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Infrared divergence is a common feature of spinfoam models with a vanishing cosmological constant but
is expected to disappear in presence of a nonvanishing cosmological constant. In this paper, we investigate
the spinfoam amplitude with cosmological constant [1] on the melon graph, which is known as the melonic
radiative correction. The amplitude closely relates to the state-integral model of complex Chern-Simons
theory. We prove that the melonic radiative correction is finite in presence of a nonvanishing cosmological
constant, in contrast to the infrared divergence of spinfoam models with a vanishing cosmological constant.
In addition, we also analyze the scaling behavior of the radiative correction in the limit of small
cosmological constant.
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I. INTRODUCTION

Spinfoam quantum gravity [2,3] provides a covariant
formulation to loop quantum gravity (LQG) and can be
viewed as a discrete path integral of quantum gravity. A
spinfoam model is based on a cellular decomposition,
conventionally chosen to be a triangulation, of the space-
time manifold. By virtue of LQG, the geometrical areas
in (3þ 1)-dimensional (or 4D) spinfoam models have
discrete spectra a ¼ γl2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

where γ is called the

Babero-Immirzi parameter, lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGℏ=c3

p
is the Plank

length and j is an SU(2) irreducible representation label.
This setting directly leads to the consequence that spinfoam
models are free of ultraviolet divergences. However, infrared
divergences are still present in spinfoam models with a
vanishing cosmological constant Λ. Such divergences
are called the radiative corrections or self-energies of the
spinfoam models. Understanding these divergences is essen-
tial for studying the renormalization of the theory, which
should lead us from the quantum spacetime dynamics at the
microscopic scale to physical predictions at large scale.
In 2þ 1 dimensions (or 3D), the divergence of the

spinfoam model with Λ ¼ 0, called the Ponzano-Regge
model [4], is related to the diffeomorphism symmetry [5]
and implicit sum over orientations of the spacetime mani-
fold [6]. This divergence is regularized in the Turaev-
Viro model [7], which is a deformed version of the
Ponzano-Regge model corresponding to Λ > 0. However,

divergence in 4D spinfoams with Λ ¼ 0 remains an open
question. Group field theory (GFT) (see e.g. [8,9]) suggests
that spinfoam amplitude corresponding to the melonic
spinfoam graph (see Fig. 1) contributes the most divergent
part for the radiative correction (at least for simple enough
spinfoam graphs) [10,11]. The melon graph is the first-
order correction of a spinfoam amplitude for a spinfoam
edge, or a spinfoam propagator in the GFT language.
Radiative correction corresponding to the melon graph has
been studied for the Engle-Pereira-Rovelli-Livine–Freidel-
Krasnov (EPRL-FK) model [12,13], which is one of the
most studied 4D spinfoam models with Λ ¼ 0. A recent
study based on numerical method [14] reveals that the
EPRL-FK spinfoam amplitude of a melon graph scales as
jAmelonj ∼ jΛj−1 at small Λ provided a standard choice of
the face amplitude. It is consistent with earlier results of its
lower bound jAmelonj ∼ ln ðjΛj−1Þ [15] and upper bound
jAmelonj ∼ jΛj−9 [16].
Another way to target the radiative correction is to study

the spinfoam model with a nonvanishing Λ and consider its
amplitude at small jΛj limit. Inspired by the Turaev-Viro
model, it has been conjectured that a 4D spinfoam model
with Λ ≠ 0 should be free of divergence by construction.
A natural way to manifest finiteness is to consider the
quantum group deformation of the Lorentz group in the
spinfoam models [17–19] as they provide a cutoff in
representation by definition. On the other hand, a valid
spinfoam model is supposed to reproduce discrete gravity,
i.e. Regge calculus [20–23], at its semiclassical limit. This
has been realized in 3D spinfoam models [4,7] and 4D
spinfoam models with Λ ¼ 0 [24–27]. Then a 4D spinfoam
model with Λ ≠ 0 is legitimately expected to bring out,
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at the semiclassical regime, the Regge calculus for
4-simplex with constant curvature. Due to the formulation
complexity, however, the semiclassical approximation for
the quantum group deformation of 4D spinfoam models is
difficult to examine.
Recently, a 4D spinfoam model with Λ ≠ 0 [1] was

proposed and shown to be featured with both finiteness
and the expected semi-classical approximation. This spin-
foam model is defined by the SLð2;CÞ Chern-Simons
partition function on the boundary of a 4D manifold
coupled with Chern-Simons coherent states. It is capable
of describing 4D quantum gravity with Λ in either positive
or negative sign, which is not fixed a priori but emerges
from the equations of motion semiclassically and the
boundary states. This spinfoam model is a modified version
of that introduced in [28], wherein the role of coherent
states are played by the projective SLð2;CÞ spin network
states and the spinfoam amplitude expression therein is
only formal hence finiteness is doubtful. Therefore, it is
promising to study in more detail on this new spin-
foam model.
In this work, we analytically study the radiative correc-

tion corresponding to the melon graph of the spinfoam
model introduced in [1] at the Λ → 0 approximation. In the
line of analysis, we improve the spinfoam model by
proposing a concrete face amplitude given by a function
of the spin associated to the face, consistent with the face
amplitude in EPRL-FK model at Λ → 0 limit. As an
important result, we prove that in the presence of nonzero
Λ, the spinfoam amplitude on the melon graph is finite.
Moreover, the convergence of the amplitude is even
stronger than the general discussion in [1]: We show that
the finiteness still holds after removing an exponentially
decaying factor inserted in the edge amplitude there. This
result is in contrast to the divergent melonic radiative
correction in the spinfoam models with vanishing Λ. This
finiteness is one of the inviting features of the spinfoam
model with cosmological constant.
We also discuss the scaling behavior of the melonic

amplitudeAmelon suppresses as Λ → 0. in the small Λ limit.
The scaling behavior can be analyzed by applying
the stationary phase approximation to the amplitude. The
amplitude in the small Λ regime is dominant by the
contributions from the critical points. The scaling behavior
is obtained by a power-counting argument. We find that the
scaling behavior of the melonic amplitude has the lower

bound as jAmelonj ∼ 1=jΛj15þ6μ where μ is an undetermined
power in the face amplitude.
This paper is organized as follows. In Sec. II, we give a

rather self-consistent review of the spinfoam model with Λ
focusing on the vertex amplitude. We modify the way to
impose the second-class simplicity constraints compared
to the original work which we believe can simplify the
construction. In Sec. III, we consider the full spinfoam
amplitude for the melon graph in a similar way as for the
vertex amplitude. That is to first consider the Chern-Simons
partition function on the boundary then impose the sim-
plicity constraints through Chern-Simons coherent states.
Semiclassical approximation of the full melonic spinfoam
amplitude is analyzed separately in Sec. IV and Sec. V
according to different scaling behaviors of different parts
of the amplitude. The result of the melonic radiative
correction is then drawn. Finally, we give a geometrical
interpretation of critical points in Sec. VI and we conclude
in Sec. VII.

II. 4D SPINFOAM AMPLITUDEWITH Λ ≠ 0 FROM
BOUNDARY CHERN-SIMONS THEORY

In this section, we review the spinfoammodel introduced
in [1] which corresponds to four-dimensional quantum
gravity with a nonvanishing cosmological constant Λ.

A. From 4D gravity to Chern-Simons path integral

The construction of the spinfoam amplitude is motivative
by the formal path integral formalism of 4D gravity with
Λ ≠ 0. We start from the Plebanski action [29], which is a
first-order formulation of 4D gravity expressed as a con-
strained SLð2;CÞ BF theory, adding a cosmological term.
Consider an slð2;CÞ two-form B and an slð2;CÞ connec-
tion A which is a one-form on a 4-manifold M4. The
topological BF action, denoted as SΛBF, is

SΛBF½B;A� ¼
Z
M4

Tr

��
⋆þ 1

γ

�
B ∧

�
F ðAÞ þ jΛj

6
B

��
;

ð1Þ

where F ðAÞ is the curvature 2-form of A, ⋆ is the Hodge
star operation satisfying ⋆2 ¼ −1 in Lorentzian signature
and γ is the Barbero-Immirzi parameter which takes a real
value. The trace is taken in the slð2;CÞ Lie algebra and it

FIG. 1. The melonic spinfoam amplitude as the correction to the spinfoam edge amplitude.
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evaluates as Tr½X ∧ Y� ¼ XIJYIJ.
1 SΛBF depends on the

absolute value of the cosmological constant jΛj.
By imposing the simplicity constraint, which relates B to

the cotetrad one-form e by

B ≅ sgnðΛÞe ∧ e; ð2Þ

one recovers the first-order action of general relativity with
a cosmological constant Λ, written in terms of the cotetrad
e and the connection A

SGR½e;A� ¼
Z
M4

Tr

��
⋆þ 1

γ

�
ðe ∧ eÞ

∧
�
F ðAÞ þ Λ

6
ðe ∧ eÞ

��
: ð3Þ

The equations of motion of (1) from varying the B field

leads to a linear relation between theF field and theB field,
which transfers to the equation between the curvature and
the cotetrad after imposing the simplicity constraints.

∂SΛBF
∂BIJ ¼ 0 ⇒ F ¼ jΛj

3
B⟶

B≅sgnðΛÞe∧e
F ≅

Λ
3
e ∧ e: ð4Þ

The rightmost equation above is the simplicity constraint
that we will implement to the theory.
The path integral of the action (1) contains a Gaussian

integral for the B field, performing which constrains

F ¼ jΛj
3
B and leads to two (conjugation related) second

Chern-forms when separating the slð2;CÞ-valued curvature
F into its self-dual part F and anti-self-dual part F̄. By
manipulating path integral,2

Z ¼
Z

dAdBe
i
l2p
SΛBF ¼

Z
dA exp

�
3i

2l2
pjΛj

Z
M4

Tr

��
⋆þ 1

γ

�
F ðAÞ ∧ F ðAÞ

��
¼
Z

dAdĀ exp

�
−

3

2l2
pjΛj

Z
M4

�
1 −

i
γ

�
Tr½FðAÞ ∧ FðAÞ� −

�
1þ i

γ

�
Tr½F̄ðĀÞ ∧ F̄ðĀÞ�

�
; ð5Þ

where A and Ā are the self-dual and antiself-dual parts ofA respectively and lp is the Planck length. (Throughout this paper,
we take the convention that the gravitational constant G ¼ 1 and that the speed of light c ¼ 1.) As the exponent is a
topological term, (5) becomes a path integral of SLð2;CÞ Chern-Simons action with complex level on the boundary ∂M4.
When M4 is topologically trivial,

Z ¼ e−iSCS½A;Ā�; SCS½A; Ā� ¼
t
8π

Z
∂M4

Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
þ t̄
8π

Z
∂M4

Tr

�
Ā ∧ dĀþ 2

3
Ā ∧ Ā ∧ Ā

�
; ð6Þ

where the level t and its complex conjugate t̄ can be separated into real and imaginary parts as

t ¼ kþ is; t̄ ¼ k − is; where k ¼ 12π

l2
pγjΛj

∈Zþ; s ¼ γk∈Rþ: ð7Þ

Therefore, the quantization of gravity on a 4-manifold M4 with a cosmological constant Λ now relates to quantization of
the SLð2;CÞ Chern-Simons theory with complex coupling constant on the 3D boundary ∂M4 of the manifold:

SCS½A; Ā� ¼
t
8π

Z
∂M4

Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
þ t̄
8π

Z
∂M4

Tr

�
Ā ∧ dĀþ 2

3
Ā ∧ Ā ∧ Ā

�
: ð8Þ

The connection A (as well as Ā) is now restricted to the
3-boundary ∂M4, where the simplicity constraints will be
imposed.
When constructing the spinfoam amplitude, we consider

M4 to be a 4-simplex and quantize the Chern-Simons

theory canonically on the boundary, followed by suitably
imposing the (quantized) simplicity constraint. The result
of the construction is the spinfoam vertex amplitude Av.
Due to the fact that the simplicity constraint requires

1The form of the action (1) relies on the self-dual and antiself-
dual decomposition of a complexified slð2;CÞ element which
gives two commuting copies of complexified suð2Þ elements, i.e.
ðslð2;CÞÞC ¼ suð2ÞþC ⊕ suð2Þ−C. See [28] for a detailed deriva-
tion, wherein the global sign of the action is taken differently.

2The first equality of (5) is formal. Indeed, the integration of
B-field gives a divergent factor that corresponds to vacuum
contributions in the field theory language, which would be
cancelled out when one computes correlation functions. Same
as the result of (6) when one integrates out the A and Ā fields in
the bulk of M4.
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nontrivial magnetic flux by (4), certain defect has to be
introduced to the Chern-Simons theory (otherwise the
Chern-Simons theory would imply F ¼ 0 by the equation
of motion). Some details about the quantization of the
Chern-Simons theory with defect and the construction of
Av are reviewed in the following.

B. Chern-Simons partition function
on the triangulated 3-manifold

Consider a 4-simplex which is topologically equivalent
to a 4-ball B4 whose boundary is a 3-sphere S3. The
triangulation T3 of S3 contains five tetrahedra sharing 10
triangles. The dual graph, equivalently, contains 5 nodes
connected by 10 links and is denoted as Γ5 (See Fig. 2).3

Upon triangulation, the simplicity constraints take the form
of smeared 2-forms hence it is natural to impose them on
the triangles of T3. In the dual picture, the violation of
flatness occurs only on the links of Γ5. This means one can
first study the quantum Chern-Simons theory on the graph
complement M3 ≔ S3nΓ5 which is the complement of an
open tubular neighborhood of Γ5 in S3 and then impose
the simplicity constraints on the boundary ∂M3 as certain
boundary conditions. In this subsection, we review the
main ingredients to perform the former step. Reference [1]
applied the method developed in a series of works [30–35]
to construct the Chern-Simons partition function ZM3

in
terms of finite sums and finite-dimensional absolutely
convergent state integral. Under this construction, ZM3

carries a complex gauge group SLð2;CÞ and describes the
quantization of the moduli space MflatðM3; SLð2;CÞÞ of
flat SLð2;CÞ connection on M3.
The quantization of complex Chern-Simons theory

uses the ideal triangulation of the graph-complement
3-manifold, say Γ-complement of M3 denoted as
M3nΓ. The building blocks of the ideal triangulation are
the ideal tetrahedra△’s, which are tetrahedra with vertices
truncated into triangles as shown in Fig. 3(a).4 The original
boundaries of an △ before truncation are called the
geodesic boundaries of △ and the truncated vertices are
called the cusp boundaries (or disc cusp) of △. The
boundaries of M3nΓ can also separated into two types:

(i) Geodesic boundaries—boundaries created by re-
moving open balls around vertices of Γ, which
are holed spheres;

(ii) cusp boundaries or annulus cusp—boundaries cre-
ated by removing the tubular neighborhood of edges
of Γ, which are annuli.

An ideal triangulation decomposesM3nΓ into a set of ideal
tetrahedra such that the geodesic boundaries are triangu-
lated by the geodesic boundaries of △’s while the annulus
cusps are triangulated by the disc cusps of△’s. An example
of the ideal triangulation of a four-valent-node-complement
of S3 is illustrated in Fig. 4. It is part of the ideal
triangulation of M3.
The triangulation of M3 can be decomposed into five

ideal octahedra (see Fig. 5), then each ideal octahedron can
be further decomposed into 4 ideal tetrahedra by adding an
internal edge [see Fig. 3(b)]. As a result, the triangulation
contains 20 ideal tetrahedra in total. (One should not
confuse the ideal tetrahedra from triangulating M3 with
the tetrahedra from triangulating S3 as the boundary of
the 4-simplex.) The boundary ∂M3 of M3 is made of five
4-holed spheres fSag5a¼1 and 10 annuli fðabÞja <
b; a; b ¼ 1;…; 5g connecting these holes. The triangula-
tion ofM3 induces the ideal triangulation on ∂M3. The ideal
triangulation of a 4-holed sphere Sa contains four triangles
located at the holes and four hexagons as illustrated in
Fig. 4(b). On the other hand, an annulus is triangulated into
the boundary of a triangular prism whose two triangles
are identified with the cusp discs the annulus connects
and the four parallelograms are split into four triangles.
Combinatorially, ∂M3 is triangulated into 20 hexagonal
geodesic boundaries and 30 quadrangular cusp boundaries.
The building block to construct the partition function

ZM3
is therefore provided by the SLð2;CÞ Chern-Simons

partition function for an ideal tetrahedron △, which is
identical to the Chern-Simons wave function on △ given
boundary condition. The Chern-Simons wave function can
be defined following the canonical quantization of the
moduli space of framed flat connections on △, which has
been well studied in the literature (see e.g. [31,33,36]).
Here, we use the result of [1] to write the partition function
for M3 and sketch the necessary steps in constructing this
partition function in Appendix A.

FIG. 2. The Γ5 graph as the dual graph of the triangulation
T3 of S3.

3Throughout this paper, unless specification, we use the
terminology that a 0-simplex and a 1-simplex in the triangulation
of a manifold are denoted as a vertex and an edge respectively
while a 0-complex and a 1-complex in the dual graph of the
triangulation are denoted as a node and a link respectively. Note
that the dual graph is different from the spinfoam graph, e.g. the
melon graph (see Fig. 1), where we denote the 0-, 1- and
2-complexes as spinfoam vertices, spinfoam edges and spinfoam
faces. In the context with no ambiguity, we denote them simply as
vertices, edges and faces for conciseness.

4An ideal tetrahedron can be lifted to the hyperbolic 3-plane
H3 with all the vertices located at infinity and all faces along
geodesic surfaces of H3. See e.g. [36].
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As shown in Fig. 5, the triangulation of S3nΓ5 contains
five ideal octahedra (see Fig. 5) with all edges on the
boundary ∂ðS3nΓ5Þ. The phase space P∂ðS3nΓ5Þ, which is the
moduli space Mflatð∂ðS3nΓ5Þ;SLð2;CÞÞ of SLð2;CÞ flat

connection on ∂ðS3nΓ5Þ, has 15 holomorphic position

coordinates, which we group into a vector Q⃗, and 15
holomorphic momentum coordinates, which we group into

a vector P⃗, as well as their antiholomorphic counterparts ⃗Q̃

and ⃗P̃. Their elements are denoted as

Q⃗ ¼ ðf2LabgðabÞ; fXag5a¼1Þ;
P⃗ ¼ ðfT abgðabÞ; fYag5a¼1Þ;
⃗Q̃ ¼ ðf2L̃abgðabÞ; fX̃ag5a¼1Þ;
⃗P̃ ¼ ðfT̃ abgðabÞ; fỸag5a¼1Þ: ð9Þ

They can be parametrized in terms of two complex vectors
μ⃗; ν⃗∈C15 and a vector with discrete-valued entries
m⃗; n⃗∈ ðZ=kZÞ15 where k ¼ 12π

l2pγjΛj ∈Zþ. Precisely,

Q⃗ ¼ 2πi
k

ð−ibμ⃗− m⃗Þ; P⃗ ¼ 2πi
k

ð−ibν⃗− n⃗Þ;
⃗Q̃ ¼ 2πi

k
ð−ib−1μ⃗þ m⃗Þ; ⃗P̃ ¼ 2πi

k
ð−ib−1ν⃗þ n⃗Þ; ð10Þ

where b is a phase parameter related to the Barbero-
Immirzi parameter satisfying

FIG. 3. (a)An ideal tetrahedron whose edges are dressed with edge coordinates ðz; z0; z00Þ. Each pair of opposite edges are dressed with
the same coordinate. The disc cusps are filled in gray. (b) An ideal octahedron. Choose the equator to be edges dressed with x, y, z, w.
Adding an internal edge (in red) orthogonal to the equator separates the ideal octahedron into four ideal tetrahedra, each of which is
dressed with different copies of coordinates ðx; x0; x00Þ, ðy; y0; y00Þ, ðz; z0; z00Þ, ðw;w0; w00Þ. For edges shared by different ideal tetrahedra,
coordinates are multiplied together.

FIG. 4. (a) Illustration of part of the S3nΓ5. A four-valent node
va ∈Γ5 and its neighborhood is removed from S3 and generates a
part of the boundary as a 4-holed sphere Sa whose holes are
connected to annuli. (b) The ideal triangulation of (a). Vertices
created by edges of the graph piercing through the sphere are
truncated into triangles. Each such triangle is connected to the
boundary of a triangular prism which is the ideal triangulation of
an annulus in (a). (The triangulation of the parallelograms in
triangular prisms is not shown for a clear visual effect.) In the full
triangulation of S3nΓ5, each triangular prism is connected to a
pair of truncated vertices from two different triangulated 4-holed
spheres.
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b2 ¼ 1− iγ
1þ iγ

; ReðbÞ > 0; ImðbÞ ≠ 0; jbj ¼ 1:

ð11Þ

Conversely,

μ⃗ ¼ kb
2πðb2 þ 1Þ ðQ⃗þ ⃗Q̃Þ;

m⃗ ¼ ik
2πðb2 þ 1Þ ðQ⃗ − b2 ⃗Q̃Þ;

ν⃗ ¼ kb
2πðb2 þ 1Þ ðP⃗ þ ⃗P̃Þ;

n⃗ ¼ ik
2πðb2 þ 1Þ ðP⃗ − b2 ⃗P̃Þ: ð12Þ

ð2Lab; T abÞ are associated to the annulus ðabÞ and
ðXa;YaÞ are associated to two edges connected to a
common hole of the ideal triangulation of the 4-holed
sphere Sa (see Fig. 4). 2Lab and T ab are called the complex
(logarithmic) Fenchel-Nielsen (FN) length and FN twist,
respectively.5 The FN length 2Lab is related to the squared
eigenvalue of the meridian holonomy for the annulus
λ2ab ¼ e2Lab . Xa and Ya are called (the logarithm of) the
Fock-Goncharov (FG) coordinate on Sa [38]. Same as
their antiholomorphic counterparts. In fact, each of the six
edges in the ideal triangulation of each 4-holed sphere
Sa ∈ ∂ðS3nΓ5Þ is addressed with an FG coordinate, denoted

FIG. 5. The decomposition of the ideal triangulation of M3 ≡ S3nΓ5 into five ideal octahedra (in red), each of which can be
decomposed into four ideal tetrahedra. The cusp boundaries of the ideal octahedra are shrunk to vertices in this figure. [See Fig. 3(b) for
the ideal octahedron with unshrunk cusp boundaries.] Numbers 1̄; 2̄; 3̄; 4̄; 5̄ with bars denote the 4-holed spheres on ∂M3. The faces
a; b; c; d; e; f; g; h; i; j (labeled in green and each is on a boundary triangle of the tetrahedron in gray) are the faces where a pair of
octahedra are glued. Two ideal octahedra are glued through pairs of faces having the same label (with different subscripts). In each ideal
octahedron, x, y, z, w (labeled in red) are chosen to form the equator of the octahedron. The same figure appears in [1,37].

5eT ab ’s are the coordinates of Mflatð∂ðS3nΓ5Þ; SLð2;CÞÞ
because they involve square roots of FG coordinates due to
the 1=2 entries in ðB⊤Þ−1.
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as χðaÞij when the edge is shared by two ideal octahedra OctðiÞ and OctðjÞ.
We also denote the continuous and discrete parametrization of the new set of coordinates as follows:

μ⃗ ¼ k
2πQ

ðQ⃗þ ⃗Q̃Þ; m⃗ ¼ ik
2πbQ

ðQ⃗ − b2 ⃗Q̃Þ; ν⃗ ¼ k
2πQ

ðP⃗ þ ⃗P̃Þ; n⃗ ¼ ik
2πbQ

ðP⃗ − b2 ⃗P̃Þ: ð13Þ

We will also use the notations μab, mab (resp. νab, nab) to denote the coordinates corresponding to 2Lab (resp. Tab) and use
μa, ma (resp. νa, na) to denote the coordinates corresponding to Xa (resp. Ya).
The partition takes the following expression [1]6:

Z0
S3nΓ5

ðμ⃗jm⃗Þ ¼ 4i
k15

X
n⃗∈ ðZ=kZÞ15

Z
C×15

d15ν⃗ð−1Þn⃗·AB⊤·n⃗e
iπ
k ð−ν⃗·AB⊤·ν⃗þn⃗·AB⊤·n⃗Þe2πi

k ½−ν⃗·ðμ⃗−iQ
2
⃗tÞþn⃗·m⃗�Z×ð−B⊤ν⃗j −B⊤n⃗Þ; ð14Þ

where A and B are 15 × 15 matrices with integer entries and ⃗t is a vector with integer elements. See (B2) for the explicit
expressions of A, B and ⃗t. They correspond to the order fð12Þ; ð13Þ; ð14Þ; ð15Þ; ð23Þ; ð24Þ; ð25Þ; ð34Þ; ð35Þ; ð45Þg of the
annuli ðabÞ’s. We will use this ordering throughout this paper. Z× is a product of five partition functions Zoct’s for ideal
octahedra:

Z×ðμ⃗jm⃗Þ ≔
Y5
a¼1

Zoctðxa; ya; za; x̃a; ỹa; z̃aÞ; ð15Þ

where each Zoct is a product of four partition functions for ideal tetrahedra:

Zoctðx; y; z; x̃; ỹ; z̃Þ ≔
Y∞

i;j;k;l¼0

1 − q̃iþ1x̃−1

1 − q−ix−1
1 − q̃jþ1ỹ−1

1 − q−jy−1
1 − q̃kþ1z̃−1

1 − q−kz−1
1 − q̃lx̃ ỹ z̃
1 − q−l−1xyz

: ð16Þ

On the right-hand sides of both (15) and (16), the variables x, y, z and x̃, ỹ, z̃ are the edge coordinates on the ideal octahedra.
Their logarithmics are parametrized in the same way as in (10). That is,

za ¼ exp

�
2πi
k

ð−ibμza −mzaÞ
�
; z̃a ¼ exp

�
2πi
k

ð−ib−1μza þmzaÞ
�
; with za ¼ xa; yz; za; z̃a ¼ x̃a; ỹz; z̃a: ð17Þ

These parameters give the entries of the variables μ⃗, m⃗ on the left-hand side of (15). We refer to Appendix A 1 and A 2 for a
more systematic derivation of these partition functions.

Observe that AB⊤ is a symmetric matrix with integer entries, ð−1Þn⃗·AB⊤·n⃗ in (14) can be simplified to be ð−1ÞD⃗·n⃗ where
D⃗ ≔ diagðAB⊤Þ is a vector whose elements are the diagonal elements ofAB⊤. The sign ð−1Þn⃗·AB⊤·n⃗ depends on the parity
of elements in D⃗ and n⃗. Also notice that the parity of DI is the same as the parity of tI , ∀ I ¼ 1;…; 15. Combining these
facts, we rewrite the sign factor ð−1Þn⃗·AB⊤·n⃗ in (18) to be ð−1Þ⃗t·n⃗.7 Different from [1], we will use the following expression
for the Chern-Simons partition function on S3nΓ5:

ZS3nΓ5
ðμ⃗jm⃗Þ ¼ 4i

k15
X

n⃗∈ ðZ=kZÞ15

Z
C×15

d15ν⃗ð−1Þ⃗t·n⃗eiπ
k ð−ν⃗·AB⊤·ν⃗þn⃗·AB⊤·n⃗Þe2πi

k ½−ν⃗·ðμ⃗−iQ
2
⃗tÞþn⃗·m⃗�Z×ð−B⊤ν⃗j − B⊤n⃗Þ: ð18Þ

We will see in Sec. IV that such a change will not alter the equations of motion compared to [1].

6The integration contour C×15 in (14) is chosen to be on the plane R15 þ iα⃗2 where α⃗2 is within the first vector component of the
positive angle structure P2 after the U-type and T-type transformations. P2 is related to the positive angle structure PðoctÞ×5 of five
ideal octahedra in the following way (see Appendix A):

P2 ¼ T ∘U∘PðoctÞ×5 ⇒ If ðα⃗0; β⃗0Þ∈PðoctÞ×5; then ðα⃗2; β⃗2Þ ¼ ð−ðB−1Þ⊤α⃗0;−Bβ⃗0 −Aα⃗0Þ∈P2:

7One can check using the explicit expressions (B2) of matrices A, B and vector ⃗t that the odd elements of D⃗ and ⃗t are both the 1st,
2nd, 6th, 8th, 11th, 12th and 13th elements.
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The finiteness of ZS3nΓ5
ðμ⃗jm⃗Þ is guaranteed by the so-called positive angle structurePðS3nΓ5Þ which is proven in [1] to

be nonempty. Given an 2N-dimensional positive angle structure P we define the functional space,

FP ¼ �holomorphic f∶CN → Cj ∀ðα⃗; β⃗Þ∈P; e−
2π
k β⃗·μ⃗fðμ⃗þ iα⃗Þ∈SðRNÞ is Schwartz class

�
: ð19Þ

Combining a discrete representation part ðCkÞ⊗N we define,

F ðkÞ
P ¼ FP ⊗C ðCkÞ⊗N: ð20Þ

In our case, N ¼ 15. By the theorem [34,39,40] that the
Chern-Simons partition function converges absolutely as
long as the 3-manifold admits a nonempty positive angle
structure, the finiteness of the Chern-Simons partition
function on S3nΓ5 is manifest. This means, given any
ðα⃗; β⃗Þ∈PðS3nΓ5Þ and let Imðμ⃗Þ ¼ α⃗, the integration con-
tours C×15 satisfying Imðν⃗Þ ¼ β⃗ renders the finiteness of

ZS3nΓ5
ðμ⃗jm⃗Þ, or in other words, ZS3nΓ5

∈F ðkÞ
S3nΓ5

.

C. Impose the simplicity constraints towards
a spinfoam vertex amplitude

The second step in constructing the vertex amplitude is
to impose the simplicity constraints. Reference [1] applies
the spinfoam techniques, especially those applied to the
EPRL-FK model [12,13]. As discussed below, the sim-
plicity constraints contain the first-class and second-class

pieces, according to the Chern-Simons symplectic struc-
ture. The first-class constraints are imposed strongly on
ZS3nΓ5

which amount to restricting the FN coordinates on
the annuli. On the other hand, the second-class constraints
are imposed weakly on the nodes of Γ5. This is done by
firstly coupling ZS3nΓ5

with five coherent states, each on
one node of Γ5 which is peaked at certain phase space point
in MflatðS3nΓ5; PSLð2;CÞÞ, then imposing constraints to
the allowed phase space points where the coherent states
are peaked.
The simplicity constraints (see below) imposed on the

Chern-Simons theory on S3nΓ3 can be seen as the gener-
alization of the simplicity constraints in the EPRL-FK
model. Recall that, at the classical discrete level, the
simplicity constraints in the (Lorentzian) EPRL-FK model
are [12,13,41]

first-class ðdiagonal constraintsÞ∶ ϵIJKLBIJ
f ðtÞBKL

f ðtÞ ¼ 0; ∀f∈ t; ð21aÞ

second-class ðoff-diagonal constraintsÞ∶ ϵIJKLBIJ
f ðtÞBKL

f0 ðtÞ ¼ 0; ∀f; f0 ∈ t; f ≠ f0; ð21bÞ

where f and t denote a triangle and a tetrahedron, respectively, and f∈ t denotes that f is on the boundary of t. BIJ
f ðtÞ ¼R

f B
IJðtÞ is the discretized B-field associated to f with I; J ¼ 0, 1, 2, 3 being the internal labels and 0 is identified to be the

time direction. These quadratic constraints can be strengthened to a single set of linear constraints,

linear constraints∶ ∃NJ such that NJBIJ
f ðtÞ ¼ 0; ∀f∈ t: ð22Þ

The replacement from (21) to (22) is for the purpose of
selecting a single solution sector and is beneficial for
quantization. We will treat (22) as the full set of simplicity
constraints, different from the original papers [12,41] while
following [42], and generalize it in the new spinfoam
model.
The simplicity constraints then imply that the discretized

B-field BIJ
f ðtÞmeasures the area af ¼ j 1

2
ϵIJKLNJBKL

f ðtÞj of
the triangle f. One can gauge fix the vector NJ ¼ N0 to be
timelike, then (22) is equivalent to the statement that the
tetrahedron t is spacelike. Moreover, the SU(2) gauge
symmetry implies the closure condition in the EPRL-FK
model. That is, for each tetrahedron t:

X
f∈ t

BIJ
f ðtÞ ¼ 0 ⇔

X
f∈ t

afn
I
f ¼ 0; ð23Þ

where nIf is the normal vector to f satisfying jnfj ¼ 1. By
Minkowski’s theorem, the simplicity constraint (22)
together with the closure condition (23) allows us to
identify a convex tetrahedron whose face areas and normals
are given by af’s and nIf’s.
The generalization of simplicity constraints to the Λ ≠ 0

case at the discrete level can be implemented as follows.
Consider the (nonideal) triangulation, denoted as τa, of a
4-holed sphere Sa such that each hole, denoted by p, is
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inside a triangle fp. See the red lines in Fig. 6. Define the
discretized B-field associated to fp as in the EPRL-FK
model, i.e. BfpðτaÞ ¼

R
fp
BðτaÞ. One the other hand, let us

recall the relation F ¼ jΛj
3
B discussed in (4). The discre-

tization of this relation gives F pðSaÞ ¼ jΛj
3
BfpðτaÞ×

δðx⃗Þdx1 ∧ dx2 at the local coordinate ðx1; x2Þ on one patch
of Sa with the hole p at the origin. it allows us to write the
simplicity constraints in the same form as (22) in terms of
the Chern-Simons curvature. That is, for all holes p’s of Sa,

∃NJ such that NJF IJ
p ðSaÞ ¼ 0: ð24Þ

By the non-Abelian stock’s theorem, the holonomy around
each triangle fp of τa takes the form OfpðτaÞ ¼
e
jΛj
3
Bfp ðτaÞ ∈PSLð2;CÞ. Equation (24) can be translated into

constraints in terms of fOfpðτaÞg4p¼1,

∃NJ such that NJðOfpÞJI ðτaÞ ¼ NI; ∀fp ∈ τa: ð25Þ

Similar to the EPRL-FK case, (24) [or (25)] means that the
4-holed sphere Sa, or its triangulation τa, is orthogonal to a
common vector NJ ∈R4. Gauge fixing NJ ¼ ð1; 0; 0; 0Þ
implements that all the holonomies fOfpðτaÞg4p¼1 are
in a common PSU(2) subgroup of PSLð2;CÞ. In other
words, the simplicity constraints restrict the moduli
space MflatðSa; PSLð2;CÞÞ of flat PSLð2;CÞ connection
to a moduli space MflatðSa; PSUð2ÞÞ of flat PSU(2)
connection, which is a symplectic submanifold of
MflatðSa; PSLð2;CÞÞ.
The flat connection in MflatðSa; PSUð2ÞÞ defines a

representation of the fundamental group of Sa into PSU(2)
modulo gauge transformations. Let the holonomies
fOfpðτaÞg have the same base point b∈Sa. Then they
satisfy the nonlinear closure condition (we fix the ordering
of the holonomies here and for the rest of this paper),

Of1ðτaÞOf2ðτaÞOf3ðτaÞOf4ðτaÞ ¼ 1PSUð2Þ ð26Þ

due to the isomorphism,

MflatðSa; PSUð2ÞÞ ≅ fO1; O2; O3; O4 ∈PSUð2Þ∶O1O2O3O4 ¼ 1PSUð2Þg=PSUð2Þ: ð27Þ

The correspondence between PSU(2) flat connection and
constant curvature tetrahedron has been established in [43].
The simplicity constraint on OfpðτaÞ can be expressed in

terms of the coordinates ðQ⃗; P⃗Þ defined in (A33). We will
classify the constraints into first- and second-class parts and
treat them differently in the following.

1. The first-class simplicity constraints

The first-class constraints are obtained by the commu-
tative functions of the holonomies fOfpðτaÞg. In ∂ðS3nΓ5Þ,
a hole p of Sa is connected to a hole of Sbð≠ SaÞ via a
annulus cusp. Classically, OfpðτaÞ∈PSUð2Þ implies that

λ2p ≡ λ2ab ¼ ei2θab with some θab ∈R. Reference [43] has
shown that θab encodes the area afp of the triangle fp
surrounding p in the triangulation τa. Therefore, the first-
class simplicity constraints can be formulated as

2Lab ≔
2πi
k

ð−ibμab −mabÞ∈ iR ⇔ μab

¼ 0⟶
quantization

ReðμabÞZS3nΓ5
ðμ⃗jm⃗Þ ¼ 0; ð28Þ

where the rightmost quantum constraint is written in terms
of ReðμabÞ as the analytic continuation of μab to C is
allowed at the quantum level. If the requirement
‘4d area ¼ 3d area’ [42] is further imposed, the first-class
constraint is strengthened to μabZS3nΓ5

ðμ⃗jm⃗Þ ¼ 0.
Following [1], we keep the weaker condition
ImðμabÞ≡ αab ≠ 0. Then e2Lab ∈Uð1Þ is realized only at
the classical level. Define the “spin” jab such that

2jab ¼ mab → jab ¼ 0;
1

2
;…;

k − 1

2
: ð29Þ

FIG. 6. The ideal triangulation (in black) and the (normal)
triangulation τa (in red) of a 4-holed sphere Sa. Numbers 1, 2, 3,
4 label the holes of Sa. A choice of dressing eXa ¼ z12, eYa ¼ z13
in terms of the edge coordinates is given. The relative location of
holes is consistent with the Poisson relation of Xa and Ya. The
arrow in blue dressed with a fin—called a snake—is used to
calculate the holonomies around holes by the snake rule [33]. See
also Appendix E for a brief description of the snake rule.
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jab encodes the area afp of the triangle fp in a tetrahedron
(when we fix the orientation of fp) by [43]8

jΛj
3

afp ¼
4π

k
jab: ð30Þ

The quantum states satisfying the constraint (28) are then
labeled by

ZS3nΓ5
ðfiαabgðabÞ; fμagjfjabgðabÞ; fmagÞ: ð31Þ

Therefore, the first-class simplicity constraints can be
seen to be imposed on the FN coordinates on the annulus
cusps on the triangulation of ∂ðS3nΓ5Þ. The remaining
(second-class) simplicity constraints will be imposed on
each Sa.

2. The second-class simplicity constraints
and the Chern-Simons coherent states

The moduli space MflatðSa; PSLð2;CÞÞ is not a sym-
plectic manifold but a Poisson manifold, due to the presence
of Poisson commutative fλ2pg4p¼1. Fixing fλ2pg4p¼1 by (30)
reduces the moduli space MflatðSa; PSLð2;CÞÞ to a two-
complex-dimensional symplectic spaceMλ⃗ with symplectic
coordinates ðXa;YaÞ, on which we should impose the
second-class simplicity constraints.
It will be more convenient to work with the trace

coordinates of flat connections rather than the FG coor-
dinates ðXa;YaÞ when analyzing these simplicity con-
straints.9 Consider the triangulation τa of Sa as described
above. Label the holes by numbers 1, 2, 3, 4 and denote
each edge connecting the holes p1 and p2 (pi ¼ 1, 2, 3, 4)
by ep1p2. Denote the (exponential) FG coordinate on ep1p2 as

zp1p2 . With no loss of generality, let z12 ¼ eXa and
z13 ¼ eYa as shown in Fig. 6. (If this choice is taken for
all the five fSag5a¼1, the way of gluing different 4-holed
spheres is unique. See Appendix D for details of the
gluing.) We choose a lift by defining yp1p2 ≔

ffiffiffiffiffiffiffiffiffiffiffiffi−zp1p2
p ≡

exp ð1
2
ðZp1p2 þ iπÞÞ for all edges fep1p2g and work with

SLð2;CÞ flat connections in stead of PSLð2;CÞ flat
connections.

Trace coordinates ofMflatðSa; SLð2;CÞÞ. In order to write
the trace coordinate explicitly, we now work on one 4-holed
sphere and lift the holonomies OfpðτaÞ∈PSLð2;CÞ to
hp ∈SLð2;CÞ for all holes. They describe solutions to
MflatðSa; SLð2;CÞÞ by the closure constraint,

h1h2h3h4 ¼ 1SLð2;CÞ: ð32Þ

fhpg can be calculated by the snake rule [33] (see
Appendix E) based on the ideal triangulation of Sa (see
Fig. 6). Their traces are determined by commutative eigen-
values fλpg when we choose the lift yp1p2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi−zp1p2
p ,10

m1 ≔ Trðh1Þ ¼ λ1 þ λ−11 ; m2 ≔ Trðh2Þ ¼ λ2 þ λ−12 ;

m3 ≔ Trðh3Þ ¼ λ3 þ λ−13 ; m4 ≔ Trðh4Þ ¼ λ4 þ λ−14 :

ð33Þ

Apart from fmpg, two more trace coordinates are needed
to describe MflatðSa; SLð2;CÞÞ. They correspond to hol-
onomies hp1p2 around two holes p1 and p2. The snake
rule gives

Trðh12Þ ¼ −
y214y

2
24y

2
13 þ y214y

2
23y

2
24y

2
13 þ y223y

2
24y

2
13 þ y224y

2
13 þ y213 þ y224 þ 1

y13y14y23y24
; ð34aÞ

Trðh23Þ ¼ −
y212y

2
13y

2
24y

2
34 þ y212y

2
13y

2
34 þ y212y

2
24y

2
34 þ y212y

2
34 þ y212 þ y234 þ 1

y12y13y24y34
; ð34bÞ

Trðh13Þ ¼ −
y212y

2
14y

2
23y

2
34 þ y212y

2
14y

2
23 þ y214y

2
23y

2
34 þ y214y

2
23 þ y214 þ y223 þ 1

y12y14y23y34
: ð34cÞ

These expressions are consistent with those in [30,44]. On the other hand, the traces of monodromies around one hole are
fixed by the first-class constraints, i.e.

y12y13y14 ¼ λ1; y12y23y24 ¼ λ2; y13y23y34 ¼ λ3; y14y24y34 ¼ λ4; where λp ≔ eLab : ð35Þ
Equation (35) can be inserted into (34) to rewrite the trace coordinates in terms of fλpg4p¼1 and z12, z13,

8If the orientation of fp is not fixed, there is an ambiguity for the area afp for a given jab. More precisely, the area is related to jab by
(30) or 2π − jΛj

3
afp ¼ 4π

k jab.

10If we choose the other lift yp1p2 ¼ − ffiffiffiffiffiffiffiffiffiffiffiffi−zp1p2
p , the traces become mp ¼ −λp − λ−1p .

9See [1] for using spinors instead of trace coordinates to impose constraints on ðXa;YaÞ.
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t1 ≔ Trðh12Þ ¼
λ1λ2
z12

þ −z12z13 þ z12 þ λ22z13
λ1λ2

þ λ4z12ðz13 − 1Þz13
λ21λ3

þ λ4z13
λ3

; ð36aÞ

t2 ≔ Trðh23Þ ¼
λ1ðz12 − 1Þ
λ4z12z13

þ λ3ðz12ðz13 − 1Þ þ 1Þ
λ2z13

−
λ4z12ðz13 − 1Þ

λ1
; ð36bÞ

t3 ≔ Trðh13Þ ¼ −
λ2λ

2
1ðz12 − 1Þ
λ4z212z13

þ λ2
λ4z12

þ λ1ðλ23ðz12 − 1Þ þ z13Þ
λ3z12z13

þ z13
λ1λ3

: ð36cÞ

The algebra functions on MflatðSa; SLð2;CÞÞ can be
described by the polynomial ring generated by the trace
coordinates fm1;m2;m3;m4; t1; t2; t3g quotient by a poly-
nomial relation [44–46]

P ¼ t1t2t3 þ t21 þ t22 þ t23 þm1m2m3m4 þm2
1 þm2

2

þm2
3 þm2

4 − ðm1m2 þm3m4Þt1
− ðm2m3 þm1m4Þt2 − ðm1m3 þm2m4Þt3 − 4:

ð37Þ

It can be easily verified that fm1;m2;m3;m4; t1; t2; t3g
defined by (33) and (36) is a set of solutions to P ¼ 0. The
second-class simplicity constraints are implemented by

t1; t2; t3 ∈ ½−2; 2�; ð38Þ

where only two are independent as they are functions of
z12, z13. Inversely solving z12, z13 from given fm1;m2;
m3;m4; t1; t2g satisfying the simplicity constraints, one can
find two solutions. Indeed,P is a quadratic polynomial of t3
hence there are generally two roots to t3 given data of
fm1;m2;m3;m4; t1; t2g which corresponds to these two
solutions of fz12; z23g. However, further knowing t3
uniquely fixes to one of the solutions.

Darboux coordinates of MflatðSa; SLð2;CÞÞ. The trace
coordinates are not the symplectic coordinates on the
moduli space of flat connection on the 4-holed sphere
(see e.g. [44,46,47] for the discussion about their Poisson
brackets). In order to have a well-defined state integral for
the spinfoam amplitude, one needs to replace them with a
new set of symplectic coordinates, which can be defined as
follows.
The holomorphic Darboux coordinates ðθ;ϕÞ of Mλ⃗

relate to t1 ¼ Trðh12Þ, t2 ¼ Trðh23Þ and t3 ¼ Trðh13Þ by
(see e.g. [46]),

2 cos θ ¼ t1; ð39aÞ

2 cosϕ
ffiffiffiffiffiffiffiffiffiffiffiffi
c12c34

p ¼ t2ðt21 − 4Þ þ 2ðm1m4 þm2m3Þ
− t1ðm1m3 þm2m4Þ; ð39bÞ

sinϕ
ffiffiffiffiffiffiffiffiffiffiffiffi
c12c34

p ¼ ð2t3 þ t1t2 −m1m3 −m2m4Þ sin θ;
ð39cÞ

where

cij ¼ t21 þm2
i þm2

j − t1mimj − 4; i; j ¼ 1;…; 4:

ð40Þ

Generically, we can solve for ðt1; t2; t3Þ as functions
of ðθ;ϕÞ:

t1 ¼ 2 cos θ; ð41aÞ

t2 ¼ −
1

2
csc2θ

	
cosϕ

ffiffiffiffiffiffiffiffiffiffiffiffi
cθ12c

θ
34

q
þ cos θðm1m3 þm2m4Þ

−m1m4 −m2m3



; ð41bÞ

t3 ¼
1

2
csc2θ

	 ffiffiffiffiffiffiffiffiffiffiffiffi
cθ12c

θ
34

q
cosðθ−ϕÞ− cosθðm1m4 þm2m3Þ

þm1m3 þm2m4



; ð41cÞ

where

cθij ¼m2
i þm2

j þ 2 cosθmimj − 4sin2θ; i; j¼ 1;…;4:

ð42Þ

Therefore, given ðθ;ϕÞ, the solution to t3 is fixed from the
two solutions solved from P ¼ 0. The FG coordinates
fzp1p2g become functions of ðθ;ϕÞ, since they are uniquely
determined by ðt1; t2; t3Þ. Therefore, the simplicity con-
straints (38) can be converted to functions of ðθ;ϕÞ.
We denote the Darboux coordinates satisfying the

simplicity constraints to be ðθ̂; ϕ̂Þ. Together with
fm1;m2;m3;m4g, they uniquely determine the geometry
of a (curved) tetrahedron on S3 as follows.
Consider four points fvig4i¼1 on SUð2Þ ≅ S3 located at

v1 ¼ 1SUð2Þ; v2 ¼ h1; v3 ¼ h1h2; v4 ¼ h1h2h3:

ð43Þ

A 4-gon is formed by four geodesic curves l1 ≡ e12,
l2 ≡ e23, l3 ≡ e34, l4 ≡ e41 where eij is the geodesic
connecting vi and vj, as shown in Fig. 7. The geodesic
length ai ∈ ½0; πÞ of li satisfies,
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cosðaiÞ ¼ mi=2 ¼ cos

�
2π

k
ji

�
; ð44Þ

for i ¼ 1;…; 4. θ̂∈ ½0; π� is then the length of the diagonal
geodesic curve e13 connecting v1 and v3, which separates
the 4-gon into two (curved) triangles f123 bounded by
l1, l2, e13 and f134 bounded by l3, l4, e13. Here
ji ¼ 0; 1=2;…; ðk − 1Þ=2, but since our discussion here
is semiclassical, we may extend ji to be continuous and
belonging to ½0; k=2Þ.
On the other hand, ϕ̂∈ ½0; π� describes the bending angle

between the two triangles. Adding the other diagonal
geodesic curve [whose geodesic length is arccosðt2=2Þ],
one forms a curved tetrahedron in S3. Given fixed lengths
fa1; a2; a3; a4g of the four geodesic curves of the 4-gon, θ̂
and ϕ̂ uniquely determine the shape of this curved
tetrahedron embedded in S3. See [1,46] for more discus-
sion. From their geometrical interpretations, we restrict
ðθ̂; ϕ̂Þ to be real with the range,

maxðja1 − a2j; ja3 − a4jÞ ≤ θ̂ ≤ minða1 þ a2; a3 þ a4Þ;
ϕ̂∈ ½0; π�: ð45Þ

The range of θ̂ corresponds to c12, c34 < 0 by (40), which
fixes the orientation of the two geodesic triangles separated
by the e13. In this way, a solution to the simplicity
constraints can be geometrically described by a curved
tetrahedron in S3. We denote the above range of ðθ̂; ϕ̂Þ by
Mj⃗. Note that the definition of Mj⃗ is valid for continu-

ous j⃗∈ ½0; k=2Þ.

Let us now consider a special limit when a1 → 0 thus l1

in Fig. 7 shrinks to vanishing. The result will be useful later
in the asymptotic analysis (see Sec. V). Under this limit, the
triangle inequality restricts θ̂ to equal a2, so Mj⃗ becomes

1-dimensional, in which case ϕ̂ is the only degree of
freedom. Therefore, we have t1 ¼ m2 as well as m1 ¼ 2
when a1 → 0. Inserting them in (41) gives the simple result
t2 ¼ m4 and t3 ¼ m3. The result is also expected since t2 ¼
Trðh23Þ and t3 ¼ Trðh13Þwhile h1 → 1SUð2Þ is trivial in this
limit. An interesting observation is that the traces t1, t2, t3
are independent of ϕ̂ in this limit, and the same is true for
the FG coordinates z12, z13 since they are functions of t1, t2,
t3, i.e. they are constants on Mj⃗. Moreover, when l1, l2,
l3, l4 all shrink to vanishing, a1; a2; a3; a4 → 0,
t1; t2; t3 → 2 and z13 →

z12−1
z12

.
As second-class constraints, we will impose them

weakly by using Chern-Simons coherent states, which
we define in the following. By definition, coherent states
are peaked at the classical phase space points hence the
labels of coherent states are given by both the position
variables fXag and the momentum variables fYag. Recall
the notations,

Xa ¼
2πi
k

ð−ibμa −maÞ; Ya ¼
2πi
k

ð−ibνa − naÞ: ð46Þ

Chern-Simons coherent states on Sa. After fixing the FN
coordinates fLabgðabÞ to be given by the spins fjabgðabÞ, the
Hilbert space of each 4-holed sphere Sa is locally C2. We
also fix ImðμaÞ ¼ αa and consider the degrees of freedom
ReðμaÞ∈R and ma ∈Z=kZ. To simplify the notation, we
will denote ReðμaÞ by μa ∈R in the rest of this subsection.
The Hilbert space for Sa is

HSa
¼ L2ðRÞ ⊗C Ck:

Firstly, the coherent state ψ0
zaðμÞ on L2ðRÞ is defined as

ψ0
zaðμÞ ¼

�
2

k

�
1=4

e−
π
kðμ− k

π
ffiffi
2

p ReðzaÞÞ2e−i
ffiffi
2

p
μImðzaÞ; ð47Þ

with the overcompleteness property

k
2π2

Z
C
dReðzaÞdImðzaÞψ0

zaðμÞψ̄0
zaðμ0Þ ¼ δμ;μ0 : ð48Þ

The coherent state label za ∈C parametrizing a complex
plane is related to the classical coordinates by za ¼ffiffi
2

p
π

k ðμa þ iνaÞ.
Secondly, the coherent state ξðxa;yaÞðmÞ on Ck is labelled

by ðxa; yaÞ∈ ½0; 2πÞ × ½0; 2πÞ, which can be viewed as the
angle coordinates on a torus T 2. It is defined as [48]

FIG. 7. A 4-gon on SUð2Þ ≅ S3 formed by geodesic curves
flig4i¼1 connecting four points v1 ¼ 1, v2 ¼ h1, v3 ¼ h1h2, v4 ¼
h1h2h3 in cyclic order. The geodesic curve e13 connecting v1 and
v3 (in red) has length θ̂. Further connecting v2 and v4 with a
geodesic curve e24 (dashed) forms a curved tetrahedron on S3

whose faces are geodesics. n̂123 and n̂134 (one-way arrows in
blue) are outgoing (relative to the tetrahedron) normal vectors of
the geodesic triangle f123 bounded by l1, l2, e13 and the geodesic
triangle f134 bounded by l3, l4, e13, respectively. ϕ̂∈ ½0; π� is the
dihedral angle between f123 and f134 around e13.
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ξðxa;yaÞðmÞ ¼
�
2

k

�
1=4

e
ikxaya

4π

X
pa ∈Z

e−
k
4πð2πmk −2πpa−xaÞ2eik

2πyað2πmk −2πpa−xaÞ: ð49Þ

xa, ya are related to the classical coordinates by xa ¼ modð2πk ma; 2πÞ, ya ¼ modð2πk na; 2πÞ. The over-completeness
property of ξðxa;yaÞðmÞ reads,

k
4π2

Z
T2

dxadyaξðxa;yaÞðmÞξ̄ðxa;yaÞðm0Þ ¼ δ
e
2πi
k ðm−m0Þ;1

: ð50Þ

The coherent state in HSa
is the tensor product of these two coherent states,11

Ψ0
ρaðμjmÞ ≔ ψ0

za ⊗ ξðxa;yaÞ ∈HSa
; ρa ¼ ðza; xa; yaÞ; ð51Þ

with the overcompleteness relation,�
k
4π2

�
2
Z
C×T2

dρa Ψ0
ρaðμjmÞΨ̄0

ρaðμ0jm0Þ ¼ δμ;μ0δe
2πi
k ðm−m0Þ;1

; ð52Þ

where dρa ≔ dReðzaÞdImðzaÞdxadya. It will be convenient to define ρ̄a ≔ ðz̄a; xa;−yaÞ [still with y∈ ½0; 2πÞ] then we can
write Ψ̄0

ρaðμjmÞ ¼ Ψ0
ρ̄a
ðμjmÞ. It is easy to confirm that the expectation values of the operators μ, ν, m, n calculated by the

coherent stateΨ0
ρaðμjmÞ are given by the coherent state labels, or the classical phase space coordinate at the large-k limit, i.e.

hμi⟶k→∞
μa; hνi⟶k→∞

νa;

�
exp

�
2πi
k

m

��
⟶
k→∞

exp

�
2πi
k

ma

�
;

�
exp

�
2πi
k

n

��
¼ na: ð53Þ

It is only valid at the large-k limit since the torus part of the coherent state ξðx;yÞðmÞ is normalized only at this limit. We give
a derivation for (53) in Appendix F.
The transformation from

Xa ¼
2πi
k

ð−ibμa −maÞ; X̄a ¼
2πi
k

ð−ib−1μa þmaÞ; Ya ¼
2πi
k

ð−ibνa − naÞ; Ȳa ¼
2πi
k

ð−ib−1νa þ naÞ ð54Þ

to θ, θ̄, ϕ, ϕ̄ is canonical [46], so the following change of variables in the integral has only a constant Jacobian,Z
dρa � � � ¼

1

2

Z
d

�
2π

k
μa

�
∧ d

�
2π

k
νa

�
∧ d

�
2π

k
ma

�
∧ d

�
2π

k
na

�
� � �

¼ 1

2Q2

Z
dXa ∧ dX̄a ∧ dYa ∧ dȲa � � � ¼ −

1

2Q2

Z
dΩa ∧ dΩ̄a � � �

¼ 1

2Q2

Z
dθa ∧ dθ̄a ∧ dϕa ∧ dϕ̄a � � � ; ð55Þ

where Ωa is the holomorphic Atiyah-Bott-Goldman symplectic from on Sa with fixed fλpg, and � � � stands
for Ψ0

ρaðμjmÞΨ̄0
ρaðμ0jm0Þ.

The imposition of the simplicity constraints inserts the delta functions δðImθaÞδðImϕaÞ in the above integral followed by
restricting the range of ðReθa;ReϕaÞ to Mj⃗. We denote the coherent state label satisfying the constraints by ρ̂a and the

corresponding coherent state by Ψ0
ρ̂a
ðμjmÞ. Imposing the simplicity constraints reduces the above integral toZ

Mj⃗

dρ̂a Ψ0
ρ̂a
ðμjmÞΨ̄0

ρ̂a
ðμ0jm0Þ ≔ 1

2Q2

Z
Mj⃗

dθ̂a ∧ dϕ̂aΨ0
ρ̂a
ðμjmÞΨ̄0

ρ̂a
ðμ0jm0Þ: ð56Þ

11The coherent state used in [1] to define the vertex amplitude is a rescaled version. We change in this paper to use (51) as this does not
change the finiteness of the melonic amplitude, as shown below in Sec. III. Apart from that, the coherent states defined in this paper is
the complex conjugate of those defined in [1].
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Since Mj⃗ is compact, any integration on Mj⃗ is finite as
long as the integrand is bounded. This fact is important to
guarantee the finiteness of the spinfoam amplitude defined
below in Sec. III.

3. The vertex amplitude: Finiteness and semiclassical
approximation

With the second-class simplicity constraints imposed on
the coherent state labels, one can define the vertex
amplitude by the inner product of partition function (31)
and five coherent states (51), each associated to one Sa.
That is

AvðιÞ ≔
�Y5

a¼1

Ψ̄0
ρ̂a
jZS3nΓ5

�
¼

X
fm̃ag∈ ðZ=kZÞ5

Z
R5

d5μ̃aZS3nΓ5
ðfiαabgðabÞ;

fμ̃a þ iαagjfjabgðabÞ; fm̃agÞ
Y5
a¼1

Ψ0
ρ̂a
ðμ̃ajm̃aÞ; ð57Þ

where ι ¼ ðfαab; jabgðabÞ; fρ̂ag5a¼1; fαa; βag5a¼1Þ. Ref. [1]
has proven that AvðιÞ is finite for given fρ̂ag5a¼1 with
finite fReðẑaÞg5a¼1.
The large-k approximation of the AvðιÞ reproduces the

form as given in [49,50],

AvðιÞ ∼k→∞ðN þe
iSΛReggeþC þN −e

−iSΛRegge−CÞð1þOð1=kÞÞ;
ð58Þ

whereN � are factors related to the Hessian of the effective
action when performing the saddle point analysis, C is a
geometric-independent integration constant and SΛRegge is
the Regge action for a 4-simplex with constant curvature
determined by the value of Λ. Explicitly,

SΛRegge ¼
Λkγ
12π

 X
ðabÞ

aabΘab − ΛjV4j
!
; ð59Þ

where aab is the area of the triangle fab shared by
tetrahedron a and b on the boundary of the 4-simplex,
Θab is the hyperdihedral angle hinged by fab and jV4j the
volume of the 4-simplex.
The finiteness of AvðιÞ and the appearance of the Regge

action for a curved 4-simplex at the large-k approximation
(58) renders the eligibility of the spinfoam model con-
structed with the vertex amplitude defined by (57). By a
valid choice of edge amplitude and face amplitude, one can
define a finite amplitude for a general 4-manifold. Such a

choice of edge and face amplitude was not given in the
original paper [1]. We will give a proposal in the next
section that is suitable for a simple spinfoam graph
containing two spinfoam vertices and can be easily gen-
eralized to a general spinfoam graph.

III. MELONGRAPH AND SPINFOAMAMPLITUDE

We now consider the spinfoam amplitude corresponding
to two 4-simplices with four boundary tetrahedra identified.
In the dual picture, the spinfoam graph is called the ‘melon
graph’, which contains two spinfoam vertices, four internal
spinfoam edges and two external spinfoam edges as shown
in Fig. 1. It is the one-loop self-energy correction in the
quantum field theory language. For the EPRL-FK model, it
has been shown using GFT techniques that it is the most
divergent part of the radiative correction of a spinfoam
amplitude (at least compared to other simple enough
spinfoam graphs, e.g. a ‘starfish graph’) [11,51].
The way to define the spinfoam amplitude for the melon

graph is similar to the way to define AvðιÞ reviewed in
Sec. II. That is to first write the Chern-Simons partition
function for the boundary of the manifold corresponding to
the melon graph then impose the simplicity constraints
(strongly for the first-class types and weakly for the second-
class types). The first step is described in Sec. III A and the
second step is sketched in Sec. III B. The partition function
for the melon graph can be separated into a pair of partition
functions ZS3nΓ5

ðμ⃗jm⃗Þ’s for one spinfoam vertex defined in
(18) as well as some extra terms (which can be absorbed in
the two vertex amplitudes), as explained in Sec. III A 2. The
spinfoam amplitude for the melon graph is completed by
adding a face amplitude for each internal spinfoam face.
We write the full amplitude in Sec. III C and prove its
finiteness.

A. Constraint system and the Chern-Simons
partition function

Denote the two three-manifolds S3nΓ5’s as Mþ (con-
taining 4-holed spheres S1;2;3;4;5 on its boundary) and M−
(containing 4-holed spheres S1;2;3;4;6 on its boundary).
They are glued through identifying S1, S2, S3, S4 on their
boundaries and form the three-manifold Mþ∪− whose
spinfoam graph is a melon graph. See Fig. 8 for the
GFT graph after gluing, where each blue line corresponds
to an identification of holes from different spheres. After
gluing, the connected holes become annuli or tori as
boundaries of Mþ∪−. The blue lines can also be seen as
the defects of an ambient 3-manifold of Mþ∪− which
possesses noncontractible cycles. The ideal triangulation of
Mþ∪− is obtained by the ideal triangulations of Mþ and
M−, which leads to 60 edges in total. On each edge, we
assign an FG coordinate as we did in the previous section.
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To be consistent, we dress the edges on Mþ with FG
coordinates in the same way as in the previous section (and
as in [1]). M− and its ideal triangulation is simply given by
the mirror of Mþ (see Fig. 9). The (logarithmic) FG
coordinates are listed in Table I. Consequently, in
Table I, the relations for M− are translated from the ones
for Mþ by changing each i to iþ 5, where i ¼ 1;…; 5,
labels the octahedra in Mþ.

1. Gluing constraints and the Darboux coordinates

When gluing S1, S2, S3, S4, we let the edges on the ideal
triangulations of Mþ and M− dressed with the same FG
coordinate be identified if they become internal edges in the

gluing process. Indeed, if we parametrize all the edges on
Mþ and M− in the same way, there is a twist between the
Poisson brackets from the two three-manifolds due to the
opposite orientations. Each edge E of an ideal tetrahedron
is dressed with an edge coordinate zE ¼ eZE , as illustrated
in Fig. 3(a). Let Zþ

E be a (logarithmic) edge coordinate on
one ideal tetrahedron△þ ofMþ and Z−

E be one on an ideal
tetrahedron △− of M−. Then,

fZþ
E ; Z

þ
E0 g ¼ ϵEE0δ△þ;△0

þ ; fZ−
E; Z

−
E0 g ¼ −ϵ0EE0δ△−;△0

−
;

fZþ
E ; Z

−
E0 g ¼ 0; ð60Þ

where ϵEE0 ¼ 0;�1 counts the oriented triangles shared by
E, E0 and ϵEE0 ¼ 1 if E0 occurs to the left of E in the
triangle, and δ△�;△0

�
¼ 1 if △� ¼ △0

� and 0 otherwise.
Or equivalently, one can keep the Poisson brackets for

Mþ andM− the same [as in (A2)] but parametrize the edges
differently for all ideal tetrahedra onMþ andM−, as shown
in Fig. 10. This is the way we treat the two 3-manifolds in
this paper. Such a parametrization has been used in Fig. 9
where edges with the same FG coordinate were glued. The
algebraic curve for ideal tetrahedra on Mþ and M− written
in terms of the edge coordinates on ideal octahedra [see
Fig. 3(b)] are, respectively,

onMþ∶ z−1 þ z00 − 1¼ 0

onM−∶ z−1 þ z0 − 1¼ 0
;








z¼ x; y; z;w

z0 ¼ x0; y0; z0;w0

z00 ¼ x00; y00; z00;w00
: ð61Þ

It is easy to see that Z0 and Z00, which are the logarithms of z0
and z00 respectively, shift their roles on Mþ versus M−.
Therefore, we define the momenta on Mþ in terms of Z00
[see (A24)] while in terms of Z0 on M−. That is

PXi
¼ X00

i −W00
i ; PYi

¼ Y 00
i −W00

i ; PZi
¼ Z00

i −W00
i ; Γi ¼ W00

i ; for i ¼ 1;…; 5; ð62aÞ

PXj
¼ X0

j −W0
j; PYj

¼ Y 0
j −W0

j; PZj
¼ Z0

j −W0
j; Γj ¼ W0

j; for j ¼ 6;…; 10: ð62bÞ

They are momenta conjugate to Xi; Yi; Zi; Ci ¼ Xi þ Yi þ Zi þWi, i ¼ 1;…; 10, respectively, and satisfy

fXi; PXj
g ¼ fYi; PYj

g ¼ fZi; PZj
g ¼ fCi;Γjg ¼ δij: ð63Þ

The procedure of gluing triangulated 3-manifolds is a
generalization of the treatment for an ideal octahedron;
every internal edge of the ideal triangulation corresponds to
a (classical) constraint restricting the sum of the involved
(logarithmic) FG coordinates at the edge to 2πi [31]. The
gluing of Mþ and M− leads to 24 constraints fCχAg24A¼1 in

terms of the FG coordinates fχðaÞij ga;i≠j. Here, χðaÞij dresses

the edge of the ideal triangulation of Sa that is shared by
octahedra OctðiÞ and OctðjÞ (see Table I in Appendix C for
their explicit expressions in terms of the edge coordinates).
They are explicitly,

FIG. 8. The GFT graph denoting the manifold Mþ∪− after
gluing two spinfoam vertices corresponding to Mþ and M−. The
4-holed spheres S1, S2, S3, S4 from ∂Mþ and ∂M− are identified.
Each blue line relates to the identification of a pair of holes and
becomes an annulus or a torus boundary of Mþ∪−. (There are no
intersections among the blue lines.)Mþ∪− is a graph complement
of an ambient 3-manifold which has noncontractible cycles.
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onS1∶ Cχ1 ¼ χð1Þ45 þ χð1Þ9;10 − 2πi; Cχ2 ¼ χð1Þ35 þ χð1Þ8;10 − 2πi; Cχ3 ¼ χð1Þ34 þ χð1Þ89 − 2πi;

Cχ4 ¼ χð1Þ25 þ χð1Þ7;10 − 2πi; Cχ5 ¼ χð1Þ24 þ χð1Þ79 − 2πi; Cχ6 ¼ χð1Þ23 þ χð1Þ78 − 2πi;

onS2∶ Cχ7 ¼ χð2Þ45 þ χð2Þ9;10 − 2πi; Cχ8 ¼ χð2Þ35 þ χð2Þ8;10 − 2πi; Cχ9 ¼ χð2Þ34 þ χð2Þ89 − 2πi;

Cχ10 ¼ χð2Þ15 þ χð2Þ6;10 − 2πi; Cχ11 ¼ χð2Þ14 þ χð2Þ69 − 2πi; Cχ12 ¼ χð2Þ13 þ χð2Þ68 − 2πi;

onS3∶ Cχ13 ¼ χð3Þ45 þ χð3Þ9;10 − 2πi; Cχ14 ¼ χð3Þ25 þ χð3Þ7;10 − 2πi; Cχ15 ¼ χð3Þ24 þ χð3Þ79 − 2πi;

Cχ16 ¼ χð3Þ15 þ χð3Þ6;10 − 2πi; Cχ17 ¼ χð3Þ14 þ χð3Þ69 − 2πi; Cχ18 ¼ χð3Þ12 þ χð3Þ67 − 2πi;

onS4∶ Cχ19 ¼ χð4Þ35 þ χð4Þ8;10 − 2πi; Cχ20 ¼ χð4Þ25 þ χð4Þ7;10 − 2πi; Cχ21 ¼ χð4Þ23 þ χð4Þ78 − 2πi;

Cχ22 ¼ χð4Þ15 þ χð4Þ6;10 − 2πi; Cχ23 ¼ χð4Þ13 þ χð4Þ68 − 2πi; Cχ24 ¼ χð4Þ12 þ χð4Þ67 − 2πi: ð64Þ

It is easy to check that there are only 18 independent first-class constraints out of these 24 constraints. The dimension of the
Chern-Simons phase space P∂Mþ∪−

on the boundary of Mþ∪−, as the moduli space of framed flat PSLð2;CÞ connection on
∂Mþ∪−, is 60 − 2 × 18 ¼ 24. To single out the first-class constraints, using the FN coordinates as the Darboux coordinates
of P∂Mþ∪−

is more convenient.

FIG. 9. The decomposition of Mþ and M− into ten octahedra (in red). The notations are the same as in Fig. 5. The labels of faces (in
green) in Octðiþ 5Þ is the same as those in OctðiÞ (i ¼ 1;…; 5) except for the subscripts.
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We denote the FN coordinates on P∂Mþ (resp. P∂M−
) as

fLabg (resp. fL0
abg) where a, b denote the 4-holed spheres

Sa and Sb. They are indeed the linear combinations of the

FG coordinates fχðaÞij g5i;j¼1;i≠j (resp. fχðaÞij g10i;j¼6;i≠j). fLabg
are defined in the same way as in Sec. II. The definition of
each L0

ab is copied from that of Lab followed by shifting all
the octahedron labels therein by 5, i.e. i → iþ 5; j → jþ 5
(see (C1)).
The FN coordinates can be naturally understood as

assigned on the annuli connecting holes from different
spheres as they, by definition, satisfy the relations

Lab ¼ Lba; L0
ab ¼ L0

ba; ∀a; b: ð65Þ

The gluing constraints (64) can be then partially written
in terms of these FN coordinates:

C1 ¼ 2L12 þ 2L0
12 ¼ 0; C2 ¼ 2L13 þ 2L0

13 ¼ 0; C3 ¼ 2L14 þ 2L0
14 ¼ 0; C4 ¼ 2L15 þ 2L0

16 ¼ 0;

C5 ¼ 2L23 þ 2L0
23 ¼ 0; C6 ¼ 2L24 þ 2L0

24 ¼ 0; C7 ¼ 2L25 þ 2L0
26 ¼ 0; C8 ¼ 2L34 þ 2L0

34 ¼ 0;

C9 ¼ 2L35 þ 2L0
36 ¼ 0; C10 ¼ 2L45 þ 2L0

46 ¼ 0: ð66Þ

Denote the Darboux coordinates on ∂Mþ as ðQþ
i ;P

þ
i Þi¼1;…;15 and those on ∂M− as ðQ−

i ;P
−
i Þi¼1;…;15, where (we denote

coordinates from M− with prime)

Qþ
i ¼ ff2LabgðabÞ; fXag5a¼1g; Pþ

i ¼ ffT abgðabÞ; fYag5a¼1g; ð67aÞ

Q−
i ¼ ff2L0

abgðabÞ; fX 0
ag5a¼1g; P−

i ¼ ffT 0
abgðabÞ; fY0

ag5a¼1g ð67bÞ

with the Poisson brackets

fQþ
i ;P

þ
j g ¼ fQ−

i ;P
−
j g ¼ δij; fQþ

i ;Q
−
j g ¼ fPþ

i ;P
−
j g ¼ fQþ

i ;P
−
j g ¼ fQ−

i ;P
þ
j g ¼ 0; ∀i; j¼ 1;…;15: ð68Þ

The Darboux coordinates for the Mþ∪− are thus
ð0QI; 0PIÞI¼1;…;30 with 0QI ¼ fQþ

i ;Q
−
i g and 0PI ¼

fPþ
i ;P

−
i g, which span a 60-dimensional phase space.

The explicit choices for ðQþ
i ;P

þ
i Þ and ðQ−

i ;P
−
i Þ are as

follows:

Lab ¼ fL12; L13; L14; L15; L23; L24; L25; L34; L35; L45g;
ð69aÞ

L0
ab ¼ fL0

12; L
0
13; L

0
14; L

0
16; L

0
23; L

0
24; L

0
26; L

0
34; L

0
36; L

0
46g;
ð69bÞ

Xa ¼
�
χð1Þ25 ; χ

ð2Þ
15 ; χ

ð3Þ
15 ; χ

ð4Þ
15 ; χ

ð5Þ
14

�
; ð69cÞ

X 0
a ¼

�
χð1Þ7;10; χ

ð2Þ
6;10; χ

ð3Þ
6;10; χ

ð4Þ
6;10; χ

ð6Þ
69

�
; ð69dÞ

T ab ¼ fT 12;T 13;T 14;T 15;T 23;T 24;T 25;T 34;T 35;T 45g;
ð69eÞ

T 0
ab ¼ fT 0

12;T
0
13;T

0
14;T

0
16;T

0
23;T

0
24;T

0
26;T

0
34;T

0
36;T

0
46g;
ð69fÞ

Ya ¼
�
χð1Þ23 ; χ

ð2Þ
14 ; χ

ð3Þ
45 − 2πi;−χð4Þ35 þ 2πi; χð5Þ34 − 2πi

�
;

ð69gÞ

Y0
a ¼

�
−χð1Þ78 ;−χ

ð2Þ
69 ;−χ

ð3Þ
9;10 þ 2πi; χð4Þ8;10 − 2πi;−χð6Þ89 þ 2πi

�
:

ð69hÞ

Following (68), the Darboux coordinates on ∂Mþ∪− also
satisfy the desired Poisson brackets:

f0PI; 0QJg ¼ δIJ; f0PI; 0PJg ¼ f0QI; 0QJg ¼ 0;

∀I; J ¼ 1;…; 30: ð70Þ

Apart from the 10 constraints (66), we need to define the
remaining eight independent first-class constraints. We
choose them to be

FIG. 10. Different parametrizations of edges of ideal tetrahedra
on Mþ and M−.
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C11 ¼X1þX 0
1 − 2πi≡Cχ4; C12 ¼X2þX 0

2 − 2πi≡Cχ10; C13 ¼X 3þX 0
3− 2πi≡Cχ16; C14 ¼X4þX 0

4− 2πi≡Cχ22;

C15 ¼Y1 −Y0
1 − 2πi≡Cχ6; C16 ¼Y2 −Y0

2− 2πi≡Cχ11; C17 ¼Y3 −Y0
3þ 2πi≡Cχ13; C18 ¼Y4 −Y0

4 − 2πi≡−Cχ19:

ð71Þ

The 18 constraints (66) and (71) are all independent and can be verified to be first-class, i.e.

fCA; CBg ¼ 0 ∀A; B ¼ 1;…; 18: ð72Þ

The relation between fCAg18A¼1 and the original constraints fCχKg24K¼1 can be understood in the following way. If we add six
more constraints such that CA¼19;…;24 ¼ 2Lba þ 2L0

ba with a < b and a; b ¼ 1;…; 4, there is a nondegenerate linear
transformation relating fCAg and fCχKg. The redundancy in the set of constraints fCχKg is reflected by the fact that fCAg24A¼19

are not independent of the rest of fCAg, since Lab ¼ Lba and L0
ab ¼ L0

ba by definition. This is related to the topology of
Mþ∪−. One can find one linear relation among the constraints for every torus cusp (depicted by a closed blue loop in Fig. 8)
and there are in total six of them which remove six constraints from fCχKg24K¼1. The generality of this topological relation is
argued in [33,52].
The reduced phase space P∂Mþ∪−

, therefore, is the symplectic quotient of the tensor product of phase spaces from ∂Mþ
and ∂M− by the gluing constraints, i.e. P∂Mþ∪−

¼ ðP∂Mþ ⊗ P∂M−
Þ==fCAg18A¼1.

2. Symplectic transformation and the partition function

After imposing the 18 first-class constraints (66) and (71), one is left with a 24-dimensional phase space with 12 positions
and 12 momenta variables. We perform a series of symplectic transformations from ð0QI; 0PIÞI¼1;…;30 to ðQJ;PJÞJ¼1;…;30

parametrized as

QJ ¼ ff2Lþ∪−
ab gðabÞ;X5;X 0

5; fCAg18A¼1g; PJ ¼ ffT þ∪−
ab gðabÞ;Y5;Y0

5; fΓAg18A¼1g: ð73Þ

We choose the first 10 position variables to be

2Lþ∪−
ab ¼ f2L12; 2L13; 2L14; 2L15; 2L23; 2L24; 2L25; 2L34; 2L35; 2L45g; ð74Þ

then

T þ∪−
ab ¼fT 12−T 0

12;T 13−T 0
13;T 14−T 0

14;T 15−T 0
16;T 23−T 0

23;T 24−T 0
24;T 25−T 0

26;T 34−T 0
34;T 35−T 0

36;T 45−T 0
46g:
ð75Þ

The explicit expressions of fΓAg18A¼1 will calculated by the symplectic matrices [see (87)]. The transformations from
ð0QI; 0PIÞ to ðQJ;PJÞ contains one U-type transformation, one partial S-type transformation and one affine translation
illustrated as follows.
(1) The starting point is the product of the partition functions for Mþ and M−:

Z×ðμ⃗jm⃗Þ ¼ ZMþðμ⃗þjm⃗þÞZM−
ðμ⃗−jm⃗−Þ; ð76Þ

where μ⃗ ¼ fμ⃗þ; μ⃗−g, m⃗ ¼ fm⃗þ; m⃗−g and the two distinct partition functions are defined in terms of different
symplectic transformations,

ZM�ðμ⃗�jm⃗�Þ ¼ ððσ ⃗t� ∘S∘T� ∘U�Þ⊳Z×Þðμ⃗�jm⃗�Þ: ð77Þ

The symplectic transformations are encoded in the transformation matrices
	 A� B�
−ðB⊤

�Þ−1 0



and the affine

translation vector ⃗t�. We use the expression (18) for both partition functions ZMþ and ZM−
since A�B⊤

� are both
symmetric matrices with integer entries.12 Note that the “þ” sector is the same as in Sec. II while the ‘−’ sector is not

12There are the same number of odd elements in diagðA�B⊤
�Þ and these elements are at the same locations, i.e. the 1st, 2nd, 6th, 8th,

11th, 12th and 13th elements, as can be checked from the explicit Eqs. (B2) and (B3) of A� and B�, respectively.
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due to a different choice (62b) of momentum variables in P∂oct for ∂M−. See Appendix B for the explicit expressions

for A�, B� and ⃗t�. We denote the positive angle structures for ZM�ðμ⃗�jm⃗�Þ by PM�, then Z× ∈F ðkÞ
PMþ⊗PM−

.

(2) First, we perform a U-type transformation:

�
1QI
1PI

�
¼
�U 0

0 ðU⊤Þ−1
��

0QI
0PI

�
; where U ¼

0BBBBBBBBB@

110×10 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

110×10 0 0 110×10 0 0

0 14×4 0 0 14×4 0

0 14×4 0 0 0 0

1CCCCCCCCCA
: ð78Þ

The new positions f1QIg and momenta f1PIg read,

1QI ¼ f2Lab;X5;X 0
5; 2Lab þ 2L0

ab; fXa þ X 0
ag4a¼1; fXag4a¼1g;

1PI ¼ fT ab − T 0
ab;Y5;Y0

5; T
0
ab; fY0

ag4a¼1; fYa − Y0
ag4a¼1g:

Since detðUÞ ¼ 1, the amplitude is transformed to

Z1ðμ⃗jm⃗Þ ¼ ðU⊳Z×Þðμ⃗jm⃗Þ ¼ Z×ðU−1μ⃗jU−1m⃗Þ; ð79Þ

when ðα⃗; β⃗Þ∈PMþ ⊗ PM−
, ðUα⃗; ðU−1Þ⊤β⃗Þ∈P1 with P1 ¼ U∘ðPMþ ⊗ PM−

Þ, and

e−
2π
k μ⃗·ðU−1Þ⊤β⃗Z×ðU−1ðμ⃗þ iUα⃗Þjm⃗Þ ð80Þ

is a Schwartz function. Therefore, Z1 ∈F ðkÞ
P1
.

(3) We then perform a partial S-type transformation on the last four positions of 1QI and the last four momenta of 1PI.
That is

�
2QI
2PI

�
¼ S

�
1QI
1PI

�
; where S ¼

0BBBBB@
126×26 0 0 0

0 0 0 14×4
0 0 126×26 0

0 −14×4 0 0

1CCCCCA: ð81Þ

The new coordinates after this transformation are

2QI ¼ f2Lab;X 5;X 0
5; 2Lab þ 2L0

ab; fXa þ X 0
ag4a¼1; fYa − Y0

ag4a¼1g;
2PI ¼ fT ab − T 0

ab;Y5;Y0
5; T

0
ab; fY0

ag4a¼1; f−Xag4a¼1g: ð82Þ

This partial S-type transformation corresponds to a Fourier transform on the amplitude to change the coordinates
corresponding to the last four constraints fCAg18A¼15 while keeping the rest of the coordinates unchanged. Explicitly,

Z2ðμ⃗jm⃗Þ ¼ ðS⊳Z1Þðμ⃗jm⃗Þ ¼ 1

k4
X

n⃗∈ ðZ=kZÞ30

Z
C×30

d30ν⃗

 Y26
I¼1

δμI ;νIδmI;nI

!
e
2πi
k

P
30

J¼27
ð−μJνJþmJnJÞZ1ðν⃗jn⃗Þ: ð83Þ

Define ðα⃗0; β⃗0Þ such that �
α0I ¼ −βI; β0I ¼ αI ∀I ¼ 1;…; 26

α0I ¼ αI; β0I ¼ βI ∀I ¼ 27;…; 30
; ð84Þ
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and set α⃗ ¼ Imðμ⃗Þ, β⃗ ¼ Imðν⃗Þ. Then when ð−β⃗; α⃗Þ∈P1, or equivalently ðα⃗0; β⃗0Þ∈P2 ≔ S∘U∘ðPMþ ⊗ PM−
Þ,

e−
2πi
k

P
30

I¼27
μIνIZ1ðfμIg26I¼1; fνIg30I¼27jfmIg26I¼1; fnIg30I¼27Þ ð85Þ

is a Schwartz function in fReðνIÞg30I¼27. When fImðμIÞ ¼ αIg30I¼27 and the integration contour C×30 is defined such

that fImðνIÞ ¼ βIg30I¼27, Z2 converges absolutely hence Z2 ∈F ðkÞ
P2
.

(4) Finally, we perform an affine shift σ ⃗t to arrive at the final coordinates ðQI;PIÞ defined in (73)–(75). The symplectic
transformation is �

QI

PI

�
¼
�

2QI þ iπ ⃗t
2PI

�
; ð86Þ

where the vector ⃗t of length 30 is composed with integer elements. According to the constraints definitions (66) and
(71), there are only eight nonzero elements in ⃗t, which are (note a different sign in t29)

t23 ¼ t24 ¼ t25 ¼ t26 ¼ t27 ¼ t28 ¼ −t29 ¼ t30 ¼ −2:

Therefore, one can write down the conjugate variables fΓAg of the constraints fCAg (66) and (71) in terms of
ð0QI; 0PIÞ:

Γ1 ¼ T 0
12; Γ2 ¼ T 0

13; Γ3 ¼ T 0
14; Γ4 ¼ T 0

15; Γ5 ¼ T 0
23;

Γ6 ¼ T 0
24; Γ7 ¼ T 0

26; Γ8 ¼ T 0
34; Γ9 ¼ T 0

36; Γ10 ¼ T 0
46;

Γ11 ¼ Y0
1; Γ12 ¼ Y0

2; Γ13 ¼ Y0
3; Γ14 ¼ Y0

4;

Γ15 ¼ −X1; Γ16 ¼ −X2; Γ17 ¼ −X3; Γ18 ¼ −X4: ð87Þ

Define a translation map to the positive angle variables

σ0⃗t∶ P2 → Pnew;

�
α⃗

β⃗

�
↦

 
α⃗þ Q

2
⃗t

β⃗

!
:

The final positive-angle structure is

Pnew ¼ σ0⃗t ∘S∘U∘ðPMþ ⊗ PM−
Þ:

In order to write the final amplitude in a simple way, we pick out parts of the nonzero elements in ⃗t and define a length-30
vector ⃗t0 whose only nonzero elements are t023 ¼ t024 ¼ t025 ¼ t026 ¼ −2. The resulting amplitude is written as

Z0
Mþ∪−

ðμ⃗jm⃗Þ ¼ ððσ ⃗t ∘S∘UÞ⊳Z×Þðμ⃗jm⃗Þ

¼ 1

k4
X

n⃗∈ ðZ=kZÞ30

Z
C×30

d30ν⃗

 Y26
I¼1

δμI ;νIδmI;nI

!
e
2πi
k

P
30

J¼27
ð−μJþiQ

2
tJÞνJþmJnJZ×

�
U−1ν⃗ −

iQ
2
⃗t0jU−1n⃗

�
: ð88Þ

Let us also write out the positive angle structure. If ðα⃗; β⃗Þ∈PMþ ⊗ PM−
, then

ðα⃗new; β⃗newÞ ≔
�
ððU−1Þ⊤β⃗Þ0 þQ

2
⃗t;−ðUα⃗Þ0

�
∈Pnew; ð89Þ

where the prime variables are defined in the same way as in (84). Therefore, when ðα⃗new; β⃗newÞ∈Pnew, Z0
Mþ∪−

∈F ðkÞ
Pnew

.
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The 18 constraints fCAg require that the corresponding elements in α⃗new are zero. These requirements impose further
constraints on the initial positive angle structures for ideal octahedra on top of (A30). One can show that the positive angle is
still nonempty through examples, some of which are collected in Appendix G.

Let us now fix at once the notations of the parametrizations for the new symplectic coordinates ðQ⃗; P⃗Þ. Label the
constraints fCAg10A¼1 for the FN coordinates (66) by Cab ≔ 2Lab þ 2L0

ab, and the constraints fCAg18A¼11 for the FG
coordinates (71) by CXa

≔ Xa þ X 0
a − 2πi and CYa

≔ Ya − Y0
a − 2πisa, a ¼ 1 � � � ; 4, where s⃗ ¼ f1; 1;−1; 1g is a vector of

signs. We parametrize,

2Lab ¼
2πi
k

ð−ibμab −mabÞ; 2L0
ab ¼

2πi
k

ð−ibμ0ab −m0
abÞ; ð90aÞ

T ab ¼
2πi
k

ð−ibνab − nabÞ; T 0
ab ¼

2πi
k

ð−ibν0ab − n0abÞ; ð90bÞ

Xa ¼
2πi
k

ð−ibμa −maÞ; X 0
a ¼

2πi
k

ð−ibμ0a −m0
aÞ; a ¼ 1;…; 5; ð90cÞ

Ya ¼
2πi
k

ð−ibνa − naÞ; Y0
a ¼

2πi
k

ð−ibν0a − n0aÞ; a ¼ 1;…; 5; ð90dÞ

Cab ¼
2πi
k

ð−ibμCab −mCabÞ; CXa
¼ 2πi

k
ð−ibμXa

−mXa
Þ; CYa

¼ 2πi
k

ð−ibμYa
−mYa

Þ; a ¼ 1;…; 4; ð90eÞ

Γab ¼
2πi
k

ð−ibνCab − nCabÞ; ΓXa
¼ 2πi

k
ð−ibνXa

− nXa
Þ; ΓYa

¼ 2πi
k

ð−ibνYa
− nYa

Þ; a ¼ 1;…; 4: ð90fÞ

Combine the parameters on the right-hand sides into vectors μ⃗, ν⃗, m⃗, n⃗ with elements

μ⃗ ¼ fμab; μ5; μ05; μCab ; μXa
; μYa

g; m⃗ ¼ fmab;m5; m0
5; mCab ; mXa

; mYa
g; ð91aÞ

ν⃗ ¼ fνab − ν0ab; ν5; ν
0
5; νCab ; νXa

; νYa
g; n⃗ ¼ fnab − n0ab; n5; n

0
5; nCab ; nXa

; nYa
g: ð91bÞ

Then constraints fCAg18A¼1 and their conjugate momenta fΓAg18A¼1 give the following relations13:

μ0ab ¼ μCab − μab; m0
ab ¼ modðmCab −mab; kÞ; νCab ¼ ν0ab; nCab ¼ n0ab; ð92aÞ

μ0a ¼ μXa
þ iQ − μa; m0

a ¼ modðmXa
−ma; kÞ; ∀a ¼ 1;…; 4; ð92bÞ

ν0a ¼ −μYa
− iQsa þ νa; n0a ¼ modð−mYa

þ na; kÞ; ∀a ¼ 1;…; 4; ð92cÞ

νXa
¼ ν0a; νYa

¼ −μa; nXa
¼ n0a; nYa

¼ −ma; ∀a ¼ 1;…; 4: ð92dÞ

Also denote the imaginary parts αab ¼ ImðμabÞ, α0ab ¼ Imðμ0abÞ, αa ¼ ImðμaÞ, α0a ¼ Imðμ0aÞ and βab ¼ ImðνabÞ,
β0ab ¼ Imðν0abÞ, βa ¼ ImðνaÞ, β0a ¼ Imðν0aÞ.
Apply these notations, the amplitude (88) can be written more explicitly. To shorten the notation, we denote

μþ ¼ fμab; fμag5a¼1g; μ− ¼ fμCab − μab; fμXa
þ iQ − μag4a¼1; μ

0
5g;

mþ ¼ fmab; fmag5a¼1g; m− ¼ fmCab −mab; fmXa
−mag4a¼1; m

0
5g: ð93Þ

13In general, the quantization of the constraints is implied by eχIþχ0I ≡ cI ¼ exp ½2πik ð−ibμI −mIÞ� ¼ q and therefore μI ¼ iQ and
mI ¼ 0. In the case of CXa

and CYa
, due to the addition of �2πi in the definitions (71), it implies q−1eXaþX 0

a ¼ 1, q−saesaðYaþY0
aÞ ¼ 1

hence μXa
¼ μYa

¼ 0 and mXa
¼ mYa

¼ 0. In the case of Cab which involving FN coordinates, we use the relation
2L ¼ χ1 þ χ2 þ χ3 − 3πi, 2L0 ¼ χ01 þ χ02 þ χ03 − 3πi and derive the constraint for FN coordinates; e2Lþ2L0 ¼ q−3c1c2c3 ¼ 1. Then
we also obtain μCab ¼ 0 and mCab ¼ 0 from Cab.
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Then,

Z0
Mþ∪−

ðμ⃗jm⃗Þ ¼ 1

k4
X

fmag∈ ðZ=kZÞ4

Z
C×4

½dμa�e
2πi
k ð
P

4

a¼1
ðμYaþiQsaÞμa−mYamaÞZMþðμþjmþÞZM−

ðμ−jm−Þ; ð94Þ

where ½dμa� ≔ dμ1dμ2dμ3dμ4 denotes four copies of measures for μa. The integration contour C is along μa ¼ ReðμaÞ þ iαa
with fixed αa. When constraints are imposed, i.e.

CA ¼ 0; ∀A ¼ 1;…; 18 ⇔ μCab ¼ μXa
¼ μYa

¼ 0 ¼ mCab ¼ mXa
¼ mYa

; ð95Þ

we obtain the partition function of Chern-Simons theory on Mþ∪−:

ZMþ∪−
ðμ⃗jm⃗Þ ¼ 1

k4
X

fmag∈ ðZ=kZÞ4

Z
C×4

½dμa� exp
�
−
2πQ
k

X4
a¼1

saμa

�
ZMþðμCþjmCþÞZM−

ðμC−jmC
−Þ; ð96Þ

where the following notations are used:

μCþ ¼ fμab; fμag4a¼1; μ5g; μC− ¼ f−μab; fiQ − μag4a¼1; μ
0
5g;

mCþ ¼ fmab; fmag4a¼1; m5g; mC
− ¼ f−mab; f−mag4a¼1; m

0
5g: ð97Þ

ZM� ∈F ðkÞ
PðM�Þ implies that the following two functions:

fþðμCþjmCþÞ ¼ e−
2π
k

P
4

a¼1
βaμaZMþðμCþjmCþÞ; f−ðμC−jmC

−Þ ¼ e
2π
k

P
4

a¼1
β0aμaZM−

ðμC−jmC
−Þ; ð98Þ

are Schwartz functions on C×4. With the following constraint on the positive angle structure resulting from CYa
¼ 0

[see (92c)]

βa − β0a ¼ saQ; ð99Þ

the partition function (96) can be rewritten as

ZMþ∪−
ðμ⃗jm⃗Þ ¼ 1

k4
X

fmag∈ ðZ=kZÞ4

Z
C×4

½dμa�fþðμCþjmCþÞf−ðμC−jmC
−Þ: ð100Þ

It is manifest that ZMþ∪−
ðμ⃗jm⃗Þ is absolutely convergent.

B. Coherent state representation

The amplitude (96) is now written in terms of coordinates shared by the two manifolds Mþ and M− due to the gluing
constraints. We would like to separate the variables from ZMþ and ZM−

so that it is easier to relate to vertex amplitudes of
spinfoam. We make use of the overcompleteness relation (52) of the coherent states. Then we apply the procedure as in
Sec. II C 2 to impose the simplicity constraint to the coherent state labels.
To shorten the notation, we denote ReðμÞ simply by μ∈R and specify its imaginary part by α ¼ ImðμÞ if any in this

subsection. For each gluing 4-holed sphere Sa, we need to use the relation (52). First, we rewrite the amplitude (96) as (we
omit here the labels not relevant to fSag4a¼1 for conciseness)

ZMþ∪−
ðμ⃗jm⃗Þ ¼ 1

k4
X

fma;m0
ag∈ ðZ=kZÞ8

Z
R8

½dμa�½dμ0a�

×
Y4
a¼1

δμ0a;−μaδe
2πi
k ðmaþm0

aÞ;1
fþ
�fμa þ iαajmag4a¼1Þf−ðfμ0a þ iðQ − αaÞjm0

ag4a¼1

�
: ð101Þ

Then we express the delta distributions by the coherent states through (52),
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δμ0a;−μaδe
2πi
k ðmaþm0

aÞ;1
¼
�

k
4π2

�
2
Z
C×T2

dρaΨ0
ρaðμajmaÞΨ̄0

ρað−μ0aj −m0
aÞ≡

Z
C×T2

dρaΨ0
ρaðμajmaÞΨ0

ρ̃a
ðμ0ajm0

aÞ; ð102Þ

where ρ̃a ¼ ð−z̄a;−xa; yaÞ given ρa ¼ ðza; xa; yaÞ and we have identified Ψ0
ρ̃a
ðμjmÞ≡ Ψ̄0

ρað−μj −mÞ.
Lastly, take the inner product of ZMþ∪−

ðμ⃗jm⃗Þ with coherent states Ψ0
η5ðμ5jm5Þ on S5 and Ψ0

ρ̃5
ðμ05jm0

5Þ on S6 that are not
glued. The full partition function for Mþ∪− can now be written as

Zρ̃5;η5ðfμab þ iαabjmabgðabÞÞ ¼
�

k
4π2

�
8
Z
ðC×T2Þ×4

½dρa�ZMþðρ⃗; η5ÞZM−
ðρ⃗; ρ̃5Þ; ð103Þ

where ρ⃗ ¼ fρag4a¼1 with ρa ¼ ðxa; ya; zaÞ∈ T2 × C and similar for ρ̃5, η5. ZM� in (103) read,

ZMþðρ⃗; η5Þ ¼
X

fmag∈ ðZ=kZÞ5

Z
R5

fdμag
Y5
a¼1

Ψ0
ρaðμajmaÞjρ5→η5

fþðfμa þ iαag4a¼1; μ5 þ iα5jfmag4a¼1; m5Þ; ð104aÞ

ZM−
ðρ⃗; ρ̃5Þ ¼

X
fm0

ag∈ ðZ=kZÞ5

Z
R5

fdμ0ag
Y5
a¼1

Ψ0
ρ̃a
ðμ0ajm0

aÞf−ðfμ0a þ iðQ − αaÞg4a¼1; μ
0
5 þ iα05jfm0

ag4a¼1; m
0
5Þ; ð104bÞ

where fdμag ¼ dμ1 � � � dμ5 denotes five copies of measure for μa and similarly for fdμ0ag.
Lemma III.1. Both jZMþðρ⃗; η5Þj and jZM−

ðρ⃗; ρ̃5Þj are bounded from above on ðC × T 2Þ×4 for any given boundary
data ðλab; η5; ρ̃5Þ.
Proof. Recall the expression of the coherent state Ψ0

ρðμjmÞ ¼ ψ0
zðμÞξðx;yÞðmÞ. jξðx;yÞðmÞj is bounded on T2 for all m’s,

because ξðx;yÞðmÞ relates to the Jacobi theta function by ξðx;yÞðmÞ ¼ ffiffiffi
24

p
k−3=4e−

kyðy−ixÞ
4π ϑ3ð12 ð− 2πm

k þ xþ iyÞ; e−π
kÞ, and

ϑ3ðz; e−π
kÞ is analytic on C and x, y are bounded. On the other hand, jf�j is bounded onR5 for all μ⃗, since they are Schwartz

functions. Therefore,

jZMþðρ⃗; η5Þj ≤
X

fmag∈ ðZ=kZÞ5

Z
R5

fdμagjfþj
Y5
a¼1

jΨ0
ρa j ≤ Cþ

Y5
a¼1

�Z
R5

dμae
−π
k

P
a
ðμa− k

π
ffiffi
2

p ReðzaÞÞ2
�

¼ Cþk5=2 ð105Þ

for some 0 < Cþ < ∞. The same argument also holds for ZM−
which leads to jZM−

ðρ⃗; ρ̃5Þj ≤ C−k5=2 for some
0 < C− < ∞. ▪

C. The face amplitude and the full amplitude forM +∪−
After obtaining the Chern-Simons partition function in

the coherent state representation, we are left to impose the
simplicity constraints as described in Sec. II C to define the
spinfoam amplitude for Mþ∪−. That is, to impose the first-
class constraints, we require ReðμabÞ ¼ 0; ∀ðabÞ and that
mab depends on jab in the way of (29). The second-class
constraints, on the other hand, are imposed by requiring that
the coherent state labels ρa ¼ ðza; xa; yaÞ; ∀a ¼ 1;…; 5,
are parametrized by ðθ̂a; ϕ̂aÞ∈ ½0; π� × ½0; π� satisfying the
triangle inequality (45). We denote these coherent state
labels as ρ̂a.
One last ingredient to include for completing the

amplitude for Mþ∪− is the face amplitude, since there
are torus cusp boundaries in the manifold Mþ∪− and each
torus cusp corresponds to an internal face in the spinfoam
melon graph. There are in total six torus cusps, each of
which contributes a face amplitude depending on a spin

(from the lesson on 3D spinfoams and the EPRL-FK
model).
Denote j⃗≡ fjabg ¼ fj⃗f; j⃗bg with j⃗b being the spins

for annuli connected to the boundary i.e. for ðabÞ ¼
fð15Þ; ð25Þ; ð35Þ; ð45Þg and j⃗f for the internal tori i.e.
for ðabÞ ¼ fð12Þ; ð13Þ; ð14Þ; ð23Þ; ð24Þ; ð34Þg. The form
of the face amplitude should relate to the boundary
Hilbert space and the amplitude behavior under the
decomposition [53]. According to the combinatorial quan-
tization of the Chern-Simons theory [54–56], the quantum
states of Chern-Simons theory at level k is described by the
quantum group deformation of the gauge group. After
imposing the simplicity constraints, the gauge group is
reduced to SU(2) (as we impose the reality conditions on
the trace coordinates). Therefore, we expect that the
boundary states are q-deformed spin network states of
the quantum group SUqð2Þ with q ¼ e2πi=k a root of unity
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depending on the Chern-Simons level k. We postulate a face amplitude

Afð2jfÞ ¼ ½2jf þ 1�μqeik
2πF fð−2πi

k 2jfÞ; μ∈R; jf ¼ 0;
1

2
;…;

k − 1

2
ð106Þ

with an undetermined power μ, where ½n�q ≔ qn−q−n
q−q−1 is a q-number. The limit ½n�q⟶

k→∞
n relates ½2jf þ 1�μq to ð2jf þ 1Þμ used

in the EPRL-FK model. F f is a real function that is determined in a moment. The reason of including e
ik
2πF f is that the

Chern-Simons partition function is a wave function (of position variables QI), which is determined up to a phase.
The full spinfoam amplitude for the melon graph then reads,

Z η̂5; ˆ̃ρ5
ðα⃗jj⃗bÞ ¼

Xðk−1Þ=2
jf¼0

Y6
f¼1

Afð2jfÞ
Z
Mj⃗

½dρ̂a�Av;þðα⃗; j⃗; ⃗ρ̂; η̂5ÞAv;−ðα⃗; j⃗; ⃗ρ̂; ˆ̃ρ5Þ; ð107Þ

where α⃗ ¼ ffαab; βabgðabÞ; fαa; βag4a¼1; α5;α
0
5; β5; β

0
5g are

all the positive angle dependence of the full amplitude.
Each integral

R
dρ̂a is over Mj⃗ satisfying the simplicity

constraints on Sa. The vertex amplitudeAv;� is obtained by
restricting the variables in ZM� to satisfy the simplicity
constraints.
Theorem III. 2. The melonic spinfoam amplitude

Zη̂5; ˆ̃ρ5
ðα⃗jj⃗bÞ is finite for any given boundary data fη̂5; ˆ̃ρ5; j⃗bg.

Proof. Both jAv;�j are bounded in the integration
domain, since jZM�j are bounded by Lemma III.1. Then
the integral is absolutely convergent since the domain of ρ̂a
is compact. Moreover, the sum over jf is a finite sum. We

then conclude that Zη̂5; ˆ̃ρ5
ðα⃗jj⃗bÞ is finite. ▪

The sums over different jf’s in (107) are independent.
However, the range of ðθ̂a; ϕ̂aÞa¼1;…;4, which has been

denoted by Mj⃗, is constrained by the triangle inequality

(45) (thus Mj⃗ depends on both jf and the boundary

data jb). For certain jf in the sum, Mj⃗ may become
measure-zero, then the integral vanishes. For instance, it
happens for jf’s violating the triangle inequality or jf ¼ 0

at some f.

IV. THE LARGE-k BEHAVIOR OF THE MELONIC
AMPLITUDE

In this section, we use stationary phase analysis to
analyze the large-k (equivalently Λ → 0) behavior of the
melonic amplitude (107). The sum over jf’s is subject to
the triangle inequality. Recall the relation 2jab ¼ mab,
we have

Zη̂5; ˆ̃ρ5
ðα⃗jm⃗Þ ¼

X
fmf ∈Z=kZg

Y6
f¼1

½mf þ 1�μqeik
2πF fð−2πi

k mfÞ
Z
M̄m⃗

½dρ̂a�Av;þðfmabgðabÞ; fρ̂ag4a¼1; η̂5ÞAv;−ðfmabgðabÞ; fρ̂ag4a¼1; ˆ̃ρ5Þ;

ð108Þ

where M̄m⃗ ≡Mj⃗. The vertex amplitudes for M� are explicitly given by

Av;þðfmabgðabÞ; fρ̂ag4a¼1; η̂5Þ ¼
X

fmag∈ ðZ=kZÞ5

Z
R5

fdμag
Y5
a¼1

Ψ0
ρ̂a
ðμajmaÞj ˆ̃ρ5→η̂5

e−
2π
k

P
4

a¼1
βaðμaþiαaÞ

× ZMþðiαab; fμa þ iαag4a¼1; μ5 þ iα5jmab; fmag4a¼1; m5Þ; ð109aÞ

Av;−ðfmabgðabÞ; fρ̂ag4a¼1; ˆ̃ρ5Þ ¼
X

fm0
ag∈ ðZ=kZÞ5

Z
R5

fdμ0ag
Y5
a¼1

Ψ0
ˆ̃ρa
ðμ0ajm0

aÞe−
2π
k

P
4

a¼1
β0aðμ0a−iαaÞ

× ZM−
ð−iαab; fμ0a þ iðQ − αaÞg4a¼1; μ

0
5 þ iα05j −mab; fm0

ag4a¼1; m
0
5Þ: ð109bÞ

We are interested in the scaling behavior of the amplitude (108) when k → ∞, while the boundary data is fixed. Here, the
boundary data includes j⃗b ¼ fjab ¼ mab

2
gðabÞ for ðabÞ ¼ ð15Þ; ð25Þ; ð35Þ; ð45Þ and the coherent state labels η̂5 and ˆ̃ρ5

(corresponding to S5 and S6 in Fig. 8). However, the parameters fμI; νI; mI; nIg of fQI;PIg involved in the integrals and
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sums all scale linearly in k as can be seen from their
definitions (A10). This motivates us to change variables to
the scale-invariant ones so that the large-k approximation
can be analyzed by the stationary phase method. In
Sec. IVA, we first make such a change of coordinates,
with which we rewrite the amplitude (108) for the melon
graph. At the large-k regime, an effective action of the
amplitude can be formulated. In Sec. IV B, we apply the
stationary analysis on the effective action to find the critical
points which dominate the contributions to the amplitude.

The effective action at the critical points turns out to be a
pure phase as analyzed in Sec. IV C. The scaling of the
amplitude in k partially comes from (the determinant of) the
Hessian matrix of the effective action, which we analyze in
detail in Sec. IV D.

A. Change coordinates and take the large k
approximation

We convert the parameters fμI; νI; mI; nIg12I¼1 into the
coordinates fQI;PIg12I¼1 by the relations,

μI ¼
kb

2πðb2 þ 1Þ ðQI þ Q̃IÞ; mI ¼
ik

2πðb2 þ 1Þ ðQI − b2Q̃IÞ; ð110aÞ

νI ¼
kb

2πðb2 þ 1Þ ðPI þ P̃IÞ; nI ¼
ik

2πðb2 þ 1Þ ðPI − b2P̃IÞ; ð110bÞ

which are the generalization of those in (A10) by allowing analytic continuation of μI , νI toC [hence Q̃I (resp. P̃I) is not the
complex conjugate of QI (resp. PI) in general]. The constraints μ0a þ iα0a ¼ iQ − ðμa þ iαaÞ, m0

a ¼ −ma (μa; μ0a ∈R) is
translated to constraints on X 0

a and X̃ 0
a as [recall the definitions (A12) of h and h̃]

X 0
a ¼ −Xa þ 2πi

�
1þ b2 þ 1

k

�
; X̃ 0

a ¼ −X̃a þ 2πi

�
1þ b−2 þ 1

k

�
: ð111Þ

When the first-class simplicity constraints are imposed, we demand ReðμabÞ ¼ 0 for all annuli ðabÞ’s. Each of these
constraints is translated into a constraint between the annulus variables Lab and L̃ab,

2L̃ab ¼ −2Lab þOðk−1Þ; ð112Þ

where Oðk−1Þ relates to αab.
Recall that the boundary data jab ¼ mab

2
are held fixed for ðabÞ ¼ ð15Þ; ð25Þ; ð35Þ; ð45Þ when we take k → ∞. It implies

that we scale some boundary Lab’s to zero at the same time, i.e.

Lab ¼ Oðk−1Þ; for ðabÞ ¼ ð15Þ; ð25Þ; ð35Þ; ð45Þ: ð113Þ

In order to deal with ZM� at large-k in a uniform way, it is convenient to define the following FN and FG coordinates

Q⃗þ ¼ ff2LabgðabÞ; fXag5a¼1g≡ Q⃗þ; ⃗Q̃þ ¼ ff−2LabgðabÞ; fX̃ag5a¼1g≡ ⃗Q̃
þj2L̃ab→−2Lab

; ð114aÞ

Q⃗− ¼ ff−2LabgðabÞ; fX 0
ag5a¼1g≡ Q⃗−j2L0

ab→−2Lab
; ⃗Q̃− ¼ ff2LabgðabÞ; fX̃ 0

ag5a¼1g≡ ⃗Q̃
−j2L̃0

ab→2Lab
; ð114bÞ

P⃗þ ¼ ffT abgðabÞ; fYag5a¼1g≡ P⃗þ; ⃗P̃þ ¼ ffT̃ abgðabÞ; fỸag5a¼1g≡ ⃗P̃
þ
; ð114cÞ

P⃗− ¼ ffT 0
abgðabÞ; fY0

ag5a¼1g≡ P⃗−; ⃗P̃− ¼ ffT̃ 0
abgðabÞ; fỸ0

ag5a¼1g≡ ⃗P̃
−
: ð114dÞ

One can then define the parameter vectors μ⃗�, ν⃗�, m⃗� and n⃗� of these coordinates accordingly. We will also extensively
use the notation a× ≔ aþ 10 in the rest of the paper.
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The amplitude Zη̂5; ˆ̃ρ5
ðα⃗jm⃗Þ involves some sums

P
n∈Z=kZ � � � where n∈ fmf;ma;m0

a; n⃗�g. We need to relate the sums to
integrals in order to apply the method of stationary phase. The trick is choosing a representation of the sum followed by the
Poisson resummation,14

X
n∈Z=kZ

fðnÞ ¼
Xk−1
n¼0

fðnÞ ¼
X
p∈Z

Z
k−δ

−δ
dnfðnÞe2πipn ¼ k

2π

X
p∈Z

Z
2π−δ=k

−δ=k
dJ f

�
k
2π

J
�
eikpJ ; ð115Þ

where J ¼ 2πn=k and δ > 0 is arbitrarily small. The application of this formula to the sums of n�;I and m�;a× in Av;� and
combining the Lebesgue measure dν�;I or dμ�;a×, we obtain for all I ¼ 1;…; 15, a ¼ 1;…; 5, that

dνϵ;I ∧ dJ ϵ;I ¼
k

2πQ
ð−idPϵ;I ∧ dP̃ϵ;IÞ; dμϵ;a× ∧ dKϵ;a ¼

k
2πQ

ð−idQϵ;a× ∧ dQ̃ϵ;a×Þ; ϵ ¼ �; ð116Þ

where J ϵ;I ¼ 2πnϵ;I=k and Kϵ;a ¼ 2πmϵ;a×=k. Similarly, the sum over mf becomes

X
mf ∈Z=kZ

� � � ¼ k
2π

X
uf ∈Z

Z
2π−δ=k

−δ=k
dðiQfÞe−kufQf � � � ; f ¼ 1;…; 6; ð117Þ

where iQf ¼ 2πmf=k. This procedure makes choices of the lift from ePϵ;I , eP̃ϵ;I , eQϵ;a× , eQ̃ϵ;a× , eQf to Pϵ;I , P̃ϵ;I , Qϵ;a× ,
Q̃ϵ;a× , Qf. The integration domain Mm⃗ of fθ̂a; ϕ̂ag is well-defined with continuous m⃗.

1. The large-k approximation of the vertex amplitudes

Let us first consider the large-k approximation of the vertex amplitudes Av;�. We apply the result in [1] and write the
partition functions ZM� in the form of path integrals at large k:

ZMϵ
¼ N 0

X
p⃗ϵ ∈Z15

Z
C×30
Pϵ×P̃ϵ

⋀
15

I¼1

ð−idPϵ;I ∧ dP̃ϵ;IÞekSp⃗ϵ ðP⃗ϵ;
⃗P̃ϵ;Q⃗ϵ;

⃗Q̃ϵÞ½1þOð1=kÞ�; ∀ϵ ¼ �; ð118Þ

The overall constant N 0 ¼ 4k15

ð2πÞ30Q15 and the effective action can be separated into four parts as

Sp⃗ϵ
¼ Sϵ0ðP⃗ϵ;

⃗P̃ϵ; Q⃗ϵ;
⃗Q̃ϵÞ þ Sϵ1ð−B⊤

ϵ · P⃗ϵÞ þ S̃ϵ1ð−B⊤
ϵ · ⃗P̃ϵÞ −

1

b2 þ 1
p⃗ϵ · ðP⃗ϵ − b2 ⃗P̃ϵÞ: ð119Þ

The vector p⃗ϵ comes from the Poisson resummation of n⃗ϵ [recall the expression (18)]. The first three terms in (119) are
explicitly [1]

Sϵ0
�
P⃗ϵ;

⃗P̃ϵ; Q⃗ϵ;
⃗Q̃ϵ

� ¼ −
1

k
⃗tϵ ·
�
P⃗ϵ þ ⃗P̃ϵ

�
−

i
4πðb2 þ 1Þ

h
P⃗ϵ ·

�
AϵB⊤

ϵ · P⃗ϵ þ 2Q⃗ϵ

�þ b2 ⃗P̃ϵ ·
�
AϵB⊤

ϵ · ⃗P̃ϵ þ 2
⃗Q̃ϵ

�i
−

1

2ðb2 þ 1Þ ⃗tϵ ·
�
P⃗ϵ − b2 ⃗P̃ϵ

�
; ð120aÞ

Sϵ1ð−B⊤
ϵ · P⃗ϵÞ ¼ −

i
2πðb2 þ 1Þ

X5
i¼1

�
Li2ðe−Xϵ

i Þ þ Li2ðe−Yϵ
i Þ þ Li2ðe−Zϵ

i Þ þ Li2ðe−Wϵ
i Þ�; ð120bÞ

S̃ϵ1ð−B⊤
ϵ · ⃗P̃ϵÞ ¼ −

i
2πðb−2 þ 1Þ

X5
i¼1

�
Li2ðe−X̃ϵ

aÞ þ Li2ðe−Ỹϵ
i Þ þ Li2ðe−Z̃ϵ

i Þ þ Li2ðe−W̃ϵ
i Þ�; ð120cÞ

14We use the Poisson resummation formula in [57];
P

k−1
n¼0 fðnÞ ¼

P
p∈Z e2πipðα−1

2
Þ R k

0 dnfðnþ α − 1
2
Þe2πipn for any α∈R satisfying

jαj < 1
2
. Take α ¼ 1

2
− δ with δ > 0 being arbitrarily small. Equation (115) is obtained by a change of variable. The sum of m0

a after
imposing the gluing constraint m0

a ¼ −ma becomes
P

0
m0

a¼−kþ1
. However, fðm0

aÞ involved in our discussion are periodic in m0
a i.e.

fðm0
a þ kÞ ¼ fðm0

aÞ, hence it does no harm to shift to
P

k−1
m0

a¼0
then (115) can still be applied.
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where −B⊤
ϵ · P⃗ϵ ¼ ðXϵ

i ; Y
ϵ
i ; Z

ϵ
i Þ5i¼1 with notations ðXþ

i ; Y
þ
i ; Z

þ
i Þ≡ ðXi; Yi; ZiÞ and ðX−

i ; Y
−
i ; Z

−
i Þ≡ ðXiþ5; Yiþ5; Ziþ5Þ. i

here denotes the octahedron OctðiÞ. Similarly for the tilde sectors. Li2 appearing in (120b) and (120c) is the dilogarithm
function defined as

Li2ðzÞ ≔ −
Z

z

0

lnð1 − uÞ
u

du ð121Þ

for z∈C. B⊤
ϵ transforms the momenta P⃗ϵ and

⃗P̃ϵ on the 3-manifoldMϵ to position variables on the octahedra fOctðiÞg of
Mϵ. This is the reversed version of the coordinate transformation (A33).Wϵ

i and W̃
ϵ
i are obtained from the constraints on an

octahedron:

Xϵ
i þ Yϵ

i þ Zϵ
i þWϵ

i ¼ 2πiþ 2πi
k

ðb2 þ 1Þ; X̃ϵ
i þ Ỹϵ

i þ Z̃ϵ
i þ W̃ϵ

i ¼ 2πiþ 2πi
k

ðb−2 þ 1Þ: ð122Þ

The effective actions Sϵ1 and S̃ϵ1 as in (120b)–(120c) are obtained by taking the large-k approximation of all the quantum
dilogarithm functions within ZMϵ

. As an example,

Ψ△ðμXi
jmXi

Þ ¼ exp

�
−

ik
2πðb2 þ 1ÞLi2ðe

−XiÞ − ik
2πðb−2 þ 1ÞLi2ðe

−X̃iÞ
�
½1þOð1=kÞ�: ð123Þ

Let us consider now the inner product of ZMþ (resp. ZM−
) with coherent states. Firstly, we use the change of variables

(110a) to express the coherent states Ψ0
�;a ≔ Ψ0

ρ̂�;a
ðQ�;a× ; Q̃�;a×Þ into functions of the new variables, where

�
ρ̂þ;a ≡ ðẑþ;a; x̂þ;a; ŷþ;aÞ ≔ ðẑa; x̂a; ŷaÞ
ρ̂−;a ≡ ðẑ−;a; x̂−;a; ŷ−;aÞ ≔ ð− ˆ̄za;−x̂a; ŷaÞ

for a ¼ 1;…; 5;

ρ̂þ;5 ≡ ðẑþ;5; x̂þ;5; ŷþ;5Þ ≔ ðẑ5; x̂5; ŷ5Þ; ρ̂−;5 ≡ ðẑ−;5; x̂−;5; ŷ−;5Þ ≔ ð− ˆ̄z05;−x̂05; ŷ05Þ: ð124Þ

We then perform the Poisson resummation for the sums over mþ;a ≔ ma and m−;a ≔ m0
a in the inner product. We also

denote μþ;a ≔ μa; μ−;a ≔ μ0a for a ¼ 1;…; 5.

As a result, the inner product takes the form (we omit the factor e−
2π
k

P
4

a¼1
βϵ;aμϵ;a as it is subleading at large k)

Av;ϵðμ⃗ϵ; m⃗ϵ; ⃗ρ̂ϵÞ ¼
X

fmϵ;ag∈ ðZ=kZÞ5

Z
R5

fdμϵ;agZMϵ
ðμϵ;ajmϵ;aÞ

 Y5
a¼1

Ψ0
ϵ;aðμϵ;ajmϵ;aÞ

!

¼ N 1

X
p⃗ϵ ∈Z15

X
u⃗ϵ ∈Z5

Z
C×40Mϵ

dMϵ exp
h
kScohe

p⃗ϵ;u⃗ϵ; ⃗ρ̂ϵ
ðP⃗ϵ;

⃗P̃ϵ; Q⃗ϵ;
⃗Q̃ϵÞ
i
; ð125Þ

where N 1 ¼ N 0ð k2

4π2Q

ffiffi
2
k

q
Þ5 ¼ 16

ffiffi
2

p
ð2πÞ40Q20 k45=2 and

Z
C×40Mϵ

dMϵ ¼
Z
C×30
Pϵ×P̃ϵ

⋀
15

I¼1

�
−idPϵ;I ∧ dP̃ϵ;I

� Z
C×10
Qϵ;a××Q̃ϵ;a×

⋀
5

a¼1

�
−idQϵ;a× ∧ dQ̃ϵ;a×

�
: ð126Þ

The effective action in the exponent is

Scohe
p⃗ϵ;u⃗ϵ; ⃗ρ̂ϵ

ðP⃗ϵ;
⃗P̃ϵ; Q⃗ϵ;

⃗Q̃ϵÞ ¼ Sp⃗ϵ
ðP⃗ϵ;

⃗P̃ϵ; Q⃗ϵ;
⃗Q̃ϵÞ

þ
X5
a¼1

�
Sẑϵ;a

�
Qϵ;a× ; Q̃ϵ;a×

�þ Sðx̂ϵ;a;ŷϵ;aÞ
�
Qϵ;a× ; Q̃ϵ;a×

�
−

1

b2 þ 1
uϵ;a
�
Qϵ;a× − b2Q̃ϵ;a×

��
; ð127Þ
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where uϵ;a in the last term comes from the Poisson resummation of mϵ;a. Then the first two effective actions in the
summation

P
5
a¼1 of (127) takes the form,

Sẑϵ;aðQϵ;a× ; Q̃ϵ;a×Þ ¼ −
b

2πðb2 þ 1Þ
�
Qϵ;a× þ Q̃ϵ;a×

��b�Qϵ;a× þ Q̃ϵ;a×
�

2ðb2 þ 1Þ −
ffiffiffi
2

p
ˆ̄zϵ;a

�
−

1

2π
Reðẑϵ;aÞ2; ð128aÞ

Sðx̂ϵ;a;ŷϵ;aÞðQϵ;a× ; Q̃ϵ;a×Þ ¼ −
ix̂ϵ;aŷϵ;a

4π
−

1

4π

�
i
�
Qϵ;a× − b2Q̃ϵ;a×

�
b2 þ 1

− x̂ϵ;a

�2
−

1

2π

�
Qϵ;a× − b2Q̃ϵ;a×

�
ŷϵ;a

b2 þ 1
: ð128bÞ

The expression (128b) comes from the simplified version of ξðx̂ϵ;a;ŷϵ;aÞ when restricting mϵ;a ¼ 0;…; k − 1;
ðϵx̂ϵ;a; ŷϵ;aÞ∈ ½0; 2π� and neglecting the exponentially decaying contribution at large k. We keep in mind that, when
converting the variables fQϵ;a× ; Q̃ϵ;a×g in (128) back to μϵ;a using (110a), we should replace μϵ;a by Reðμϵ;aÞ as these
actions are form the coherent state Ψ0

ρ̂ϵ;a
ðReðμϵ;aÞjmϵ;aÞ. [See (155) below.] The same expressions as in (125)–(128) have

been obtained in [1] when considering one 3-manifold S3nΓ5, to which we refer for detailed derivation.

2. The full amplitudes

Lastly, we take into account the Poisson resummation (117) for
P

mf
and change the variables from mf to

Qf ∈ f2L12; 2L13; 2L14; 2L23; 2L24; 2L34g. In the large-k regime, the q-number ½mf þ 1�q is approximated by the integer
mf þ 1. With the simplicity constraints (112) imposed, they are related by

mf ¼ ik
2π

Qf; ∀f ¼ 1;…; 6 ⇒ mf þ 1 ¼ ik
2π

�
Qf þ

2π

ik

�
∼k→∞ ik

2π
Qf: ð129Þ

Since the discussion is in the large-k limit, we often identify 2Lab ∈ iR and do not distinguish it with Qf.
The total amplitude can be written as

Zη̂5; ˆ̃ρ5
ðμ⃗jm⃗Þ ¼ N

X
u⃗f ∈Z6

u⃗� ∈Z5

p⃗� ∈Z15

Z
C×86
Q×P

dMQ×P

Z
M̄m⃗

½dρ̂a�
 Y6

f¼1

ðiQfÞμ
!
ekStotðQ⃗tot;P⃗tot;

⃗Q̃tot;
⃗P̃totÞ½1þOðk−1Þ�; ð130Þ

where C×86Q×P is the integration contour for all the 86 ¼ 30 × 2þ 10 × 2þ 6 momentum and position integration variables
[recall (126)]:

dMQ×P ≔ dMþ ∧ dM− ∧
 
⋀
6

f¼1

dðiQfÞ
!
: ð131Þ

The prefactor N has three sources and reads,

N ¼
�
16

ffiffiffi
2

p
k45=2

ð2πÞ40Q20

�2

×

�
k2

ð2πÞ4
�

4

×

�
k
2π

�
6þ6μ

¼ 512k59þ6μ

ð2πÞ102þ6μQ40
; ð132Þ

where the first term comes from the two vertex amplitudes Av;� [see (125)], the second term comes from the delta
distributions for the four glued 4-holed spheres (see (102) and the last term comes from the six face amplitudes and the
change of integration variables dmf ¼ k

2π dðiQfÞ. The total effective action Stot is a function of 30 position variables

ðQ⃗tot;
⃗Q̃totÞ, 60 momentum variables ðP⃗tot;

⃗P̃totÞ and six sets of coherent state labels ffρ̂ag4a¼1; η̂5; ˆ̃ρ5g, where [recall (114)]

Q⃗tot ¼ fQ⃗þ;Q⃗−g; ⃗̃Qtot ¼ f ⃗̃Qþ;
⃗̃Q−g; P⃗tot ¼ fP⃗þ;P⃗−g; ⃗̃Ptot ¼ f ⃗̃Pþ;

⃗̃P−g requiring2L̃ab≡−2Lab; ∀ðabÞ:
ð133Þ
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The total action is

StotðQ⃗tot; P⃗tot;
⃗Q̃tot;

⃗P̃totÞ ¼
X
ϵ¼�

Scohe
p⃗ϵ;u⃗ϵ; ⃗ρ̂ϵ

ðP⃗ϵ;
⃗P̃ϵ; Q⃗ϵ;

⃗Q̃ϵÞ

þ
X6
f¼1

�
i
2π

F fð2LfÞ− ufQf

�
;

ð134Þ

where Scohe
p⃗ϵ;u⃗ϵ; ⃗ρ̂ϵ

ðP⃗ϵ;
⃗P̃ϵ; Q⃗ϵ;

⃗Q̃ϵÞ is defined in (127) and

fufg6f¼1 ∈Z6 come from the Poisson resummations

of fmfg6f¼1.
Note that although the leading-order behavior of Stot is

linear in k, it does not scale uniformly as k → ∞, because

(113) and the term − 1
2
⃗tϵ · ðP⃗ϵ þ ⃗P̃ϵÞ in Sϵ0 result in some

terms in Stot not scaling in k. In performing the stationary
phase analysis, one may firstly extract the terms in Stot that
is linear in k, denoted by S0tot and derive the critical equation
∂S0tot ¼ 0, whose solutions denoted by x0c make dominant
contribution to the integral (130). However, we can also use

Stot and the express (130) for the stationary phase analysis.
The critical equation ∂Stot ¼ 0 will contain some terms of
Oðk−1Þ. The solution to ∂Stot ¼ 0 is denoted by xc. The
difference between xc and x0c is of Oðk−1Þ. Therefore, the
dominant contributions of (130) computed respectively
from xc and x0c are different only by some subleading
contributions of Oðk−1Þ, which does not affect our dis-
cussion since we focus on the leading asymptotic behavior.

B. Stationary phase analysis of the effective action

Now that we have written the total amplitude Z η̂5; ˆ̃ρ5
for

Mþ∪− in terms of the scale-invariant variables

fP⃗ϵ;
⃗P̃ϵ; Q⃗ϵ;

⃗Q̃ϵg, stationary analysis can be performed
on the effective action (134). Denote for short Scoheϵ ¼
Scohe
p⃗ϵ;u⃗ϵ; ⃗ρ̂ϵ

and S0;f ¼ Sþ0 þ S−0þ i
2πF fð2LfÞ − ufQf. Notice

that the dependence of Stot on ðP⃗ϵ;
⃗P̃ϵÞ is all in Sp⃗ϵ

defined
in (119), the dependence on Qf is in S0;f and the

dependence on ðQϵ;a× ; Q̃ϵ;a×Þ is in Scoheϵ , one can simplify
the critical equations to be

∂Sp⃗þ

∂Pþ;I
¼ ∂Sp⃗−

∂P−;I
¼ ∂Sp⃗þ

∂P̃þ;I

¼ ∂Sp⃗−

∂P̃−;I
¼ 0; ∀I ¼ 1;…; 15; ð135aÞ

∂S0;f
∂Qf

¼ 0; ∀f ¼ 1;…; 6; ð135bÞ

∂Scoheþ
∂Qþ;a×

¼ ∂Scohe−

∂Q−;a×
¼ ∂Scoheþ

∂Q̃þ;a×
¼ ∂Scohe−

∂Q̃−;a×
¼ 0; ∀a ¼ 1;…; 5: ð135cÞ

1. Momentum aspects

We first analyze the derivatives (135a) of Pϵ;I and P̃ϵ;I for all I ¼ 1;…; 15, (recall the explicit expressions (119)–(120)
of the action),

∂Sp⃗ϵ

∂Pϵ;I
¼ −

tϵ;I
2k

−
i

2πðb2 þ 1Þ
��
AϵB⊤

ϵ · P⃗ϵ

�
I þQϵ;I

�
−

tϵ;I
2ðb2 þ 1Þ þ

i
2πðb2 þ 1Þ

�
Bϵ · P⃗ϵ

�
I −

pϵ;I

b2 þ 1
; ð136aÞ

∂Sp⃗ϵ

∂P̃ϵ;I

¼ −
tϵ;I
2k

−
i

2πðb−2 þ 1Þ
��
AϵB⊤

ϵ · ⃗P̃ϵ

�
I þ Q̃ϵ;I

�þ tϵ;I
2ðb−2 þ 1Þ þ

i
2πðb−2 þ 1Þ

�
Bϵ ·

⃗P̃ϵ

�
I þ

pϵ;I

b−2 þ 1
; ð136bÞ

where we have used the fact that AϵB⊤
ϵ is a symmetric matrix for both ϵ ¼ � and that

P⃗ϵ ≔
�
log

�
1 − e−Xi

1 − e−Wi

�
; log

�
1 − e−Yi

1 − e−Wi

�
; log

�
1 − e−Zi

1 − e−Wi

��
i¼1;…;5 if ϵ¼þ
i¼6;…;10 if ϵ¼−

; ð137aÞ

⃗P̃ϵ ≔
�
log

�
1 − e−X̃i

1 − e−W̃i

�
; log

�
1 − e−Ỹi

1 − e−W̃i

�
; log

�
1 − e−Z̃i

1 − e−W̃i

��
i¼1;…;5 if ϵ¼þ
i¼6;…;10 if ϵ¼−

; ð137bÞ

which comes from the derivative of the dilogarithm function dLi2ðziÞ
dzi

¼ − 1
zi
logð1 − ziÞ for zi ¼ xi; yi; zi; wi and i labels the

octahedron OctðiÞ. Here the imaginary part of logðxÞ is fixed to be in ½0; 2πÞ. Wi, W̃i are defined as
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Wi ≔ 2πiþ 2πi
k

ðb2 þ 1Þ − Xi − Yi − Zi; W̃i ≔ 2πiþ 2πi
k

ðb−2 þ 1Þ − X̃i − Ỹi − Z̃i:

The critical equations (136) look complicated at first sight. However, as explained below, they are simply the reformulation
of the algebraic curve equations (61) for ideal tetrahedra

z−1i þ z00i − 1 ¼ 0 ⇔ Z00
i ¼ logð1 − e−ZiÞ; with zi ¼ eZi ; z00i ≡ eZ

00
i ; ∀i ¼ 1;…; 5; ð138aÞ

z−1i þ z0i − 1 ¼ 0 ⇔ Z0
i ¼ logð1 − e−ZiÞ; with zi ¼ eZi ; z0i ≡ eZ

0
i ; ∀i ¼ 6;…; 10: ð138bÞ

For notational simplicity, we define W⃗ ¼ fWig10i¼1 and ⃗W̃ ¼ fW̃ig10i¼1 such that Wi ¼ W00
i , W̃i ¼ W̃00

i if i ¼ 1;…; 5
while Wi ¼ W0

i, W̃i ¼ W̃0
i if i ¼ 6;…; 10. Replacing the logarithm function logð1 − e−WiÞ by Wi in (137a) and logð1 −

e−W̃iÞ by W̃i in (137b), we rewrite P⃗ϵ and
⃗P̃ϵ into

P⃗ϵ ¼ flogð1 − e−XiÞ −Wi; logð1 − e−YiÞ −Wi; logð1 − e−ZiÞ −Wig i¼1;…;5 if ϵ¼þ
i¼6;…;10 if ϵ¼−

; ð139aÞ

⃗P̃ϵ ¼ flogð1 − e−X̃iÞ − W̃i; logð1 − e−ỸaÞ − W̃i; logð1 − e−Z̃iÞ − W̃ig i¼1;…;5 if ϵ¼þ
i¼6;…;10 if ϵ¼−

: ð139bÞ

Denote the original position and momentum coordinates for the ideal tetrahedra by

Φ⃗ϵ ¼ fXi; Yi; Zig i¼1;…;5 if ϵ¼þ
i¼6;…;10 if ϵ¼−

; and Π⃗ϵ ¼ fPXi
; PYi

; PZi
g i¼1;…;5 if ϵ¼þ
i¼6;…;10 if ϵ¼−

; ð140aÞ

⃗Φ̃ϵ ¼ fX̃i; Ỹi; Z̃ig i¼1;…;5 if ϵ¼þ
i¼6;…;10 if ϵ¼−

; and ⃗Π̃ϵ ¼ fPX̃i
; PỸi

; PZ̃i
g i¼1;…;5 if ϵ¼þ
i¼6;…;10 if ϵ¼−

: ð140bÞ

They are related to the new coordinates fQ⃗ϵ; P⃗ϵg and f ⃗Q̃ϵ;
⃗P̃ϵg by linear transformations that can be formulated neatly by

the following matrix multiplications [1], 
Q⃗ϵ − iπ ⃗tϵ

P⃗ϵ

!
¼
�

Aϵ Bϵ

−ðB⊤
ϵ Þ−1 0

� 
Φ⃗ϵ

Π⃗ϵ

!
;

 
⃗Q̃ϵ þ iπ ⃗tϵ

⃗P̃ϵ

!
¼
�

Aϵ Bϵ

−ðB⊤
ϵ Þ−1 0

� ⃗Φ̃ϵ

⃗Π̃ϵ

!
: ð141Þ

Or inversely,  
Φ⃗ϵ

Π⃗ϵ

!
¼
�

0 −B⊤
ϵ

B−1
ϵ A⊤

� 
Q⃗ϵ − iπ ⃗tϵ

P⃗ϵ

!
;

 
⃗Φ̃ϵ

⃗Π̃ϵ

!
¼
�

0 −B⊤
ϵ

B−1
ϵ A⊤

� ⃗Q̃ϵ þ iπ ⃗tϵ
⃗P̃ϵ

!
: ð142Þ

Therefore,

−2πiðb2 þ 1Þ ∂Sp⃗ϵ

∂Pϵ;I
¼ −

�
AϵB⊤

ϵ · P⃗ϵ

�
I −
�
Q⃗ϵ − iπ ⃗tϵ

�
I þ 2πipϵ;I þ

�
Bϵ · P⃗ϵ

�
I

¼ �Aϵ · Φ⃗ϵ

�
I −
�
Aϵ · Φ⃗ϵ

�
I −
�
Bϵ · Π⃗ϵ

�
I þ
�
Bϵ · P⃗ϵ

�
I þ 2πipϵ;I

¼ �Bϵ ·
�
P⃗ϵ − Π⃗ϵ

��
I þ 2πipϵ;I ≡ 0; ð143aÞ

−2πiðb−2 þ 1Þ ∂Sp⃗ϵ

∂P̃ϵ;I

¼ −
�
AϵB⊤

ϵ · ⃗P̃ϵ

�
I −
� ⃗Q̃ϵ þ iπ ⃗tϵ

�
I − 2πipϵ;I þ

�
Bϵ ·

⃗P̃ϵ

�
I

¼ �Aϵ ·
⃗Φ̃ϵ

�
I −
�
Aϵ ·

⃗Φ̃ϵ

�
I −
�
Bϵ ·

⃗Π̃ϵ

�
I þ
�
Bϵ ·

⃗P̃ϵ

�
I − 2πipϵ;I

¼ �Bϵ ·
� ⃗P̃ϵ − ⃗Π̃ϵ

��
I − 2πipϵ;I ≡ 0; ð143bÞ
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where we have omitted the first term− tϵ;I
2k in (136) at large k. The critical equations (143) are then equivalent to the following

equations,

ePZi
þWi ¼ 1 − e−Zi ; ePZ̃i

þW̃i ¼ 1 − e−Z̃i ; Zi ∈ fXi; Yi; Zig; Z̃i ∈ fX̃i; Ỹi; Z̃ig: ð144Þ

If we defined Z00
i ≔ PZi

þWi and Z̃
00
i ≔ PZ̃i

þ W̃i, then these equations are nothing but the algebraic curve equations (138)

for ideal tetrahedra. It is clear that p⃗ϵ relates to different lifts from ePZi , eWi to the logarithmic variables PZi
, Wi. By the

procedure in (115), we have fixed the lift ambiguities of all eQϵ;I , ePϵ;I , so the lifts of ePZi , eWi have already been fixed in the
integral representation of the amplitude. Therefore, (143a) and (143b) uniquely determine the values of p⃗ϵ.

2. Position aspects

Let us now move on to consider the derivative of S0;f w.r.t. the position variables. We first consider those (135b) w.r.t. the
positions on the torus cusps fQfg. The critical equations are

∂S0;f
∂Qf

¼ i
2πðb2 þ 1Þ

��
P−;f − b2P̃−;f

�
−
�
Pþ;f − b2P̃þ;f

��þ i
2π

F 0
fðQfÞ − uf ¼ 0; ð145Þ

where P�;f and P̃�;f correspond to the momenta conjugate to Qf and F 0
fðQfÞ ≔ dF fðQfÞ=dQf. The critical equation

solves,

n−;f − nþ;f þ
ik
2π

F 0
fð2LfÞ − kuf ¼ 0; ∀f ¼ 1;…; 6: ð146Þ

The conjugate momenta of fQIg10I¼1 ¼ f2LabgðabÞ are fPþ;I −P−;Ig10I¼1 ¼ fT ab − T 0
abgðabÞ as shown in (75). Ten pairs

of conjugate variables ð2Lab; T ab − T 0
abÞ associate respectively to six torus cusps f’s and four annulus cusps b’s of Mþ∪−

(blue lines in Fig. 8). fT ab − T 0
abg equal to six B-cycle holonomy eigenvalues on f’s and four FN twists on b’s calculated

by the snake rule for cusp boundaries up to a constant nπi with n∈Z (see Appendix H for details and for a generalized
argument):

T ab − T 0
ab ¼ Tab þ ζab; T̃ ab − T̃ 0

ab ¼ T̃ab − ζab; ð147Þ

where

ζ12 ¼ 0; ζ13 ¼ πi; ζ14 ¼ πi; ζ15 ¼ πi; ζ23 ¼ 0; ζ24 ¼−2πi; ζ25 ¼ 0; ζ34 ¼−πi; ζ35 ¼ 0; ζ45 ¼−πi:

ð148Þ

Note that ðabÞ’s involving 5 label the annuli, while others label the tori.
When we parametrize

Tf ¼ 2πi
k

ð−ibνf − nfÞ; T̃f ¼ 2πi
k

ð−ib−1νf þ nfÞ; νf ∈R; nf ∈ ½0; kÞ; ð149Þ

and by (147), we can rewrite (146) to be

−nf −
ik
2π

ζfþ
ik
2π

F 0
fð2LfÞ − kuf ¼ 0; ð150Þ

where i
2π ζf ∈

1
2
Z. We may set F f for f ¼ ð13Þ; ð14Þ; ð34Þ such that

i
2π

½ζf − F 0
fð2LfÞ�∈Z; i:e:

F 0
fð2LfÞ
iπ

is odd; ð151Þ

and F f ¼ 0 for f ¼ ð12Þ; ð23Þ; ð24Þ. Absorbing this integer into uf, the critical equation (146) becomes
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−nf − kuf ¼ 0: ð152Þ

The solutions of nf and uf ∈Z are both unique, since n�;f and nf have been restricted into a single period ½0; kÞ:

nf ¼ 0; uf ¼ 0: ð153Þ

Setting F 0 ¼ iπZ and a vanishing constant term in F leads to a sign factor,

e
ik
2πF f ¼ ð−1Þ2jf ; ð154Þ

in the face amplitude for f ¼ ð13Þ; ð14Þ; ð34Þ.
For the remaining position variables fQϵ;a× ; Q̃ϵ;a×g5a¼1 defined in (114a) and (114b), the critical equations (135c) give

∂Scoheϵ

∂Qϵ;a×
¼ −

iPϵ;a×

2πðb2 þ 1Þ −
bk−1

b2 þ 1

�
Reðμϵ;a×Þ −

kffiffiffi
2

p
π
ˆ̄zϵ;a

�
−

ik−1

b2 þ 1

�
mϵ;a× −

k
2π

x̂ϵ;a

�
−
ŷϵ;a þ 2πuϵ;a
2πðb2 þ 1Þ ≃ 0; ð155aÞ

∂Scoheϵ

∂Q̃ϵ;a×
¼ −

iP̃ϵ;a×

2πðb−2 þ 1Þ −
bk−1

b2 þ 1

�
Reðμϵ;a×Þ −

kffiffiffi
2

p
π
ˆ̄zϵ;a

�
þ ik−1

b−2 þ 1

�
mϵ;a× −

k
2π

x̂ϵ;a

�
þ ŷϵ;a þ 2πuϵ;a

2πðb−2 þ 1Þ ≃ 0: ð155bÞ

uϵ;a only shifts nϵ;a by multiple of k. By the same argument below Eq. (146), nϵ;a ∈ ½−δ; k − δ� fixed in (115) uniquely
determines uϵ;a ¼ 0. Use the notations in (90c) and (90d), and recall the notation (124) for ðẑϵ;a; x̂ϵ;a; ŷϵ;aÞ, the solution is
given by

ReðμaÞ ¼
kffiffiffi
2

p
π
ReðẑaÞ; ReðνaÞ ¼ −

kffiffiffi
2

p
π
ImðẑaÞ; ma ¼

k
2π

x̂a; na ¼ −
k
2π

ŷa; ∀a ¼ 1;…; 5; ð156aÞ

Reðμ0aÞ ¼ −
kffiffiffi
2

p
π
ReðẑaÞ; Reðν0aÞ ¼ −

kffiffiffi
2

p
π
ImðẑaÞ; m0

a ¼ −
k
2π

x̂a; n0a ¼ −
k
2π

ŷa; ∀a ¼ 1;…; 4; ð156bÞ

Reðμ05Þ ¼ −
kffiffiffi
2

p
π
Reðẑ05Þ; Reðν05Þ ¼ −

kffiffiffi
2

p
π
Imðẑ05Þ; m0

5 ¼ −
k
2π

x̂05; n05 ¼ −
k
2π

ŷ05: ð156cÞ

The critical points (156a)–(156b) immediately reproduce the gluing constraints on the position parameters and also
match the momentum parameters on fSag4a¼1 from Mþ and M−:

Reðμ0aÞ ¼ −ReðμaÞ; m0
a ¼ −ma; Reðν0aÞ ¼ ReðνaÞ; n0a ¼ na; a ¼ 1;…; 4: ð157Þ

Note that the coherent state ξ̄ðx;yÞðm0
aÞ is invariant under a

shiftm0
a → m0

a − k, which corresponds to shiftingQ−;a× →
Q−;a× þ 2πi while Q̃−;a× → Q̃−;a× − 2πi. Performing this
shift for fm0

ag4a¼1 would shift the solution to m0
a in (156b)

to m0
a ¼ k − k

2π x
0
a; hence, critical solutions ma and m0

a ¼
k −ma can both be taken to be in the range of ½−δ; k − δ� so
that the Poisson resummation (115) can be applied with no
ambiguity.
To summarize, the above discussion shows that a part of

the critical equations recovers the algebraic curve equation
for ideal tetrahedra under the octahedron constraints and
recovers the gluing constraints betweenMþ andM−. These
critical equations indicate that the critical points of the
amplitude are SLð2;CÞ flat connections on Mþ∪− satisfy-
ing the simplicity constraints. Moreover, because of the

sum over jf, the variation of Qf imposes an addition
constraint (153) to the flat connection. This additional
constraint is an analog of the ‘flatness constraint’ [58–60]
in the EPRL-KF spinfoam model for the following reason.
mf encodes the area of an internal triangle dual to the
spinfoam face f. Its conjugate variable nf then encodes the
deficit angle around this triangle. The solution to nf is
interpreted as bulk simplices being glued such that the bulk
curvature is a constant. Given mf, the solution to nf is
unique. It is a feature different from the case in EPRL-FK
model, where there may be infinitely many critical sol-
utions to the deficit angles separated by 4πZ. This
ambiguity seems to able to be resolved by adding a
nonvanishing cosmological constant, from the experience
of the spinfoam model we study in this paper.
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C. Amplitude at the critical points

At the critical points (156) solved from the derivative
w.r.t. the position variables of the actions Sẑϵ;a and Sðx̂ϵ;a;ŷϵ;aÞ
(128), we obtain the critical actions

S0ẑϵ;a ¼
i
π
Reðẑϵ;aÞImðẑϵ;aÞ; S0ðx̂ϵ;a;ŷϵ;aÞ ¼

i
4π

x̂ϵ;aŷϵ;a;

ð158Þ

which sum to zero when considering both ϵ ¼ � by
definition (124).
On the other hand, ekSp⃗ϵ is a pure phase at large k for the

following reasons. Firstly, the imaginary parts ImðμÞ’s for
all μ’s are not seen at large k and b−1 is the complex
conjugate of b by definition. Therefore, z̃ϵi is the complex
conjugate of zϵi for z

ϵ
i ∈ fxϵi ; yϵi ; zϵi ; wϵ

ig in OctðiÞ. We then
conclude that the sum Sϵ1 þ S̃ϵ1 is pure imaginary for both
ϵ ¼ � from the expressions (120b) and (120c). For the rest
of Sp⃗ϵ

, we rewrite them as

kSϵ0ðμ⃗ϵ; ν⃗ϵ; m⃗ϵ; n⃗ϵÞ− 2πip⃗ϵ · n⃗ϵ ¼
πi
k

�
−2
�
μ⃗ϵ −

iQ
2
⃗tϵ

�
· ν⃗ϵ þ 2m⃗ϵ · n⃗ϵ − ν⃗ϵ ·AϵB⊤

ϵ · ν⃗ϵ þ n⃗ϵ ·AϵB⊤
ϵ · n⃗ϵ þ kn⃗ϵ · ð⃗tϵ þ 2p⃗ϵÞ

�
:

ð159Þ

As the imaginary parts of μ⃗ϵ and ν⃗ϵ do not scale with k,
(159) is also imaginary at large k. Therefore, ekSp⃗ϵ
contributes to the amplitude only a phase at the critical
points.
Lastly, e

ik
2πF f only contribute a sign to the total amplitude.

The above stationary phase analysis is carried out for all
integrals except the integrals of ρ̂a. This means we study
Aη̂5; ˆ̃ρ5

ðfρ̂agÞ with fρ̂ag as parameters and we can write,

Z η̂5; ˆ̃ρ5
¼
Z
M̄m⃗

½dρ̂a�Aη̂5; ˆ̃ρ5
ðfρ̂agÞ: ð160Þ

Note that we can interchange the order of integrations
since Z η̂5; ˆ̃ρ5

is absolutely convergent. The above analysis
assumes the existence of critical point(s) at certain

fρ̂a ¼ ρ̂ð0Þa g. At fρ̂ð0Þa g, we have the purely imaginary
critical action being Stot evaluated at the critical point.
We denote the critical point by α and the critical action
by Sαtot. The critical action S

α
tot ∈ iR is scaleless in k. Each α

is associated with a unique ρ̂ð0Þa . The asymptotic of Aη̂5; ˆ̃ρ5

at ρ̂ð0Þa is

Aη̂5; ˆ̃ρ5
ðfρ̂ð0Þa gÞ ¼

X
α associated with fρ̂ð0Þa g

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−Hα=ð2πÞÞ

p
× ekS

α
tot ½1þOð1=kÞ�; ð161Þ

where Hα ¼ ∂
2ðkStotÞjα is the Hessian matrix evaluated at

the critical point α and N is given in (132). We have also
assumed that α are isolated and Hα are nondegenerate.
Then the sum of α is finite because all critical equations are
polynomial equations of certain degree in terms of expo-
nential coordinates eP, eQ, eP̃, eQ̃. Other situations are
going to be discussed in a moment in Sec. IV D. We have

removed the summations for p⃗�, u⃗�, u⃗f which come from
the Poisson resummations, because at the stationary points,
the following conditions must be satisfied,

u⃗� ¼ 0⃗; u⃗f; p⃗� are unique: ð162Þ

The conditions pick up only one term in the sums of p⃗�,
u⃗�, u⃗f.
However, it is generally possible that for some ρ̂a, the

critical point does not exist in the integration domain. In
this case, the asymptotics becomes

Aη̂5; ˆ̃ρ5
ðfρ̂agÞ ¼ Oð1=kNÞ; ∀N > 0; ð163Þ

i.e. it suppresses faster than any polynomial of k−1. Then
we can generalize the formula (161) for fρ̂ag in a

neighborhood of fρ̂ð0Þa g [61],

Aη̂5; ˆ̃ρ5
ðfρ̂agÞ ¼

X
α associated with fρ̂ð0Þa g

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−Hα=ð2πÞÞ

p
× ekS

α
totBαðfρ̂agÞ½1þOð1=kÞ�; ð164Þ

where Bα satisfies that Bα ¼ 1 at fρ̂a ¼ ρ̂ð0Þa g and of
Oðk−NÞ for any N > 0 elsewhere. Bα is smooth and
bounded on M̄m⃗.
The asymptotics of Z η̂5; ˆ̃ρ5

can be expressed as

Zη̂5; ˆ̃ρ5
ðμ⃗jm⃗Þ ¼

X
α

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−Hα=2πÞ

p ekS
α
tot

Z
M̄m⃗

½dρ̂a�Bαðfρ̂agÞ

× ½1þOð1=kÞ�: ð165Þ
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The ρ̂a-integrals are dominated by the contributions from

the neighborhoods of fρ̂ð0Þa g’s and is bounded. Here we
recall that

N ¼ 512k59þ6μ

ð2πÞ102þ6μQ40
: ð166Þ

Note that the above formula clearly assumes that the

critical point α exists at some fρ̂ð0Þa g.

D. The Hessian matrix

To obtain the total scaling of Zη̂5; ˆ̃ρ5
ðμ⃗jm⃗Þ with k, we are

left to calculate the scaling of the Hessian Hα at the critical
points. Let us first determine the dimension of the Hessian
matrix. This is given by the number of integration variables
in the expression (130) of the amplitude after imposing all
the simplicity constraints. These variables are summarized
as follows:

fQfg6f¼1 ¼ f2L12; 2L13; 2L14; 2L23; 2L24; 2L34g;
fQþ;a×g5a¼1 ¼ fX1;X2;X3;X4;X5g; fQ̃þ;a×g5a¼1 ¼ fX̃1; X̃ 2; X̃3; X̃ 4; X̃5g;
fQ−;a×g5a¼1 ¼ fX 0

1;X
0
2;X

0
3;X

0
4;X

0
5g; fQ̃−;a×g5a¼1 ¼ fX̃ 0

1; X̃
0
2; X̃

0
3; X̃

0
4; X̃

0
5g;

fPþ;Ig15I¼1 ¼ ffT abgðabÞ; fYag5a¼1g; fP̃þ;Ig15I¼1 ¼ ffT̃ abgðabÞ; fỸag5a¼1g;
fP−;Ig15I¼1 ¼ ffT 0

abgðabÞ; fY0
ag5a¼1g; fP̃−;Ig15I¼1 ¼ ffT̃ 0

abgðabÞ; fỸ0
ag5a¼1g: ð167Þ

Therefore, Hα is an 86 × 86 matrix. The entries are given by the second derivatives of the effective action Stot with the
simplicity constraints imposed. We now calculate the Hessian entries.

Second derivatives with respect to momenta.
Firstly, consider the second derivatives of Stot with respect to fPϵ;I ; P̃ϵ;Ig. The nontrivial results are all from the action

Sp⃗ϵ
. Since Sp⃗þ and Sp⃗− are not entangled, we can consider them separately. From (120), we get, for all I; J ¼ 1;…; 15,

∂
2Sp⃗ϵ

∂Pϵ;I∂Pϵ;J
¼ i

2πðb2 þ 1Þ
�
Bϵ ·

∂P⃗ϵ

∂P⃗ϵ

−AϵB⊤
ϵ

�
IJ

;
∂
2Sp⃗ϵ

∂P̃ϵ;I∂P̃ϵ;J

¼ i
2πðb−2 þ 1Þ

�
Bϵ ·

∂
⃗P̃ϵ

∂
⃗P̃ϵ

−AϵB⊤
ϵ

�
IJ

; ð168aÞ

∂
2Sp⃗ϵ

∂Pϵ;I∂P̃ϵ;J

¼ 0; ð168bÞ

where ∂P⃗ϵ

∂P⃗ϵ

�
resp: ∂

⃗P̃ϵ

∂
⃗P̃ϵ

�
is a block diagonal matrix in terms of Φ⃗ϵ (resp.

⃗Φ̃) and P⃗ϵ,
⃗P̃ϵ are defined in (139). Explicitly,

∂P⃗ϵ

∂P⃗ϵ

ðfXi; Yi; ZigÞ ¼ −diagðfEigÞ · B⊤
ϵ ;

∂
⃗P̃ϵ

∂
⃗P̃ϵ

ðX̃i; Ỹi; Z̃iÞ ¼ −diagðfẼigÞ ·B⊤
ϵ ; i ¼

�
1;…; 5 if ϵ ¼ þ
6;…; 10 if ϵ ¼ −

;

ð169Þ

where

Ei ¼ diag
�

e−Xi

1 − e−Xi
;

e−Yi

1 − e−Yi
;

e−Zi

1 − e−Zi

�
þ eXiþYiþZi

1 − eXiþYiþZi

0B@ 1 1 1

1 1 1

1 1 1

1CA; ð170aÞ

Ẽi ¼ diag

�
e−X̃i

1 − e−X̃i
;

e−Ỹi

1 − e−Ỹi
;

e−Z̃i

1 − e−Z̃i

�
þ eX̃iþỸiþZ̃i

1 − eX̃iþỸiþZ̃i

0B@ 1 1 1

1 1 1

1 1 1

1CA: ð170bÞ

Second derivatives with respect to positions.
Secondly, we calculate the second derivatives of Stot w.r.t. the position variables fQϵ;a× ; Q̃ϵ;a×g. (There are no nontrivial

second derivatives with respect to fQfg.) The nontrivial results are all from the action Sρ̂ϵ;a ¼ Sẑϵ;a þ Sðx̂ϵ;a;ŷϵ;aÞ and there are
no entanglement between different a’s or different ϵ’s. From the definitions (128),
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∂
2Sρ̂ϵ;a

∂Q2
ϵ;a×

¼ 1 − b2

2πðb2 þ 1Þ2 ;
∂
2Sρ̂ϵ;a

∂Q̃2
ϵ;a×

¼ b2ðb2 − 1Þ
2πðb2 þ 1Þ2 ;

∂
2Sρ̂ϵ;a

∂Qϵ;a∂Q̃ϵ;a×
¼ −

b2

πðb2 þ 1Þ2 ; ∀a ¼ 1;…; 5: ð171Þ

Second derivatives respect to positions and momenta.
There are cross-terms of positions and momenta in Sϵ0.

Therefore, they contribute nontrivial second derivatives of Stot

with respect to both the momentum variables fPϵ;I; P̃ϵ;Ig
and the position variables fQfg; fQϵ;a× ; Q̃ϵ;a×g. The
momenta corresponding to the internal tori are the elements
with indices I ¼ 1, 2, 3, 5, 6, 8 while others correspond to
the boundary annuli; hence, it is convenient to define
indices f× ¼ f1; 2; 3; 5; 6; 8g one-to-one corresponding to
the indices f ¼ f1; 2; 3; 4; 5; 6g. There is no correlation
between ϵ ¼ þ and ϵ ¼ −; hence, we consider them
separately:

∂
2Sϵ0

∂Pϵ;I∂Qf
¼ δI;f×

−iϵ
2πðb2 þ 1Þ ;

∂
2Sϵ0

∂P̃ϵ;I∂Qf
¼ δI;f×

iϵ
2πðb−2 þ 1Þ ; ð172aÞ

∂
2Sϵ0

∂Pϵ;I∂Qϵ;a×
¼ δI;a×

i
2πðb2 þ 1Þ ;

∂
2Sϵ0

∂P̃ϵ;I∂Q̃ϵ;a×
¼ δI;a×

i
2πðb−2 þ 1Þ : ð172bÞ

We observe that all the nonzero second derivatives
(168)–(172) are scaleless with k. Assume that the
Hessian is nondegenerate, then the power of its determinant
in k must be the same as the dimension of the integration,
which is the sum of 30 momenta fP�;I ; P̃�;Ig15I¼1 and 10
positions fQ�;a× ; Q̃�;a×g5a¼1 from both vertex amplitudes
as well as 6 position variables fQfg6f¼1 from the face
amplitudes. That is,

detðHαÞ ∝ k86: ð173Þ

Combining the power of k in N (132), we conclude that

Zη̂5; ˆ̃ρ5
¼ k16þ6μ

X
α

CαekS
α
tot

Z
M̄m⃗

½dρ̂a�Bαðfρ̂agÞ½1þOð1=kÞ�;

ð174Þ

where Cα does not scale with k
The result (174) is based on the assumption of the non-

degeneracy of the Hessian Hα. In the case of detðHαÞ ¼ 0
for some α, one needs to separate the part of the integral
corresponding to the degenerate directions and only applies
the stationary phase analysis to the rest of the integral,
where the Hessian is nondegenerate. Let us first consider a
simpler case when there exists a degenerate critical point α

associated with fρ̂ð0Þa g, whereas the degeneracy is caused
by continuously many critical points in a neighborhood of
α. From the argument of the geometrical interpretation,
as will be discussed in Sec. VI, this case happens in our
model. Let us focus on a neighborhood Uα of α in the
integration domain. We change the integration variables
into two subsets ðx⃗; ⃗tÞ where ⃗t ¼ ðt1;…; tdÞ satisfying
⃗tjα ¼ 0⃗ corresponds to all the degenerate directions of
Hessian, i.e. ∂ti∂tjStotjα ¼ 0 and the submatrix hα, whose

entries are ðhαÞij ≡ ∂xi∂xjStotjα, is nondegenerate. By the
assumption that there are continuously many critical points
in the ⃗t-directions, we have ∂tiStotðαþ ⃗tÞ ¼ 0; ∀ i ¼
1;…; d so Stotðαþ ⃗tÞ ¼ StotðαÞ ¼ SðαÞtot is constant on the
submanifold Vα of ⃗t in Uα. Performing the stationary phase
approximation for the x⃗-integral results in that the con-

tribution from Uα to the partial amplitude Aη̂5; ˆ̃ρ5
ðfρ̂ð0Þa gÞ is

given by the following integral:

N ekS
α
tot

Z
Vα

ddtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−hα=2πÞ

p ½1þOðk−1Þ�

∼ k16þ6μþd=2

Z
Vα

ddtuαð⃗tÞ½1þOðk−1Þ�; ð175Þ

where uαð⃗tÞ does not scale with k. The last integral must be
finite since the amplitude is finite at any k. As a result, the
degeneracy of the critical point increases the exponent of k
by d=2:

Z ˆ̃ρ5;η̂5
ðμ⃗jm⃗Þ ∼ k16þ6μþd=2ekS

α
tot

Z
M̄m⃗

½dρ̂a�Bαðfρ̂agÞ; ð176Þ

where d is the maximal number of degenerate directions in
the set of critical points. We discuss the possible existence
of such degenerate directions from the geometrical point of
view in Sec. VI.

V. INTEGRATION OVER COHERENT
STATE LABELS

We now discuss the integration of the coherent state labels
satisfying the simplicity constraints

R
M̄m⃗

½dρ̂a�Bαðfρ̂agÞ. The
integral of the coherent state label ρ̂a ¼ ðθ̂a; ϕ̂aÞ is over the
subdomain M̄m⃗ ⊂ ½0; π� × ½0; π� constrained by the triangle
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inequality. Recall that fixing the boundary configurationma5

at large k leads to La5 ¼ Oðk−1Þ for all annulus connections
on S5 and S6. It results in that one of the holes of each Sa,
a ¼ 1;…; 4, has the monodromy nearly trivial up toOðk−1Þ,
i.e. one of faig4i¼1 in the triangle inequality (45) is of
Oðk−1Þ. Let a1 ¼ ck−1 without loss of generality. It indi-
cates that

a2 − ck−1 ≤ θ̂ ≤ a2 þ ck−1; ð177Þ

where c ¼ 2πj1 for certain fixed j1. It means that M̄m⃗ is
very narrow in θ̂-direction and shrinks to measure-zero as
k → ∞. The ϕ̂-integral is not constrained. The integration
domain M̄m⃗ depends on k, so the ρ̂a-integrals cannot be
studied by using stationary phase analysis.
Let us first consider the θ̂a-integrals. The critical point

only associates with θ̂ ¼ a2 in (177). The integral is
confined to an arbitrarily small neighborhood of θ̂a.
Recall that Bα is smooth in the neighborhood, so, by the
mean value theorem,

Bαðfθ̂a; ϕ̂agÞ ¼ Bαðfθ̂ð0Þa ; ϕ̂agÞ þ
X
a

�
θa − θð0Þa

�
FaðfθagÞ

¼ Bαðfθ̂ð0Þa ; ϕ̂agÞ þOðk−1Þ; ð178Þ

where θ̂ð0Þa is the one associating to the critical point [a2 in
(177)], and FaðfθagÞ equals to the derivative ∂Bα=∂θ̂a
evaluated in the interval ½θa; θð0Þa �. Therefore, the θ̂a-
integrals behave asZ

θð0Þ
1
þc1k−1

θð0Þ
1
−c1k−1

dθ̂1 � � �
Z

θð0Þ
4
þc4k−1

θð0Þ
4
−c4k−1

dθ̂4Bαðfθ̂a; ϕ̂agÞ

¼ Ck−4Bαðfθ̂ð0Þa ; ϕ̂agÞ½1þOðk−1Þ�: ð179Þ

where C ¼ 24
Q

4
a¼1 ca.

When a1 → 0 and θ̂ is fixed to be a2, all ϕ̂∈ ½0; π�
correspond to the same SU(2) flat connection on a 3-holed
sphere (see the discussion in Sec. II C 2). Therefore, the flat
connections on all Sa’s and thus the flat connection on
M0þ∪− are independent of ϕ̂a. In other words, the critical
point exists for any ϕ̂a. Then the situation is the same as the
case of continuously many critical points. The ϕ̂a-integralsR ½dϕ̂a�Bαðfθ̂ð0Þa ; ϕ̂agÞ does not scale with k.
We conclude that the integral of ðθ̂a; ϕ̂aÞ4a¼1 contributes

k−4 scaling. Inserting this result to (176) gives

Z ˆ̃ρ5;η̂5
ðμ⃗jm⃗Þ ∼ k12þ6μþd=2ekS

α
tot : ð180Þ

As k → ∞, the amplitude forMþ∪− diverges when μ > −2.
This conclusion is drawn with the assumption that the
degeneracy of the critical points taken into account above is

maximal. If any additional degeneracy exists, the power of
the amplitude in k may increase as discussed in Sec. IV D.

VI. GEOMETRICAL INTERPRETATION
OF CRITICAL POINTS

In this section, we discuss the existence and properties of
the critical points from the geometrical point of view. It is
complementary to the possible degeneracy of the Hessian
matrix discussed in Sec. IV D.

The critical points of the partial amplitudeAη̂5; ˆ̃ρ5
ðfρ̂ð0Þa gÞ

are framed SLð2;CÞ flat connections in the open patch
defined by the triangulation of Mþ∪−. A framed flat
connection in the patch is an irreducible flat connection15

together with a choice of flat section of an associated flag
bundle at every cusps boundary [52]. A generic choice of
flat section always exists for every torus or annulus cusp,
since the fundamental group is Abelian. Therefore, finding
a framed flat connection boils down to finding an irreduc-
ible flat connection onMþ∪−. The closure of the open patch
covers all framed flat connections (with fixed boundary
triangulation) when the 3D ideal triangulation is suffi-
ciently refined, which we assume to be true.
Recall that at large k, the boundary configurations fjbkg≡

fja5k ¼ ja6
k g → 0; ∀ a ¼ 1;…; 4 as ja5 ¼ ja6 are kept

fixed. This means that the eigenvalues of holonomies
around all holes of S5 and S6 equal 1 up to Oð1=kÞ
correction. Resulting from this, the holes of fSag4a¼1

connected to S5 by annuli (which are the same ones
connected to S6 as can be seen from Fig. 8) all have
approximately trivial holonomy eigenvalues when the
connection is flat. It implies that the holonomy around
one hole of each Saða ¼ 1;…; 4Þ becomes, approximately,�

1 z

0 1

�
ð181Þ

for some z∈C. However, the simplicity constraints restrict
that the flat connection on every Sa is SU(2), so z≡ 0.
Therefore, the holonomy around any annulus cusps con-
necting S5 and S6 is trivial, since it relates (181) by
conjugation. The critical point can then be approximated
by a flat connection with trivial holonomies around all
annulus cusps (connecting S5 and S6). The error of the
approximation is of Oð1=kÞ. In contrast, for the internal

torus cusps, fjfkg≡ fjabk gðabÞ¼ð12Þ;ð13Þ;ð14Þ;ð23Þ;ð24Þ;ð34Þ are
finite at the critical points, so their A-cycle holonomies
are nontrivial.
In this approximation, we can remove the annulus cusps

with trivial holonomies, and we remove the boundaries S5

15A flat connection is called irreducible if the only elements of
SLð2;CÞ that commute with all holonomies are the central
elements �1.
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and S6 since they have no holes so the flat connections on
them are trivial. Then on each side,M� effectively becomes
a different graph complement of S3: M0

� ¼ S3nΓ4, where
Γ4 is the tetrahedron graph. The fundamental group
π1ðS3nΓ4Þ of M0

� is generated by�
lab





a;b¼ 1;…;4; a ≠ b;lab ¼ l−1
ba ;
Y
b

lab ¼ 1; ∀a
�
;

ð182Þ

where each lab is a closed loop in S3nΓ4 around an annulus
cusp connecting the holes of Sa and Sb. Given a Lie group
G, the irreducible G flat connection on S3nΓ4 is an
irreducible G-representation of π1ðS3nΓ4Þ modulo conju-
gation. The flat connection onM0

� can be identified as a flat
connection on the original M�, simply by adding trivial
holonomies as the representatives of the loops around the
annulus connecting S5 or S6.
Here we are not aiming at a full classification of the

critical points but showing their existence. We focus on the
SU(2) flat connections, which at least cover a subset of
critical points.
Lemma VI.1. There is a bijection from the set of four

points on the unit S3 modulo the SU(2) left and right
translations to SU(2) flat connections on S3nΓ4.
Proof. Given four points on S3 denoted by v1, v2, v3, v4.

Each vi can be uniquely represented by an SU(2) matrix.
We define hij ¼ viv−1j for any pair of i; j ¼ 1;…; 4 (i ≠ j).
The set of hij satisfies hijhjkhki ¼ 1. The data fhijg defines
a representation of the generators in π1ðS3nΓ4Þ by the
relation hij ¼ hðlabÞ for some i; j; a; b∈ f1; 2; 3; 4g. The
left translation acting on v1, v2, v3, v4 gives the conjugation
hij → ghijg−1 for any g∈SUð2Þ, and the right translation
leaves hij invariant.
By the right translation, we fix v1 ¼ 1 then we have

1-to-1 correspondence between fv1; v2; v3; v4g and
fh1j ¼ v−1j g, while other hij are completely fixed by
fh1jg via h1ihijhj1 ¼ 1. Therefore, modulo the left and
right translation, the map from the set of four points on S3

to SU(2) flat connections on S3nΓ4 is bijective. ▪
The flat connection on M0

� maps each lab to the SU(2)
holonomy hðlabÞ ¼ hij with i; j; a; b∈ f1; 2; 3; 4g. The
flat connection is irreducible for generic four points. The
eigenvalue of hðlabÞ is the FN variables λab ¼ e

2πi
k mab

associated to the annulus cusp connecting Sa and Sb.
If we write TrðhðlabÞÞ ¼ 2 cos θij, θij ∈ ½0; π�, then θij is
the geodesic length connecting vi and vj on S3. To see this,
we use the relation that the inner product hX; Yi ¼
− 1

2
½TrðXYÞ − TrXTrY� of any two SU(2) elements X and

Y is identical to the Euclidean inner product
P

3
i¼0 x

iyi of
two vectors x⃗ and y⃗ on R4, when we parametrize X ¼
x0I þ i

P
3
i¼1 x

iσi and Y ¼ y0I þ i
P

3
i¼1 y

iσi with fσig

being the Pauli matrices. We then obtain,

hvi; vji ¼
1

2
TrðhijÞ ¼ cos θij; ð183Þ

where the identity of SLð2;CÞ matrices—TrðgÞTrðhÞ ¼
TrðghÞ þ Trðgh−1Þ; ∀ g; h∈SLð2;CÞ—is used. The geo-
desic distances fθijg between all pairs of points uniquely fix
the positions of v1;…; v4 on S3 up to a global SU(2) left or
right translation. We are led to the following result.
Lemma VI.2. The FN variables fλabg uniquely determine

an SU(2) flat connection on M0
�.

Proof. The positions of four points v1;…; v4, on S3 have
3 × 4 ¼ 12 degrees of freedom, 2 × 3 ¼ 6 of which are
gauges of left and right translations. Therefore, the relative
positions of all points have six degrees of freedom and they
are fixed by the set of six geodesic distances fθijg. When
we restrict θij ∈ ½0; π�, they are uniquely determined by
fλabg through the relations 2 cos θij ¼ λab þ λ−1ab . The
SU(2) flat connection is determined by Lemma VI.1. ▪
Given that fλabg are shared byM0þ andM0

−, an SU(2) flat
connection on M0þ∪− ¼ M0þ ∪ M0

− is constructed from two
identical SU(2) flat connections on M0þ and M0

− respec-
tively; we denote the representations of the flat connections
on Mþ and M− by SU(2) group elements fhijg and fh0ijg
(modulo their conjugations), respectively. They being
identical means that there exists a g∈SUð2Þ such that
h0ij ¼ ghijg−1 for all pairs ði; jÞ’s. The fundamental group
π1ðM0þ∪−Þ adds 3 generators lI¼1;2;3 to π1ðS3nΓ4Þ, which
come from the three noncontractible cycles of the ambient
space in Fig. 8. The SU(2) element g is understood as the
parallel transport from the base point pþ ∈M0þ of fhijg to
the base point p− ∈M0

− of fh0ijg, but since g is obtained by
identifying fhijg and fh0ijg, g does not depend on the path
connecting pþ and p− (in particular, it does not depend
on which Sa the path goes across). It indicates that the
holonomy along each lI has to be trivial. As a result,
fhijg and hðlIÞ ¼ 1 define an SU(2) representation of
π1ðM0þ∪−Þ. The SU(2) flat connection onM0þ∪− is obtained
by the gauge equivalence class of this representation.
hðlIÞ ¼ 1 implies that all B-cycle holonomies of the torus
cusps are trivial, consistent with the critical equation
nf ¼ 0 from (153). The resulting flat connection is irre-
ducible if fhijg are generic, and it can be identified as an
irreducible flat connection on Mþ∪− by adding trivial
holonomies in the representation. So we obtain a critical

point of the partial ampltiude Aη̂5; ˆ̃ρ5
ðfρ̂ð0Þa gÞ up to Oð1=kÞ

correction, for any boundary data jb; η̂5; ˆ̃ρ5. This is based
on the assumption that the 3D ideal triangulation is
sufficiently refined so that the flat connection is covered
by the closure of the open patch.
By the above argument, different sets of fλabg determine

different SU(2) flat connections. OnM0þ∪−, the FN variables
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fλabg associated to the torus cusps are integrated in the
amplitude. There are continuously many SU(2) flat con-
nections on M0þ∪− labeled by different fλabg. All of these
flat connections should correspond to the critical points of
the amplitude. Then it suggests that there should exist
degeneracy of the HessianHα caused by continuously many
critical points. Recall the discussion at the end of the last
section. Here d ¼ jfλabgj ¼ 6 indicates that the scaling of
the amplitude should increase by k3 compared to (180);
hence,

Z ˆ̃ρ5;η̂5
ðμ⃗jm⃗Þ ∼ k15þ6μ: ð184Þ

This formula is valid if d ¼ 6 is the maximal number of
degenerate directions in the set of critical points. Rigorously
speaking, the power in the formula is a lower bound,
since any additional degeneracy, if exists, may increase
the power.

VII. CONCLUSION AND OUTLOOK

In this work, we analyze the radiative correction corre-
sponding to the melon graph with the spinfoam model
introduced in [1], which describes 4D quantum gravity with
a nonvanishing cosmological constant Λ. The melon graph
represents that two 4-simplices are glued by identifying
four tetrahedra. We first construct the Chern-Simons
partition function with the state-integral model for the
3-manifold Mþ∪− corresponding to the melon graph then
separate it into partition functions for two 3-manifolds,
each corresponding to a spinfoam vertice, by using the
over-completeness of the Chern-Simons coherent states.
The spinfoam amplitude forMþ∪− is obtained by imposing
simplicity constraints properly on the Chern-Simons par-
tition function followed by coupling with 6 face ampli-
tudes, each for a torus cusp. We propose a face amplitude as
a q-deformed version of that in EPRL-FK model combined
with a sign factor depending on the FN coordinate on the
torus cusp. A key point of the paper is to show that the
amplitude of the melon graph is finite. There is no infrared
divergence in the radiative correction.
We study the scaling behavior of the melon graph

amplitude at small jΛj. It scales as jΛj−6μ−15 provided that
the face amplitude is a degree-μ polynomial of internal
spins at small jΛj approximation. This provides the first-
order correction of a spinfoam edge amplitude. At the
jΛj → 0 limit, such a radiative correction diverges
when μ > −5=2.
This work is the first application of this newly con-

structed spinfoam model. Compared to the original model
[1], we modify the imposition of the second-class simplic-
ity constraints by using the trace coordinates as described in
Sec. II C 2 so that degenerate simplices are also included in
the expression of the spinfoam amplitude. A certain expo-
nential suppressing factor in the edge amplitude in [1] is

removed in the construction here, while the finiteness still
holds. Our analysis also establishes that this spinfoam
model is as computable as the EPRL-FK model and can be
easily generalized to a general triangulation.
It is natural to compare our result with that of the melonic

radiative correction of the EPRL-FK model, which was
recently found to scale as jΛj−1 at μ ¼ 1 by numerical
analysis [14]. Even though the amplitude in our case scales
differently (at least as jΛj−21 at μ ¼ 1), a contradiction is
not immediately drawn. This is because the coherent states
that define the two spinfoam models differ. The coherent
states in the EPRL-FK model are defined based on the
holonomy-flux algebra of loop quantum gravity while the
coherent states we use here are defined from the Chern-
Simons phase space variables. It is nevertheless interesting
to investigate the relation of these two coherent states
which then relates the two spinfoammodels. We expect that
it will explain the different scalings of the melonic radiative
corrections.
It is also interesting to study the divergence of the

spinfoam amplitude corresponding to a more complicated
spinfoam graph or even a general spinfoam graph. This
may be systematically analyzed by developing a GFT
formalism of the spinfoam model. Such a ‘group field’
should encode the information of the cosmological constant
and a consistent GFT should reproduce the divergent power
of the melonic radiative correction we discover in this
paper. When such a GFT is formulated and the relation of
coherent states in this spinfoam model and those in the
EPRL-FK model mentioned above is made clear, one
can compare the divergences for other spinfoam graphs
in this spinfoam model and the EPRL-FK model (see
e.g. [11,51,62]).
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APPENDIX A: CONSTRUCTION OF CHERN-
SIMONS PARTION FUNCTION ON S3nΓ5

In this appendix, we sketch the necessary steps to derive
the partition function (14) used in [1]. We refer to
e.g. [31,33,36] for more details of the construction.

1. Ideal tetrahedron partition function

The phase space of PSLð2;CÞ Chern-Simons theory on
the boundary ∂△ of an ideal tetrahedron △ is the moduli
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space Mflatð∂△; PSLð2;CÞÞ of framed16 flat PSLð2;CÞ
connection on ∂△. Each edge E belonging to the geodesic
boundary of ∂△ is dressed with an edge coordinate [38] xE
which is a coordinate in Mflatð∂△; PSLð2;CÞÞ. An edge
coordinate can also be lifted to its logarithmic coordinate
by choosing a branch such that xE ¼ eχE . The PSLð2;CÞ
holonomies on ∂△ can be written as 2 × 2 matrices whose
matrix elements are in terms of the edge coordinates
dressing the edges they cross. This is called the ‘snake
rule’. We refer to [30,33] for a detailed description of the
snake rules. For a holonomy along a disc cusp with
eigenvalue λ≡ eL, the snake rule gives

Y
Earound disc cusp

ð−xEÞ ¼ λ2 ⟺
X

Earound disc cusp

ðχE − iπÞ ¼ 2L:

ðA1Þ

One immediately realizes that the edge coordinates are not
sensitive to the sign of the eigenvalue λ. This reflects the
fact that the gauge group is PSLð2;CÞ rather than SLð2;CÞ.
One can easily choose a lift

ffiffiffiffiffiffiffiffiffi−xE
p

or − ffiffiffiffiffiffiffiffiffi−xE
p

of the edge
coordinates, in which case the gauge group is lifted to
SLð2;CÞ. (We will choose the former lift for all the edges
when constructing the discrete simplicity constraints. See
Sec. II C 2.) When the eigenvalues are all fixed for
holonomies around the four disc cusps of ∂△, the moduli
space of flat connection on ∂△ is a symplectic space with
the Poisson structure given by

fχE; χE0 g ¼ ϵEE0 ; ðA2Þ

where ϵEE0 ¼ 0;�1 counts the oriented triangles shared by
E, E0 and ϵEE0 ¼ 1 if E0 occurs to the left of E in the
triangle.
As shown in Fig. 5, the disc cusps of △ are not pierced

by Γ5 hence holonomies are trivial around each disc cusp.
In other words, the connection is flat on △. The Chern-
Simons phase space P∂△ on the boundary ∂△ is given by
three edge coordinates fz; z0; z00g∈C� each labeling a pair
of opposite edges of △ as shown in Fig. 3(a) and it is
defined as

P∂△ ¼ fz; z0; z00 ∈C�jzz0z00 ¼ −1g∈ ðC�Þ2: ðA3Þ

It comes from requiring that the holonomy h around (any)
one disc cusp of △ defined by the snake rule

h ¼
�
1 0

0 −z0

��
1 0

1 1

��
1 0

0 −z00

��
1 0

1 1

�
×

�
1 0

0 −z

��
1 0

1 1

�
≡
�

1 0

zz0ðz−1 þ z00 − 1Þ −zz0z00

�
ðA4Þ

is an SLð2;CÞ element hence detðhÞ ¼ 1. The constraint
zz0z00 ¼ −1 eliminates one edge coordinate, say z0, then the
holomorphic part of the Atiyah-Bott-Goldman symplectic
form can be written as

Ω ¼ dz00

z00
∧ dz

z
: ðA5Þ

Taking the antiholomorphic coordinates into account, the
symplectic form for the Chern-Simons action (8) is

ωk;s ¼
t
4π

Ωþ t̄
4π

Ω̄: ðA6Þ

Lift these coordinates to their logarithmic correspondence,
Z ≔ logðzÞ; Z0 ≔ logðz0Þ; Z00 ≔ logðz00Þ and similarly for
the antiholomorphic counterparts, the constraint of the edge
coordinates and the Poisson structure induced by (A6) are

Z þ Z0 þ Z00 ¼ iπ ¼ Z̄ þ Z̄0 þ Z̄00;

fZ; Z00gΩ ¼ 1 ¼ fZ̄; Z̄00gΩ̄: ðA7Þ

Therefore, ðZ; Z00Þ and ðZ̄; Z̄00Þ form two canonical pairs.
The quantization is based on another equivalent canonical
pairs ðμ; νÞ∈R2 and ðm; nÞ∈ ðZ=kZÞ2 defined as

Z ¼ 2πi
k

ð−ibμ−mÞ; Z00 ¼ 2πi
k

ð−ibν− nÞ;

Z̄ ¼ 2πi
k

ð−ib−1μþmÞ; Z̄00 ¼ 2πi
k

ð−ib−1νþ nÞ; ðA8Þ

where k∈Zþ is defined in (7) and b is a phase parameter
related to the Barbero-Immirzi parameter:

b2 ¼ 1 − iγ
1þ iγ

; ReðbÞ > 0; ImðbÞ ≠ 0;

jbj ¼ 1 ⇒ t ¼ 2k
1þ b2

; t̄ ¼ 2k
1þ b−2

: ðA9Þ

Conversely, one can express Z; Z00; Z̄; Z̄00 in terms of
ðμ; ν; m; nÞ as

μ ¼ k
2πQ

ðZ þ Z̄Þ; m ¼ ik
2πbQ

ðZ − b2Z̄Þ;

ν ¼ k
2πQ

ðZ00 þ Z̄00Þ; n ¼ ik
2πbQ

ðZ00 − b2Z̄00Þ;

Q ¼ bþ b−1: ðA10Þ

16The moduli space we describe in this paper is for framed flat
connection because the edge coordinates are defined as the cross-
ratios of the framing flags at the disc cusps of each ideal
tetrahedron. See [1] and references therein for more details.
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The symplectic form in terms of the new variables and the Poisson brackets it generates are

ωk;s ¼
2π

k
ðdν ∧ dμ − dn ∧ dmÞ; fμ; νgω ¼ fn;mgω ¼ k

2π
; fμ; ngω ¼ fν; mgω ¼ 0: ðA11Þ

To promote to the quantum theory, we introduce quantum parameters

q ¼ exp

�
4πi
t

�
¼ exp

�
2πi
k

ð1þ b2Þ
�
≡ eh; q̃ ¼ exp

�
4πi
t̄

�
¼ exp

�
2πi
k

ð1þ b−2Þ
�
≡ eh̃: ðA12Þ

Here, h ≔ 4πi=t (or equivalently h̃ ≔ 4πi=t̄) is a (nonstandard) complex quantum parameter related to the Chern-Simons
level whose h → 0 limit corresponds to the classical limit. A Poisson bracket fx; ygω is quantized to a commutator by

½x̂; ŷ� ≔ dfx; ygω=i. We allow the analytic continuation of μ, ν to be in C by adding imaginary parts, and define Z; Z00; Z̃ and
Z̃00 in the same way as in (A10) with these complex variables. Then Z̃ (resp. Z̃00) is not necessarily the complex conjugate of
Z (resp. Z00). The exponential of Z̃ and Z̃00 are denoted as z̃ and z̃00, respectively. The quantization of P∂△ promotes μ, m
(resp. Z; Z̃) to be multiplication operators μ, m (resp. Z; Z̃) and ν, n (resp. Z00; Z̃00) to be derivative operators ν, n (resp.
Z00; Z̃00) with the commutators

½Z00;Z� ¼ h; ½Z̃00; Z̃� ¼ h̃ ⟺ ½μ; ν� ¼ ½n;m� ¼ k
2πi

; ½μ;n� ¼ ½ν;m� ¼ 0: ðA13Þ

Upon quantization, we require the imaginary parts of μ and ν remain to be c-numbers. Projecting the commutators to the
exponential operators z; z00; z̃; z̃00, one finds q-Weyl and q̃-Weyl algebras,

z00z ¼ qzz00; z̃00z̃ ¼ q̃ z̃ z̃00; z̃00z ¼ zz̃00; z00z̃ ¼ z̃z00: ðA14Þ

Due to the discreteness and periodicity ofm, n, the spectra ofm, n are discrete and bounded to beZ=kZ. On the other hand,
the spectra of μ, ν are real. The kinematical Hilbert space of Chern-Simons theory is hence

Hkin
k;s ¼ L2ðRÞ ⊗C Ck; ðA15Þ

where Ck is a k-dimensional vector space. The quantum operators z; z00; z̃; z̃00 act on a wave function fðμjmÞ∈Hkin
k;s as

zfðμjmÞ ¼ zfðμjmÞ; z00fðμjmÞ ¼ fðμþ ibjm − 1Þ; z̃fðμjmÞ ¼ z̄fðμjmÞ; z̃00fðμjmÞ ¼ fðμþ ib−1jmþ 1Þ
ðA16Þ

or a reparametrized version

zfðz; z̃Þ ¼ zfðz; z̃Þ; z00fðz; z̃Þ ¼ fðqz; z̃Þ; z̃fðz; z̃Þ ¼ z̄fðz; z̃Þ; z̃00fðz; z̃Þ ¼ fðz; q̃ z̃Þ: ðA17Þ

ðz; z00Þ are holomorphic coordinates on P∂△. The moduli
space of flat PSLð2;CÞ connection on an ideal tetrahedron,
denoted as L△, is a holomorphic Lagrange submanifold of
P∂△ determined by further requiring the holonomy h
defined in (A4) to be trivial. In other words, L△ is an
algebraic curve given by

L△ ¼ fz−1 þ z00 − 1 ¼ 0g≡ fz̃−1 þ z̃00 − 1 ¼ 0g ⊂ P∂△:

ðA18Þ
Quantization promotes the algebraic curve to the quantum
constraints whose solution Ψ△ðμjmÞ satisfying

ðz−1 þ z00 − 1ÞΨ△ ¼ ðz̃−1 þ z̃00 − 1ÞΨ△ðμjmÞ ¼ 0 ðA19Þ

defines the Chern-Simons wave function for the ideal
triangulation, or the Chern-Simons partition function with
boundary condition specified by parameters μ and m.
Ψ△ðμjmÞ is the quantum dilogarithm function [34,63–65]17:

Ψ△ðμjmÞ ¼
Y∞
j¼0

1 − q̃jþ1z̃−1

1 − q−jz−1
: ðA20Þ

17As k ¼ 12π
l2
pγjΛj is taken to be positive integer, γ ∈Rþ hence

ImðbÞ < 0, leading to jqj < 1. Suppose k∈Z− then γ < 0 and
jqj > 1, the quantum dilogarithm function takes the form
Ψ△ðμjmÞ ¼Q∞

j¼0
1−qjþ1z−1

1−q̃−j z̃−1 , which is still the solution to (A19).
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Ψ△ has poles on the real line and in the lower half-plane ImðμÞ ≤ 0 but is holomorphic in the upper half-plane ImðμÞ > 0. Let
α, β > 0, (The absolute value of) the function e−

2π
k βμΨ△ðμþ iαjmÞ with μ∈R has limits

je−2π
k βμΨ△ðμþ iαjmÞj →

(
exp

�
− 2π

k βμ
�
; μ → þ∞

exp
�
− 2π

k μðαþ β −Q=2Þ�; μ → −∞
: ðA21Þ

Therefore, e−
2π
k βμΨ△ðμþ iαjmÞ is a Schwartz function when ðα; βÞ∈P△ satisfy the positive angle structure of△, defined as

P△ ¼ fðα; βÞ∈R2jα; β > 0; αþ β < Q=2g: ðA22Þ

The positive angle structure of a 3-manifold has been extensively discussed in e.g. [34,35] and it is useful for understanding the
Fourier transform of Ψ△. Let α ¼ ImðμÞ; β ¼ ImðνÞ, then RC dμe−2πi

k νμΨðμjmÞ is absolutely convergent when the integration
contour C is shift above the real axis while remains in P△.

2. Ideal octahedron partition function

Now that we have the Chern-Simons partition function Ψ△ on an ideal tetrahedron as the building block, the next step is
to construct the partition function on an ideal octahedron. Each ideal octahedron can be decomposed into four ideal
tetrahedra by adding an internal edge [see Fig. 3(b)]. We then have four copies of edge coordinates fx; y; z; wg (or
considering the logarithm coordinates fX; Y; Z;Wg) subject to the constraint,

c ¼ xyzw ¼ 1

c̃ ¼ x̃ ỹ z̃ w̃ ¼ 1
⟺

C ¼ X þ Y þ Z þW ¼ 2πi

C̃ ¼ X̃ þ Ỹ þ Z̃ þ W̃ ¼ 2πi
⟺

μX þ μY þ μZ þ μW ¼ 0

mX þmY þmZ þmW ¼ 0
: ðA23Þ

We define a set of symplectic coordinates ðX;PXÞ; ðY; PYÞ; ðZ; PZÞ; ðC;ΓÞ, where

PX ¼ X00 −W00; PY ¼ Y 00 −W00; PZ ¼ Z00 −W00; Γ ¼ W00; ðA24Þ

and similarly for the tilde sectors. Performing the symplectic reduction of the four copies of phase space P∂△ associated to
the four ideal tetrahedra by imposing the constraint C ¼ 2πi as well as quotient out the gauge orbit variable Γ, we obtain the
phase space P∂oct of the boundary of the ideal octahedron with the following symplectic form and Poisson structure.

ωoct
k;s ¼

2π

k

X
i

ðdνi ∧ dμi − dni ∧ dmiÞ;




 fμi; νjgω ¼ fni; mjgω ¼ k

2π δij

fμi; njgω ¼ fνi; mjgω ¼ 0
; i; j ¼ X; Y; Z: ðA25Þ

Quantization of the constraint C and C̃ adds a quantum correction as

c ¼ 1 → ĉ ¼ q ⟺ C ¼ 2πi → Ĉ ¼ 2πiþ h;

c̃ ¼ 1 → ˆ̃c ¼ q̃ ⟺ C̃ ¼ 2πi → ˆ̃C ¼ 2πiþ h̃: ðA26Þ

In terms of fμi;migi¼X;Y;Z;W which are the quantization of fμi; migi¼X;Y;Z;W , the quantum constraints read

μX þ μY þ μZ þ μW ¼ iQ; mX þmY þmZ þmW ¼ 0: ðA27Þ

Each octahedron partition function can hence be written in terms of the position variables ðx; y; z; x̃; ỹ; z̃Þ≡
exp½ðX; Y; Z; X̃; Ỹ; Z̃Þ� as

Zoctðx; y; z; x̃; ỹ; z̃Þ ¼
Y∞

i;j;k;l¼0

1 − qiþ1x−1

1 − q̃−ix̃−1
1 − qjþ1y−1

1 − q̃−jỹ−1
1 − qkþ1z−1

1 − q̃−kz̃−1
1 − qlxyz

1 − q̃−l−1x̃ ỹ z̃
; ðA28Þ
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where we have imposed the constraint (A26) to eliminate the variables w and w̃. e−
2π
k β⃗·μ⃗Zoctðfμi þ iαigjfmigÞ with μi ∈R

and β⃗ · μ⃗≡ βXμX þ βYμY þ βZμZ has the following asymptotic behavior:

je−2π
k β⃗·μ⃗Zoctðfμi þ iαigjfmigÞj ∼

�
e
2π
k μiðαXþαYþαZþβi−Q=2Þ; μi → þ∞

e
2π
k μiðαiþβi−Q=2Þ; μi → −∞

; ∀i ¼ X; Y; Z: ðA29Þ

This function is a Schwartz function of μX, μY and μZ if ðαX; αY; αZ; βX; βY; βZÞ∈R6 is inside the open polytope PðoctÞ
defined by the following inequalities:

αi > 0; αX þ αY þ αZ < Q; αi þ βi < Q=2; αX þ αY þ αZ þ βi > Q=2; ∀i ¼ X; Y; Z: ðA30Þ

ðα⃗; β⃗Þ∈PðoctÞ is the positive angle of an ideal octahedron and has been shown in [1] to be nonempty. We also define the
functional space

FPðoctÞ ¼
�
holomorphic f∶ C3 → Cj∀ðα⃗; β⃗Þ∈PðoctÞ; e−2π

k β⃗·μ⃗fðμ⃗þ iα⃗Þ∈SðR3Þ is Schwartz class
�
: ðA31Þ

This definition of the functional space FPðoctÞ can be generalized to the functional space FP corresponding to any given
positive angle structure P. (See e.g. Sec. A 3 for the case of S3nΓ5.) Combining the discrete representation part, we define

F ðkÞ
PðoctÞ ¼ FPðoctÞ ⊗C ðCkÞ⊗3: ðA32Þ

We conclude that Zoct ∈F ðkÞ
PðoctÞ.

3. Chern-Simons partition function on S3nΓ5

The Chern-Simons phase space P∂ðS3nΓ5Þ is simply the five copies of P∂oct with no more constraints to be imposed. To
impose the simplicity constraints in a more natural way as in Sec. II C, we change the symplectic coordinates as follows.
Denote the 15 position coordinates of the phase space P∂ðS3nΓ5Þ to be Φ⃗ ¼ ðXi; Yi; ZiÞi¼1;…;5 and the 15 momentum

coordinates to be Π⃗ ¼ ðPXi
; PYi

; PZi
Þi¼1;…;5 where each triple ðPXi

; PYi
; PZi

Þ is defined in the same way as (A24). The
change of symplectic coordinates corresponds to performing (a series of) symplectic transformations which can be
summarized by the following linear equations [1,37]:

�
Q⃗

P⃗

�
¼
�

A B

−ðB⊤Þ−1 0

��
Φ⃗
Π⃗

�
þ
�
iπ ⃗t

0

�
;





 Q⃗ ¼ ðf2LabgðabÞ; fXag5a¼1Þ
P⃗ ¼ ðfT abgðabÞ; fYag5a¼1Þ

; ðA33Þ

where A and B are 15 × 15 matrices with integer entries and ⃗t is a vector with integer elements [see (B2)]. ðQ⃗; P⃗Þ can also
be parametrized as (13). One can check that ðQ⃗; P⃗Þ do form a set of symplectic coordinates of the Chern-Simons
phase space P∂ðS3nΓ5Þ≡ ⊗5

i¼1 P∂OctðiÞ on ∂ðS3nΓ5Þ. The Atiyah-Bott-Goldman symplectic form and the Poisson structure
are [1,37]

Ω ¼
X15
I¼1

PI ∧ QI; fQI;PJgΩ ¼ δIJ; fQI;QJgΩ ¼ fPI;PJgΩ ¼ 0; I; J ¼ 1;…; 15: ðA34Þ

The Chern-Simons partition function Z× on S3nΓ5 written in terms of coordinates ðΦ⃗; Π⃗Þ is indeed the product of five

Zoct’s. To express it in terms of the new coordinates ðQ⃗; P⃗Þ, one separates the transformation matrix into generator matrices
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of the symplectic transformations:

�
A B

−ðB⊤Þ−1 0

�
¼
�
0 −1
1 0

��
1 0

AB⊤ 1

��
−ðB−1Þ⊤ 0

0 −B

�
: ðA35Þ

The three matrices on the right-hand side correspond to the S-type, T-type and U-type transformations, respectively [1,34].
Combining the affine translation σ ⃗t given by the vector ⃗t as shown in (A33), the total action on the wave func-
tion Z× corresponding to these transformation defines the Chern-Simons partition SS3nΓ5

on S3nΓ5 in terms of new
coordinates (13) [1]18:

Z0
S3nΓ5

ðμ⃗jm⃗Þ ¼ ððσ ⃗t ∘S∘T ∘UÞ⊳Z×Þðμ⃗jm⃗Þ

¼ 4i
k15

X
n⃗∈ ðZ=kZÞ15

Z
C×15

d15ν⃗ð−1Þn⃗·AB⊤·n⃗e
iπ
k ð−ν⃗·AB⊤·ν⃗þn⃗·AB⊤·n⃗Þe2πi

k ½−ν⃗·ðμ⃗−iQ
2
⃗tÞþn⃗·m⃗�Z×ð−B⊤ν⃗j −B⊤n⃗Þ: ðA36Þ

The positive angle structure PðS3nΓ5Þ for S3nΓ5 in terms of the new variables ðμ⃗; ν⃗Þ is [1]19:

PðS3nΓ5Þ ¼ σ0⃗t ∘S∘T ∘U∘PðoctÞ×5

⇒ If ðα⃗0; β⃗0Þ∈PðoctÞ×5; then ðα⃗4; β⃗4Þ ¼
�
Aα⃗0 þ Bβ⃗0 þ

Q
2
⃗t;−ðB−1Þ⊤α⃗0

�
∈PðS3nΓ5Þ: ðA37Þ

Inversely,

ðα⃗0; β⃗0Þ ¼
�
B⊤β⃗4;B−1α⃗4 þA⊤β⃗4 −

Q
2
⃗t

�
∈PðoctÞ×5: ðA38Þ

The symplectic transformations ensures that PðS3nΓ5Þ is nonempty since PðoctÞ×5 is nonempty, which concludes

that ZS3nΓ5
∈F ðkÞ

PðS3nΓ5Þ ¼ FPðS3nΓ5Þ ⊗C ðCkÞ⊗15.

APPENDIX B: SYMPLECTIC TRANSFORMATION OF COORDINATES ON M + AND M −
In this appendix, we collect the symplectic transformation matrix and the affine translation vector used in Secs. A 3

and III A 2. The linear symplectic transformation from ðΦ⃗ϵ; Π⃗ϵÞ ¼ ðfXi; Yi; Zig i¼1;…;5 if ϵ¼þ
i¼6;…;10 if ϵ¼−

; fPXi
; PYi

; PZi
g i¼1;…;5 if ϵ¼þ
i¼6;…;10 if ϵ¼−

Þ to

ðQ⃗ϵ; P⃗ϵÞ defined in (67) is

�
Q⃗ϵ

P⃗ϵ

�
¼
�

Aϵ Bϵ

−ðB⊤
ϵ Þ−1 0

��
Φ⃗ϵ

Π⃗ϵ

�
þ
�
iπ ⃗tϵ
0

�
: ðB1Þ

The ϵ ¼ þ copy of the coordinates, transformation matrix and translation vector are the same as in a single M3 used
in (A33).

18The factor ð−1Þn⃗·AB⊤·n⃗ is there to keep invariant the sign of the integrand of Z0
S3nΓ5

ðμ⃗jm⃗Þ when nI → nI þ k for any I. The sign
would change when k is odd as well as the Ith the diagonal element of AB⊤ is odd (which happens for some I’s).

19The operator σ⃗0⃗t for the positive angle structure is different from the affine transformation σ⃗ ⃗t acting on the wave functions. The latter
is given in (A33) while the former is defined as: σ⃗0⃗t∶ ðα⃗; β⃗Þ ↦ ðα⃗þ Q

2
⃗t; β⃗Þ [1].
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Explicitly, A�;B� and ⃗t� read,

A ¼ Aþ ¼

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 1 1 0 1 1 0 1 1 0

0 0 0 1 1 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 1 1 2 0 0 0 0 0 0

0 0 0 1 1 2 0 0 0 1 1 2 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

−1 −1 0 0 0 0 0 0 0 0 0 0 1 −1 0

1 −1 0 0 0 0 1 −1 0 0 0 0 0 0 0

−1 −1 −2 1 −1 0 0 0 0 0 0 0 1 1 0

1 1 0 0 0 0 0 0 0 −1 −1 0 0 0 0

0 0 0 −1 −1 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

−1 −1 −1 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 0 0 0 0 0 −1 0 0

−1 0 0 0 0 0 0 0 0 1 1 1 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ðB2aÞ

B ¼ Bþ ¼

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

0 0 0 0 1 0 0 0 0 0 1 −1 0 0 1

0 0 0 0 1 −1 0 0 1 0 0 0 0 1 −1
0 0 0 0 0 1 0 1 −1 0 0 1 0 0 0

−1 0 0 0 0 0 0 0 0 1 −1 0 −1 0 0

0 −1 0 0 0 0 −1 0 0 0 0 0 1 −1 0

1 −1 0 0 0 0 1 −1 0 −1 0 0 0 0 0

0 0 −1 1 −1 0 0 0 0 0 0 0 1 0 −1
1 0 −1 −1 0 0 0 0 0 −1 0 1 0 0 0

0 1 −1 −1 0 1 1 0 −1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 −1 1 0

−1 1 0 0 0 0 0 0 0 1 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ðB2bÞ

⃗t ¼ ⃗tþ ¼ ð−3;−3;−2;−4; 0; 1; 0; 1; 0; 0; 1; 1; 1; 0; 0Þ⊤; ðB2cÞ
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A− ¼

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 −1 −1 0 −1 −1 0 −1 −1
0 0 0 0 −1 −1 0 0 0 0 −1 1 0 0 0

0 0 0 0 −1 1 0 0 0 0 0 0 0 −1 1

0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 2 1 1

0 1 1 0 0 0 2 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 1 1 2 1 1 0 0 0 0 −1 −1 0 0 0

0 −1 1 0 −1 −1 0 1 1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1

1 1 1 0 0 0 0 0 0 0 0 0 1 0 0

−1 −1 −1 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0

0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ðB3aÞ

B− ¼

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 −1 0 0 −1 0 0 −1 0

0 0 0 0 −1 0 0 0 0 0 −1 1 0 0 −1
0 0 0 0 −1 1 0 0 −1 0 0 0 0 −1 1

0 0 0 0 0 −1 0 −1 1 0 0 −1 0 0 0

1 0 0 0 0 0 0 0 0 −1 1 0 1 0 0

0 1 0 0 0 0 1 0 0 0 0 0 −1 1 0

−1 1 0 0 0 0 −1 1 0 1 0 0 0 0 0

0 0 1 −1 1 0 0 0 0 0 0 0 −1 0 1

−1 0 1 1 0 0 0 0 0 1 0 −1 0 0 0

0 −1 1 1 0 −1 −1 0 1 0 0 0 0 0 0

0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 −1 0 0 0 0 0 0 0 0 0 1 −1 0

1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ðB3bÞ

⃗t− ¼ ð3; 1; 0; 0;−4;−3;−2;−1;−2; 0; 1;−1; 3; 2; 2Þ⊤: ðB3cÞ

APPENDIX C: FOCK-GONCHAROV COORDINATES AND FENCHEL-NIElSEN
COORDINATES ON M + AND M −

In this appendix, we collect the explicit definitions of the FG coordinates and FN coordinates dressing the edges or annuli
on Mþ and M− which are two copies of S3nΓ5. We refer to Fig. 9 for the face labels a; b; c; d; e; f; g; h; i; j. The FG
coordinates on each Sa in terms of the edge coordinates on fOctðiÞg are listed in Table I.
The FN coordinates f2Labg in P∂Mþ and the FN coordinates f2L0

abg in P∂M−
are defined in terms of the FG coordinates

on fSag as

2L12 ¼ χð1Þ34 þ χð1Þ35 þ χð1Þ45 − 3iπ; 2L0
12 ¼ χð1Þ89 þ χð1Þ8;10 þ χð1Þ9;10 − 3iπ; ðC1aÞ
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TABLE I. FG coordinates χðaÞij of 4-holed spheres in terms of the edge coordinates in fOctðiÞg. i; j denote that χðaÞij
is composed with coordinates from octahedra OctðiÞ and OctðjÞ. We have used the notations in Fig. 9 where the
octahedra are glued through the triangles labeled by a; b; c; d; e; f; g; h; i; j. Each ‘tilde triangle’ with the tilde label,
say ã2, labels the triangles symmetric to the triangle a2 with respect to the equator of Oct(2). We refer to [1] for more
details (where the ‘prime triangles’ are the same as the tilde triangles used here). Here Xi, Yi, Zi,Wi (i ¼ 1;…; 10)
are the tetrahedron edge coordinates from the four ideal tetrahedra in OctðiÞ.
S1: h̃2 ∩ h̃3∶ χð1Þ23 ¼ Z2 þ Z3 h̃3 ∩ ẽ4∶ χð1Þ34 ¼ Y 00

3 þ Z0
3 þ Z00

4 þW0
4

h̃2 ∩ ẽ4∶ χð1Þ24 ¼ Z00
2 þW0

2 þ Z4 h̃3 ∩ c̃5∶ χð1Þ35 ¼ Z00
3 þW0

3 þ Y 00
5 þ Z0

5

h̃2 ∩ c̃5∶ χð1Þ25 ¼ Y 00
2 þ Z0

2 þ Z5 ẽ4 ∩ c̃5∶ χð1Þ45 ¼ Y 00
4 þ Z0

4 þ Z00
5 þW0

5

h̃7 ∩ h̃8∶ χð1Þ78 ¼ Z7 þ Z8 h̃8 ∩ ẽ9∶ χð1Þ89 ¼ Y 00
8 þ Z0

8 þ Z00
9 þW0

9

h̃7 ∩ ẽ9∶ χð1Þ79 ¼ Z00
7 þW0

7 þ Z9 h̃8 ∩ c̃10∶ χð1Þ8;10 ¼ Z00
8 þW0

8 þ Y 00
10 þ Z0

10

h̃7 ∩ c̃10∶ χð1Þ7;10 ¼ Y 00
7 þ Z0

7 þ Z10 ẽ9 ∩ c̃10∶ χð1Þ9;10 ¼ Y 00
9 þ Z0

9 þ Z00
10 þW0

10

S2: f̃1 ∩ ĩ3∶ χð2Þ13 ¼ X00
1 þ Y 0

1 þ X3 ĩ3 ∩ f̃4∶ χð2Þ34 ¼ X00
3 þ Y 0

3 þW00
4 þ X0

4

f̃1 ∩ f̃4∶ χð2Þ14 ¼ X1 þ X4 ĩ3 ∩ b̃5∶ χð2Þ35 ¼ W00
3 þ X0

3 þ X00
5 þ Y 0

5

f̃1 ∩ b̃5∶ χð2Þ15 ¼ W00
1 þ X0

1 þ X5 f̃4 ∩ b̃5∶ χð2Þ45 ¼ X00
4 þ Y 0

4 þW00
5 þ X0

5

f̃6 ∩ ĩ8∶ χð2Þ68 ¼ X00
6 þ Y 0

6 þ X8 ĩ8 ∩ f̃9∶ χð2Þ89 ¼ X00
8 þ Y 0

8 þW00
9 þ X0

9

f̃6 ∩ f̃9∶ χð2Þ69 ¼ X6 þ X9 ĩ8 ∩ b̃10∶ χð2Þ8;50 ¼ W00
8 þ X0

8 þ X00
10 þ Y 0

10

f̃6 ∩ b̃10∶ χð2Þ6;10 ¼ W00
6 þ X0

6 þ X10 f̃9 ∩ b̃10∶ χð2Þ9;10 ¼ X00
9 þ Y 0

9 þW00
10 þ X0

10

S3: b̃1 ∩ ã2∶ χð3Þ12 ¼ Z0
1 þW00

1 þ X2 ã2 ∩ d̃4∶ χð3Þ24 ¼ W00
2 þ X0

2 þ Y 0
4 þ Z00

4

b̃1 ∩ d̃4∶ χð3Þ14 ¼ W0
1 þ X00

1 þ X0
4 þ Y 00

4 ã2 ∩ d̃5∶ χð3Þ25 ¼ X00
2 þ Y 0

2 þ Z0
5 þW00

5

b̃1 ∩ d̃5∶ χð3Þ15 ¼ W1 þW0
5 þ X00

5 d̃4 ∩ d̃5∶ χð3Þ45 ¼ Y4 þW5

b̃6 ∩ ã7∶ χð3Þ67 ¼ Z0
6 þW00

6 þ X7 ã7 ∩ d̃9∶ χð3Þ79 ¼ W00
7 þ X0

7 þ Y 0
9 þ Z00

9

b̃6 ∩ d̃9∶ χð3Þ69 ¼ W0
6 þ X00

6 þ X0
9 þ Y 00

9 ã7 ∩ d̃10∶ χð3Þ7;10 ¼ X00
7 þ Y 0

7 þ Z0
10 þW00

10

b̃6 ∩ d̃10∶ χð3Þ6;10 ¼ W6 þW0
10 þ X00

10 d̃9 ∩ d̃10∶ χð3Þ9;10 ¼ Y9 þW10

S4: ã1 ∩ c̃2∶ χð4Þ12 ¼ Z1 þ X0
2 þ Y 00

2 c̃2 ∩ j̃3∶ χð4Þ23 ¼ Y 0
2 þ Z00

2 þ Z0
3 þW00

3

ã1 ∩ j̃3∶ χð4Þ13 ¼ Y 00
1 þ Z0

1 þW0
3 þ X00

3 c̃2 ∩ j̃5∶ χð4Þ25 ¼ Y2 þ Y 0
5 þ Z00

5

ã1 ∩ j̃5∶ χð4Þ15 ¼ Z00
1 þW0

1 þ X0
5 þ Y 00

5 j̃3 ∩ j̃5∶ χð4Þ35 ¼ W3 þ Y5

ã6 ∩ c̃7∶ χð4Þ67 ¼ Z6 þ X0
7 þ Y 00

7 c̃7 ∩ j̃8∶ χð4Þ78 ¼ Y 0
7 þ Z00

7 þ Z0
8 þW00

8

ã6 ∩ j̃8∶ χð4Þ68 ¼ Y 00
6 þ Z0

6 þW0
8 þ X00

8 c̃7 ∩ j̃10∶ χð4Þ7;10 ¼ Y7 þ Y 0
10 þ Z00

10

ã6 ∩ j̃10∶ χð4Þ6;10 ¼ Z00
6 þW0

6 þ X0
10 þ Y 00

10 j̃8 ∩ j̃10∶ χð4Þ8;10 ¼ W8 þ Y10

S5: ĩ1 ∩ ẽ2∶ χð5Þ12 ¼ Y 0
1 þ Z00

1 þW0
2 þ X00

2 ẽ2 ∩ g̃3∶ χð5Þ23 ¼ Z0
2 þW00

2 þ Y 0
3 þ Z00

3

ĩ1 ∩ g̃3∶ χð5Þ13 ¼ Y1 þ X0
3 þ Y 00

3 ẽ2 ∩ g̃4∶ χð5Þ24 ¼ W2 þ Z0
4 þW00

4

ĩ1 ∩ g̃4∶ χð5Þ14 ¼ X0
1 þ Y 00

1 þW0
4 þ X00

4 g̃3 ∩ g̃4∶ χð5Þ34 ¼ Y3 þW4

S6: ĩ6 ∩ ẽ7∶ χð6Þ67 ¼ Y 0
6 þ Z00

6 þW0
7 þ X00

7 ẽ7 ∩ g̃8∶ χð6Þ78 ¼ Z0
7 þW00

7 þ Y 0
8 þ Z00

8

ĩ6 ∩ g̃8∶ χð6Þ68 ¼ Y6 þ X0
8 þ Y 00

8 ẽ7 ∩ g̃9∶ χð6Þ79 ¼ W7 þ Z0
9 þW00

9

ĩ6 ∩ g̃9∶ χð6Þ69 ¼ X0
6 þ Y 00

6 þW0
10 þ X00

9 g̃8 ∩ g̃9∶ χð6Þ89 ¼ Y8 þW9
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2L21 ¼ χð2Þ34 þ χð2Þ35 þ χð2Þ45 − 3iπ; 2L0
21 ¼ χð2Þ89 þ χð2Þ8;10 þ χð2Þ9;10 − 3iπ; ðC1bÞ

2L13 ¼ χð1Þ24 þ χð1Þ25 þ χð1Þ45 − 3iπ; 2L0
13 ¼ χð1Þ79 þ χð1Þ7;10 þ χð1Þ9;10 − 3iπ; ðC1cÞ

2L31 ¼ χð3Þ24 þ χð3Þ25 þ χð3Þ45 − 3iπ; 2L0
31 ¼ χð3Þ79 þ χð3Þ7;10 þ χð3Þ9;10 − 3iπ; ðC1dÞ

2L14 ¼ χð1Þ23 þ χð1Þ25 þ χð1Þ35 − 3iπ; 2L0
14 ¼ χð1Þ78 þ χð1Þ7;10 þ χð1Þ8;10 − 3iπ; ðC1eÞ

2L41 ¼ χð4Þ23 þ χð4Þ25 þ χð4Þ35 − 3iπ; 2L0
41 ¼ χð4Þ78 þ χð4Þ7;10 þ χð4Þ8;10 − 3iπ; ðC1fÞ

2L15 ¼ χð1Þ23 þ χð1Þ24 þ χð1Þ34 − 3iπ; 2L0
16 ¼ χð1Þ78 þ χð1Þ79 þ χð1Þ89 − 3iπ; ðC1gÞ

2L51 ¼ χð5Þ23 þ χð5Þ24 þ χð5Þ34 − 3iπ; 2L0
61 ¼ χð6Þ78 þ χð6Þ79 þ χð6Þ89 − 3iπ; ðC1hÞ

2L23 ¼ χð2Þ14 þ χð2Þ15 þ χð2Þ45 − 3iπ; 2L0
23 ¼ χð2Þ69 þ χð2Þ6;10 þ χð2Þ9;10 − 3iπ; ðC1iÞ

2L32 ¼ χð3Þ14 þ χð3Þ15 þ χð3Þ45 − 3iπ; 2L0
32 ¼ χð3Þ69 þ χð3Þ6;10 þ χð3Þ9;10 − 3iπ; ðC1jÞ

2L24 ¼ χð2Þ13 þ χð2Þ15 þ χð2Þ35 − 3iπ; 2L0
24 ¼ χð2Þ68 þ χð2Þ6;10 þ χð2Þ8;10 − 3iπ; ðC1kÞ

2L42 ¼ χð4Þ13 þ χð4Þ15 þ χð4Þ35 − 3iπ; 2L0
42 ¼ χð4Þ68 þ χð4Þ6;10 þ χð4Þ8;10 − 3iπ; ðC1lÞ

2L25 ¼ χð2Þ13 þ χð2Þ14 þ χð2Þ34 − 3iπ; 2L0
26 ¼ χð2Þ68 þ χð2Þ69 þ χð2Þ89 − 3iπ; ðC1mÞ

2L52 ¼ χð5Þ13 þ χð5Þ14 þ χð5Þ34 − 3iπ; 2L0
62 ¼ χð6Þ68 þ χð6Þ69 þ χð6Þ89 − 3iπ; ðC1nÞ

2L34 ¼ χð3Þ12 þ χð3Þ15 þ χð3Þ25 − 3iπ; 2L0
34 ¼ χð3Þ67 þ χð3Þ6;10 þ χð3Þ7;10 − 3iπ; ðC1oÞ

2L43 ¼ χð4Þ12 þ χð4Þ15 þ χð4Þ25 − 3iπ; 2L0
43 ¼ χð4Þ67 þ χð4Þ6;10 þ χð4Þ7;10 − 3iπ; ðC1pÞ

2L35 ¼ χð3Þ12 þ χð3Þ14 þ χð3Þ24 − 3iπ; 2L0
36 ¼ χð3Þ67 þ χð3Þ69 þ χð3Þ79 − 3iπ; ðC1qÞ

2L53 ¼ χð5Þ12 þ χð5Þ14 þ χð5Þ24 − 3iπ; 2L0
63 ¼ χð6Þ67 þ χð6Þ69 þ χð6Þ79 − 3iπ; ðC1rÞ

2L45 ¼ χð4Þ12 þ χð4Þ13 þ χð4Þ23 − 3iπ; 2L0
46 ¼ χð4Þ67 þ χð4Þ68 þ χð4Þ78 − 3iπ; ðC1sÞ

2L54 ¼ χð5Þ12 þ χð5Þ13 þ χð5Þ23 − 3iπ; 2L0
64 ¼ χð6Þ67 þ χð6Þ68 þ χð6Þ78 − 3iπ: ðC1tÞ

The conjugate momenta T ab and T 0
ab can be easily calculated through −ðB⊤

�Þ−1 · Φ⃗�. See also the Appendix of [1] for
the explicit expressions for T ab.
The FG coordinates fXa;Ya;X 0

a;Y0
ag5a¼1 are chosen to be

X1 ¼ χð1Þ25 ; X2 ¼ χð2Þ15 ; X3 ¼ χð3Þ15 ; X4 ¼ χð4Þ15 ; X5 ¼ χð5Þ14 ;

Y1 ¼ χð1Þ23 ; Y2 ¼ χð2Þ14 ; Y3 ¼ χð3Þ45 − 2πi; Y4 ¼ −χð4Þ35 þ 2πi; Y5 ¼ χð5Þ34 − 2πi;

X 0
1 ¼ χð1Þ79 ; X 0

2 ¼ χð2Þ6;10; X 0
3 ¼ χð3Þ6;10; X 0

4 ¼ χð4Þ6;10; X 0
5 ¼ χð6Þ6;9;

Y0
1 ¼ χð1Þ78 ; Y0

2 ¼ χð2Þ69 ; Y0
3 ¼ χð3Þ9;10 − 2πi; Y0

4 ¼ −χð4Þ8;10 þ 2πi; Y0
5 ¼ χð6Þ89 − 2πi: ðC2Þ
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APPENDIX D: GLUING OF HOLES FROM DIFFERENT 4-HOLED SPHERES TO ∂ðS3nΓ5Þ
Recall the FG coordinates ðXa;YaÞ on Sa whose definitions are given in Appendix C. If we label the holes on each Sa by

numbers 1,2,3,4, and identify zðaÞ12 ¼ eXa ; zðaÞ13 ¼ eYa ; ∀ a ¼ 1;…; 5, the way of gluing holes from different 4-holed sphere
to form ∂ðS3nΓ5Þ is unique.
Denote the ith (i ¼ 1, 2, 3, 4) hole in Sa as pðaÞi . The gluing (denoted by ∼ below) of holes between different Sa’s is

p
ð1Þ
1 ∼ p

ð4Þ
3 ; p

ð1Þ
2 ∼ p

ð3Þ
3 ; p

ð1Þ
3 ∼ p

ð5Þ
3 ; p

ð1Þ
4 ∼ p

ð2Þ
4 ; p

ð2Þ
1 ∼ p

ð3Þ
1 ;

p
ð2Þ
2 ∼ p

ð4Þ
1 ; p

ð2Þ
3 ∼ p

ð5Þ
1 ; p

ð3Þ
2 ∼ p

ð4Þ
2 ; p

ð3Þ
4 ∼ p

ð5Þ
2 ; p

ð4Þ
4 ∼ p

ð5Þ
4 ; ðD1Þ

which is graphically illustrated in Fig. 11. This means the zðaÞpipj ¼ −ðyðaÞpipjÞ2 in the trace coordinates formulas (34) in different
Sa’s correspond to the FG coordinates in the following way up to signs and �2πi:

zð1Þ12 → X ð1Þ
25 ; zð1Þ13 → X ð1Þ

23 ; zð1Þ14 → X ð1Þ
35 ; zð1Þ23 → X ð1Þ

24 ; zð1Þ24 → X ð1Þ
45 ; zð1Þ34 → X ð1Þ

34 ;

zð2Þ12 → X ð2Þ
15 ; zð2Þ13 → X ð2Þ

14 ; zð2Þ14 → X ð2Þ
45 ; zð2Þ23 → X ð2Þ

13 ; zð2Þ24 → X ð2Þ
35 ; zð2Þ34 → X ð2Þ

34 ;

zð3Þ12 → X ð3Þ
15 ; zð3Þ13 → X ð3Þ

45 ; zð3Þ14 → X ð3Þ
14 ; zð3Þ23 → X ð3Þ

25 ; zð3Þ24 → X ð3Þ
12 ; zð3Þ34 → X ð3Þ

24 ;

zð4Þ12 → X ð4Þ
15 ; zð4Þ13 → X ð4Þ

35 ; zð4Þ14 → X ð4Þ
13 ; zð4Þ23 → X ð4Þ

25 ; zð4Þ24 → X ð4Þ
12 ; zð4Þ34 → X ð4Þ

23 ;

zð5Þ12 → X ð5Þ
14 ; zð5Þ13 → X ð5Þ

34 ; zð5Þ14 → X ð5Þ
13 ; zð5Þ23 → X ð5Þ

24 ; zð5Þ24 → X ð5Þ
12 ; zð5Þ34 → X ð5Þ

23 : ðD2Þ

APPENDIX E: TRACE COORDINATES FROM THE SNAKE RULE

In this appendix, we describe the snake rule calculating the holonomies around one or two holes following [33], which
leads to the trace coordinate expressions (34) and (36). Notations can refer to Sec. II C 2.
Let us first fix the labels for the holes on a 4-holed sphere Sa, hence the edges fep1p2g on its ideal triangulation, to be

consistent with Fig. 6.
There are three rules for transporting a snake—an arrow pointing from one vertex of the triangle to another with a fin

facing inside the triangle, each corresponds to a matrix as follows. (The inverse transportation of each type corresponds to
the inverse of the relevant matrix.)

FIG. 11. Identifying the holes from different 4-holed spheres. The numbers 1,2,3,4 one each 4-holed sphere Sa denote the holes and
the red lines demonstrate the gluing of holes from different Sa’s. Each red line corresponds to a blue line (open or closed) in Fig. 8. Each
tetrahedron graph here is the same as the ideal triangulation (in black) as in Fig. 6.
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ðE1Þ

Type I and II correspond to transporting a snake within a triangle and type III corresponds to moving a snake from one
triangle to its adjacent triangle. Any holonomy of a closed loop can be calculated by multiplying the transportation matrices
corresponding to moving a snake along the holonomy.
Choose the snake starting on edge e13 pointing from hole 1 to hole 3 whose fin faces the triangle bounded by e12, e23, e13

as shown in Fig. 6. The holonomies around single holes 1, 2 and 3 read (from left to right)

h1 ¼
�
1 0

0 −z13

��
1 0

1 1

��
1 0

0 −z14

��
1 0

1 1

��
1 0

0 −z12

��
1 0

1 1

�
; ðE2aÞ

h2 ¼
�

1 0

−1 1

��
0 1

−1 0

��
1 0

0 −z12

��
1 0

1 1

��
1 0

0 −z24

��
1 0

1 1

��
1 0

0 −z23

��
0 1

−1 0

��
1 0

−1 1

��
0 1

−1 0

�
;

ðE2bÞ

h3 ¼
�
0 −1
1 0

��
1 0

1 1

��
1 0

0 −z23

��
1 0

1 1

��
1 0

0 −z34

��
1 0

1 1

��
1 0

0 −z13

��
0 1

−1 0

�
: ðE2cÞ

As the snake is not in the neighborhood of hole 4, the holonomy around hole 4 needs a ‘special edge’ to transport the snake
to its neighborhood. We choose the special edge to be e13. Then,

h4 ¼
�
1 0

0 −z13

��
1 0

1 1

��
0 −1
1 0

��
1 0

1 1

��
1 0

0 −z34

��
1 0

1 1

��
1 0

0 −z24

�
×

�
1 0

1 1

��
1 0

0 −z14

��
0 −1
1 0

��
1 0

−1 1

��
1 0

0 −1=z13

�
: ðE3Þ

With the chosen lift yp1p2 ≔
ffiffiffiffiffiffiffiffiffiffiffiffi−zp1p2

p , h1, h2, h3 and h4 are all SLð2;CÞ elements. Then the traces of these holonomies
reproduce the results of (33):

Trðh1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−z12z13z14

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−z12z13z14
p ¼ λ1 þ λ−11 ; Trðh2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−z12z23z24
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−z12z23z24

p ¼ λ2 þ λ−12 ;

Trðh3Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−z13z23z34

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−z13z23z34
p ¼ λ3 þ λ−13 ; Trðh4Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−z14z24z34
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−z14z24z34

p ¼ λ4 þ λ−14 : ðE4Þ

The holonomies h1, h2, h3 and h4 satisfy the closure constraints by the snake rule:

h1h2h3h4 ≡
�
1 0

0 1

�
: ðE5Þ

The holonomies h12 around holes 1,2 and h23 around holes 2,3 and h13 around holes 1,3 are simply h12 ¼ h1h2, h23 ¼ h2h3
and h13 ¼ h1h3, respectively, since they are all calculated starting from the same snake. The traces (34) can be immediately
obtained, plugging (35) or (33) into which gives (36). The trace coordinates fm1;m2;m2;m3; t1; t2; t3g satisfy the
polynomial (37).
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APPENDIX F: EXPECTATION VALUES OF THE FOCK-GONCHAROV OPERATORS

In this appendix, we calculate the expectation values of the operators μ; ν; e
2πi
k m and e

2πi
k n with the coherent states basis

Ψ0
ρðμjmÞ defined in (51). Note that ImðμÞ and ImðνÞ remain classical, so we treat μ; ν∈R for notational simplicity in this

appendix.
Recall the operation actions (A16) [or equivalently (A17)] of z; z00; z̃; z̃00 on any function fðμjmÞ. They generate the

operation actions of μ; ν; e
2πi
k m and e

2πi
k n on fðμjmÞ in the following way:

μfðμjmÞ ¼ μfðμjmÞ; νfðμjmÞ ¼ −
k
2πi

∂μfðμjmÞ; e
2πi
k mfðμjmÞ ¼ e

2πi
k mfðμjmÞ; e

2πi
k nfðμjmÞ ¼ fðμjmþ 1Þ:

ðF1Þ

The complex-plane part of the coherent state ψ0
zðμÞ defined in (47) is normalized asZ

R
dμψ̄0

zðμÞψ0
zðμÞ ¼ 1: ðF2Þ

On the other hand, the torus part ξðx;yÞðmÞ (49) can be expressed in terms of the Jacobi theta function

ξðx;yÞðmÞ ¼
ffiffiffi
4

p
2k−3=4e−

kyðy−ixÞ
4π ϑ3ðXm; τÞ;





Xm ¼ 1
2

�
− 2πm

k þ xþ iy
�

τ ¼ e−
π
k

; ðF3Þ

which is normalized only at the large-k approximation [48]:

Xk−1
m¼0

ξ̄ðx;yÞðmÞξðx;yÞðmÞ ¼
ffiffiffi
2

p
k−3=2e−

ky2

2π

Xk−1
m¼0

jϑ3ðXm; τÞj2⟶k→∞
1: ðF4Þ

Therefore, Ψ0
ρðμjmÞ is only normalized at the large-k approximation. In this approximation, we calculate the expectation

values of the operators μ; ν; e
2πi
k m and e

2πi
k n on fðμjmÞ under the Ψ0

ρðμjmÞ basis. Recall that ðz; x; yÞ∈C × T 2 are related to
the classical phase-space coordinates ðμ0; ν0Þ∈R2 and ðm0; n0Þ∈ ½0; kÞ×2 by

z ¼
ffiffiffi
2

p
π

k
ðμ0 þ iν0Þ; x ¼ 2π

k
m0; y ¼ 2π

k
n0: ðF5Þ

We get (we omit the parameters and variables in the coherent states unless necessary for conciseness)

Xk−1
m¼0

Z
R
dμΨ̄0μΨ0 ¼

�Xk−1
m¼0

ξ̄ ξ

��
2

k

�1
2

Z
R
dμμe−

2π
k ðμ− k

π
ffiffi
2

p ReðzÞÞ2 ¼ k

π
ffiffiffi
2

p ReðzÞ
Xk−1
m¼0

Z
R
dμΨ̄0Ψ0⟶

k→∞
μ0; ðF6aÞ

Xk−1
m¼0

Z
R
dμΨ̄0νΨ0 ¼ −

k
2πi

�Xk−1
m¼0

ξ̄ ξ

��
2

k

�1
4

Z
R
dμψ̄0

∂μðe−
π
kðμ− k

π
ffiffi
2

p ReðzÞÞ2e−i
ffiffi
2

p
μImðzÞÞ

¼
�Xk−1

m¼0

ξ̄ ξ

�Z
R
dμ

�
−iμþ kffiffiffi

2
p

πi
z̄

�
ψ̄0ψ0⟶

k→∞
ν0; ðF6bÞ

Xk−1
m¼0

Z
R
dμΨ̄0e

2πi
k mΨ0 ¼

�Z
R
dμψ̄0ψ0

� Xbðk−1Þ=2c

m¼b−ðk−1Þ=2c
ξ̄ e

2πi
k mξ

⟶
k→∞ X

q∈Z

Z
R
dme

2πi
k mξ̄ξe2πiqm⟶

k→∞
eix ≡ e

2πi
k m0 ; ðF6cÞ
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Xk−1
m¼0

Z
R
dμΨ̄0e

2πi
k nΨ0 ¼

�Z
R
dμψ̄0ψ0

� Xbðk−1Þ=2c

m¼b−ðk−1Þ=2c
ξ̄ðmÞξðmþ 1Þ

⟶
k→∞ X

q∈Z

Z
R
dmξ̄ðmÞξðmþ 1Þe2πiqm⟶k→∞

eiy ≡ e
2πi
k n0 : ðF6dÞ

In (F6c) and (F6d), we have shifted the summation overm by b−ðk − 1Þ=2cwhere bαc denotes the floor function of αwhich
enters the greatest integer less than α∈R and used the Poisson resummation to change the summation ofm to integral. It is
permitted by the periodicity of functions ξðx;yÞðmÞ and e2πi

k m, i.e. they are invariant by changing m ↦ mþ k. We, therefore,
conclude that

hμi⟶k→∞
μ0; hνi⟶k→∞

ν0; he2πi
k mi⟶k→∞

e
2πi
k m0 ; he2πi

k ni⟶k→∞
e
2πi
k n0 : ðF7Þ

APPENDIX G: POSITIVE ANGLE STRUCTURE FOR THE NEW COORDINATES of P∂M +∪−

In this appendix, we give some examples of the change of the positive angle structure according to the symplectic

coordinate transformation from the original edge coordinates ðQ⃗�; P⃗�Þ to the final coordinates ðQ⃗; P⃗Þ. The existence of
these examples guarantees that the positive angle structure of the final coordinate is nonempty.
Let us assume that the positive angles for the initial 10 ideal octahedra possess the symmetry; αþ;I ¼ α−;I ¼ α ∀ I ¼

1;…; 15 and βϵ;ix ¼ βϵ;iy ¼ βϵ;iz ¼ βϵ;i ∀ i ¼ 1;…; 5; ∀ ϵ ¼ �. Then one can solve that α≡Q=4 and
βþ;i ¼ β−;i; ∀ i ¼ 1;…; 5, from the constraints αnewðCAÞ ¼ 0; ∀ A ¼ 1;…; 18. They indeed satisfy all the inequalities
of (A30) as long as jβϵ;ij < Q=4. As a numerical check, let α ¼ Q=4 and βϵ;i ¼ Q=6; ∀ i ¼ 1;…; 5; ∀ ϵ ¼ �. Then the

positive angles ðα⃗M� ; β⃗M�Þ∈PM� are calculated to be

α⃗Mþ ¼ Bþβ⃗þ þAþα⃗þ þQ
2
⃗tþ ¼

�
1

2
;
1

3
;
1

6
;
1

3
;−

1

3
;−

1

3
;−

1

6
;−

1

6
;−

1

6
; 0;

1

2
;
1

3
;
2

3
;
2

3
;
2

3

�
Q; ðG1Þ

β⃗Mþ ¼ −ðB−1þ Þ⊤α⃗þ ¼
�
0;−

1

4
;−

1

4
;−

1

2
; 0;

1

2
;−

1

4
;
1

4
; 0;

1

2
;
1

2
;
1

2
;−

1

2
;
1

2
;−

1

2

�
Q; ðG2Þ

α⃗M−
¼ B−β⃗− þA−α⃗− þQ

2
⃗t− ¼

�
−
1

2
;−

1

3
;−

1

6
;−

1

3
;
1

3
;
1

3
;
1

6
;
1

6
;
1

6
; 0;

1

2
;
2

3
;
1

3
;
1

3
;
1

3

�
Q; ðG3Þ

β⃗M−
¼ −ðB−1

− Þ⊤α⃗− ¼
�
0;
1

4
;
1

4
;
1

2
; 0;−

1

2
;
1

4
;−

1

4
; 0;−

1

2
;−

1

2
;−

1

2
;
1

2
;−

1

2
;
1

2

�
Q: ðG4Þ

The positive angles satisfying (89) for Mþ∪− are then

α⃗new ¼
�
1

2
;
1

3
;
1

6
;
1

3
;−

1

3
;−

1

3
;−

1

6
;−

1

6
;−

1

6
; 0;

2

3
;
1

3
; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0

�
Q; ðG5Þ

β⃗new ¼
�
0;−

1

2
;−

1

2
;−1; 0;1;−

1

2
;
1

2
; 0; 1;−

1

2
;
1

2
; 0;

1

4
;
1

4
;
1

2
; 0;−

1

2
;
1

4
;−

1

4
;0;−

1

2
;−

1

2
;−

1

2
;
1

2
;−

1

2
;−

1

2
;−

1

3
;−

2

3
;−

2

3

�
Q;

ðG6Þ

which confirms the vanishing positive angle αnewðCAÞ for all the constraints fCAg18A¼1.

APPENDIX H: FENCHEL-NIELSEN TWIST COMPUTED BY THE SNAKE RULE

In this appendix, we use the snake rule on the cusps boundaries [31] [which are different from (E1)] to compute the
coordinates Tf ¼ logðτfÞ corresponding to the B-cycles holonomy eigenvalue of the torus cusps and Tb ¼ logðτbÞ
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corresponding to the FN twist of the annulus cusps. The
results depend on the choices of path but are different by a
linear function of FN lengths Lf’s and Lb’s. We choose the
paths that are consistent with the choices in [37].
In general, fT ab − T 0

abg and fTabg≡ fTf; Tbgmay not
be the same but are related by the following lemma.
Lemma H.1.

T ab − T 0
ab ¼ Tab þ ζabðf2LabgÞ;

T̃ ab − T̃ 0
ab ¼ T̃ab − ζabðf2LabgÞ; ðH1Þ

where ζab is a linear function of the set f2LabgðabÞ with real
linear coefficients while an imaginary constant term.
Proof. Similar to T ab and T 0

ab, Tab’s are some linear
functions of Zi; PZi

with real coefficients in the linear terms
and the constant term takes the form πi · cab (cab ∈R) as it
comes from the linear combination of the affine translations
(see Appendix A. 3. 3 in [33], see also [37] for the example
related to our model). By the symplectic transformation in
(86), each Tab is expressed as a linear function of ðQI;PIÞ.
By definition, Tab is a function on the phase space for
∂Mþ∪−, then it is a linear function of the symplectic co-
ordinates f2Lab; T ab − T 0

ab;X 5;Y5;X 0
5;Y

0
5g (but not of

fΓAg when the constraints fCAg are imposed). Moreover,
its Poisson bracket with 2Lcd must be f2Lcd; Tabg ¼
δðabÞ;ðcdÞ and fTab; Tcdg ¼ 0; ∀ ðabÞ; ðcdÞ, which means
Tab can only be a linear combination of f2Labg and
T ab − T 0

ab. The same argument applies to the tilde sector.
The tilded variables are just complex conjugates of the
nontilded ones, and ζabð2LabÞ ¼ −ζabð2LabÞ. Hence, the
second equation in (147) holds. ▪
Due to the fact that we have chosen L0

ab in a symmetric
way as Lab, it turns out that all ζab’s have only constant
terms. Explicitly, we use the snake rule described in the
following to compute Tab (they are also used in [37]) and
find (148), which we copy here:

ζ12 ¼ 0; ζ13 ¼ πi; ζ14 ¼ πi; ζ15 ¼ πi;

ζ23 ¼ 0; ζ24 ¼ −2πi; ζ25 ¼ 0;

ζ34 ¼ −πi; ζ35 ¼ 0; ζ45 ¼ −πi: ðH2Þ

We now describe the snake rule for cusp boundaries.
Dress the vertex (or the angle) of a disc cusp, which is a
triangle, in an ideal tetrahedron △ by z (z ¼ z; z0; z00) when
this vertex is connected to an edge of △ dressed with z.
Assume the oriented paths on the cusp boundary are all
nonintersecting. The snake rule on a cusp boundary can be
separated into two types on a single disc cusp, each
corresponding to an operation on the logarithmic FN
coordinate:

ðH3Þ

Type I corresponds to the part of a path crossing an angle
dressed with z in a counterclockwise (resp. clockwise)
direction. It adds þZ ¼ log z [resp. −Z ¼ logðz−1Þ] to the
FN coordinate for the path. On the other hand, Type II
corresponds to the part of a path bouncing against an edge
of the disc cusp in a clockwise (resp. counterclockwise)
direction relative to the disc cusp. It adds −iπ (resp.þiπ) to
the FN coordinate for the path.
Each FN coordinate corresponds to a path on the cusp

boundary as shown in Fig. 12. (H3) provides another way
to formulate fLab; L0

abg other than performing the sym-
plectic transformation from the FG coordinates as in (C1).
As an example, L12; L0

12 correspond to the A-cycles (with
no winding) [red paths in Fig. 12(a)] of the torus cusp
connecting S1 and S2 and T12 − T 0

12 (note that Tab ≠
T ab; T 0

ab ≠ T 0
ab in general) corresponds to the B-cycle

[blue path in Fig. 12(a)] of the same torus cusp.
It is easy to read Tab and T 0

ab from Fig. 12:

T12 ¼ X00
3 − Y3 þ Z3; T13 ¼ Z00

5 −W00
5; T14 ¼ Y 0

2 − Z0
2; T23 ¼ X00

4 − Y 00
4; T24 ¼ −Y 00

5 þ X00
5;

T 0
12 ¼ −X00

8 þ Y8 − Z8; T 0
13 ¼ −Z00

10 þW00
10; T 0

14 ¼ −Y 0
7 þ Z0

7; T 0
23 ¼ −X00

9 þ Y 00
9; T 0

24 ¼ Y 00
10 − X00

10;

T34 ¼ −Z00
1 þW0

1; T15 ¼ −W00
4 þ Z00

4; T25 ¼ X00
1 − Y 00

1; T35 ¼ W0
2 − X0

2; T45 ¼ −Y 0
3 þ Z3 −W00

3;

T 0
34 ¼ Z00

6 −W0
6; T 0

15 ¼ W00
9 − Z00

9; T 0
25 ¼ −X00

6 þ Y 00
6; T 0

35 ¼ −W0
7 þ X0

7; T 0
45 ¼ Y 0

8 − Z8 þW00
8: ðH4Þ

Comparing Tab=2 and T ab − T 0
ab when imposing the gluing constraints (A23) for octahedra and express in terms of the

octahedron symplectic coordinates, one finds that they are different merely by a constant as follows:

fTab=2 − ðT ab − T 0
abÞgðabÞ ¼ iπ ⃗tT; ⃗tT ¼ f0; 1; 1; 2; 0;−2; 0;−1; 0;−1g; ðH5Þ

where the order of fðabÞg is ðabÞ ¼ fð12Þ; ð13Þ; ð14Þ; ð15Þ; ð23Þ; ð24Þ; ð25Þ; ð34Þ; ð35Þ; ð45Þg. This leads to ζabð2LabÞ
given in (H2).

MUXIN HAN and QIAOYIN PAN PHYS. REV. D 109, 124050 (2024)

124050-52



FIG. 12. Paths on cusp boundary associated with which the FN coordinates onMþ∪− are defined. FN lengths 2Lab’s (resp. 2L0
ab’s) on

Mþ (resp. M−) are associated to paths shown in red (resp. in orange) while FN twists Tab’s (resp. T 0
ab’s) on Mþ (resp. M−) are

associated to paths shown in blue (resp. in violet). 2Lab and 2L0
ab calculated by the cusp snake rules (H3) is the same as calculated by

(G1). The paths for Tab’s and T 0
ab’s are chosen in a simple and symmetric way. The choices of paths for all Tab’s are consistent with

those in [37]. Cusp boundaries in (a)–(f) are torus cusps, on each of which 2Lab and 2L0
ab are associated to the A-cycle of the torus and

Tf ≡ Tab − T 0
ab is associated to the B-cycle.
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