,_ are independent of $,. In other words, the critical

(179)

point exists for any ¢,. Then the situation is the same as the
case of continuously many critical points. The éﬁa—integrals
J (A, B ({6 $,}) does not scale with k.

We conclude that the integral of (90,, (}a)i‘l:l contributes
k=* scaling. Inserting this result to (176) gives

. (7 1246p4+d/2 kS,
25,40 1) ~ K200 (180)
As k — oo, the amplitude for M | ,_ diverges when y > —2.
This conclusion is drawn with the assumption that the

degeneracy of the critical points taken into account above is

maximal. If any additional degeneracy exists, the power of
the amplitude in k may increase as discussed in Sec. IV D.

VI. GEOMETRICAL INTERPRETATION
OF CRITICAL POINTS

In this section, we discuss the existence and properties of
the critical points from the geometrical point of view. It is
complementary to the possible degeneracy of the Hessian
matrix discussed in Sec. IV D.

The critical points of the partial amplitude A, 5 ({ﬁ,(lo) 13
are framed SL(2,C) flat connections in the open patch
defined by the triangulation of M, . A framed flat
connection in the patch is an irreducible flat connection 15
together with a choice of flat section of an associated flag
bundle at every cusps boundary [52]. A generic choice of
flat section always exists for every torus or annulus cusp,
since the fundamental group is Abelian. Therefore, finding
a framed flat connection boils down to finding an irreduc-
ible flat connection on M ,,_. The closure of the open patch
covers all framed flat connections (with fixed boundary
triangulation) when the 3D ideal triangulation is suffi-
ciently refined, which we assume to be true.

Recall that at large k, the boundary configurations {%} =
{%‘:’76} -0, Va=1,...,4 as j,5=j, are kept
fixed. This means that the eigenvalues of holonomies
around all holes of S5 and Sg equal 1 up to O(1/k)
correction. Resulting from this, the holes of {S,}¢_,
connected to S5 by annuli (which are the same ones
connected to Sg as can be seen from Fig. 8) all have
approximately trivial holonomy eigenvalues when the
connection is flat. It implies that the holonomy around
one hole of each S,(a = 1, ..., 4) becomes, approximately,

(o 1)

for some z € C. However, the simplicity constraints restrict
that the flat connection on every S, is SU(2), so z=0.
Therefore, the holonomy around any annulus cusps con-
necting S5 and Sg is trivial, since it relates (181) by
conjugation. The critical point can then be approximated
by a flat connection with trivial holonomies around all
annulus cusps (connecting S5 and Sg). The error of the
approximation is of O(1/k). In contrast, for the internal

cusps, {F} = {4} 1y (12).013).(14).(23),24).34)  ATE
finite at the critical points, so their A-cycle holonomies
are nontrivial.

In this approximation, we can remove the annulus cusps
with trivial holonomies, and we remove the boundaries S

(181)

torus

'>A flat connection is called irreducible if the only elements of
SL(2,C) that commute with all holonomies are the central
elements +1.
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and Sy since they have no holes so the flat connections on
them are trivial. Then on each side, M, effectively becomes
a different graph complement of S*: M’, = S?\T', where
Iy is the tetrahedron graph. The fundamental group
7 (S3\I'y) of M'_ is generated by

{fab

where each 7, is a closed loop in §*\I'; around an annulus
cusp connecting the holes of S, and S;,. Given a Lie group
G, the irreducible G flat connection on S°\I'y is an
irreducible G-representation of 7;(S*\I';) modulo conju-
gation. The flat connection on M’, can be identified as a flat
connection on the original M, simply by adding trivial
holonomies as the representatives of the loops around the
annulus connecting S5 or Sg.

Here we are not aiming at a full classification of the
critical points but showing their existence. We focus on the
SU(2) flat connections, which at least cover a subset of
critical points.

Lemma VI.1. There is a bijection from the set of four
points on the unit S* modulo the SU(2) left and right
translations to SU(2) flat connections on S*\T',.

Proof. Given four points on S* denoted by vy, v,, v3, V4.
Each v; can be uniquely represented by an SU(2) matrix.
We define h;; = 1},»1;]71 for any pairof i, j = 1, ...,4 (i # j).
The set of h;; satisfies h;;h;hy; = 1. The data {h;;} defines
a representation of the generators in 7, (S*\I'y) by the
relation h;; = h(£,,) for some i, j,a,b€{1,2,3,4}. The
left translation acting on v, v,, v3, v4 gives the conjugation
hi; — gh;;g~" for any g€ SU(2), and the right translation
leaves h;; invariant.

By the right translation, we fix v; = 1 then we have
1-to-1 correspondence between {v,v,,v3, 04} and
{h; = vJT' }, while other h;; are completely fixed by
{hy;} via hy;h;;hj = 1. Therefore, modulo the left and
right translation, the map from the set of four points on §°
to SU(2) flat connections on S*\I', is bijective. [ ]

The flat connection on M’_ maps each £, to the SU(2)
holonomy h(¢,;,) = h;; with i,j,a,be{1,2,3,4}. The
flat connection is irreducible for generic four points. The

ab=1...4a#b;ly=05]]tw=1 Va},
b

(182)

eigenvalue of h(¢,,) is the FN variables 4,, = €T Mab
associated to the annulus cusp connecting S, and S,.
If we write Tr(h(Z,,)) = 2cos8;;, 6;; € [0, x|, then 6;; is
the geodesic length connecting v; and v; on S3. To see this,
we use the relation that the inner product (X,Y) =
—1[Tr(XY) — TrXTrY] of any two SU(2) elements X and
Y is identical to the Euclidean inner product Y 7 , x'y’ of
two vectors X and y on R* when we parametrize X =
X1 +i>3 X6’ and Y =yT+i> 3 ye' with {6’}

being the Pauli matrices. We then obtain,

1
<’Ul', 1}]> = ETr(h”) = COS 91‘ (183)

J

where the identity of SL(2,C) matrices—Tr(g)Tr(h) =
Tr(gh) + Tr(gh™'), V g, he€SL(2,C)—is used. The geo-
desic distances {6,;} between all pairs of points uniquely fix
the positions of vy, ..., v4 on S* up to a global SU(2) left or
right translation. We are led to the following result.

Lemma VI.2. The FN variables {4, } uniquely determine
an SU(2) flat connection on M/, .

Proof. The positions of four points vy, ..., v4, on S* have
3 x4 =12 degrees of freedom, 2 x 3 = 6 of which are
gauges of left and right translations. Therefore, the relative
positions of all points have six degrees of freedom and they
are fixed by the set of six geodesic distances {6;;}. When
we restrict 0;; € [0, 7], they are uniquely determined by
{Aw} through the relations 2cos®;; = A, + ;. The
SU(2) flat connection is determined by Lemma VI.1. =

Given that {4, } are shared by M’, and M"_, an SU(2) flat
connection on M’,,_ = M', U M_ is constructed from two
identical SU(2) flat connections on M’ and M’ respec-
tively; we denote the representations of the flat connections
on M and M_ by SU(2) group elements {/;;} and {h;}
(modulo their conjugations), respectively. They being
identical means that there exists a g€ SU(2) such that
hi; = gh;jg~" for all pairs (i, j)’s. The fundamental group
m (M'.,_) adds 3 generators #;_; 53 to x;(S*\I'y), which
come from the three noncontractible cycles of the ambient
space in Fig. 8. The SU(2) element g is understood as the
parallel transport from the base point p, € M’, of {h;;} to
the base point p_ € M_ of {h;;}, but since g is obtained by
identifying {h;;} and {];}, g does not depend on the path
connecting p, and p_ (in particular, it does not depend
on which &, the path goes across). It indicates that the
holonomy along each ¢; has to be trivial. As a result,
{h;;} and h(¢;) =1 define an SU(2) representation of
7 (M’ ,_). The SU(2) flat connection on M’,,_ is obtained
by the gauge equivalence class of this representation.
h(Z;) = 1 implies that all B-cycle holonomies of the torus
cusps are trivial, consistent with the critical equation
ny =0 from (153). The resulting flat connection is irre-
ducible if {h;;} are generic, and it can be identified as an
irreducible flat connection on M, by adding trivial
holonomies in the representation. So we obtain a critical
point of the partial ampltiude A, 5 ({ﬁg,o)}) up to O(1/k)
correction, for any boundary data j,, 75, ps. This is based
on the assumption that the 3D ideal triangulation is
sufficiently refined so that the flat connection is covered
by the closure of the open patch.

By the above argument, different sets of {4,,} determine
different SU(2) flat connections. On M’,,_, the FN variables
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{44} associated to the torus cusps are integrated in the
amplitude. There are continuously many SU(2) flat con-
nections on M’,,_ labeled by different {4,,}. All of these
flat connections should correspond to the critical points of
the amplitude. Then it suggests that there should exist
degeneracy of the Hessian H, caused by continuously many
critical points. Recall the discussion at the end of the last
section. Here d = |{4,,}| = 6 indicates that the scaling of
the amplitude should increase by k* compared to (180);
hence,

Zs o (i) ~ k13Tox, (184)
This formula is valid if d = 6 is the maximal number of
degenerate directions in the set of critical points. Rigorously
speaking, the power in the formula is a lower bound,
since any additional degeneracy, if exists, may increase
the power.

VII. CONCLUSION AND OUTLOOK

In this work, we analyze the radiative correction corre-
sponding to the melon graph with the spinfoam model
introduced in [1], which describes 4D quantum gravity with
a nonvanishing cosmological constant A. The melon graph
represents that two 4-simplices are glued by identifying
four tetrahedra. We first construct the Chern-Simons
partition function with the state-integral model for the
3-manifold M, ,_ corresponding to the melon graph then
separate it into partition functions for two 3-manifolds,
each corresponding to a spinfoam vertice, by using the
over-completeness of the Chern-Simons coherent states.
The spinfoam amplitude for M, ,_ is obtained by imposing
simplicity constraints properly on the Chern-Simons par-
tition function followed by coupling with 6 face ampli-
tudes, each for a torus cusp. We propose a face amplitude as
a g-deformed version of that in EPRL-FK model combined
with a sign factor depending on the FN coordinate on the
torus cusp. A key point of the paper is to show that the
amplitude of the melon graph is finite. There is no infrared
divergence in the radiative correction.

We study the scaling behavior of the melon graph
amplitude at small |A]. It scales as |A|~%~15 provided that
the face amplitude is a degree-u polynomial of internal
spins at small |A| approximation. This provides the first-
order correction of a spinfoam edge amplitude. At the
[A| > 0 limit, such a radiative correction diverges
when p > -5/2.

This work is the first application of this newly con-
structed spinfoam model. Compared to the original model
[1], we modify the imposition of the second-class simplic-
ity constraints by using the trace coordinates as described in
Sec. I C 2 so that degenerate simplices are also included in
the expression of the spinfoam amplitude. A certain expo-
nential suppressing factor in the edge amplitude in [1] is

removed in the construction here, while the finiteness still
holds. Our analysis also establishes that this spinfoam
model is as computable as the EPRL-FK model and can be
easily generalized to a general triangulation.

It is natural to compare our result with that of the melonic
radiative correction of the EPRL-FK model, which was
recently found to scale as |A|~' at y = 1 by numerical
analysis [14]. Even though the amplitude in our case scales
differently (at least as |A|~2' at u = 1), a contradiction is
not immediately drawn. This is because the coherent states
that define the two spinfoam models differ. The coherent
states in the EPRL-FK model are defined based on the
holonomy-flux algebra of loop quantum gravity while the
coherent states we use here are defined from the Chern-
Simons phase space variables. It is nevertheless interesting
to investigate the relation of these two coherent states
which then relates the two spinfoam models. We expect that
it will explain the different scalings of the melonic radiative
corrections.

It is also interesting to study the divergence of the
spinfoam amplitude corresponding to a more complicated
spinfoam graph or even a general spinfoam graph. This
may be systematically analyzed by developing a GFT
formalism of the spinfoam model. Such a ‘group field’
should encode the information of the cosmological constant
and a consistent GFT should reproduce the divergent power
of the melonic radiative correction we discover in this
paper. When such a GFT is formulated and the relation of
coherent states in this spinfoam model and those in the
EPRL-FK model mentioned above is made clear, one
can compare the divergences for other spinfoam graphs
in this spinfoam model and the EPRL-FK model (see
e.g. [11,51,62]).
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APPENDIX A: CONSTRUCTION OF CHERN-
SIMONS PARTION FUNCTION ON S$3\T's

In this appendix, we sketch the necessary steps to derive
the partition function (14) used in [1]. We refer to
e.g. [31,33,36] for more details of the construction.

1. Ideal tetrahedron partition function

The phase space of PSL(2, C) Chern-Simons theory on
the boundary dA of an ideal tetrahedron A is the moduli
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space M, (0A, PSL(2,C)) of framed'® flat PSL(2,C)
connection on dA. Each edge E belonging to the geodesic
boundary of dA is dressed with an edge coordinate [38] xg
which is a coordinate in My, (02, PSL(2,C)). An edge
coordinate can also be lifted to its logarithmic coordinate
by choosing a branch such that x; = e*=. The PSL(2,C)
holonomies on dA can be written as 2 x 2 matrices whose
matrix elements are in terms of the edge coordinates
dressing the edges they cross. This is called the ‘snake
rule’. We refer to [30,33] for a detailed description of the
snake rules. For a holonomy along a disc cusp with
eigenvalue 1 = e, the snake rule gives

H (—xp) =4 = Z

Earound disc cusp Earound disc cusp

(xg—in)=2L.

(A1)

One immediately realizes that the edge coordinates are not
sensitive to the sign of the eigenvalue A. This reflects the
fact that the gauge group is PSL(2, C) rather than SL(2, C).
One can easily choose a lift \/=xz or —,/=xg of the edge
coordinates, in which case the gauge group is lifted to
SL(2,C). (We will choose the former lift for all the edges
when constructing the discrete simplicity constraints. See
Sec. IIC2.) When the eigenvalues are all fixed for
holonomies around the four disc cusps of 0/, the moduli
space of flat connection on 0A is a symplectic space with
the Poisson structure given by

{)(EJ(E'} = €EE'» (A2)

where ez = 0, =1 counts the oriented triangles shared by
E, E' and egp = 1 if E' occurs to the left of E in the
triangle.

As shown in Fig. 5, the disc cusps of A are not pierced
by I's hence holonomies are trivial around each disc cusp.
In other words, the connection is flat on A. The Chern-
Simons phase space Py on the boundary dA is given by
three edge coordinates {z,7',7"} € C* each labeling a pair
of opposite edges of A as shown in Fig. 3(a) and it is
defined as

Pon ={2.7. 2" €Czdd" = -1} € (C*)?. (A3)

It comes from requiring that the holonomy # around (any)
one disc cusp of A defined by the snake rule

'“The moduli space we describe in this paper is for framed flat
connection because the edge coordinates are defined as the cross-
ratios of the framing flags at the disc cusps of each ideal
tetrahedron. See [1] and references therein for more details.

(26 D6 26
(o 26
<ZZ’<Z‘1 iz" -1 —zg’z”>

is an SL(2,C) element hence det(h) = 1. The constraint
z7'7" = —1 eliminates one edge coordinate, say 7, then the
holomorphic part of the Atiyah-Bott-Goldman symplectic

form can be written as

(A4)

dz”  dz

1

Q= .
b4 b4

(AS)
Taking the antiholomorphic coordinates into account, the
symplectic form for the Chern-Simons action (8) is

t T -
a)k,s —Q+—Q

r 47 (A6)

Lift these coordinates to their logarithmic correspondence,
Z =log(z),Z' :=log(7'),Z" :=log(z”) and similarly for
the antiholomorphic counterparts, the constraint of the edge
coordinates and the Poisson structure induced by (A6) are

Z4+7 +7' =in=72+7'+7",

(2.2 =1={2.2"}a (A7)
Therefore, (Z,Z") and (Z,Z") form two canonical pairs.
The quantization is based on another equivalent canonical

pairs (u,v) €R? and (m,n) € (Z/kZ)* defined as

B 2ri B 2ri

Z = 7(—lb/«l - m), Z” - k (—lbl/ - n)’
_ 27[[ .1 1 27[1 c7—1
Z:T(—lb p+m), Z :7(—”’ vtn), (AS8)

where k€ Z, is defined in (7) and b is a phase parameter
related to the Barbero-Immirzi parameter:

1—iy
b? = Re(b Im(b
i e(b) > 0, m(b) #0,
2k - 2k
bl=1 t=——, t=——. A9
12 = 1+ b? 1+ b2 (A9)

Conversely, one can express Z,Z",Z,Z" in terms of
(u,v,m,n) as

B+ D m=i o (2-52),
V= L(Z// 4 Z//) n= ik (Z// _ bZZ//)

270 ’ 27bQ '
Q=b+b" (A10)
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The symplectic form in terms of the new variables and the Poisson brackets it generates are

2 k
ou =T @ adup—dnAdm). {uv), = {nm)y =2 fun), = {em), =0 (Al
7
To promote to the quantum theory, we introduce quantum parameters
4mi 27i 4xi 27i :
= exp (?) = exp { Z (1+ bz)} = e, g = exp (?) = exp {% (1+ b_z)] = el (A12)

Here, h := 47i/t (or equivalently / := 47i/7) is a (nonstandard) complex quantum parameter related to the Chern-Simons
level whose i — 0 limit corresponds to the classical limit. A Poisson bracket {x,y}, is quantized to a commutator by

[%,9] = {x/;}m /i. We allow the analytic continuation of s, v to be in C by adding imaginary parts, and define Z, Z”, Z and
7" in the same way as in (A10) with these complex variables. Then Z (resp. Z”) is not necessarily the complex conjugate of
Z (resp. Z"). The exponential of Z and Z” are denoted as Z and z”, respectively. The quantization of P,, promotes y, m
(resp. Z, Z) to be multiplication operators g, m (resp. Z, Z) and v, n (resp. Z",Z") to be derivative operators v, n (resp.
Z",7") with the commutators

[n,m]:i.,

2.2 =h, [2"Z)=h< o] = — lun)=

Upon quantization, we require the imaginary parts of 4 and v remain to be c-numbers. Projecting the commutators to the
exponential operators z, z” , one finds g-Weyl and g-Weyl algebras,

v.m] = 0. (A13)

N

7'z = qz1”, 7'i=q17", 7'z = 27", 7'7 = 7171". (A14)

Due to the discreteness and periodicity of m, n, the spectra of m, n are discrete and bounded to be Z/kZ. On the other hand,
the spectra of u, v are real. The kinematical Hilbert space of Chern-Simons theory is hence
-1

(R) ®c CF, (A15)

where CF is a k-dimensional vector space. The quantum operators z, z", 7, Z" act on a wave function f(u|m) € Hk“‘

zf (ulm) = zf (ulm), — 2"f(ulm) = f(u+iblm=1),  Zf(ulm) =2f(ulm),  Z"f(ulm) = f(u+ b~ lm +1)
(A16)
or a reparametrized version
2f(z.2) = 2f(2.2).  2'f(z.2) =fl9z.2).  2f(z.2) =%f(z.2).  Z'f(22) =f(z.q2).  (Al7)

(z,7") are holomorphic coordinates on P, . The moduli
space of flat PSL(2, C) connection on an ideal tetrahedron,
denoted as L4, is a holomorphic Lagrange submanifold of
Psn determined by further requiring the holonomy h
defined in (A4) to be trivial. In other words, £, is an
algebraic curve given by

A={ 2 —1=0}={z"+7 =1 =0} C P,y
(A18)

Quantization promotes the algebraic curve to the quantum
constraints whose solution W (u|m) satisfying

(27 +2" —1)¥) = (7 + 7 — 1)¥s(ulm) =0 (A19)

defines the Chern-Simons wave function for the ideal
triangulation, or the Chern-Simons partition function with
boundary condition specified by parameters p and m.
¥, (u|m) is the quantum dilogarithm function [34,63-65]"":

W = [[222250 (a0

W (ulm) = [[~—4— % A20
o L—a7z

As k = lez"f\‘ is taken to be positive integer, y € R, hence

Im(b) < 0, leadmg to |g| < 1. Suppose k€ Z_ then y < 0 and
lg| > 1, the quantum dlloganthm function takes the form

W (ulm) = [152, =i, which is still the solution to (A19).
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W, has poles on the real line and in the lower half-plane Im(x) < 0 but is holomorphic in the upper half-plane Im(x) > 0. Let
a, > 0, (The absolute value of) the function e T##¥ (4 + ialm) with y € R has limits

exp [— 3 Bul. p— +oo

. A21
exp [~ Zu(a+f-0/2)]. p— -0 (A2

e (s + || — {

Therefore, e t#W , (u 4 ia|m) is a Schwartz function when (a, ) € P, satisty the positive angle structure of A\, defined as
P ={(a.f) eR?|a,f > 0,a+f < Q/2}. (A22)

The positive angle structure of a 3-manifold has been extensively discussed in e.g. [34,35] and it is useful for understanding the

Fourier transform of W,. Let @ = Im(), f = Im(v), then [, due™t**¥(u|m) is absolutely convergent when the integration
contour C is shift above the real axis while remains in 4.

2. Ideal octahedron partition function

Now that we have the Chern-Simons partition function ¥, on an ideal tetrahedron as the building block, the next step is
to construct the partition function on an ideal octahedron. Each ideal octahedron can be decomposed into four ideal
tetrahedra by adding an internal edge [see Fig. 3(b)]. We then have four copies of edge coordinates {x,y,z,w} (or
considering the logarithm coordinates {X, Y, Z, W}) subject to the constraint,

c=xyzw =1 C=X+Y+Z+W=2ri Ux +py +uz +py =0
o = . . . . . = . (A23)
c=Xxyzw=1 C=X+Y+Z+W=2mi my +my +my+my =0
We define a set of symplectic coordinates (X, Py), (Y, Py), (Z, Pz), (C,T"), where
Py=X"-W'. Py=Y'-W. P,=Z'-W'. T=W, (A24)

and similarly for the tilde sectors. Performing the symplectic reduction of the four copies of phase space P,, associated to
the four ideal tetrahedra by imposing the constraint C = 2zi as well as quotient out the gauge orbit variable I', we obtain the
phase space P, of the boundary of the ideal octahedron with the following symplectic form and Poisson structure.

k

2 LU =A4n;,m; = X5
N —”Z(dui A dy; —dn; A dmy), g vsdy = Aniomsbe =5, Y0 j=XY.Z (A25)
’ k i {ﬂh nj}w = {Vi» mj}w =0
Quantization of the constraint C and C adds a quantum correction as
c=1lot¢=qe=C=2rni—C=2ni+h,
t=loé=geC=2ni—C=2ni+h (A26)

In terms of {p;,m;},_yy ,w which are the quantization of {y;,m;},_yy . the quantum constraints read
Hx +py +pz;+pw =10, my +my +my, +my = 0. (A27)

Each octahedron partition function can hence be written in terms of the position variables (x,y,z;%,7,2) =
exp[(X,7Y, Z: XY, Z)] as

© | ity ] - gty = R ] = glayg

Zoet(X, v, 2:%,9,2) = o o L - —, A28
oct( y y ) o 1_q_,x_1 1_q_]y_1 l—q_kz_l l—q‘l‘]xyz ( )
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where we have imposed the constraint (A26) to eliminate the variables w and w. e‘zk_”ﬁ'ﬁZoct({u,» +ia;}|{m;}) with y; €R
and B i = Pyux + Pypy + Pzuz has the following asymptotic behavior:

21, —
ekﬂz(aer(ler(lerﬁz Q/Z)’ Wi — “+o00

2, (s + i} {mi})| ~{ . Vi—X.v.Z. (A29)

e%ﬂi(%"’ﬂi_g/z) Ui = —00

’

This function is a Schwartz function of uy, uy and py if (ay, ay, az, Py, By, Bz) € R® is inside the open polytope P (oct)
defined by the following inequalities:

a,->0, ax+ay+az<Q, ai+ﬁi<Q/2, ax+ay+az+ﬁi>Q/2, vl:X,Y,Z (A30)

(a, ﬁ) € P(oct) is the positive angle of an ideal octahedron and has been shown in [1] to be nonempty. We also define the
functional space

Fpoery = { holomorphic f: C* - C| V(@ f) € Bloct), e f(ji + id) € S(R?) is Schwartz class}.  (A31)

This definition of the functional space Fp (o) can be generalized to the functional space Fy; corresponding to any given
positive angle structure B. (See e.g. Sec. A 3 for the case of S*\I's.) Combining the discrete representation part, we define

k
‘Fmgoct) = Fpioe) Oc (Ck)®3- (A32)

(k)

We conclude that Z . € F B(oct)"

3. Chern-Simons partition function on S3\I's
The Chern-Simons phase space Py g\r) is simply the five copies of Py, With no more constraints to be imposed. To
impose the simplicity constraints in a more natural way as in Sec. II C, we change the symplectic coordinates as follows.

.....

coordinates to be T = (Px,.Py..Pz,),—.. 5 where each triple (Py,, Py, P,) is defined in the same way as (A24). The
change of symplectic coordinates corresponds to performing (a series of) symplectic transformations which can be
summarized by the following linear equations [1,37]:

(;ﬁ - <—(BAT>-1 ﬁ) (i) ! (?)

where A and B are 15 x 15 matrices with integer entries and 71s a vector with integer elements [see (B2)]. (é, 73) can also

é = ({ZLab}(ab)? {Xa}fzzl)

. ’ (A33)
P = ({Tab}any (Valimt)

be parametrized as (13). One can check that (@ 73) do form a set of symplectic coordinates of the Chern-Simons
phase space Pygi\ry)= ®7, Pooci(iy on d(S*\TI's). The Atiyah-Bott-Goldman symplectic form and the Poisson structure
are [1,37]

15
Q= ZPI %t {Q1.Psla =26 {9 Qta={P1.Ps}a =0, 1J=1,..15. (A34)
=1

The Chern-Simons partition function Z,, on $*\I's written in terms of coordinates ((f) ﬁ) is indeed the product of five
Z,’s. To express it in terms of the new coordinates (Q, P), one separates the transformation matrix into generator matrices
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of the symplectic transformations:

<—<BAT>-1 l;>=((1) _01><A:3T (1)><_(B0_1)T _OB>- (A35)

The three matrices on the right-hand side correspond to the S-type, T-type and U-type transformations, respectively [1,34].
Combining the affine translation o; given by the vector 7 as shown in (A33), the total action on the wave func-
tion Z, correspondlng to these transformation defines the Chern-Simons partition Sg\r, on $3\I's in terms of new
coordinates (13) [1]

2l (Hli) = (67080 ToU)>Z,0) (ili)

:4_115 Z / d1Sp(—1)ABT 7 E(-TABT T4 ABT 1) 2D (F=F0) 707 Z,.(-BTo|-BTi). (A36)
Cc*

iie(z/kz)’s
The positive angle structure PB(S3\I's) for $3\I's in terms of the new variables (ji,7) is [1]":

P($3\I's) = ohoSoTolUoP(oct)*

= If (dy. o) € Ploct)*,  then (4. f,) = <A070 + Bf, +%Z —(B_I)Tao> €P(S\I's). (A37)
Inversely,
(o) = (B75 8713, + ATH, = 27) epoay . (A3)

The symplectic transformations ensures that B(S*\I's) is nonempty since B(oct)*> is nonempty, which concludes
that Z g\, er = Fysiry) Bc (Chen.

P(S°\I's)
APPENDIX B: SYMPLECTIC TRANSFORMATION OF COORDINATES ON M, AND M _

In this appendix, we collect the symplectic transformation matrix and the affine translation vector used in Secs. A 3
and III A 2. The linear symplectic transformation from (®,,11,) = ({X,.Y,.Z; } L it o +,{PX , Py, Py, } s it +) to

(0°,P°) defined in (67) is

@) = (e %)(i)*(?) (B1)

The € = + copy of the coordinates, transformation matrix and translation vector are the same as in a single M5 used
in (A33).

"®The factor (—1)"AB"7 is there to keep invariant the sign of the integrand of 2 (y\m) when n; — n; + k for any I. The sign

would change when k is odd as well as the Ith the diagonal element of ABT is odd (whlch happens for some I’s).
The operator aq for the positive angle structure is different from the affine transformatlon o7 acting on the wave functions. The latter

is given in (A33) wh11e the former is defined as: 6% (a, /i') (a+ Qt ﬂ)
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Explicitly, A, B and ¢, read,

(B2a)

0

0 0 0 O

-1
0
0

0 0 O

0 0 0 O

-1 0 0
0 0 0 O
0 0 O

0
0

-1

0
0
0
0

0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O

-1

(B2b)

-1

B=B, =

(B2c)

(-3,-3,-2,-4,0,1,0,1,0,0,1,1,1,0,0) T,
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0O 0 00 0 0 0 -1 -1 0 -1 =1 0 -1 —I
0 0 00-1 -1 00 0 0 -1 1 0 0 0
0O 0 00 -1 1020 0 0 0 0 0 -1 1
0O 0 000 0O0O-11 0 0 0 0 0 0
2 1 1 0 0 0 0 0 O 0 0 0 2 1 1
o 1 1 00 02 1 1 0 0 0 0 0 0
0O 0 000 0O0O0O 0 2 1 1 0 0 0
A=l 0 0 0 0 0 0 0 0 O 0O 0 0 0 1 1|, (B3a)
o I 1 2 1 1 00 0 0 -1 -1 0 0 0
0O -1 1. 0-1-101 1 0 0 0 0 0 0
0 0 001 00 0 0O 0 0 0 0 0 1
1 1 1 00 00O O 0O O O 1 0 0
-1 -1 -1 0 0 0 0 0 0 0 0 0 -1 0 0
0 0 -1 00 00O 0 0 0 0 0 -1 0
0O -1 000 00O O -1 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 -1 0 0 -1 0
0 0 0 0 -1 0 0 0 -1 1 0 0 -I
o 0 0 0 -1 1 0 0 -1 0 0 0 0 -1 1
o 0 0 0 0 -1 0 -1 I 0 0 -1 0 0 O
1 0 0 0 0 0 0 0 0O -1 1 0 1 0 0
o 1 0 0 0 0 1 0 0 0 0 0 -1 1 0
-1 1 0 0 0 0 -1 1 0 1 0 0 0 0 0
B_.=|0 0 1 -1 1 0 0 0 0 0 0 0 -1 0 1|, (B3b)
-1 0 1 1 0 0 0 0 0O 1 0 -1 0 0 0
o -1 1 1 0 -1 -1 0 1 0 0 0 0 0 O
o 0 0 0 -1 1 0 0 0 0 0 0O 0O 0 O
1 0 0 0 0 0 0 0 O 0O 0 0O 0 0 O
o 0 0 0 0 0 0O 0O 0 0 0 0 -1 0 0
0O 0 -1 0 0 0 0 0 0 0 0 0 1 -1 0
1 -1 0 0 0 0 0 0 O -1 0 0 0 0 O©
7 =(3.1,0,0,—4,-3,-2,-1,-2,0,1,-1,3,2,2)T. (B3c)

APPENDIX C: FOCK-GONCHAROV COORDINATES AND FENCHEL-NIEISEN
COORDINATES ON M, AND M _

In this appendix, we collect the explicit definitions of the FG coordinates and FN coordinates dressing the edges or annuli
on M, and M_ which are two copies of S*\I's. We refer to Fig. 9 for the face labels a,b,c,d, e, f, g, h, i, j. The FG
coordinates on each S, in terms of the edge coordinates on {Oct(i)} are listed in Table I.

The FN coordinates {2L, } in Py, and the FN coordinates {21}, } in Py, are defined in terms of the FG coordinates
on {S,} as

(1) (1) (1)

1 1
2Ly = x34 + 235 + Xas <,) <.>

. 1 .
—3inm, 2L, :)52(39) + X510 + X910 — 3im, (Cla)
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TABLE L FG coordinates ;(E;’) of 4-holed spheres in terms of the edge coordinates in {Oct(i)}. i, j denote that ;{E}J)
is composed with coordinates from octahedra Oct(i) and Oct(j). We have used the notations in Fig. 9 where the
octahedra are glued through the triangles labeled by a, b, ¢, d, e, f, g, h, i, j. Each ‘tilde triangle’ with the tilde label,
say d», labels the triangles symmetric to the triangle a, with respect to the equator of Oct(2). We refer to [1] for more

details (where the ‘prime triangles’ are the same as the tilde triangles used here). Here X;, Y;, Z;, W; (i = 1, ..., 10)

are the tetrahedron edge coordinates from the four ideal tetrahedra in Oct(i).

Si: hy O byt 2 =2, + Zs iy Neg: fh) =Y+ 2+ Z) + W,
o Negt by =25+ W+ 2, hyNEst 23 = Z4+ Wy + Y2 + Z
ho 0 Es: b = Y3+ 75+ Zs N5t g =Y+ Z+ 2L+ WS

by 0 hs: Y =7, + Zg hy N2t %) = Yi+ Zh + Z4 + W)
0 8o 4N = Z8 + W + Z4 s N et o = Z0+ Wi+ Y1, + 71,
hy 0@ i = Y + 25+ Zyg B9 N E101 Xodo = Yo+ Zh + Ziy + Wi

Sy Fint: 23 =X/ + Y, + X, BN Fat xS = XY+ Y5+ WY+ X,

Finfe A9 =x+x, BN bs: 70 =Wl X, + X! + Y,
Finbs: F =W+ X, +Xs Fanbs: 4 =X§+ Y, + Wi+ X,
Fonis: 2y = X + Y+ Xs T 0 For ay) = XE+ Y + Wi + X

Fon For 28 = X+ Xo Ts N Dot 1y = Wi+ Xy + Xy + 11

Fonbio: xilo = Wi + X+ Xuo Fo v buo: 5o = X4 + Yo+ Wiy + Xl
Ss: bynay: 7)) =71+ Wi+ X, ayndy: y5) =W+ Xy + Y, + 7
bynds: 7)) =W+ X!+ X, + Y] ay Nds: 45 = XU+ Y+ Z, + W
bynds: Y =w, + W, +x! dynds: 7 =v,+ws
b Nar: ) =7, + W+ X, ;N do: 1% = Wi+ X + Yy + 2
be N do: 75 = Wi+ X! + X}y + Y ar N dyg: 7 = XU+ Y5+ Zo+ W
be N dig: 20y = We + Wiy + X7, do 0 dyo: x5ty = Yo+ Wig

Sat iy Ney: A\ =7+ X+ V) Ny S =Y+ Z+ 2+ WY

511“333){(12):Y/1,+Z,1+W,3+X/3, 520;53)(;?:)/24‘1/{5“‘2,5,
iy nJjs: 0 =20+ W+ X+ v FsnJst 25 =Wy + ¥

G NEr: y) = Zg + X, + Y G0 st pe =Y+ Z0 + Z + W
ds N st Xy = YU+ Z + Wi + XJ &0 J10t A5 = Y7 + Yo + Zi
dg 0 Jro: 4l = Z0 4+ Wi+ Xlo + YT Js N Tt it = Ws + Yoo

Sst Wne: Y =Y 2+ W+ XY G0N asy) =Zh+ Wi+ Y+ 7Y
NGy A =Y XYY & NGt a) = Wa+Z + W)

D D (S R S ¢} G0 Gt xS =Y+ W,

Se: eNe: 1Y =yl 420 4 W+ X! G0 Gs: AN = ZL+ W+ Y+ 7Y

i N st xey = Yo+ X + &1 0\ G 2y = Wq +Zy + W}

Ts NG9t by = X+ Y0+ Wi + X5

L 6
98099:)(;9) =Yg+ Wy

124050-46



MELONIC RADIATIVE CORRECTION IN FOUR-DIMENSIONAL ...

PHYS. REV. D 109, 124050 (2024)

©

2Ly 21(3%1) + 135
2Ly5 = 15y +)((215)
2L, :)((21) +Z§35)
2Ly = 1ty ‘H(;ls)

4
2Ly = 5% + 155

“

(1)

2L;s —Zgz) + 224
2Lsi = 15 + 45
2Ly = 4\7 ‘H(gzs)
2L, :Zﬁ) +Z§35)
2Ly :)((1? +Z<125)
2Ly =y (1‘;) +x %)
2L5s —)((13) +Z(14)
sy = 11Y + 4V
2Ly = 1}y +)(<135)
2Lz =y g? +x %)
2L3s :)(?2) +)(ﬁ)
2Ls3 :)((152) +xﬁ)
2Lys = x %) +x %)
2Lsy =213 + 2

The conjugate momenta 7 ,;, and 77, can be easily calculated through -BI)™"- &)i.

the explicit expressions for 7 .
The FG coordinates {X,, V,, X%, V. }2

1 2
Xl :)(<25)7 XZZ)((]S)v

)(14,
1

X :Z§9)7 X, :Zé %0’
|

Y :ng)’ Yy = )(69’

2)

+2i5 = 3im 2Ly =24 + Asdo + 510 — 3im,
Jr)(z(tls) —3im, 2L, :Zglg) +Z§T1)o +)(gfo - 3in,
i = 3im 2Ly = g + A + s - 3in,
+1g15) - 3im, 2L, :ZSQ +x§ffo +xf£fo —3in,
s =3in 2Ly =5 + 5+ A - 3im,
s =3im 2Ll = g T+t = 3im,
S = 3in 2Ly = ) ke - 3,
+48 = 3im, 2Lh =2 + xedo + Aoido — 3,
+14(135) - 3im, 2L, :Zé? +)(£'31)0 +)($1>0—3iﬂ,
+1g%5) - 3ix, 2Ly, :Zé? +)(§31)0 ‘*‘Z&(fl)o_%ﬂ,
‘H(g? - 3im, 2L}, :ng? +Z§3‘,‘zo +Zz(;,?o—3iﬂ,
a5 =3in 2L =g T a + k) = 3im.
a5 =3in 2L = + ke ke - 3,
+a = 3im 2Ly =2+ aehe T 2500 = 3im,
s = 3im, 2Ly = g e+ - 3in,
s =3in 2L =0 T ae + %) =3,
s =3in 2Ly =)+ + A - 3,
a5y =3in 2L =25+ xe + A - 3,
sy = 3in, 2L =y + xee +ave — 3ir.

_, are chosen to be

X3 :x%% Xy =r,
V=43 —2zi.  Yi=—44 +2ai
X5 :Zé 1>o’ Xy :Zg.ll)o’
V3= 19 10 — 2xi, YVi= _Zg,‘l)o + 2xi,

124050-47

Xs

Vs
X/
Vs =

(5)

=Xi4>

)

= Y34 — 2nmi,

(6)

:)(69’

)(89

— 2.

(C1b)
(Clc)
(Cld)

(Cle)

(C1k)

(C11)

(Clm)

(Cln)
(Clo)
(Clp)
(Clqg)
(Clr)
(Cls)

(Cl1t)

See also the Appendix of [1] for

(€2)
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FIG. 11. Identifying the holes from different 4-holed spheres. The numbers 1,2,3,4 one each 4-holed sphere S, denote the holes and
the red lines demonstrate the gluing of holes from different S,’s. Each red line corresponds to a blue line (open or closed) in Fig. 8. Each
tetrahedron graph here is the same as the ideal triangulation (in black) as in Fig. 6.

APPENDIX D: GLUING OF HOLES FROM DIFFERENT 4-HOLED SPHERES TO 0(S*\TI's)

Recall the FG coordinates (X, ),) on S, whose definitions are given in Appendix C. If we label the holes on each S,, by

numbers 1,2,3,4, and identify z(laz) = eV, Z(l? =eYa, YV a=1,...,5, the way of gluing holes from different 4-holed sphere

to form 0($°\I's) is unique.
Denote the ith (i = 1, 2, 3, 4) hole in &% as p,(»a). The gluing (denoted by ~ below) of holes between different S, ’s is

Q) @ 0

pl el p e e p® p e pP el
pP ~p® p P ap® eIl g e (D1)

g‘l‘g! = —( ff:g/_ )2 in the trace coordinates formulas (34) in different

S,’s correspond to the FG coordinates in the following way up to signs and +27i:

which is graphically illustrated in Fig. 11. This means the z

Wod o Aod oAl el B
R T 0. Y- N N Y- M 1)
Y N T S TR 0 T N - N I )
T T S TR O O N 1
DX e -d el Dex £ o

APPENDIX E: TRACE COORDINATES FROM THE SNAKE RULE

In this appendix, we describe the snake rule calculating the holonomies around one or two holes following [33], which
leads to the trace coordinate expressions (34) and (36). Notations can refer to Sec. I1 C 2.

Let us first fix the labels for the holes on a 4-holed sphere S, hence the edges {e, , } on its ideal triangulation, to be
consistent with Fig. 6.

There are three rules for transporting a snake—an arrow pointing from one vertex of the triangle to another with a fin
facing inside the triangle, each corresponds to a matrix as follows. (The inverse transportation of each type corresponds to
the inverse of the relevant matrix.)
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type I: 1 type IL: 1 type III:
1 1 71 0 —LEE
i : i : (E1)
Type I and 1II correspond to transporting a snake within a triangle and type III corresponds to moving a snake from one
triangle to its adjacent triangle. Any holonomy of a closed loop can be calculated by multiplying the transportation matrices
corresponding to moving a snake along the holonomy.

Choose the snake starting on edge e;3 pointing from hole 1 to hole 3 whose fin faces the triangle bounded by ey,, €53, €13
as shown in Fig. 6. The holonomies around single holes 1, 2 and 3 read (from left to right)

=0 =)0 )G )G D6 <)) -
== (GG )6 )G D6 )6 )6 )G )G DG )

(E2b)

()06 )0 )G )6 )6 <) ) =29

As the snake is not in the neighborhood of hole 4, the holonomy around hole 4 needs a ‘special edge’ to transport the snake
to its neighborhood. We choose the special edge to be e;5. Then,

o )G DG )G )6 )6 D6 =)
(D6 )G D)6 ) @

With the chosen lift y, ,, = /=%, p,» 11, o, h3 and hy are all SL(2,C) elements. Then the traces of these holonomies
reproduce the results of (33):

1 1

Tr(hy) = \/m+—z4m =M+ A7k Tr(h,) = \/W+4_Z12Z23Z24 =1+ 231,
ﬁwﬁzwiﬁﬁa+¢qéga=@+xﬁ ﬂwnz¢§@;§+ﬂ;wmzh+ah (E4)
The holonomies h,, h,, h; and hy satisfy the closure constraints by the snake rule:
hihyhshy = (1 O). (ES)
0 1

The holonomies /4, around holes 1,2 and %,5 around holes 2,3 and /3 around holes 1,3 are simply A, = hhy, hyy = hyhy
and hy3 = h;hs, respectively, since they are all calculated starting from the same snake. The traces (34) can be immediately
obtained, plugging (35) or (33) into which gives (36). The trace coordinates {m;, m,, my, ms3, ¢, t,, 3} satisfy the
polynomial (37).
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APPENDIX F: EXPECTATION VALUES OF THE FOCK-GONCHAROV OPERATORS

In this appendix, we calculate the expectation values of the operators u, v, M and ¢ with the coherent states basis
W) (u|m) defined in (51). Note that Im(x) and Im(v) remain classical, so we treat x, v € R for notational simplicity in this

appendix.

Recall the operation actions (A16) [or equivalently (A17)] of z,z”,%,Z" on any function f(u|m). They generate the

operation actions of g, v, ¢*™ and ¢*™ on f (u|m) in the following way:

k 2ni 2mi 2ni,
pf(ulm) = uf(ulm),  vf(ulm) = —Z—ﬂiaﬂf(ﬂlm% e f(ulm) = ex™ f(ulm), e f(ulm) = f(ulm+1).

The complex-plane part of the coherent state y?(u) defined in (47) is normalized as

/d/a// (Wy2(n) = 1.

On the other hand, the torus part &, ,)(m) (49) can be expressed in terms of the Jacobi theta function

’

X, = 3(=ZE"+x+iy)
e

T
k

cy(m) = VAU 94 (X,, ),

T =

which is normalized only at the large-k approximation [48]:

=~

-1

- k— 00
g(xv)’)(m)é(xy)( ) \/_k 3/26 i Z |193 m> T |2

0

3
Il

(F1)

(F2)

(F3)

(F4)

Therefore, ‘PB (u|m) is only normalized at the large-k approximation. In this approximation, we calculate the expectation

values of the operators g, v, e*™ and ¢*™ on f(u|m) under the W0 (u|m) basis. Recall that (z,x,y) € C x T2 are related to

the classical phase-space coordinates (u,r) € R? and (my, ny) € [0, k)** by

\/577.’ . 2r 27
Z:T(ﬂo+wo)» X = ——my, y = —"Hy.

We get (we omit the parameters and variables in the coherent states unless necessary for conciseness)

k—1 k—1 1
- _ 2\ 3 Comp k. o
> / Pt = (Zf 5) <—>2 / dupe™ TR :—Re / duPop0 =%,
m=0+7R m=0 k R
S dp PO Stz (2) duipa, (e TH AR p-ivauim()
- T 5 - - V2 L m
n;) A v i fo . A{ g0, (e e )

m=0

k—1
_ k k—o0
= §§>/d <—i + z) Oy —= 1,
<m . o H H 2 vy 0

e 6l
/d,u"PO Hmp0 _ </ d'm/—/()l//()> Z ée%mé
m=0R R m=|-(k=1)/2]

k—»oo

k—
/ dmeTmEgemian 5, pix = fm
qeEZ
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e =
> [ et - ( / dul/7°l//°> S Emm+ 1)
m=0

m=|=(k=1)/2]
Lt / dmé(m)é&(m + l)ez’”'qmme"y = ¢, (F6d)
qeEZ

In (F6¢) and (F6d), we have shifted the summation over m by |—(k — 1)/2] where || denotes the floor function of @ which
enters the greatest integer less than a € R and used the Poisson resummation to change the summation of m to integral. It is

permitted by the periodicity of functions &, () and ¢T™ i.e. they are invariant by changing m — m + k. We, therefore,
conclude that

k— 00 k— 00 k—o00  2zi k—00  2xi

e I e e e R G Rt (F7)

APPENDIX G: POSITIVE ANGLE STRUCTURE FOR THE NEW COORDINATES of Py,

In this appendix, we give some examples of the change of the positive angle structure according to the symplectic

coordinate transformation from the original edge coordinates (éi, ﬁi) to the final coordinates (55, ‘f&’) The existence of
these examples guarantees that the positive angle structure of the final coordinate is nonempty.
Let us assume that the positive angles for the initial 10 ideal octahedra possess the symmetry; a, ; =a_; =a V I =
w15 and B =Peiy =Peiz =Pe; Yi=1,...,5, Ye==x. Then one can solve that a=Q/4 and
Pri=Pp_i Yi=1,..5, from the constraints ,.,(C4) =0, V A =1,...,18. They indeed satisfy all the inequalities
of (A30) as long as |f. ;| < Q/4. As a numerical check, leta = Q/4 and f.; = Q/6, Vi=1,...,5, V ¢ = +. Then the

positive angles (&Mi,,EMi) € Py, are calculated to be

Y NN NUR T T RYR S A
A N A ERAN A
reansdie{ b L2 e o
S (Y S FRE N NS R FyPe
The positive angles satisfying (89) for M, ,_ are then
Apew = {% % é % %,—%,—é,—é,—é,O,%%,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}Q, (GS)
S X O O O

(Go)

which confirms the vanishing positive angle @, (C4) for all the constraints {C4}2 ,.

APPENDIX H: FENCHEL-NIELSEN TWIST COMPUTED BY THE SNAKE RULE

In this appendix, we use the snake rule on the cusps boundaries [31] [which are different from (E1)] to compute the
coordinates 7', = log(z,) corresponding to the B-cycles holonomy eigenvalue of the torus cusps and T, = log(z,)
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corresponding to the FN twist of the annulus cusps. The
results depend on the choices of path but are different by a
linear function of FN lengths L’s and L,,’s. We choose the
paths that are consistent with the choices in [37].
In general, {7 ,, — 7, } and {T,,} = {T;. T)} may not
be the same but are related by the following lemma.
Lemma H.I.

Tab - T;b = Tab + gab({zLab})’

Tab - T;b = Tab - Cab<{2Lab})’ (Hl)

where {,, is a linear function of the set {2L,, } () With real
linear coefficients while an imaginary constant term.

Proof. Similar to 7T, and 7/,, T,;’s are some linear
functions of 3;, P, with real coefficients in the linear terms
and the constant term takes the form zi - ¢, (c,, €R) as it
comes from the linear combination of the affine translations
(see Appendix A. 3. 3 in [33], see also [37] for the example
related to our model). By the symplectic transformation in
(86), each T, is expressed as a linear function of (Q;, ;).
By definition, T, is a function on the phase space for
oM ,_, then it is a linear function of the symplectic co-
ordinates {2L ;.7 . —7T",. X5, Vs, X5, Vs} (but not of
{I'y} when the constraints {C,} are imposed). Moreover,
its Poisson bracket with 2L.; must be {2L.;, T} =
S(ab).(cay Ad {Typ, Teq} =0, V (ab), (cd), which means
T,, can only be a linear combination of {2L,} and
T . — T, The same argument applies to the tilde sector.
The tilded variables are just complex conjugates of the
nontilded ones, and ¢, (2L,;,) = —¢.,(2L,;). Hence, the
second equation in (147) holds. [

Due to the fact that we have chosen L/, in a symmetric
way as L, it turns out that all {,;,’s have only constant
terms. Explicitly, we use the snake rule described in the
following to compute 7, (they are also used in [37]) and
find (148), which we copy here:

{12 =0, {13 = mi, C14 = mi, {15 = m,
{3 =0, $os = —2ni, {25 =0,
{34 = —7i, {35 =0, {45 = —mi. (H2)

We now describe the snake rule for cusp boundaries.
Dress the vertex (or the angle) of a disc cusp, which is a
triangle, in an ideal tetrahedron A by 3 (3 = z, 7/, 7”) when
this vertex is connected to an edge of A dressed with j.
Assume the oriented paths on the cusp boundary are all
nonintersecting. The snake rule on a cusp boundary can be
separated into two types on a single disc cusp, each
corresponding to an operation on the logarithmic FN

type 1I:

coordinate:

+imr .
(H3)

type I:

+Z -7 —im

Type I corresponds to the part of a path crossing an angle
dressed with z in a counterclockwise (resp. clockwise)
direction. It adds +3 = log3 [resp. —3 = log(3™!)] to the
FN coordinate for the path. On the other hand, Type II
corresponds to the part of a path bouncing against an edge
of the disc cusp in a clockwise (resp. counterclockwise)
direction relative to the disc cusp. It adds —iz (resp. +ix) to
the FN coordinate for the path.

Each FN coordinate corresponds to a path on the cusp
boundary as shown in Fig. 12. (H3) provides another way
to formulate {L,,,L!,} other than performing the sym-
plectic transformation from the FG coordinates as in (C1).
As an example, Li,, L}, correspond to the A-cycles (with
no winding) [red paths in Fig. 12(a)] of the torus cusp
connecting §; and S, and Ty, — T, (note that T, #
Tuw. T, #7T, in general) corresponds to the B-cycle
[blue path in Fig. 12(a)] of the same torus cusp.

It is easy to read T,;, and 7/, from Fig. 12:

T12 :Xg—Y3+Z3, T13 :Z/S/—WIS/, T14 — Y’Z—Z’Z, T23 :XZ—YZ, T24_ — _Y/5/+X”’
Ty =-Xg+Ys—Zs. Ti3=-Zj+Wi. Ty=-Y;+7Z; Ty=-Xg+Y5. T =7Y/—X],
T34 - —ZI]/ + W/ N T15 - —WZ + Z”, T25 - Xlll - YI]/, T35 - W/Z - X/2, T45 - —Yg + Z3 - Wg/,

'l / ! "
T34 - Z6 - W6’ TlS - W9 _Z9’

Tl = =X+ Y,

The =-W)+ X, Tys=Y,—Zg+ Wg. (H4)

Comparing 7,,/2 and 7 ,;, — 7", when imposing the gluing constraints (A23) for octahedra and express in terms of the
octahedron symplectic coordinates, one finds that they are different merely by a constant as follows:

{Tab/2 - (Tab - T;b)}(ab) = i”?T’

ir=1{0,1,1,2,0,-2,0,-1,0, -1}, (H5)

where the order of {(ab)} is (ab) = {(12), (13), (14), (15),(23), (24), (25), (34), (35), (45)}. This leads to {,,(2L,;)

given in (H2).
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FIG. 12. Paths on cusp boundary associated with which the FN coordinates on M, ,_ are defined. FN lengths 2L ;s (resp. 2L’,’s) on
M (resp. M_) are associated to paths shown in red (resp. in orange) while FN twists T,;’s (resp. T7,’s) on M, (resp. M_) are
associated to paths shown in blue (resp. in violet). 2L,;, and 2L’ calculated by the cusp snake rules (H3) is the same as calculated by
(G1). The paths for T;;,’s and 7”,,’s are chosen in a simple and symmetric way. The choices of paths for all T,;,’s are consistent with
those in [37]. Cusp boundaries in (a)—(f) are torus cusps, on each of which 2L, and 2L/, are associated to the A-cycle of the torus and
T;=T, —T,, is associated to the B-cycle.
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