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The high-precision description of black hole scattering in classical general relativity using the post-
Minkowskian (PM) expansion requires the evaluation of single-scale Feynman integrals at increasing
loop orders. Up to 4PM, the scattering angle and the impulse are expressible in terms of polylogarithmic
functions and Calabi-Yau (CY) twofold periods. As in QFT, periods of higher dimensional CY n-folds are
expected at higher PM order. We find at 5PM in the dissipative leading order self-force sector (5PM-1SF)
that the only nonpolylogarithmic functions are the K3 periods encountered before and the ones of a new
hypergeometric CY threefold. In the 5PM-2SF sector further CY twofold and threefold periods appear.
Griffiths transversality of the CY period motives allows one to transform the differential equations for the
master integrals into ϵ-factorized form and to solve them in terms of a well-controlled function space, as we
demonstrate in the 5PM-1SF sector.
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I. INTRODUCTION

Today’s gravitational wave detectors have observed
more than 100 mergers of binary black holes (BHs) or
neutron stars (NSs) systems [1–3]. These observations
enable studies of fundamental questions in gravitational,
astro-, nuclear, and fundamental physics. With the upcom-
ing third generation of gravitational wave detectors [4–6]
the need for highest precision predictions of the emitted
gravitational waveforms from theory has arisen [7].
To achieve this, perturbative analytical and numerical
approaches are being followed: post-Newtonian [8–10],
post-Minkowskian (PM) [11–15], self-force [16–19]
expansion, as well as numerical relativity [20–22]. In a
synergistic fashion, the import of perturbative quantum
field theory (QFT) technology has considerably extended
our knowledge—in particular, in the PM expansion that is
closest to the considerations in particle physics.
In the PM approach, one naturally considers the scatter-

ing of BHs or NSs [23–27], which are modeled as massive
point particles that interact gravitationally in the logic of

effective field theory, due to the scale separation between
the objects’ intrinsic sizes (Schwarzschild or neutron star
radius) and their separation (Gm ≪ jbj) [28]. Using this
effective worldline approach, the two-body scattering
observables—the impulse (change of momentum), the spin
kick, and the far field waveform—have been computed up
to high orders in the PM expansion, including spin and tidal
effects [29–38]. Complementary QFT approaches based on
scattering amplitudes have reached similar precision in the
PM expansion [39–42].
In these computations, the advanced toolbox of multi-

loop Feynman integrals needs to be applied: generation of
the integrand, tensor reduction to scalar Feynman integrals,
and the systematical reduction to a set of master integrals
(MIs) by advanced integration by parts (IBP) algorithms.
The present state of the art is at the 4PM (G4) or three-loop
level [34–38,40–42]. The appearing Feynman integrals go
beyond the polylogarithmic case at the 4PM order, where
quadratic combinations of elliptic integrals appear, in a
form that identifies them with periods of a one-parameter
K3 family, i.e. a Calabi-Yau (CY) twofold, parametrized by
x ¼ γ −

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
. Here is γ ¼ v1 · v2 with the incoming

velocities vi of the BHs.
Families of CY n-fold period motives (CYPM) and their

extensions describe typically higher-loop parametric
Feynman integrals in their leading ϵ-order in dimensional
regularization. These special functions are generalizations
of extensions of algebraic or elliptic functions appearing
already at low-loop order which can be seen as CY n-fold
periods for n ¼ 0, 1. See [43–46] for reviews of CY n-fold
families and their mixed Hodge structure in this context.
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The best studied all loop series with systematic CY n-fold
period identification are the 2d (nþ 1)-loop banana graphs
[45,47–49], and the 2d n-loop fishnet integrals [50]. The
corresponding geometries can be realized as singular
double covers of a Fano base B branched at two times
the canonical class of the base 2KB which shows that they
are CY [50]. In this paper, we find similar CY n-folds in the
BH scattering problem. They appear in the same realization
from the Baikov representation of the Feynman integrals.
As in [49] in some cases we find a better smooth realization
as complete intersection CY. The transcendental functions
that determine the x dependence of the impulse and
scattering angle in the BH scattering problem are charac-
terized by CYPM of the corresponding families of CY
n-folds. The latter describe the solutions of the periods as
determined by the flatness of the Gauss-Manin (GM)
connection with additional structures such as Griffiths
transversality (GT), integrality, and modularity inherited
from the CY geometry [44,45]. The geometrical GM
connection is derived from IBP relations for a suitable
basis of MIs or alternatively obtained from expansions of
special Baikov integrals. The mathematical properties of
the CYPM are necessary to calculate the physical quan-
tities. In particular, we use GT as an essential feature to
bring the full IBP differential equations into ϵ-factorized
form which is convenient to systematically solve them up to
the required ϵ-order.

II. WORLDLINE QUANTUM FIELD THEORY

A highly efficient tool to address the PM expansion of
the BH or NS scattering problem is the worldline effective
field theory approach [29]. The spinless compact objects
are modeled as point particles. The action takes the
compact form

S ¼ −
X2
i¼1

mi

Z
dτ

�
1

2
gμνẋ

μ
i ẋ

ν
i

�
þ SEH ð1Þ

using proper time gauge ẋ2i ¼ 1. The bulk Einstein-Hilbert
action SEH includes a de Donder gauge-fixing term, and we
employ dimensional regularization with d ¼ 4 − 2ϵ. In the
worldline quantum field theory (WQFT) approach [29,30]
the fields are expanded about their noninteracting back-
ground configurations

xμi ¼ bμi þ vμi τ þ zμi ; gμν ¼ ημν þ
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
hμν ð2Þ

with the worldline deflections zμi ðτÞ and graviton field
hμνðxÞ. The background data is given by the impact
parameter bμ ¼ bμ2 − bμ1 and the incoming velocities v1,
v2. The fields zμi and hμν are integrated out in the
path integral. One needs to use retarded propagators

as a consequence of the Schwinger-Keldysh in-in
formalism [32,51]. The WQFT interactions contain the
standard bulk graviton vertices as well as worldline vertices
coupling a single graviton to worldline deflections [30,36].
The WQFT tree-level one-point functions hzμi ðτÞi solve
the classical equations of motion [52]—trivializing the
classical limit. As a consequence, the impulse of the (say)
first BH or NS, Δpμ

1, follows from the tree-level one point
function Δpμ

1 ¼ limω→0ω
2hzμ1ðωÞi that is evaluated in the

PM expansion. As the worldline vertices only conserve the
total inflowing energy—opposed to full four-momentum
conservation for the bulk graviton vertices—the WQFT
tree-level one-point function gives rise to loop-level
Feynman integrals whose order grows with the PM order:
The nth PM order yields (n − 1)-loop integrals (plus a
trivial Fourier transform over the momentum transfer q).

III. THE IMPULSE IN PM EXPANSION

The PM expanded impulse, Δpμ
1 ¼

P∞
n¼1G

nΔpðnÞμ,
may be further subdivided into contributions of different
self-force (SF) sectors according to the scaling in the
masses m1 and m2. Concretely, we have at 5PM order

Δpð5Þμ
i ¼m1m2

�
m4

1Δp
ð5Þμ
0SF þm3

1m2Δp
ð5Þμ
1SF

þm2
1m

2
2Δp

ð5Þμ
2SF þm1m3

2Δp̄
ð5Þμ
1SF þm4

2Δp̄
ð5Þμ
0SF

�
: ð3Þ

In fact, the 0SF contributions Δpð5Þμ
0SF and Δp̄ð5Þμ

0SF are linked
to geodesic motion and are, in principle, known to all
orders in G [53]. The self-force expansion is a comple-
mentary perturbative expansion going beyond geodesic
motion in the mass ratio m1=m2 ≪ 1. Importantly, the SF
order grows in steps of two in the PM order, e.g. the first
1SF term appears at 3PM and the first 2SF at 5PM order.
In this paper, we determine the nonpolylogarithmic
function space of the 1SF terms up to the 5PM order.
Moreover, we comment on the situation in the 2SF sector.
The impulse is a four-vector and will be expressed as a
linear combination of the four-vectors bμ as well as vμ1
and vμ2.

IV. INTEGRAL FAMILY

The generation of theWQFT integrand has been described
at 3PM and 4PM orders in [15,31,32,36,37,54]. It employs
recursive diagrammatic techniques and tensor reduction for
the generation of the WQFT integrands. In the 4PM case the
emerging integral family is comprised of 12 propagators and
three worldline delta functions [36]. At the 5PM-1SF order,
this automated integrand generation is, in principle, identical
and poses no technical problems [55] from which the scalar
integral families may be read off.
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We encounter an integral family comprised of 18 propagators and four worldline delta functions taking the form

Iðσ1;σ2;…;σ7Þ
n1;n2;…;n22 ¼

Z
l1;l2;l3;l4

δðn1−1Þðl1 · v2Þδðn2−1Þðl2 · v2Þδðn3−1Þðl3 · v2Þδðn4−1Þðl4 · v1Þ
Dn5

1 Dn6
2 � � �Dn22

18

; ð4aÞ

where δðnÞðxÞ denotes the nth derivative of the worldline delta function. The propagators (k ¼ 1, 2, 3 and j ¼ 1, 2, 3, 4)
are given by

Dk ¼ lk · v1 þ σki0þ; D4 ¼ l4 · v2 þ σ4i0þ; D4þk ¼ ðlk − l4Þ2 þ σ4þksgnðl0
k − l0

4Þi0þ;
D8 ¼ ðl1 − l2Þ2; D9 ¼ ðl1 − l3Þ2; D10 ¼ ðl2 − l3Þ2; D10þj ¼ l2

j ; D14þj ¼ ðlj þ qÞ2: ð4bÞ

In principle, all graviton propagators carry a retarded i0
prescription. Due to the delta functions only three propa-
gators can go on-shell. The sign of the i0 prescription is
defined by σi ¼ �1. The 5PM-1SF integral family splits
into two branches: even (b-type) or odd (v-type) in parity
(v → −v), determined by the number of worldline propa-
gators and derivatives of the delta functions, i.e. the parity
of the first eight indices fn1;…n8g. These two integral
branches couple in the final result to the vectors bμ and vμi
respectively. The integrals of b- and v-type can have very
different function spaces. Notice that all v-type integrals
without a worldline propagator vanish, when using Feyn-
man propagators, due to symmetries (li → −li; q → −q).
Therefore, they only contribute to the dissipative part of
the impulse.
The usage of retarded propagators makes the even

integrals purely real and the odd integrals pseudoreal.
The integrals are effectively one-scale integrals depending
on the parameter x∈ ½0; 1�. The self-force order determines
the indices of the velocities in the delta functions.
At nPM-mSF order, we have ðn − 1 −mÞ-loop momenta
contracted with v1 and m momenta contracted with v2
in the delta functions. At 0SF order, the γ dependence
becomes trivial. The complexity of the integration problem
increases with every self-force order.

V. IBP REDUCTION AND CHOICE OF BASIS

To study the function space of the PM integrals one
necessary step is to derive the differential equations of
the involved MIs. The MIs as well as their differential
equations are derived from IBP relations using the program
KIRA [56–58]. To simplify this task we only reduced the
derivatives of the MIs neglecting the full integrand
reduction.
It is convenient to group the MIs into a large vector

Iðx; ϵÞ. Here, we order MIs from lower to higher sectors,
i.e. we start with the subsectors. With this convention
we find that the GM equation takes the form
ðd −Mðx; ϵÞÞIðx; ϵÞ ¼ 0, such that the connection matrix
Mðx; ϵÞ factorizes into sectors and is of lower block
triangular form. As discussed before, we split the integrals
into even and odd parity and look at them separately.

The diagonal blocks correspond to the maximal cuts of
the system [59,60]. They essentially determine the class of
transcendental functions appearing in a given sector.
To systematically solve the GM equation up to a

given order in ϵ it is useful to go to an ϵ-factorized
differential equation [61]. For this one has to construct a
rotation into a new basis Jðx; ϵÞ ¼ Tðx; ϵÞIðx; ϵÞ such that
the ϵ dependence is factored out in the new connection
matrix

0 ¼ ðd − ϵAðxÞÞJðx; ϵÞ;
ϵAðxÞ ¼ ðTðx; ϵÞMðx; ϵÞ þ dTðx; ϵÞÞTðx; ϵÞ−1: ð5Þ

The complexity of calculating the rotation Tðx; ϵÞ strongly
depends on the initial choice of MIs. Essential criteria
for a good selection of MIs are the absence of powerlike
singularities, the absence of general polynomials pðx; ϵÞ
in the denominators of Mðx; ϵÞ, and the manifestation of
the different appearing minimally coupled systems, i.e.
geometries, in the problem. For our case, this means that
the choice of MIs gives rise either to projective spaces
with marked points (polylogarithms), CY manifolds or
possible additional residues on these geometries [62].
For GM systems related to CY n-folds, the main ingre-
dient then is to use GT to construct linear combinations
of MIs involving the CY period integrals as coefficients
such that their leading singularities satisfy unipotent
differential equations [63]. Practically, this means that
one has to split the Wronskian matrix of fundamental
solutions WðxÞ into a semisimple and unipotent part, i.e.
WðxÞ ¼ WðxÞssWðxÞu. After removing the semi-simple
part from the initial MIs and further total derivatives one
arrives at an ϵ-factorized differential equation. In some
cases, additional new transcendental functions being
iterated integrals of the CY period integrals have to be
introduced during these steps. For more details, we refer
to [62,63].
The final ϵ-factorized connection matrix AðxÞ consists of

rational functions and iterated CY period integrals. We can
see now clearly that the higher ϵ-orders just give further
iterated integrals of these kernels. Also the contributions
from subsectors do not change the function space.
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VI. CY IN THE SKY

The rank nþ 1GM connection ðd − AMðxÞÞΠðxÞ ¼ 0 of
a one-parameter period motive of a CY n-foldM appears as
subconnection in (5), i.e. as a block in Mðx; 0Þ. It can be
equivalently written as a linear Picard-Fuchs differential
operator (PF op) of order nþ 1, i.e. Lðnþ1Þ ¼ ∂

nþ1
x þP

n
i¼0 aiðxÞ∂ix where aiðxÞ is a rational function in x.

The solutions ΠðxÞ to Lðnþ1ÞΠðxÞ ¼ 0 are then the periods
Πk ¼

R
Ck
n
Ω of M, with Ω the holomorphic ðn; 0Þ-form and

the n-cycles Ck
n can be chosen to be in HnðM;ZÞ.

In order to describe a period motive associated to an
n-dimensional algebraic variety, Lðnþ1Þ has to have only
regular singular points of maximal unipotency n in its
moduli space Mx. For Lðnþ1Þ to be also a CY operator,
GT requires that Lðnþ1Þ has to be self-adjoint, i.e.

L�ðnþ1ÞcðxÞ ¼ ð−1Þnþ1cðxÞLðnþ1Þ: ð6Þ

Here, L�ðnþ1Þ ¼Pnþ1
i¼0 ð−∂xÞiaiðxÞ is the adjoint operator

and the rational function cðxÞ is determined by
∂xcðxÞ=cðxÞ ¼ 2anðxÞ=ðnþ 1Þ up to a multiplicative con-
stant. CY motives are defined by CY differential operators,
see [64] for n ¼ 3, which have in addition a point of
maximal unipotent monodromy (MUM point). At this
point they have an integral mirror map and integral BPS
expansions [65–67]. The latter are trivial for K3 surfaces,
and in this case, the period domain is a symmetric
domain. Moreover, the periods are modular functions
of congruent subgroups of SLð2;ZÞ, which is related to
the fact that one-parameter K3 period integrals are
symmetric squares of elliptic integrals [48,68–70]. For
integral BPS expansion in three- and fourfolds see
[65,67,71,72]. The integral structures are consequences
of the integral monodromy respresentation of OðΣ;ZÞ for
n even and Spð2nþ 2;ZÞ for n odd which also encode the
topological type of M. Here Σ is the intersection form
on HnðM;ZÞ.
To identify a given graph Γ in the 5PM expansion having

m different MIs in its sector with a CY n-fold, it is essential

that the corresponding MIs are chosen such that at ϵ ¼ 0
the candidate minimally coupled CY block is decoupled
from other contributions which can be additional residues,
polylogarithmic contaminations, or additional nontrivial
CY manifolds [62,63]. This means that at ϵ ¼ 0 the
connection form of this sector splits as

MΓðx; 0Þ ¼
 
AMΓðxÞ 0

CðxÞ DðxÞ

!
; ð7Þ

where the two matrices CðxÞ, DðxÞ describe the additional
structures in the sector. Then, the CY can be identified
directly from AMΓ or via the equivalent PF op. Alternatively,
a Baikov representation associated to Γ can be expanded in x
by performing a suitable residuum calculation to high
order, which corresponds to choose Cn ¼ Tn to obtain a
torus integral

R
Tn Ω in MΓ. An ansatz for Lðnþ1ÞðxÞ can,

in practice, be uniquely fixed by the requirement
Lðnþ1ÞðxÞ RTn Ω ¼ 0 and can be compared with (7).
In all cases, we find the higher rank period motives of

MΓ fulfilling the conditions above to be CY motives. They
determine the corresponding higher transcendental func-
tions, encoding the observables of the black hole scattering
process, which are CY periods ΠðxÞ and their extensions as
we will explicitly exemplify below.

VII. THE 5PM-1SF SECTOR

We have found five different graphs (K3.i, i ¼ 1;…; 5 in
Fig. 1) related to a K3 surface. To make this identification, a
suitable choice of MIs is given by the corner integrals listed
in Table I. Here, each corner integral corresponds to a
single graph and is supplemented by additional MIs being
the derivatives of the corner one. In this regard, the graphs
K3.1-2 consist of four MIs whereas the graphs K3.3-5
consist of three MIs.
For these choices of MIs, the corresponding GM systems

can be determined from IBP relations. It is interesting to
observe, that all K3 operators appearing in all five graphs
at ϵ ¼ 0 are related to the same K3 operator also appearing

FIG. 1. The graphs up to 5PMwhose sectors are associated to CYmanifolds. Here, only either the even or odd parity integrals give rise
to the CY period integrals. The top line corresponds to the same K3 surface, cf. Table I. Dotted lines represent δ-functions, solid lines the
linear propagators D1;…; D4, and wiggly lines the graviton propagators D5;…; D18.
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in the 4PM-1SF sector (graph K3.0). This operator is
conveniently expressed as

Lð3Þ
1 ¼ ð2θ − 1Þ3 þ z2ð2θ þ 1Þ3 − 4zθð4θ2 þ 1Þ ð8Þ

with θ ¼ z d
dz, z ¼ x2. Self-adjointness of Lð3Þ

1 is guaranteed
through cðzÞ ¼ 4=ðzð1 − zÞ2Þ from (6), where the 4 has
been determined from the intersection Σ of the K3.
Monodromy properties can be read off from the corre-
sponding Riemann P-Symbol in Eq. (A1). GT and the
representation theory of the monodromy groups [48,68,69]
imply that Lð3Þ ¼ Sym2ðLð2ÞÞ, where Lð2Þ is the PF op
of an elliptic curve. In our case, it is the Legendre curve
Y ¼ XðX − 1ÞðX − zÞ with monodromy group Γ0ð4Þ and

Lð2Þ
1 ¼ θ2 − zðθ þ 1

2
Þ2. The K3 geometry is then the twisted

product of the latter given by

Y2 ¼ XðX − 1ÞðX − zÞZðZ − 1ÞðZ − 1=zÞ: ð9Þ

Its symmetry makes it immediately clear that the same
solution structure appears at w ¼ 1=z ¼ 1=x2. This sym-
metry is inherited from the physical parametrization
γ ¼ ðxþ x−1Þ=2 and must occur in all geometries.
Since elliptic curves cannot exhibit this symmetry in their
moduli spaceMz the occurrence of CY motives in the PM
approximation starts with n ¼ 2, i.e. K3 surfaces. We can
bring all sectors corresponding to the five graphs K3.1-5 in
Fig. 1 into ϵ-form using the INITIAL algorithm [73,74].
The corner integrals in Table I serve up to normalization as
initial integrals for the INITIAL algorithm.
Besides the K3 surface there is only one other CY n-fold

appearing in the 5PM-1SF sector. The graph inducing this
(first) CY three-fold is depicted in Fig. 1 (CY3). While its
even subsector is polylogarithmic (as reported in [75]) the
odd subsector is not and will contribute to the dissipative
part of the 5PM-1SF impulse. This CY threefold sector is
built up of six MIs. The first four MIs, which are the corner
integral I1 in Table II, and its three derivatives, describe the
CY threefold part. The MIs I5, I6 are instead additional
residues on that CY. The corresponding fourth-order CY

operator Lð4Þ
1 is of hypergeometric type and is given by

Lð4Þ
1 ¼ θ4 − 28z

�
θ þ 1

2

�
4

ð10Þ

in the variable z ¼ 2−8x4 and after normalizing I1 by x with

cðzÞ ¼ 16=ðz3ð1 − 28zÞÞ from (6). Lð4Þ
1 is a Hadamard

product Lð2Þ
1 � Lð2Þ

1 of the Legendre operator, see [76] for
Hadamard constructions. The corresponding smooth CY
threefold one-parameter complex family z ¼ ð2ψÞ−8 can be
defined as resolution of four symmetric quadrics

x2j þ y2j − 2ψxjþ1yjþ1 ¼ 0; j∈Z=4Z ð11Þ

in the homogeneous coordinates xi, yj, j ¼ 0;…; 3 of
P7 [77]. This hypergeometric CY threefold motive
appeared in the study of mirror symmetry in [78].
To derive the ϵ-factorization of this CY block, we first

have to split the matrix of fundamental solutions WðxÞ ¼
ð∂jϖiÞ0≤i;j≤3 into its semi-simple and unipotent part (for
more details see the appendix). The unipotent part satisfies

ðd−AuðxÞÞWuðxÞ¼0; AuðxÞ¼

0
BBBB@
0 1 0 0

0 0 Y1 0

0 0 0 1

0 0 0 0

1
CCCCA ð12Þ

and AuðxÞ is nilpotent, i.e. ðAuðxÞÞ4 ¼ 0. From the CY
perspective it is meaningful to use the rescaled variable
x ¼ x

4
in which the integral expansions are manifest. After

removing the semisimple part from the initial MIs, we have
to introduce four new transcendental functions, which are
iterated integrals of CY periods, to obtain the ϵ-form. The
two simplest ones are given by

G1ðxÞ ¼ −
Z

x

0

24576x0ð1þ 256x04Þ
ð1 − 256x04Þ2

ϖ0ðx0Þ2
α1ðx0Þ

dx0;

G3ðxÞ ¼
Z

x

0

x0

1 − 256x04
G1ðx0Þα1ðx0Þ2

ϖ0ðx0Þ2
dx0: ð13Þ

The x expansions of α1 and all Gi functions are given in
the Eqs. (A5) and (B1), respectively. This allows one to
construct the full ϵ-factorized connection matrix in the CY
sector by using the special properties of the CY geometry,
in particular, GT and the period integrals. The new
transcendental functions are given as power series which
can be easily analytically continued to the whole complex
plane. As an important observation, the new transcendental
functions have all integer coefficient expansions in x,

TABLE I. The master integrals of the K3 sectors.

MI ni Parity

IK3;1 1 1 1 1 0 0 0 −1 0 1 1 1 0 1 1 0 0 1 0 0 1 0 Odd
IK3;2 1 1 1 1 0 0 0 −1 1 1 0 1 0 1 1 0 0 0 0 0 1 1 Odd
IK3;3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 0 Odd
IK3;4 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 Odd
IK3;5 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 Even

TABLE II. The master integrals of the CY3 sector.

MI ni Parity

I1 1 1 1 2 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 Odd
I5 1 1 2 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 1 0 Odd
I6 1 1 2 2 0 0 0 −1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 Odd
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similarly to the novel transcendental functions appearing
in [62,63,79–81] which for K3 surfaces are related to
magnetic modular forms [63,82,83]. This gives us full
analytic control over the function space in the 5PM-1SF
sector [84]. In Appendix B, we provide the ϵ-factorized
differential equation for the CY threefold in expanded form
[see Eqs. (B2) and (B3)] together with a plot (see Fig. 2)
showing explicitly the higher ϵ-orders.

VIII. OUTLOOK TO 5PM-2SF

This sector contains many more and new CY n-folds
compared to the 1SF sector. For instance, for the graph K3’
in Fig. 1 we find among the nine MIs a K3 block that leads
with z ¼ x2, removing an apparent singularity at z ¼ 1 and
normalizing the corresponding MIs by z=ð1 − zÞ to the
famous Apèry operator

Lð3Þ
A ¼θ3þz2ðθþ1Þ3−zð2θþ1Þð17θ2þ17θþ5Þ ð14Þ

with cðzÞ ¼ κ
z2ðz2−34zþ1Þ from (6), that was used in [85] to

prove the irrationality of ζð3Þ, see [86] for a review. The
smooth K3 of Picard rank 19 was described in [87] as the
resolution of the affine equation

1 − ð1 − XYÞZ − zXYZð1 − XÞð1 − YÞð1 − ZÞ ¼ 0: ð15Þ

In fact, the corresponding Baikov integral representation
and the evaluation of ϖ0 near z ¼ 0 by performing the T2

integral can be also found in [87].
In recent work [88] a singular Baikov integral repre-

sentation for the graph CY3’ (see Fig. 1) was given. It can
be viewed as a double cover of P3 branched at

P ¼ t2ðWX þ Y2Þ2ðW þ ZÞ2ðX þ ZÞ2
þ 26ð1þ tÞðWXYÞ2ZðW þ X þ ZÞ ð16Þ

with t ¼ x2 − 1. The corresponding geometry U2 ¼ P
is highly singular and was not resolved in [88] to a CY

unlike (15) in [87]. Also the differential operator given
in [88] with an apparent singularity is not of CY type [64].
It lacks integral BPS expansions at the MUM point t ¼ 0.
With z ¼ − t2

212ð1þtÞ, we lift the apparent singularity and in

Eq. (A2) we show that the transformed operator

Lð4Þ
2 ¼ θ4 − 230z3

�
θ þ 1

2

�
4

− 24zð192θ4 þ 128θ3 þ 112θ2 þ 48θ þ 7Þ
þ 214z2ð192θ4 þ 256θ3 þ 208θ2 þ 64θ þ 7Þ ð17Þ

corresponds to a one-parameter CY family with topological
data χ ¼ 80, κ ¼ 4, and γ ¼ κð6m − 5Þ, which fixes the
topological type according to [89]. Using integral BPS
expansion we can also relate it to a Hadamard construction.

IX. CONCLUSIONS

In this work, we have shown that the function space
describing the radiated momentum of a scattering encoun-
ter of two BHs involves CY threefolds starting at the 5PM
order. We have completely resolved the nonpolylogarith-
mic function space at the 5PM-1SF order by ϵ-factorizing
the differential equations for the MIs in these sectors. In
addition, an exemplary outlook into two CY sectors at 2SF
was given. We established that all CY n-fold periods
appearing so far are either symmetric or Hadamard prod-
ucts of elliptic functions. Clearly, the appearance of these
functions indicates that the use of advanced mathematics is
necessary to address the classical two-body problem in
general relativity (in the PM or SF expansions). While the
Newtonian problem is famously linked to elliptic integrals,
it is fascinating to see that the general relativistic problem
leads to their natural generalizations in terms of CY
periods.
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APPENDIX A: FURTHER PROPERTIES
OF THE CY OPERATORS

In this appendix, we list more properties of the CY
manifolds appearing at 5PM. We start with the Riemann
P-symbols of the CY operators in the 5PM-1SF sector

P
Lð3Þ
1

8>>>>><
>>>>>:

0 1 ∞
1
2

0 1
2

1
2

0 1
2

1
2

0 1
2

9>>>>>=
>>>>>;
; P

Lð4Þ
1

8>>>>>>>><
>>>>>>>>:

0 1
28

∞

0 0 1
2

0 1 1
2

0 1 1
2

0 2 1
2

9>>>>>>>>=
>>>>>>>>;
; ðA1Þ

and in the 2SF sector

PLð3Þ
B

8>>>>><
>>>>>:

0 p 1
p ∞

0 0 0 1

0 1
2

1
2

1

0 1 1 1

9>>>>>=
>>>>>;
; PLð4Þ

2

8>>>>>>>><
>>>>>>>>:

0 1
210

∞

0 0 1
2

0 1
2

1
2

0 3
2

1
2

0 2 1
2

9>>>>>>>>=
>>>>>>>>;
; ðA2Þ

where p; p−1 are the two roots of the quadratic equation
u2 − 34uþ 1 ¼ 0. A Riemann P-symbol PLðrÞ records
the local exponents γi, i ¼ 1;…; r of the solutions to a
rth-order operatorLðrÞðzÞ, below the regular singular points
or the apparent singularities in the moduli space para-
metrized by z. If all γi are equal, z is a MUM point.
At a MUM point a Frobenius basis with local exponent

γ1 is given by Π̃ ¼ ðϖi; i ¼ 0;…; nÞ with ϖjðzÞ ¼
zγ1
P

n
k¼0

1
k! logðzÞkfn−kðzÞ, where the power series are

normalized like f0ð0Þ¼1, fi>0ð0Þ¼0. Then, we get, e.g.
for a threefold, an integral symplectic basis [49,77,90] by

Π ¼

0
BBBBB@

1 0 0 0

0 1
2πi 0 0

c2
24

σ
2πi

κ
4π2

0

χζð3Þ
2ð2πiÞ3

c2
24ð2πiÞ 0 κ

ð2πiÞ3

1
CCCCCAΠ̃: ðA3Þ

Introducing the mirror map qðzÞ ¼ expð2πitðzÞÞ with
tðzÞ ¼ ϖ1=ð2πiϖ0Þ, we can write Π ¼ ϖ0ð1; t; ∂tF ðtÞ;
2F ðtÞ − t∂tF ðtÞÞ in terms of a prepotential F ¼ − κt3

6
−

σt2
2
þ c2

24
tþP∞

d¼0 n
d
0Li3ðqdÞ with n00 ¼ χ=2 and κ; c2; χ,

which are the topological data of the mirror to M. For
general CY n-folds the analog of the transformation in (A3)
is obtained by the Γ̂-class formalism as explained in [49].
The main invariant of CY n-fold motives are the mirror
maps tiðzjÞ and the triple couplings in quantum cohomol-
ogy, also known as Yukawa coupling in the string com-
pactification context, as they encode all enumerative
invariants. For the one-parameter CY threefold case, there

is only one triple coupling, namely ctttðtÞ¼ cðzÞ
ϖ2

0

ð∂z
∂tÞ3¼ ∂

3
tF.

The last equality is a consequence of GT. With coordinates
x2 ¼ z and naive normalization κ ¼ 1, they appear as
Yk-invariants and structure series αk in [91]. For our
CY (11), we find explicitly

α1 ¼
1

ðθtÞðx2Þ ¼ 1 − 64x4 − 5952x8 þOðx12Þ;

Y1 ¼
ctttðtðx2ÞÞ

16
¼ 1þ 32x4 þ 6944x8 þOðx12Þ: ðA4Þ

The recursive definition of the Yk, k ¼ 0; 1;…; n − 2 and
αk, k ¼ 0; 1;…; n uses the differential operators N 0 ¼ 1,
N 1 ¼ θ

ϖ0
, andN kþ1¼θ 1

N kðϖkÞ and defines αk ¼ N kðϖkÞ−1
and Yk ¼ α1

αkþ1
. It is useful to provide the triple coupling in

quantum cohomology of CY n-folds as in [66] and bring
the one-parameter GM in a standard form [66,71,72,91].
The theory for multiparameter GM was worked out in [92],
see [44] for review.
For example, for our first CY threefold (11) the topo-

logical data of the mirror are χ ¼ −128, κ ¼ 16, c2 ¼ 64
(σ ¼ κmod 2 ¼ 0) which are precisely those topological
data fixing its topological type [89] and the number of
lines n10 ¼ 512 in it, which was observed in [78]. The
equation (A3) fixes the integral symplectic basis at z ¼ 0.
The analytic continuation ofΠ to z ¼ ∞ is given exactly by
a Barnes integral representation and to the conifold z ¼ 1

210

by the construction of a Kuga-Sato variety. The latter
implies that the transition matrix is given in terms of the
periods and quasiperiods of weight four Hecke eigenforms
of S4ðΓ0ð8ÞÞ.
From (9) we can evaluate the T2 period of the K3 at

x ¼ 0 as residuum, i.e. ϖð0Þ
0 ¼ RT2 Ω with

ϖð0Þ
0 ¼ 1

ð2πiÞ2
I I

dX ∧ dZffiffiffiffi
Y

p

¼ ffiffiffi
z

p
 X∞

k¼0

�
− 1

2

k

�
zk
!

2

¼ 4

π2
ffiffiffi
z

p
KðzÞ2: ðA5Þ

This is clearly a solution of Lð3Þ
1 at z ¼ x2 ¼ 0 and, in fact,

one can obtain Lð3Þ
1 as the third-order differential operator

that annihilates it. The other two K3 periods over integral
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monodromy cycles, which have logarithmic and double
logarithmic degenerations at this MUM point, yield pre-
cisely those quadratic combinations of elliptic functions
that appear as transcendental functions in the 4PM
approximation. Similarly, the operator (14) can be written
as a symmetric square of the second-order operator

Lð2Þ
2 ¼ θ2 þ z2ðθ þ 1

2
Þ2 − 1

2
zðθ2 þ 34θ þ 5Þ.

For the second CY threefold defined by U2 ¼ P with
P from the Baikov representation of the graph CY3’ in
Eq. (16), we can evaluate, as in (A5), the T3 period integral
in affine coordinates

ϖð1Þ
0 ¼ 8

ð2πiÞ4
I
T4

ffiffiffiffiffiffiffiffiffiffi
1þ t

p ffiffiffiffi
Q

p dW
W

∧ dX
X

∧ dY
Y

∧ dZ
Z

¼ 1 −
7

28
t2 þ 7

28
t3 −

25711

220
t4 þ � � � : ðA6Þ

Here, t ¼ x2 − 1 and the Laurent polynomial Q is
Q ¼ P=ðWXYZÞ2. We can find an operator annihilating

the expansion of ϖð1Þ
0 from an ansatz Lðθ; tÞ of order four

and six in θ and t, respectively. This operator L̃ð4Þ, which
is equivalent to the one in [88], has an apparent singu-
larity and lacks the integrality properties of a CYoperator.
Since it is difficult to resolve the U2 ¼ P geometry we
reconstruct the CY threefold motive from (17) by running
the Γ̂-class argument of [49] backwards. This means we
determine an integral symplectic basis by calculating the
monodromies around z ¼ 0 and z ¼ 1

210
, and determine

thereby the topological data in (A3). By analytic con-
tinuation we find that such a choice is unique up to an
integer m∈Z with the monodromies Mz¼0 and Mz¼ 1

210

(M2
z¼ 1

210

¼ 1) given by

0
BBB@

1 1 0 0

0 1 0 0

2 2m−1 1 −1
−4 −2 0 −1

1
CCCA;

0
B@

m 0 −1 0

m2−1 0 −m 0

0 1−m2 0 m

1
CA; ðA7Þ

respectively. This not only determines an integral sym-
plectic basis but also restricts the topological data to
χ ¼ 20κ, c2 ¼ κð6m − 5Þ with κ ¼ 4. The genus zero BPS
numbers are integral at both MUM points fnd0g ¼
f−640;−27680;−2158729;…; d ¼ 1; 2; 3…g as required
[64,91]. They appear1 also in case 2.33 of [76]. This CY
threefold is defined as Hadamard product [76] with CY

operator Lð4Þ
Had¼θ4þ216w2

Q
3
k¼0ð4θþ2kþ1Þ−24zð4θþ1Þ

ð4θþ3Þð32θ2þ32θþ13Þ. Its periods are related to the

periods ΠðzÞ of (17) by ΠðzÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 210z

p
ΠHadðz=

ð1þ 210zÞ2Þ, which means that the CY periods associated
to the geometry (16) are also realized in a Hadamard
product of two elliptic curves.

APPENDIX B: ϵ-FACTORIZED DIFFERENTIAL
EQUATION

Finally, we want to give explicit results for the
ϵ-factorized differential equation in the CY threefold sector
at 5PM-1SF. We do this as an expansion of the rescaled
variable x to obtain directly integer coefficient expansions.
The four new transcendental functions Gi for i ¼ 1, 2, 3, 4
are given by

G1ðxÞ ¼ −6144x4
	
1þ 432x4 þ 138784x8 þOðx12Þ
;

G2ðxÞ ¼
128

3
x2
	
7þ 2512x2 þ 29344x4 þOðx6Þ
;

G3ðxÞ ¼ −1536x4
	
1þ 264x4 þ 66432x8 þOðx12Þ
;

G4ðxÞ ¼ −
64

3
x2
	
7þ 900x2 − 1120x4 þOðx6Þ
: ðB1Þ

Notice, that all GiðxÞ have an integer coefficient expansion
after a suitable normalization. The functions G1ðxÞ; G3ðxÞ
have exponents being only multiples of four whereas
G2ðxÞ; G4ðxÞ have just even exponents. The final ϵ-form
of the connection form ϵACY3ðxÞ in the CY threefold sector
at 5PM-1SF is given by

ACY3ðxÞ ¼

0
BBBB@

K11ðxÞ K12ðxÞ 0 0

K21ðxÞ K22ðxÞ K23ðxÞ 0

K31ðxÞ K32ðxÞ K22ðxÞ K12ðxÞ
K41ðxÞ K31ðxÞ K21ðxÞ K11ðxÞ

1
CCCCA ðB2Þ

with the eight different kernels

K11ðxÞ ¼ −
2

x
þ 128xþ 512x3 þ 32768x5 þOðx7Þ;

K12ðxÞ ¼
1

x
þ 64x3 þ 10048x7 þ 1878016x11 þOðx15Þ;

K21ðxÞ ¼
10

3x
þ 448xþ 65408x3 þ 200704x5 þOðx7Þ;

K22ðxÞ ¼ −
2

x
þ 128x − 2560x3 þ 32768x5 þOðx7Þ;

K23ðxÞ ¼
1

x
þ 96x3 þ 19040x7 þ 4199424x11 þOðx15Þ;

K31ðxÞ ¼ −5376x − 1208320x3 − 10149888x5 þOðx7Þ;

K32ðxÞ ¼
40

3x
þ 896xþ 438016x3

3
þ 831488x5 þOðx7Þ;

K41ðxÞ ¼ −
476

9x
þ 8960x

3
þ 21856640x3

3
þOðx5Þ: ðB3Þ1We thank Duco van Straten for pointing this out.
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We can see that on the diagonals ACY3ðxÞ exhibits a
symmetry reducing the number of independent kernels
which was also observed for the ϵ-form of the banana
integrals [62,63,79–81]. Notice, that this is not a general
feature for ϵ-deformed differential equations related to
CY operators [63]. With the ϵ-form (B2) we can now
systematically compute the ϵ-expansion which by analytic
continuation can be made global. To demonstrate this we
plot in Fig. 2 the real part of the first three ϵ-orders of the
sample function

fðx; ϵÞ ¼ fð0ÞðxÞ þ ϵfð1ÞðxÞ þ ϵ2fð2ÞðxÞ þOðϵ3Þ: ðB4Þ

The function f is a linear combination of the maximal cuts
of the MIs I1;…; I4 in the CY3 sector. In particular, we
have chosen this linear combination such that fð0Þ is
proportional to the conifold vanishing period of the CY
threefold. To be precise we have taken

fð0ÞðxÞ ¼ 2

3
xð4 log3ðxÞ − π2 logðxÞ − 3ζð3ÞÞ þOðx2Þ;

fð1ÞðxÞ ¼ −
2

3
xð8 log4ðxÞ þ 7π2 log2ðxÞ;

− 6ζð3Þ logðxÞÞ þOðx2Þ;

fð2ÞðxÞ ¼ 2

27
xð108 log5ðxÞ − ð2700 − 119π2Þlog3ðxÞ

− 99ζð3Þ log2ðxÞ þ 4050 logðxÞÞ þOðx2Þ:
ðB5Þ

We can see that at the conifold singularity located at
x ¼ 1 (x ¼ 1

4
) the different ϵ-orders can be smooth or

exhibit a singularity. Nevertheless, the analytic continu-
ation can be done beyond this singularity of the differ-
ential equation.
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Planté, and P. Vanhove, General relativity from scattering
amplitudes, Phys. Rev. Lett. 121, 171601 (2018); Z. Bern,
C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, and M.
Zeng, Scattering amplitudes and the conservative Hamil-
tonian for binary systems at third post-Minkowskian order,
Phys. Rev. Lett. 122, 201603 (2019); Z. Bern, C. Cheung, R.
Roiban, C.-H. Shen, M. P. Solon, and M. Zeng, Black hole
binary dynamics from the double copy and effective theory,
J. High Energy Phys. 10 (2019) 206; N. E. J. Bjerrum-Bohr,
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