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Modeled searches of gravitational wave signals from compact binary mergers rely on template
waveforms determined by the theory of general relativity (GR). Once a signal is detected, one generally
performs the model agnostic test of GR, either looking for consistency between the GR waveform and data
or introducing phenomenological deviations to detect the departure from GR. The nontrivial presence of
beyond-GR physics can alter the waveform and could be missed by the GR template-based searches. A
recent study [H. Narola et al., Beyond general relativity: Designing a template-based search for exotic
gravitational wave signals, Phys. Rev. D 107, 024017 (2023)] targeted the binary black hole merger,
assuming the parametrized deviation in lower post-Newtonian terms, and demonstrated a mild effect on the
search sensitivity. Surprisingly, for the search space of binary neutron star (BNS) systems where
component masses range from 1 to 2.4M⊙ and parametrized deviations span 1σ width of the deviation
parameters measured from the GW170817 event, the GR template bank is highly ineffectual for detecting
the non-GR signals. Here, we present a new hybrid method to construct a non-GR template bank for the
BNS search space. The hybrid method uses the geometric approach of three-dimensional lattice placement
to cover most of the parameter space volume, followed by the random method to cover the boundary
regions of parameter space. We find that the non-GR bank size is ∼15 times larger than the conventional
GR bank and is effectual toward detecting non-GR signals in the target search space.
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I. INTRODUCTION

With the advent of terrestrial observatories such as
Advanced LIGO [1], Advanced Virgo [2], and KAGRA [3],
the gravitational waves (GWs) from compact binary coa-
lescences (CBCs) [4–6] allow us to conduct tests of General
Relativity (GR) [7–11]. In addition toGWs,GRhas also been
tested using Solar System observations [12], binary pulsar
observations [13–15], and observations of supermassive
black holes at the center of galaxies [16–18]. None of them
has found any statistically significant deviation yet, which
concludes that GR is the most accurate theory of gravity
known to date. In particular, compact binary mergers can
probe gravity at its most extreme environment characterized
by highly dynamical, nonlinear, and genuinely strong-field
regime. Therefore, such systems are exceptional laboratories
for unraveling the beyond-GR physics.
The observations and tests of beyond-GR physics with

CBCs can be designed by availing the accurately modeled

waveforms for beyond-GR theories. Unfortunately, one
lacks a complete understanding of the dynamics of coa-
lescing compact binary in the strong-field regime, in nearly
all alternative theories of gravity. Recently, there has been
progress toward numerical relativity (NR) simulations of
binary black hole mergers in theories beyond GR [19–21].
Some of these simulations approximately solve the under-
lying field equations. In addition to some early develop-
ments on the NR front, several efforts have been made to
obtain the analytical gravitational waveforms in alternative
theories [22–26]. However, a lot more work is still required
before these early developments can be incorporated in GW
data analysis. Moreover, there might be a more accurate
alternative theory, which is unknown to us. Thereby, we
generally perform model agnostic analyses: looking for
consistency between GR waveform and data [27–31] and
introducing phenomenological deviations to detect the
departure from GR [32–35]. One example of latter kind
of analysis is the parametrized test of GR, where one
measures the deviations in various post-Newtonian (PN)
terms of the GR predicted waveform phase.
All these tests are performed after a GW signal is

confidently detected by one of the several search pipelines.
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The search techniques can be broadly divided into
two categories: generic transient searches and template-
based searches. The first kind, such as cWB [36,37] and
oLIB [38,39], uses minimal assumptions on the GW
signature but is inefficient for long-duration signals or
when the signal-to-noise ratio (SNR) is low. On the other
hand, the template-based searches such as GSTLAL
[40,41], MBTA [42], PYCBC [43–45], and SPIIR [46]
completely rely on the GR template waveform and are
highly efficient for long duration signals. However, a
gravitational wave signal carrying a significant amount
of non-GR physical effects [in terms of nonzero deviation
in the GR-predicted PN phasing coefficient(s)], could be
missed by the GR template-based search pipelines.
A recent study [47] demonstrated a method for a

bottom-up search for the GW signals that may carry
deviations in the PN phasing coefficients from the
template waveforms predicted by GR. The study high-
lighted that the GR bank would fail to detect such a
non-GR signal and further showed an improvement in
sensitivity for detecting non-GR signals when searched
using a non-GR template bank. The study focused on the
stellar mass binary black hole (BBH) systems
(m1;2 ∈ ½5; 50�M⊙). The parametrized deviations were
considered only in the lower PN terms (up to 2PN) over
a range spanning the 90% credible interval of the posterior
distribution reported in the test of GR using events in the
GWTC-1 [9]. The fitting factor1 study of the GR template
bank for non-GR injections revealed that 20% of injec-
tions were recovered below the bank’s minimal match of
0.97 [49].

In this paper, we target the search space of binary neutron
star (BNS) systems with LIGO’s sensitivity in the second
observing run (O2)2 and consider fractional deviations in
all of the eight PN terms of the waveform phase up to
3.5PN. Since we are unaware of any astrophysical pop-
ulation in the literature that describes the distribution of
parametrized deviations, we consider the 1σ (68%) credible
interval of posterior distribution reported in the test of GR
with GW170817 [8], as shown in Fig. 1. These posteriors
were obtained by varying only a single deviation parameter
at a time, since the multiparameter test leads to an
uninformative posterior (see, for example, Fig. 7 in
Ref. [7]). However, many alternative theories of gravity
possess deviation in more than one post-Newtonian term.
For example, assuming stationary-phase approximation
(SPA), the leading-order term in the waveform phase
calculated for Brans-Dicke theory appears at −1PN, and
the subleading terms are known from 0PN up to 1.5PN
[50]. Therefore, we intend to simultaneously vary all the
PN deviation terms to define our non-GR search space. The
fitting factor study indicates that the GR template bank for
BNS search space is highly ineffectual for detecting the
non-GR signals, as shown by the black curve in Fig. 2.
Non-GR injections are generated by allowing deviations at
all PN orders. None of the non-GR injections is found
above the desired fitting factor value of 0.97. Suppose a
GW signal from a BNS-like system carries a non-GR
effect. In that case, it is likely to be missed by the template-
based search pipelines and also the unmodeled search
pipelines due to their inefficiency for long-duration signals.

FIG. 1. Posterior distribution for deviation parameters obtained from the parametrized test with GW170817 event [51]. Black
horizontal ticks mark the 68% credible interval. The gray horizontal dashed line corresponds to the GR prediction.

1The fitting factor of a template bank for an arbitrary signal is
defined as themaximumvalue ofmatch over all the templates [48],
given in Eq. (8).

2Average multidetector noise PSD: the harmonic mean of the
power spectral densities measured from the Hanford and Living-
ston detectors: https://github.com/gwastro/pycbc-config/tree/
65138ade78b234a805e49b694db1c17c20948ecc/O2/psd.
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Figure 2 furthermore shows the fitting factor results for the
non-GR signals generated assuming deviation in single
parameter. For deviations at lower PN order, namely, at
0PN and 1PN, approximately 9% of injections are recov-
ered with a fitting factor below 0.97. Note that for deviation
at 0PN a few injections are recovered with zero fitting
factor. For deviation at 1.5PN and higher-order PN terms,
more than ∼30% injections are recovered with a fitting
factor below 0.97. Interestingly, more than 74% of injec-
tions are found below the desired fitting factor for deviation
in 2PN.
The fitting factor studies indicate that GW searches using

only GR waveforms result in a poor ability to observe BNS
systems with non-GR effects. Another approach for
detectingGW signals is the unmodeled search, which works
without relying on waveform morphology but is inefficient
for low-mass binary systems due to their longer in-band
duration. As a result, it becomes imperative to develop a
beyond-GR search framework, aiming not only to detect
new signals but also to explore new aspects of physics.
A crucial input for the matched-filtering search frame-

work is a template bank, which is defined as a collection of
theoretical waveforms representing the GWs expected from
compact binary mergers. In previous studies, several

methods have been proposed to generate a template bank
for searches of GW signals from compact binary mergers.
The template placement methods are broadly divided into
three categories based on their treatment of placement
algorithm: geometric, stochastic, and hybrid. The geo-
metric method involves placing templates in the parameter
space following a regular, gridlike structure [49,53–58].
This method relies on a parameter space metric that
quantifies the mismatch between templates, aiming for
uniform coverage. It is efficient for covering a flat param-
eter space where the metric can be accurately defined. With
this method, one can create the most optimal template
banks by employing the A�

n lattice, which is the best lattice
covering in dimensions n ≤ 5 [53]. This method is exten-
sively used to cover the BNS search space with the
TaylorF2 waveform model [55]. However, with the current
generation of detectors, the TaylorF2 model is not reliable
for detecting the BBH or neutron star-black hole systems
due to larger merger-ringdown phase contribution to the
signal. The parameter space metric of the full inspiral-
merger-ringdown waveform families is not flat. Also, the
metric formulation for waveforms with precession or
higher harmonics is not known to date. This has led to
the development of the stochastic (or so-called random
placement) method. The stochastic method generates tem-
plates randomly over the parameter space and selects those
that maximize coverage while minimizing redundancy
[59–61]. As this approach relies on a numerical match
function, it is advantageous for exploring complex para-
meter spaces where the metric is not flat or is unknown.
However, its intrinsic random strategy leads to a larger
number of templates than needed (so-called overcoverage)
and is also computationally intensive. The recent efforts
have been focused on developing a hybrid method by
combining the space efficiency of the geometric approach
with the robustness of the stochastic method [62–67]. The
hybrid method is excellent in creating the optimal template
banks for the inspiral-merger-ringdown (IMR) waveform
families which model the gravitational wave signal from
the inspiral, merger, and ringdown stages of the dynamics
of a compact binary system and, at the same time, less
computationally expensive as compared to the stochastic
method. And that has led to its widespread use in the LIGO-
Virgo-KAGRA Collaboration [4–6]. This method has been
thoroughly developed for nonprecessing binaries; extend-
ing them to include eccentricity, higher-order modes, or
spin precession effects would greatly enhance searches
with future observatories.
The GR search space is characterized by four parame-

ters: the component masses and dimensionless spins of the
two components of the binary. In contrast, the non-GR
search space is characterized by 12 parameters: the four
parameters from the GR model plus eight additional
deviation parameters in the PN coefficients (up to 3.5
PN order). A straightforward way to place the templates in

FIG. 2. Cumulative distribution of fitting factor of GR bank for
several sets of non-GR signals, each set comprising 104 signals.
The plot is generated using LIGO’s O2 sensitivity curve. The GR
template bank for BNS search space is generated assuming the
mass-spin parameter ranges given in the first two rows of Table I,
and the minimal match is set to be 0.97 [52]. The black curve
shows the fitting factor for non-GR signals generated assuming
deviations at all PN orders. The rest of the curves shows fitting
factor for non-GR signals generated assuming deviation in a
particular PN phasing coefficient. The deviation parameters are
drawn uniformly within the range given in Table I while
generating the non-GR signals. The details of the template bank
generation and fitting factor studies are described in Secs. III and
IV, respectively.
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12-dimensional (12D) non-GR parameter space is to use
the stochastic approach. However, creating a stochastic
template bank for a higher-dimensional parameter space
with a larger volume is computationally challenging. In a
previous study [47], an eight-dimensional (8D) template
bank for non-GR BBH parameter space was indeed
constructed using the stochastic approach. It was feasible
because the targeted search space volume was small and
only four PN deviation parameters (up to the 2PN order)
were considered.
In this paper, we introduce a new method to create a non-

GR template bank for BNS-like systems where we allow
for deviations in all the PN coefficients. Following a study
by Brown et al. [55], we choose the eight PN phasing
coefficients themselves to define the coordinates of an
eight-dimensional parameter space, where the parameter
space metric becomes flat by construction. Employing
principal component analysis, we find that the search space
for non-GR signals is effectively three-dimensional (3D)
embedded within this aforementioned eight-dimensional
parameter space. To construct a template bank, we start by
placing a geometric grid over the effective 3D space using
the A�

3 lattice. This geometric grid is further refined by the
stochastic placement3 to ensure adequate coverage across
the entire parameter space. Finally, the points in effective
3D space are mapped back to the 12D physical search space
using a brute-force method as explained in Sec. III. A
companion flow chart outlining our template placement
algorithm is illustrated in Fig. 4.
The rest of this paper is organized as follows. In Sec. II,

we motivate and describe the search parameter space and
the choice of waveform model used to construct the
template bank. In Sec. III, we describe in detail the method
used to construct the template bank to search for exotic
gravitational wave signals. In Sec. IV, we demonstrate the
results of validation studies performed to quantify the
effectualness of the template banks. Finally, we summarize,
conclude, and discuss possible future directions in Sec. V.

II. WAVEFORM MODEL AND SEARCH
PARAMETER SPACE

Neutron stars are formed from the collapse of much
heavier stars, and in order to conserve angular momentum
during collapse, the neutron stars are bound to have large
spin at their birth. However, the spinning rate decreases
with time due to the magnetic drain of their energy. It is
expected to decay away long before entering the band
of interest for ground-based gravitational wave observa-
tories [68]. Consequently, previous studies found that
aligned spin template waveforms are sufficient for
detecting generic spinning BNS systems with second-
generation detectors [55]. As the postinspiral and merger

signal is emitted at very high frequencies where the
second-generation detectors are less sensitive, the sig-
nal-to-noise ratio is dominated by the inspiral signal.
Therefore, we only consider the inspiral of the two bodies
in this work. The inspiral phase of the waveform can be
modeled analytically using the PN framework [69]. The
waveform in the frequency domain can be expressed as

h̃ðfÞ ¼ Aðf;DL; n̂; λ⃗Þ exp f−iΨðf; tc;ϕc; λ⃗Þg; ð1Þ

where DL is luminosity distance to the source, n̂ describes
the sky location (α, δ) and polarization angle (ψ) that only
affect the overall amplitude and phase of the signal, tc is
the geocentric coalescence time, ϕc is the coalescence
phase, and λ⃗ refers to the set of intrinsic parameters
comprising component masses (m1;2) and dimensionless
spins ðχ1;2Þ. The waveform phase ΨðfÞ for TaylorF2 can
be expanded as [70,71]

ΨðfÞ ¼ 2πftc − φc −
π

4

þ
X7
k¼0

½φkðλ⃗; f0Þ þ φl
kðλ⃗; f0Þ log x�xðk−5Þ=3; ð2Þ

where x ¼ f=f0 and f0 is a fiducial frequency. The
expansion order k corresponds to ðk=2ÞPN term. Various
coefficients at different PN orders are given in theAppendix.
All the PN phasing coefficients are uniquely determined

for given values of the intrinsic parameters. Any deviation
from GR would change the binding energy and angular
momentum of the binary and thus transform the equations
of binary motion. Alternative theories of gravity will have
different functional dependence of PN-phasing coefficients
on intrinsic parameters. It has been motivated to devise a
parametrized test of GR that works by introducing a
fractional deviation parameter (δφ̂i) for each phase coef-
ficient φi [32,34,72–74],

φ̃i ¼ ð1þ δφ̂iÞφNS
i þ φS

i ; ð3Þ

where φNS
i and φS

i are the nonspinning and spin-related
terms of φi, respectively.
A waveform carrying a nonzero deviation parameter is

referred to as a non-GR waveform. If a gravitational wave
signal carries a significant amount of non-GR physical
effects, it would be missed by the GR template-based
search pipelines as described in Ref. [47], which targeted
the BBH search space and allowed deviations in four PN
terms from 0.5PN to 2PN order. In this work, we consider
the search space of BNS systems and all the deviation
parameters up to 3.5PN order. We choose the posterior
samples from the parametrized test of GW170817 event
studied by LIGO-Virgo-KAGRA (LVK) [8] and consider
1σ interval of the marginal posterior distribution of the

3We use the top-down part of the hybrid-geometric random
template placement method [62].
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deviation parameters to define the boundaries of the non-
GR space. Parameter ranges for the template bank con-
struction are tabulated in Table I.

III. TEMPLATE BANK CONSTRUCTION

The long-established method for searching gravitational
waves from compact binary mergers relies on the matched
filter technique as it is an optimum method to detect a
signal if the data contains stationary Gaussian noise. It is
accomplished by performing convolution between the data
and a set of theoretical filter waveforms to obtain a
maximized SNR. In principle, one can maximize the
SNR over time, overall amplitude, and overall phase by
employing analytical tricks [75–77]. The noise-free
response of a LIGO-like detector is given by

hðtÞ ¼ Fþðα; δ;ψÞhþðtÞ þ F×ðα; δ;ψÞh×ðtÞ; ð4Þ

where hþ and h× are two polarizations of gravitational
wave and Fþ and F× are the antenna response functions for
the two polarizations. For the dominant ð2;�2Þ mode of
gravitational wave signals emitted from nonprecessing
binary systems, two polarizations are proportional to each
other, h̃þ ∝ ih̃×, where h̃þ;× denotes the Fourier transform
of hþ;×. Note that this relation deviates when we include the
contribution of higher harmonics or precession to the
waveform. When this relation holds, the extrinsic param-
eters such as the sky location, inclination angle, polariza-
tion angle, coalescence phase, and distance to the source
can all be expressed as overall amplitude and phase. The
intrinsic parameters that cannot be absorbed in the ana-
lytical maximization procedure, such as component masses
and component spins, must be varied to obtain the
maximized SNR by generating the filter waveforms

repetitively. Our chosen waveform model, TaylorF2,
upholds this relation for both the GR and non-GR wave-
forms. Therefore, we generate the filter waveforms by
varying the intrinsic parameters to obtain the optimal SNR.
We evaluate the filter waveforms in the parameter space
comprising of component masses and component spins for
the GR case and over additional eight deviation parameters
for the non-GR case. This discrete set of points in the
parameter space constitutes a template bank.
When searching for a signal in data d using a template

waveform h, the matched filtered SNR is computed by
maximizing the inner product between d and h over an
overall amplitude, phase (φref ), and time (tref ),

ρMF ¼ max
tref ;φref

hdjĥi; ð5Þ

where ĥ is the normalized template waveform such that
ĥ ¼ h=

ffiffiffiffiffiffiffiffiffiffiffihhjhip
and the inner product h·j·i is defined as

hajbi ¼ 4ℜ
Z

fhigh

flow

ã�ðfÞb̃ðfÞ
SnðfÞ

df; ð6Þ

where SnðfÞ is the one-sided noise power spectral density.
Suppose the template waveform does not exactly match the
signal in the data even after maximizing over the extrinsic
parameters. In that case, we will lose a fraction of SNR,
which is determined by the mismatch ð1 −M Þ between
them. The quantity M denotes the match between two
waveforms:

M ða; bÞ ¼ max
tref ;φref

hâjb̂i: ð7Þ

To quantify the effectualness of a template bank (T ) for
detecting an arbitrary signal haðtÞ, we calculate the fitting
factor (FF), which is defined as maximal match between
arbitrary signal and templates in the bank [48],

FFðhaÞ ¼ max
λ⃗∈ T

M
�
ha; hðλ⃗Þ

�
; ð8Þ

where λ⃗ denotes one of the template points.

A. Parameter space metric

Following Ref. [49], the match between two nearby
waveforms, whose intrinsic parameters are infinitesimally
separated by Δλ⃗, can be Taylor expanded up to the
quadratic terms about Δλ⃗ ¼ 0, which, in turn, can be
rearranged to express the mismatch ð1 −M Þ in terms of
the parameter space metric gij as

1 −M ≃ gijΔλiΔλj; ð9Þ

where the metric is given by

TABLE I. Parameter ranges used in generating the template
bank. The description of parameters below the horizontal dashed
line corresponds to the 68% credible intervals of the deviation in
PN coefficients obtained from the parametrized analysis on
GW170817 as shown in Fig. 1.

Parameter Limits

Component masses m1;2 ∈ ½1; 2.4�M⊙
Component spins χ1;2 ∈ ½−0.05;þ0.05�

Deviation parameters

0.0 PN δφ̂0 ∈ ½þ0.029;þ0.261�
1.0 PN δφ̂2 ∈ ½−0.084;þ0.001�
1.5 PN δφ̂3 ∈ ½−0.032;þ0.171�
2.0 PN δφ̂4 ∈ ½þ0.329;þ2.387�
2.5 PN (log term) δφ̂l

5 ∈ ½−0.697;−0.099�
3.0 PN δφ̂6 ∈ ½þ0.266;þ1.715�
3.0 PN (log term) δφ̂l

6 ∈ ½−5.815;−0.881�
3.5 PN δφ̂7 ∈ ½−7.067;−1.269�
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gij ≔ −
1

2

∂
2M

∂Δλi∂Δλj

����
Δλ⃗¼0

: ð10Þ

An alternative approximation for computing the metric is to
evaluate the Fisher information matrix of the waveforms
over the full parameter space and then project out the
dimensions corresponding to the extrinsic parameters [52].
The components of the Fisher information matrix are
given by

Γαβ ¼
�
∂hðθ⃗Þ
∂θα

���� ∂hðθ⃗Þ
∂θβ

�
; ð11Þ

where θ⃗ ¼ fλ⃗; β⃗g, such that λ⃗ and β⃗ denote the intrinsic and
extrinsic parameters, respectively. The parameter space
metric is a crucial input for constructingageometric template
bank in order to compute the distance between two points.
When placing the templates, a suitable coordinate system is
looked for in which the metric components are almost
constant. Under this scheme, a coordinate system with
minimum intrinsic curvature is considered good.
Following Refs. [55,78], we use the PN phasing coefficients
comprising six φi and two logarithmic terms φl

i given in the
Appendix to define the coordinate system.Themetric on this
8D parameter space does not have intrinsic curvature—the
metric components are constant for any point in parameter
space. As described in Refs. [49,55], we similarly use
Eq. (10) to first evaluate the metric in nine-dimensional
(9D) parameter space including the parameter tc after
maximizing inner product (6) overφc; thismetric is given by

γαβ ¼
1

2
ðJ ½ψαψβ� − J ½ψα�J ½ψβ�Þ; ð12Þ

where ψα denotes the derivative of the TaylorF2 phase
with respect to Φα ≡ ftc;Φig, i.e., ψα ¼ ∂Ψ=∂Φα,
where the index α ranges from 0 to 8. And Φi
denotes the eight PN phasing coefficients, i.e., Φi ¼
fφ0;φ2;φ3;φ4;φ5l;φ6;φ6l;φ7g. The quantity J is the
moment functional of the noise curve [49,70] and is
defined as follows for a given function aðxÞ,

J ½aðxÞ� ¼
Z

xH

xL

aðxÞx−7=3
Snðxf0Þ

dx

�Z
xH

xL

x−7=3

Snðxf0Þ
dx; ð13Þ

where xL ¼ flow=f0 and xH ¼ fhigh=f0 correspond to low-
est and highest cutoff frequencies, respectively. The metric
gij on the 8D subspace, composed of PN-phasing coeffi-
cients, is obtained by projecting out the coalescence time tc,

gij ¼ γij −
γ0iγ0j
γ00

: ð14Þ

The Latin indices i and j range from 1 to 8. This projection
operation corresponds to the minimization of the distance

γαβΔΦαΔΦβ with respect toΔtc [79]. Since the metric gij in
8D parameter space has no dependence on the parameters
ðφkÞ itself, therefore, the parameter space is globally flat in
terms of these PN-phasing coefficients.

B. Effective dimensionality of the parameter space

The eigenvalues of gij are rapidly decreasing. In par-
ticular, the first two eigenvalues are significantly larger than
the remaining ones. That indicates the effective dimension
of the parameter space must be lower than the dimension of
gij. The extent of the physically relevant region along many
directions in the parameter space must be thinner than the
maximum mismatch, and therefore we do not need to place
templates in those regions of parameter space.
To identify the effective dimensionality of our parameter

space composed of PN-phasing coefficients, we use the
principal component analysis-based method proposed in
Ref. [55]. We first transform to a Cartesian coordinate
system by performing rotation and scaling so that the
metric becomes the identity matrix. As a result, further
rotations will leave the metric unchanged. As gij is a real-
symmetric matrix, its eigenvectors form an orthonormal
basis in R8. The transformation produces a standard basis
given by

μ̃i ¼
X
j

RijSjjφ̃j; ð15Þ

whereR is a rotation matrix such that componentRij is the
jth element of the ith eigenvector and S is a diagonal
scaling matrix, the elements of which are square roots of
eigenvalues.
The metric is an identity matrix in this new coordinate

system, so we can place the templates using the most
optimalA�

n lattice. The width of the parameter space is very
thin along many directions, and placing templates in 8D
parameter space would be suboptimal. Therefore, we
perform principal component analysis (PCA) to determine
the effective dimension. First, we estimate the covariance
matrix in the μ̃i coordinate system by generating a large
number of points drawn from uniform distribution within
the range of physical parameters as listed in Table I and
map them to μ̃i coordinates using Eq. (15). Subsequently,
we use eigenvectors of the covariance matrix to transform
from μ̃i to principal coordinates given by

ξi ¼
X
j

Cij μ̃j; ð16Þ

where Cij is the jth element of the ith eigenvector. PCA
assures that the maximum parameter space extent would lie
along the ξ1 direction and the least parameter space extent
would lie along the ξ8 direction.
Figure 3 illustrates the extent of parameter space in ξi

coordinates by depicting a large number of random points
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FIG. 3. Thewidth of the parameter space along ξ2, ξ3, and ξ4 directions, plotted against ξ1 for two distinct cases. Case I (left column): All
the deviation parameters (δφ̂i) are taken to be zero (GR-case). Case II (right column): All deviation parameters are allowed to deviate from
zero and their values lie between the ranges given in Table I (non-GR case). Componentmasses and spins are uniformly distributed between
the ranges given inTable I in both cases. Each ξi coordinate is scaled such that one unit corresponds to the coverage diameter of 0.97minimal
match contour,Dmax. The dashed curves in the top left plot marks the boundary of GR parameter space in ξ1 − ξ2 plane and corresponding
physical parameters are given in the legend. The plot is generated using LIGO’s O2 PSD with a lower cut-off frequency of 27 Hz.
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drawn from the uniform distribution of the physical
parameters listed in Table I. The figure classifies two
cases: the left column shows the extent of GR parameter
space where all deviation parameters are set to zero, and the
right column refers to the non-GR parameter space that
allows deviation parameters to be nonzero. We opt to scale
each ξi direction such that one unit refers to the coverage
diameter of a template, Dmax ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −MM

p
, where MM

stands for minimal match (0.97). This choice is made to
visually identify the effective dimensions for placing the
templates. For GR parameter space, one can easily notice
that the extent along ξ3 and ξ4 directions is smaller than
Dmax, while the directions ξ1 and ξ2 carry most of the
parameter space extent, so a two-dimensional hexagonal
lattice (A�

2) would be adequate to construct the template
bank. On the other hand, for non-GR parameter space, the
extent along the ξ3 is almost twice Dmax, and the extent
along ξ4 is five times smaller than Dmax. Therefore, we can
place A�

3 lattice in ξ1 − ξ2 − ξ3 coordinates to cover the
non-GR search space.
Although we can easily place the templates in ξi

coordinates using A�
n lattice, inverse mapping from ξi

coordinates to physical parameters has yet to be discovered.
On top of this, for the non-GR case, we do not know the
parameter space boundaries in ξi coordinates, which leads
to an additional challenge to construct non-GR template
bank. Figure 4 describes a series of coordinate trans-
formations involved in the construction of non-GR tem-
plate bank.

C. Finding the lattice points
in search parameter space

The GR search space is four dimensional, comprising
the component masses and spins. The non-GR search
space is 12 dimensional due to additional deviation
parameters. The template points are generated in ξ
coordinates, but there is no inverse mapping to obtain

corresponding coordinates in physical search parameter
space. Therefore, we follow a brute force method as
carried out in previous studies [55,78]. For a given lattice
point, this method generates random points in the search
parameter space and calculates their distance with the
lattice point in ξ space. A random point is considered to be
a solution when the distance is less than a predefined
tolerance distance (tol). Throughout this work, we
consider tol to be 10−2, corresponding to a mismatch
of 10−4 as given in Eq. (9). The volume of a sphere with
radius tol compared to the parameter space volume is
Oð106Þ and Oð109Þ times smaller for GR and non-GR
cases, respectively. Consequently, finding the solution for
all lattice points would be computationally challenging.
We alleviate this issue by splitting out the parameter space
into nonoverlapping subspaces and using the binary search
algorithm KD Tree as implemented in SciPy [80] to find the
nearest random point. The conventional partitioning
scheme divides the parameter space over the chirp mass.
The left panel of Fig. 5 shows two consecutive bins over
chirp mass [Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5] for GR
parameter space, which are nearly nonoverlapping, while
for the non-GR case as shown in the middle panel, the two
consecutive chirp mass bins are almost entirely over-
lapping—it is because of the strong degeneracy between
chirp mass and 0PN deviation parameter δφ̂0. Here, we
propose using the 0PN chirp time (τ̃0) that depends
on δφ̂0,

τ̃0 ¼
5

256
M−5=3

c ðπf0Þ−8=3ð1þ δφ̂0Þ ð17Þ

to partition the parameter space in ξ coordinates. The right
panel of Fig. 5 shows that τ̃0 binning reduces the overlap, but
it is less efficient than chirp mass binning for GR space.
We choose those lattice points for which at least one

random point is found within tol to construct a geometric

FIG. 4. Schematic representation of various transformations involved in the construction of the non-GR template bank. The non-GR
parameter space is described by the component masses m1;2, spins χ1;2 and eight deviation parameters (δφ̂i) and is thus 12D. Using
Eqs. (A1) and (3), the 12D vector space is projected to the 8D space of PN-phasing coefficients, which is flat. Finally, in terms of
principal coordinates fξigi ¼ 1; ...; 8, the dimensionality is found to be effectively three. The parameter space extent along the rest of the
five dimensions ξ4; ...×; 8 is sufficiently small to be ignored. Points in this effective 3D space are mapped back to the physical 12D non-GR
parameter space using a brute force method as explained in Sec. III C.
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template bank. This bank can cover the bulk region of the
parameter space, but the boundaries would not be covered
adequately. We use the top-down part of the hybrid geo-
metric-random template placement method [62–64] by
seeding the precomputed geometric bank. It starts by
generating a large number of random points and then
removes the points that are located within the distance of
Dmax=2 from the existing templates. Later, it picks one point
arbitrarily from the remaining random points as a new
template and removes those random points that lie at a
distance ≤ Dmax=2 from the chosen point. Continuing this
process until all the random points get exhausted generates
the hybrid bank. Figure 3 shows the random points that are
generated assuming uniform distribution over the parame-
ters listed in Table I, where fewer random points lie near the
boundaries. This is more prominent for non-GR case
compared to GR. It happens even if we generate points
inside a small bin, as shown in Fig. 5. On the other hand, the
boundaries of the non-GR parameter space are unknown,
and one can cover the boundary region by generating a
considerably larger number of randompoints, but thatwould
be computationally challenging. A suboptimal solution is to
generate the random points assuming a uniform distribution
in non-GR chirp time coordinates (τ̃0; τ̃3), where τ̃3 corre-
sponds to the nonspinning part of the 1.5PN term,

τ̃3 ¼
1

8ηf0
ðπMf0Þ−2=3ð1þ δφ̂3Þ; ð18Þ

whereM denotes the totalmass of the binary (M¼m1þm2).

For construction of the GR bank, we utilize the known
boundaries in the ξ1 − ξ2 plane and generate points using
stochastic method along the boundaries. We generate 500
bins over Mc as described above and simultaneously
search for nearest random point for all the lattice as well
as the boundary points in each bin on different CPU cores.
We find that the (hybrid) GR bank contains 21,766
templates, out of which 15,447 correspond to the A�

2 star
lattice (geometric GR bank) and the rest corresponds to the
boundaries. For construction of geometric non-GR bank,
we generate 1500 bins over τ̃0 as described above and
search for nearest solution for lattice points in each bin
independently on different CPU cores. This bank contains
284,467 templates. Subsequently, in order to provide
coverage near the boundary region, we initialize the top-
down part of hybrid random template placement strategy
with 200 million random proposals. 84,067 proposals get
accepted as new templates resulting in a hybrid non-GR
bank with 368,534 templates.

D. Failure of metric approximation—inclusion
of exact match

While calculating the overcoverage of the non-GR
hybrid bank (see Sec. IV), we inspected the distribution
of match between closest pair of templates. More than 22%
of templates are found to have the closest point with a
match larger than the considered minimal match, as shown
in Fig. 8. It indicates a nontrivial overcoverage in the bank.
To comprehend the issue of overcoverage, we spray a

large number of points in our parameter space and calculate

FIG. 5. An illustration of two consecutive bins over two most leading coordinates ðξ1; ξ2Þ, which is used to map the lattice points from
ξ coordinate to physical parameter space. The left and middle panels show the partitioning in chirp mass (Mc) for GR and non-GR
space, respectively. The chirp mass binning for non-GR parameter space fails to partition the parameter space due to the strong
correlation betweenMc and 0PN deviation term (δφ̂0). We propose using the 0PN chirp time (τ̃0) as shown in the right panel to partition
the non-GR parameter space in ξ coordinates.
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the maximal match of each point with rest of the points
using exact match function and the metric (approximate)
match as given in Eqs. (7) and (9), respectively. Figure 6
shows the comparison of metric match and the exact match
for both GR and non-GR search spaces. For GR search
space, we used A�

2 lattice to place the templates, where the
match between the two closest templates (intertemplate
match) is expected to be 0.91, but the exact match roughly
varies between 0.91 and 0.94. The hybrid method would
mostly place the templates near the boundaries, where the
intertemplate match can reach up to 0.97, and the corre-
sponding exact match varies between 0.96 and 0.975.
Consequently, the GR template bank can have overcover-
age, but it is not considerable. Similarly, for the non-GR
search space, we used A�

3 lattice (truncated octahedron)

having two kinds of neighbors, one corresponding to
square face and other corresponding to hexagonal face
(see Appendix B of Ref. [62]). The intertemplate match
values for square and hexagonal faced neighbors are 0.904
and 0.928, respectively. Figure 6 suggests that, although a
corresponding exact match varies across a wide range of
values for the two intertemplate metric match values, only a
mild fraction of points can have an exact match above the
minimal match (0.97). However, templates added using the
hybrid method can have (metric) match values as large as
0.97, where a corresponding exact match can even be larger
than 0.98, resulting in the observed overcoverage of hybrid
non-GR bank. The large disagreement of the metric and
exact match while incorporating the deviation parameters
indicates the breakdown of metric approximation.
A recent study [81] described a similar breakdown of

Fisher matrix approximation for constructing a template
bank for BNS systems with tidal deformability. This study
demonstrated that including higher-order terms in the
Taylor series expansion of the match function can reliably
compute the match. However, it is computationally more
expensive than the brute-force computation of the exact
match and therefore cannot be used in geometric place-
ment. Following Ref. [63], we use the exact match function
as given in Eq. (7) only in the hybrid part of the template
placement.
We generate 500 million proposals distributed uniformly

in chirp-time coordinates fτ̃0; τ̃3g, component spins
fχ1z; χ2zg, and deviation parameters fδφ̂ig within their
respective limits as given in Table I and use minimal match
criteria to be 0.965 while constructing hybrid non-GR
bank. 52,885 proposals get accepted as new templates. The
inclusion of the exact match and slightly relaxing the
minimal match criteria resolves the redundancy issue with
8.5% reduction in bank size. We summarize the size of the
geometric and hybrid template banks in Table II.
It takes ∼11; 500 CPU hours to construct geometric non-

GR bank. Generation of the hybrid bank, using geometric
bank as the seed, takes ∼3500 CPU hours.

FIG. 6. A comparison between the match calculated using
metric approximation as given by Eq. (9) and the exact match as
given by Eq. (7), shown for two distinct cases: GR (blue dots) and
non-GR (orange dots).

TABLE II. Summary of the GR and non-GR template banks that are constructed for BNS systems assuming the
parameter ranges tabulated in Table I using TaylorF2 waveform with O2 PSD, and the lower cutoff frequency is set
to be 27 Hz. The fourth and fifth columns report the results from bank validity—what percentage of the injections
are found with a fitting factor (FF) below the desired minimal match value of 0.97. The GR bank is highly
ineffectual in recovering non-GR signals as none of the injections is recovered above 0.97.

Bank
Type of match
computation Bank size

% of FF < 0.97 Lowest FF Redundancy test
% of RF > 0.97GR Non-GR GR Non-GR

Geometric GR Metric 15447 1.73 � � � 0.948 � � � � � �
Hybrid GR Metric 21766 1.26 100 0.962 � � � 3.9
Geometric non-GR Metric 284467 � � � 0.52 � � � 0.917 0.0
Hybrid non-GR Metric 368534 � � � 0.17 � � � 0.95 22.5
Hybrid non-GR Exact 337352 � � � 0.26 � � � 0.959 0.0
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IV. TEMPLATE BANK VALIDITY
AND REDUNDANCY

To quantify the performance of the template banks, we
carry out Monte Carlo simulations to calculate the distri-
bution of the fitting factor for a large set of injections. The
fitting factor value for a waveform tells us what fraction of
SNR can be recovered, and the distribution can identify the
regions of parameter space where the bank coverage is
poor. We generate 105 signals using the TaylorF2 waveform
model. The intrinsic parameters are drawn from a uniform
distribution within their respective boundaries listed in
Table I. The fitting factors for nonprecessing binary
systems are independent of the extrinsic parameters: the
sky location, polarization angle, and inclination angles.
Those criteria also holds for non-GR signals. While
calculating the fitting factor using Eq. (8), we generate
both the template and injection waveforms with a fixed
lower cutoff frequency of 27 Hz.
Figure 7 shows the fitting factor distribution of the

GR template bank for recovering GR as well as non-GR
signals. We note that with the GR bank all the non-GR
injections are recovered below the fitting factor of 0.97,
which implies that the GR template bank is highly
ineffectual for detecting the non-GR signals. Figure 7 also
shows the fitting factor distributions of the two non-GR
banks for recovering non-GR signals. We note that the new
hybrid non-GR template bank has recovered almost all the

injections above a fitting factor of 0.97. We summarize the
fitting factor results in Table II.
We perform the redundancy test of a template bank by

calculating the maximal match between a targeted template
waveform (hi) and every template waveform (hj) in the
bank excluding the template in question [82]; we call it the
redundancy factor (RF),

RFðhiÞ ¼ max
1≤j≤nT; j≠i

M ðhi; hjÞ; ð19Þ

where nT is the number of templates in the bank. Ideally,
the redundancy factor for any template should not be larger
than the minimal match used to construct the bank. Figure 8
shows the distribution of the redundancy factor for different
template banks. For the hybrid non-GR bank constructed
using the metric match, 22.5% of templates have a
redundancy factor larger than 0.97, which indicates a
significant overcoverage. For comparison, we also con-
struct a similar plot for the GR bank and find that for this
case only 3.9% of the templates have the redundancy factor
larger than 0.97.

V. DISCUSSION AND CONCLUSION

In this work, we have investigated the performance of a
GR-template bank for searching the non-GR signals from
BNS systems where component masses range from 1 to
2.4M⊙ and the phenomenological deviation parameters
span 1σ width of the posterior distribution measured from

FIG. 7. Effectualness of the template banks for a set of 105

TaylorF2 injections generated randomly within their target search
spaces described in Table I. We note that for the geometric non-
GR bank, although only 0.52% of injections are recovered with a
fitting factor below the minimal match of the bank (0.97), it drops
to 0.917 for the worst-fitting injection. The complete description
of the performance of the banks is listed in Table II. Note that the
broken x axis (split at 0.9) is used to accommodate all the fitting
factor distributions together.

FIG. 8. Redundancy test of GR as well as non-GR banks. Here,
the redundancy factor is calculated for every template against the
rest of the templates in the bank. The hybrid non-GR bank with
the metric match indicates a significant overcoverage, where
22.5% templates are found above the minimal match of the bank
(0.97). The complete description of the redundancy test of the
banks is listed in Table II.
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the GW170817 event. With the LIGO’s O2 sensitivity, we
have noticed that most of the non-GR signals could be
missed by the GR template bank. We have presented a
hybrid method for constructing a template bank for
searches of beyond GR signals. We found that our non-
GR bank size is ∼15 times larger than the conventional GR
bank. We have shown that our new bank is faithful in
detecting the non-GR signals in its target search space,
whereas the GR bank could not recover any non-GR signal
above a fitting factor value of 0.97.
The previous study exploring the searches of non-GR

signals [47] targeted the search space relevant for BBH
systems, and the parametrized deviations were considered
in the lower PN terms and constructed an 8D template
bank using the straightforward stochastic method. In this
work, we target the 12D search space of BNS systems,
including the deviation in all the PN terms up to 3.5PN
order, and present a hybrid method by combining the
space efficiency of the geometric method and the robust-
ness of the random method. In this work, we restrict
ourselves to using only the fractional deviations i.e., the
deviation over the nonzero PN coefficients. In theory, one
can include deviations on the PN terms for which the
coefficient value is zero in GR.
This method can be used wherever the TaylorF2 wave-

form model is applicable, such as searches of subsolar mass
compact binary, including eccentricity for subsolar mass/
BNS and searches of stellar mass binaries with space-based
detectors [82]. While we have constructed the non-GR
template bank using the TaylorF2 waveform model in this
work, our approach can also be used for IMR waveform
models, since our algorithm relies on a “hybrid” method of
template placement. Under this approach, one starts by
placing an initial geometric grid of templates using the
TaylorF2 metric, as generating a geometric bank with the
IMR model directly is not feasible. This geometric grid can
be further refined by a stochastic placement of additional
template points using the “exact match” between new
random proposal points and the existing templates in
the bank.
The deviation range considered in this work is obtained

from LVK analysis of GW170817, which was measured
assuming the deviation in a single PN phasing coefficient at
a time. Considering deviations in all coefficients simulta-
neously leads to uninformative posteriors due to correla-
tions among deviation parameters. It might be interesting to
consider the uncorrelated non-GR parameters obtained
from original deviation parameters through principal com-
ponent analysis to define the non-GR search space [35,83].
However, the study in Ref. [83] considered the deviations
only up to 2PN, and we are unaware of any multiparameter
test in the literature that evaluated the deviations in all the
PN terms.
In future work, we intend to conduct searches of non-GR

signals from BNS-like mergers with the LIGO and Virgo’s

data during the first and second observation runs. A single
detection of this type of source could reveal a novel
formation channel for compact binaries.

ACKNOWLEDGMENTS

We thank Ian Harry for carefully reading the manuscript
and for offering several comments and suggestions to
improve the presentation and content of the paper. We
are highly grateful for the suggestions received from Alex
Nielsen, Tito Dal Canton, and Thomas Dent. A. S. thanks
IIT Gandhinagar for the research fellowship. S. R. was
supported by the research program of the Netherlands
Organization for Scientific Research (NWO). We acknowl-
edge computational resources provided by IIT Gandhinagar
and also thank high performance computing support staff at
IIT Gandhinagar for their help and cooperation. We grate-
fully acknowledge computational resources provided by
the LIGO Laboratory and supported by the NSF Grants
No. PHY-0757058 and No. PHY-0823459. This research
has made use of data, software and/or web tools obtained
from the Gravitational Wave Open Science Center, a
service of LIGO Laboratory [84], the LIGO Scientific
Collaboration, and the Virgo Collaboration. The material
of this paper is based upon work supported by NSF’s LIGO
Laboratory, which is a major facility fully funded by the
National Science Foundation. To obtain the waveforms and
PN coefficients, we use the LALSIMULATION package of the
LIGO Algorithms Library (LAL) software suite [85]. The
fitting factor studies were performed by modifying
pycbc_banksim code implemented in the PYCBC library
[86]. Our analysis utilizes NumPy [87], SciPy [80], and
Matplotlib [88].

APPENDIX: PN COEFFICIENTS

Here, we describe the PN expansion coefficients of
TaylorF2 waveform phase as mentioned in Eq. (2). The
waveform phase contains corrections to Newtonian order
up to 3.5PN order in nonspinning and linear spin-orbit
effects [89,90] and up to 3PN order in quadratic spin
effects [91],

φ0 ¼
3

128η
ðπMf0Þ−5=3 ðA1aÞ
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3

128η
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�
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�
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where γE ≈ 0.577216 is the Euler constant, M ≡m1 þm2 is the total mass of the binary, η≡m1m2=M2 is the symmetric
mass ratio, δ≡ ðm1 −m2Þ=M is the asymmetric mass ratio, and χs ≡ ðχ1 þ χ2Þ=2 and χa ≡ ðχ1 − χ2Þ=2 are the symmetric
and asymmetric combinations of the spins.
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