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The propagation of gravitational waves can be described in terms of null geodesics by using the
geometrical optics approximation. However, at large but finite frequencies the propagation is affected by
the spin-orbit coupling corrections to geometrical optics, known as the gravitational spin Hall effect.
Consequently, gravitational waves follow slightly different frequency- and polarization-dependent
trajectories, leading to dispersive and birefringent phenomena. We study the potential for detecting the
gravitational spin Hall effect in hierarchical triple black hole systems, consisting of an emitting binary
orbiting a more massive body acting as a gravitational lens. We calculate the difference in time of arrival
with respect to the geodesic propagation and find that it follows a simple power-law dependence on
frequency with a fixed exponent. We calculate the gravitational spin Hall-corrected waveform and its
mismatch with respect to the original waveform. The waveform carries a measurable imprint of the strong
gravitational field if the source, lens, and observer are sufficiently aligned, or for generic observers if the
source is close enough to the lens. We present constraints on dispersive time delays from GWTC-3,
translated from limits on Lorentz invariance violation. Finally, we address the sensitivity of current and
future ground detectors to dispersive lensing. Our results demonstrate that the gravitational spin Hall effect
can be detected, providing a novel probe of general relativity and the environments of compact binary
systems.
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I. INTRODUCTION

The first detection of gravitational waves (GWs)—
GW150914—by the Advanced LIGO observatory marked
the beginning of the new era of gravitational-wave
astronomy [1,2]. GWs carry information about their source,
but also imprints of the spacetime on which they travel.
Observable sources of GWs emit over a wide range of
frequencies [3]. As an example, the aforementioned
GW150914 was detected from ∼35 to 250 Hz. Its

wavelength and that of any signal detectable by LIGO-
Virgo-Kagra (LVK), remains orders of magnitude larger
than that of the longest electromagnetic (EM) signal
capable of crossing the atmosphere (∼10 MHz).
Therefore, GWs have the potential to detect novel propa-
gation effects at low frequencies, particularly when their
wavelength approaches characteristic lengths of physical
systems—e.g. the Schwarzschild radius of a black hole or
other gravitational lens. In these cases, the propagation of
GWs might deviate slightly from the standard predictions
of geometrical optics (GO) [4–6].
The GO approximation assumes that the wavelength is

negligible compared to all other length scales of the system.
Mathematically, this is the infinite frequency limit in which
the evolution of either Maxwell or linearized gravity field
equations is approximated by a set of ordinary differential
equation (ODEs) instead of a set of partial differential
equations. In this approximation, rays propagate along null
geodesics, and the evolution of the field is approximated by
transport equations along rays. Effects beyond the GO
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approximation are well known in optics, where spin-orbit
coupling1 leads to polarization-dependent propagation of
EM wave packets [9–18]. This is known as the spin Hall
effect of light [7,19] and has been observed in several
experiments [15,17]. A similar effect—the gravitational
spin Hall effect (GSHE) [20–27]—was predicted for wave
packets propagating in curved spacetime and has been
widely studied using various theoretical methods
[20–24,28–42] (see Refs. [43,44] for a review and intro-
duction). In this paper, we consider the GSHE of GWs
propagating on a curved background spacetime, as pre-
sented in Refs. [24,26].
The GSHE is described by a set of effective ray

equations that represent the propagation of a gravitational
wave packet energy centroid up to first order in wavelength,
derived as a higher-order GO approximation using a
Wentzel-Kramers-Brillouin (WKB) ansatz. Within this
formalism, the wave packets undergo frequency- and
polarization-dependent deviations from the GO trajectory,
which can be viewed as a manifestation of the spin-orbit
coupling via the Berry curvature. Moreover, the deviations
are described by the same effective ray equations for both
EM and linearized gravitational fields [22,24].
GWs offer the best chance to probe the GSHE. The

GSHE emerges as a first-order perturbation in the ratio
between wavelength and the background gravitational field
length scale—the Schwarzschild radius Rs. While the
present day GW terrestrial observatories have a lower limit
at ∼10 Hz [45], or equivalently wavelength of ∼107 m,
radio telescopes such as the Event Horizon telescopes
observe at ∼1.3 × 10−3 m [46], i.e. at wavelengths orders
of magnitude lower than the GW interferometers.
Therefore, there is little hope of finding observable astro-
physical systems where the EM radiation wavelength is
comparable to the gravitational field length scale.
Another reason to search for GSHE using GWs is that

sources may inhabit high-curvature environments. In addi-
tion to isolated evolution of massive binary stars, GW
emitting binaries may form by dynamical encounters in a
dense environment, such as a globular cluster [47–49] or an
AGN [50–52]. For a review of hierarchical black hole (BH)
formation channels, see Ref. [53]. In the active galactic
nucleus (AGN) scenario, compact objects accumulate in the
disk around a supermassive black hole [54]. Interactions
with the disk would subsequently drive them toward
migration traps, stable orbits where gas torques change
direction [55]. Migration traps could be as close as ≲10
Schwarzschild radii of the supermassive black hole [56].

Such a “last migration trap” may contribute up to ∼1% of
GW events detectable by LVK. This opens up the pos-
sibility of detecting strong field effects in GW propagation
in hierarchical triple systems, wherein the emitting BH
binary is sufficiently close to or orbiting around a massive
third companion BH. The GSHEmay be detectable in these
systems, in addition to multiple images of the merger
caused by the BH [57–59].
Interest in the AGNs-GW connection boomed after

LIGO-Virgo’s detection of GW190521 [60,61], a binary
whose primary component’s mass is in the pair instability
gap [62]. Such a massive BH could not have formed from
stellar evolution, pointing toward a likely dynamical origin
for the binary. Furthermore, the Zwicky Transient Facility
detected an EM flare in AGN J124942.3þ 344929 (red-
shift of 0.438), 34 days after GW190521 and with con-
sistent sky localization. In this tentative interpretation, the
BH binary would be in a migration trap with a semimajor
axis of ∼350 Schwarzschild radii of the supermassive black
hole, and the delay between both events would be the time
required for the EM radiation to emerge from the accretion
disk of the AGN [63]. Although suggestive, evidence for an
AGN origin of GW190521 is far from conclusive when
considering LIGO-Virgo data [64–68] or the putative EM
counterpart [69,70].
The GSHE provides a novel test of the GW source

environments, which may help establish their AGN for-
mation channel. An advantage of this test is that it can be
performed on individual observations. In contrast, other
proposed methods require either LISA-like observatory
[71,72] to measure the orbit of the emitting binary around
the background black hole [58,73–76] or population
studies. The latter being based on binary properties
(masses, spin, eccentricity) [77–79] or associating GW
events with detected AGN flares [70,80]. Although meas-
uring the GSHE might be possible for only a small fraction
of the GW events originating in AGN disks, its comple-
mentarity with other methods would yield valuable insights
into BH and GW astrophysics.
The GSHE arises in Einstein’s general theory of rela-

tivity (GR) [24], but it is also similar to effects emerging in
theories beyond GR, and thus needs to be taken into
account to correctly interpret tests of gravity with GWs. A
nonzero graviton mass leads to a distance and frequency-
dependent propagation for all GWs [81]. Some alternative
theories predict environment- and polarization-dependent
GW propagation speeds—the GW birefringence effect
[82]. This leads to a frequency-independent time delay
between the þ and × polarization states that may either
interfere in the detector or appear as two copies of the same
signal if the time delay is shorter/longer than the signal,
respectively. A related effect stems from parity-breaking
terms in the effective field theory of GWs. Reference [83]
searched for frequency-dependent GW birefringence
(between left and right polarized GWs), finding that only

1In this paper, spin-orbit coupling (see, e.g., Ref. [7]) refers to
the dynamics of wave packets with internal structure, where the
spin represents the internal degree of freedom of the wave packet
(i.e., polarization), while the orbital part refers to the motion of
the wave packet as a whole. Thus, this should not be confused
with spin-orbit couplings arising in the dynamics of black hole
binaries during the coalescence process [8].
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the GW190521 observation is compatible with violation of
parity. All these beyond-GR effects are related to the
GSHE, although in principle distinguishable from it.
Establishing a detection of the GSHE in the GW data
would represent yet another test of gravity and additional
evidence for GR in the strong-field regime.
We demonstrate that the GSHE can be detected in GW

sources in a hierarchical triple system, in which a stellar-
mass binary is close to a much more massive companion,
such as in an AGN. The main observable signature of the
GSHE is time delay between the high- and low-frequency
components of the waveform, with a correction propor-
tional to ∼1=f2 relative to geodesic propagation. Therefore,
the GSHE may appear as an inconsistency between the
higher and lower frequency parts of the waveform (e.g., in
inspiral-merger-ringdown tests of GR). A subdominant
GSHE signature is a frequency-dependent birefringence
effect—a time delay between the left- and right-polarized
components. GSHE-birefringence is further suppressed
(∼1=f3) and is likely too small to be detectable, except
in fine-tuned configurations. A third signature of this
scenario is the likely presence of multiple signals due to
strong-field lensing by the massive BH. The relative
magnification, time delay, and sign of the GSHE correction
between these signals should allow for further means to
probe the system configuration.
The paper is organized as follows. We begin by describ-

ing the GSHE and the numerical calculation of the time of
arrival delay in Sec. II. In Sec. III, we describe the
dependence of the time of arrival delay on frequency,
polarization state, and the mutual position of the source and
the observer. In Sec. III, we demonstrate the effect of the
GSHE on a GW waveform and its distinguishability from
an uncorrected waveform. Lastly, we discuss our findings
in Sec. IV and conclude in Sec. V. Our results are also
presented in a more compact form in the companion
Letter, Ref. [84].
We note that log refers to a logarithm of base 10, x · y ¼

xμyμ denotes the inner product of 4-vectors and, unless
explicitly discussing dimension-full quantities, we set the
speed of light, the gravitational constant and the Kerr BH
mass M to unity, c ¼ G ¼ M ¼ 1.

II. METHODOLOGY

We assume the existence of a GW emitter—a binary BH
merger—in the vicinity of a Kerr BH, with GW ray
trajectories passing through the strong-field regime of
the background Kerr metric. We then calculate the observer
time of arrival of the GSHE trajectories, which depends on
frequency and polarization, and compare it to the geodesic
time of arrival. In other words, the observer detects that the
waveform modes have a frequency- and polarization-
dependent time of arrival that deforms the resulting
waveform.

We start by reviewing the Kerr metric and GSHE
equations in Sec. II A. We then present our geometric
setup in Sec. II B and numerical integration in Sec. II C.
Finally, we characterize the GSHE time delay quantities in
Sec. II D and discuss our waveform model in Sec. II E.

A. Gravitational spin Hall equations

We consider the background spacetime of a Kerr black
hole with mass M ¼ 1 and spin parameter a, described
using Boyer-Lindquist coordinates ðt; r; θ;ϕÞ [ [85],
p. 195]. The line element is

ds2 ¼ −
Δ
Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

½adt − ðr2 þ a2Þdϕ�2; ð2:1Þ

where

Δ ¼ r2 − 2Mrþ a2; ð2:2aÞ

Σ ¼ r2 þ a2 cos2 θ: ð2:2bÞ

We also consider an orthonormal tetrad

e0 ¼
1ffiffiffiffiffiffiffi
ΔΣ

p ½ðr2 þ a2Þ∂t þ a∂ϕ�; ð2:3aÞ

e1 ¼
ffiffiffiffi
Δ
Σ

r
∂r; ð2:3bÞ

e2 ¼
1ffiffiffi
Σ

p ∂θ; ð2:3cÞ

e3 ¼
1

sin θ
ffiffiffi
Σ

p ðasin2θ∂t þ ∂ϕÞ; ð2:3dÞ

that satisfies ðeaÞμðebÞμ ¼ ηab, where ηab is the Minkowski
metric. The vectors ea will be used in the definition of the
GSHE and for the prescription of initial conditions.
On the Kerr background spacetime, we consider GWs

represented by small metric perturbations and described by
the linearized Einstein field equations. High-frequency
GWs can be described using the GO approximation
[ [86], Sec. 35.13], in which case their propagation is
determined by the null geodesics of the background
spacetime. However, at high but finite frequencies,
higher-order corrections to the GO approximation become
important.
In this paper, we consider first order in wavelength

corrections to the GO approximation, wherein the propa-
gation of GWs is frequency- and polarization-dependent.
This is known as the GSHE [24], and the propagation of
circularly polarized gravitational wave packets is described
by the GSHE equations [24,26]
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ẋμ ¼ pμ þ 1

p · T
Sμβpν∇νTβ; ð2:4aÞ

ẋν∇νpμ ¼ −
1

2
RμναβpνSαβ; ð2:4bÞ

where xμðτÞ is the worldline of the energy centroid of the
wave packet, pμðτÞ is the average momentum of the wave
packet, the spin tensor Sαβ describes the angular momen-
tum carried by the wave packet and Tα is a timelike vector
field with respect to which the energy centroid of the wave
packet is defined. We eliminate the ODE for p0 by
enforcing the null momentum condition p · p ¼ 0 along
the worldline. For the circularly polarized wave packets that
we consider here, the spin tensor is uniquely fixed as

Sαβ ¼ ϵs
p · T

εαβγλpγTλ; ð2:5Þ

where s ¼ �2, depending on the state of circular polari-
zation. In the context of the high-frequency analysis [24,26]
leading to the above equations, the wave frequency f
measured by an observer with 4-velocity Tα is defined
as p · T ¼ −ϵf.
The small dimensionless parameter ϵ has the same

meaning as in standard high-frequency approximations
in general relativity (see, for example, Refs. [ [87]
Sec. 1.5] and [ [88], Sec. 3.2]), and is meant to keep track
of the order of different terms in these expansions. In
particular, the GSHE equations were derived in Ref. [24]
under the assumption that the wavelength λ is much smaller
than the length scale L over which the spacetime varies
significantly. Thus, the small expansion parameter is
defined as ϵ ¼ Oðλ=LÞ, and the GSHE equations provide
a reasonable approximation only when ϵ < 1. In the case
we are considering here, the lengthscale over which
spacetime varies significantly is set by the size of the
black hole, so we can take

ϵ ¼ λ

M
¼ 2

λ

Rs
; ð2:6Þ

where λ is the wavelength of the wave packet in the rest
frame of the source. This can also be expressed in
dimension-full quantities as

ϵ ¼ c3

G
1

fM
≈ 0.1

�
40 Hz
f

��
5 × 104M⊙

M

�
: ð2:7Þ

The GSHE equations in Eq. (2.4) depend on the choice
of a timelike vector field Tα. The role of this vector field has
been discussed in detail in Ref. [26], where it has been
shown to have physical meaning only at the point of
emission and the point of observation of a polarized ray. At
these points, Tα can be identified with the 4-velocity of the
source and observer, respectively, and is responsible for the

relativistic Hall effect [89,90]. Nevertheless, one has to
choose a smooth vector field Tα defined everywhere in the
region where the GSHE equations are to be integrated. We
discuss our choice of Tα in the following subsection.

B. Spatial configuration

We consider a static source of GWs close to the BH at
xsrc ¼ ðrsrc; θsrc;ϕsrcÞ with a 4-velocity Tα

src and a static
observer far from the BH at xobs ¼ ðrobs; θobs;ϕobsÞ with a
4-velocity Tα

obs. The timelike vector field Tα appearing in
the GSHE equations (2.4) is chosen such that

Tαjxsrc ¼ Tα
src and Tαjxobs ¼ Tα

obs: ð2:8Þ

We start with the orthonormal tetrad ea from Eq. (2.3) and
perform a spacetime-dependent local Lorentz boost of the
orthonormal tetrad such that ðe0Þα maps to Tα

src and Tα
obs at

xsrc and xobs, respectively. We can express the boosted
orthonormal tetrad ẽa as

ẽ0 ¼
e0 þ ve3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð2:9aÞ

ẽ1 ¼ e1; ð2:9bÞ

ẽ2 ¼ e2; ð2:9cÞ

ẽ3 ¼
e3 þ ve0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð2:9dÞ

where

vðrÞ¼−
asinθobsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðrobsÞ

p e−ðr−robsÞ2−
asinθsrcffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðrsrcÞ

p e−ðr−rsrcÞ2 : ð2:10Þ

The exponential factor ensures a smooth transition between
Tα
src, e0α and Tα

obs. We identify the timelike observer vector
field in the GSHE equations (2.4) as Tα ¼ ðẽ0Þα and further
justify the Lorentz boost in Appendix A 2.
For simplicity, we consider a static isotropic emitter of

GWs in the vicinity of a massive “lensing” BH that sources
the background Kerr metric and a far static observer
measuring the waveform (wave packet). The caveat of
isotropic emission is relevant as the emission direction of
the ϵs-parametrized bundle trajectories must be rotated with
respect to the geodesic, ϵ ¼ 0, emission direction by an
angle ∼ϵs. In this work, we do not account for the
directional dependence as it is a subdominant effect.
Including it would necessitate accounting for it while
generating the waveform frequency modes. The Boyer-
Lindquist coordinate time t can be related to the static
observer’s proper time τ as

τ ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00jxobs

q
; ð2:11Þ
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which we derive in Appendix A 1, with gμν being the Kerr
metric tensor. Throughout the rest of the paper, we denote
the coordinate time as t and the static observer proper time
as τ.
A signal with initial momentum pinit emitted by the static

source with 4-velocity Tsrc has a frequency fsrc in the
source frame. On the other hand, the static observer with
4-velocity Tobs will measure the signal frequency as fobs.
The observer, therefore, measures the signal redshifted by

λobs
λsrc

¼ fsrc
fobs

¼ Tsrc · pinit

Tobs · pf
; ð2:12Þ

where pf is the wave packet’s momentum when it reaches
the observer. This is the common expression for gravita-
tional redshift, which is satisfied up to first order in ϵ. The ϵ
dependence of the gravitational redshift originates from pf
and pinit, as the initial conditions of a trajectory between
two fixed spatial locations depend on ϵ. We will find the ϵ
dependence of the gravitational redshift to be negligible.
Therefore, since this produces a uniform frequency offset
and no new effect, we do not consider this further.
Moreover, upon emission, the following relation is
enforced,

Tsrc · pinit ¼ −fsrcϵ ¼ −1; ð2:13Þ

where the last equality follows from Eq. (2.6). An analog of
this condition is then satisfied along the trajectory, as
discussed in Ref. [26].
We parametrize pinit by a unit three-dimensional

Cartesian vector k expressed in spherical coordinates where
0 ≤ ψ ≤ π and 0 ≤ ρ < 2π are the polar and azimuthal
angle, respectively. The angles ψ and ρ represent the
emission direction on the source celestial sphere, and we
have that

pinit ¼ ẽ0 þ sinψ cos ρẽ1 þ sinψ sin ρẽ2 þ cosψ ẽ3;

ð2:14Þ

which satisfies both Eq. (2.13) and the null momentum
condition p · p ¼ 0. The initial momentum pointing toward
the BH, i.e., with an initial negative radial component, may
equally be parametrized with k2 and k3,

pinit ¼ ẽ0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k22 − k23

q
ẽ1 þ k2ẽ2 þ k3ẽ3; ð2:15Þ

which can be related to ψ and ρ as

k2 ¼ sinψ sin ρ; ð2:16aÞ

k3 ¼ cosψ : ð2:16bÞ

We calculate the magnification factor μ defined as the
ratio of the source area to the image area [88,91,92]. In our
case, a trajectory defines a mapping from the celestial
sphere of source to the far sphere of radius r ¼ robs
centered at the origin, which we can write as
ðψ ; ρÞ ↦ ðθ;ϕÞ. The magnification μ is

μ ¼ sinψdψdρ
sin θdθdϕ

¼ sinψ
sin θ

1

det J
; ð2:17Þ

where the Jacobian J is defined as

J ¼ ∂ðθ;ϕÞ
∂ðψ ; ρÞ : ð2:18Þ

The magnification scales a signal propagated along a
trajectory by a factor of

ffiffiffiffiffiffijμjp
and the signal parity is

given as the sign of μ, or equivalently the sign of det J.
Therefore, as a consequence of the GSHE the magnifica-
tion is dependent on frequency and polarization. We will
explicitly denote this dependence as μðf; sÞ and the GO
magnification as μGO.

C. Numerical integration

Given a fixed source and observer, our objective is to
find the connecting GSHE trajectories of the ϵs bundle. We
numerically integrate the GSHE ODEs of Eq. (2.4), or the
null geodesic ODEs recovered by substituting ϵ → 0,
starting at coordinate time t ¼ 0, source position xsrc and
initial wave packet momentum pinitðkÞ as discussed in
Sec. II B.
The Boyer-Lindquist coordinates contain coordinate

singularities at the BH horizon and the coordinate north
and south poles. Therefore, we include the following
premature integration termination conditions. First, the
integration is terminated if a trajectory penetrates or passes
sufficiently close by the BH horizon, so that its radial
component satisfies

r ≤ ΔHð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ; ð2:19Þ

where we set ΔH ¼ 1þ 10−4. Second, we terminate
trajectories whose polar angle does not satisfy θtol ≤ θ ≤
π − θtol, where θtol ¼ 10−5. Lastly, we optionally support
early termination if the absolute value of the difference
between the current and initial azimuthal angle Δϕ ¼ jϕ −
ϕsrcj satisfies Δϕ > maxð2π − jϕobs − ϕsrcj; jϕobs − ϕsrcjÞ
since such solutions correspond to ones that complete more
than one complete azimuthal loop around theBH.We refer to
trajectories that do not completely loop around the BH as
“direct.”
If no early termination condition is met, we terminate the

integration when the trajectory reaches the observer’s
radius robs. The integrator then outputs xf and pf , the
location and momentum vectors of the trajectory at that
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instant. Typically, for each source-observer configuration,
there exist at least two bundles that directly connect the
source and the observer, with additional bundles com-
pletely looping around the BH. Rays that loop multiple
times around the BH are a general signature of strong
gravitational fields and images formed under such con-
ditions are also referred to as retrolensing or glory effect
[93–97].
We quantify whether a choice of initial direction k (and

thus initial momenta) leads to a trajectory intersecting with
the observer by calculating the angular distance Δσ
between the observer and the integrated trajectory

cosΔσ ¼ cos θf cos θobs þ sin θf sin θobs cosΔϕf ; ð2:20Þ

where θf and ϕf are the polar and azimuthal angles of the
trajectory at robs, and Δϕf ¼ ϕf − ϕobs. However, we note
that in the numerical implementation we use the more
accurate haversine formula for small Δσ [98]. A trajectory
is considered to intersect with the observer if Δσ → 0 and
concretely we enforce that Δσ ≤ 10−12. Given the nature of
the GSHE, the initial directions of the GSHE trajectories at
neighboring ϵ should lie sufficiently close to each other (or
to the initial geodesic direction). Therefore, we typically
begin by solving for the initial direction at the highest value
of ϵ that connects the source and observer, then we solve for
the 2nd highest value of ϵ in a restricted region of the
former initial direction and repeat this process down to the
smallest ϵ and the geodesic initial direction.
We first evaluate the ODEs symbolically inMathematica

[99], expressing them explicitly in the Boyer-Lindquist
coordinates. We then export the symbolic expressions to
Julia [100] and use the Differential
Equations.jl [101] along with Optim.jl package
[102] to integrate the ODEs and optimize the initial con-
ditions, respectively. The Jacobian in Eq. (2.18) is calculated
using automatic differentiation implemented in
ForwardDiff.jl [103].

D. Quantifying the time delay

We write the observer proper time of arrival of a GSHE
trajectory emitted at coordinate time t ¼ 0 belonging to the

nth bundle as τðnÞGSHEðϵ; sÞ. We specifically denote the proper
time of arrival of the geodesic belonging to the nth bundle

as τðnÞGO, as it corresponds to the GO limit of infinite
frequency. We note that

lim
ϵ→0

τðnÞGSHEðϵ; sÞ ¼ τðnÞGO: ð2:21Þ

We will calculate the dispersive GSHE-to-geodesic time
delay as

ΔτðnÞðϵ; sÞ ¼ τðnÞGSHEðϵ; sÞ − τðnÞGO: ð2:22Þ

Additionally, we will also explicitly investigate the bire-
fringent delay between the right and left polarization states

ΔτðnÞR−LðϵÞ ¼ τðnÞGSHEðϵ; s¼þ2Þ− τðnÞGSHEðϵ; s¼ −2Þ: ð2:23Þ

Having fixed the background Kerr metric mass M, or
equivalently its Schwarzschild radius Rs, ϵ is inversely
proportional to the wave packet’s frequency f. Therefore,
the aforementioned time delays can be expressed directly as
a function of f. Dimension-full units of time can be
restored by multiplying the resulting expression by Rs=2c.

E. Waveform modeling

Due to the frequency- and polarization-dependent
observer proper time of arrival delay with respect to the
GO propagation, Δτ, the GSHE “delays” the circular basis
frequency components of the original waveform. We write
the circular basis frequency-domain unlensed waveform as
h̃0ðf; sÞ. With the notation of Eq. (2.22), the GSHE
produces a frequency-domain waveform

h̃GSHEðf; sÞ ¼
X
n

e−2πifτ
ðnÞ
GSHEðf;sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμðnÞðf; sÞj

q
h̃0ðf; sÞ:

ð2:24Þ

The sum runs over the different images, i.e., bundles
connecting the source and observer. The exponential
encodes the frequency- and polarization-dependent time
delay, and the square root encodes the magnification-
induced amplitude scaling.
We generate the unlensed linear basis waveform in

PYCBC [104], which can equivalently be described in the
circular basis. The right and left circularly polarized basis
vectors, eR and eL, can be related to the plus and cross
linearly polarized basis vectors, eþ and e×, as

eR ¼ 1ffiffiffi
2

p ðeþ þ ie×Þ; ð2:25aÞ

eL ¼ 1ffiffiffi
2

p ðeþ − ie×Þ; ð2:25bÞ

discussed, e.g., in Ref. [86].
As usual, a waveform can be inverse Fourier transformed

into the time domain,

hðτÞ ¼
Z

dfh̃ðfÞe−2πifτ; ð2:26Þ

where we use τ to denote the observer proper time. The
waveform and detector sensitivity are typically described in
the linearly polarized basis. In it, the detector strain is
described as
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hðτÞ ¼ FþhþðτÞ þ FxhxðτÞ; ð2:27Þ

where Fþ and Fx is the antenna response function to the
plus and cross polarization [87]. Equivalently, the detector
strain can be expressed as a function of the circularly
polarized waveforms upon a suitable redefinition of the
antenna response function.
Beyond visually comparing the GSHE-corrected wave-

forms with their geodesic counterparts, we also quantify
their mismatch for a single bundle connecting the source
and observer. The mismatch between two waveforms is
minimized over the merger time and phase. We denote the
mismatch between hGO, the GO waveform related to the
unlensed waveform by including the GO magnification
μGO, and hGSHE as

M ¼ 1 − argmax
tc;ϕc

hhGO; hGSHEiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhGO; hGOihhGSHE; hGSHEi
p ; ð2:28Þ

where tc;ϕc are the coalescence time and phase, respec-
tively. The mismatch depends on the noise-weighted inner
product between two waveforms

ha; bi ¼ Re
Z

ã�ðfÞb̃ðfÞ
SðfÞ df; ð2:29Þ

where S is the noise spectral density amplitude that is set by
choosing a GW detector. We assume the noise to be flat
across all frequencies, SðfÞ ¼ 1, as was done, e.g., in
Ref. [105].
For illustration, we now ignore the minimization of the

mismatch assuming that the GSHE leaves the high-fre-
quency part of the waveform—the merger—unchanged and

express the mismatch of a single circular polarization
component of a waveform. Furthermore, we assume that
μðf; sÞ ¼ μGO, i.e., that the magnification of the GSHE
trajectories is equal to the GO magnification, which will
prove to be a sufficiently good assumption. Because the
GSHE correction is a phase shift in the frequency domain,
we have hhGSHE; hGSHEi ¼ hhGO; hGOi and

MðhGO; hGSHE; sÞ ¼ 1 −
R
dfjh̃0ðf; sÞj2 cos γR

dfjh̃0ðf; sÞj2
; ð2:30Þ

where we explicitly wrote the dependence on the circular
polarization state, and we define the “mixing” angle

γðf; sÞ ¼ 2πfΔτðf; sÞ: ð2:31Þ

Therefore, we have that

MðhGO; hGSHE; sÞ ¼
1

2

R
dfγ2jh̃0ðf; sÞj2R
dfjh̃0ðf; sÞj2

þOðγ4Þ: ð2:32Þ

We will demonstrate in Sec. III A that the frequency
dependence of γ can be isolated from the relevant scaling
set by the mutual position of the source and observer, thus
further simplifying this expression.

III. RESULTS

Following the prescription of Sec. II, we search for
bundles of connecting GSHE trajectories between a fixed
source and an observer on the Kerr background metric. We
investigate how the GSHE-induced time delay depends on

FIG. 1. Two bundles of direct trajectories connecting a source at
ð5Rs; π=2; 0Þ and an observer at ð50Rs; 0.4π; πÞ, on the Kerr
background metric with a ¼ 0.99. The GSHE trajectories appear
as perturbations along their respective geodesic solutions. We
plot trajectories with s ¼ �2 and 10−3 ≤ ϵ ≤ 10−0.3, and the units
along the space axes are chosen such that Rs ¼ 2.

FIG. 2. Dependence of the far-sphere angular distance Δσ on
the geodesic initial momentum (ϵ ¼ 0) for a source at
ð5Rs; π=2; 0Þ, observer at ð50Rs; 0.4π; πÞ and a ¼ 0.99. We
minimize Δσ to find initial momenta that result in connecting
trajectories. The highlighted points are the connecting initial
geodesic directions, with the neighboring lines showing the
s ¼ �2 GSHE initial directions over 10−3 ≤ ϵ ≤ 10−0.3.
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the mutual position of the source and observer. We discover
that in all cases the time delay can be well approximated as
a frequency-dependent power law and that the signature of
the GSHE is a frequency-dependent phase shift in the
inspiral part of the observed waveform.
For each configuration, we find the initial directions of a

bundle of trajectories by minimizing the angular distance
Δσ of Eq. (2.20). Typically, we search the range
10−3 ≤ ϵ ≤ 10−1, with 30 logarithmically spaced ϵ values.
Everywhere but in Sec. III A 3 we resort to studying only
the directly connecting bundles of trajectories to simplify
the interpretation. As an example, in Fig. 1 we show two
directly connecting bundles. The GSHE trajectories appear
as small deviations from the geodesic trajectories with fixed
boundary conditions.
In Fig. 2, we plot an example dependence of Δσ on the

initial ingoing geodesic direction. We minimize Δσ to find
the initial directions that result in a connecting trajectory
between a source and an observer. The empty central region
indicates the initial directions that penetrate the BH
horizon, delineating the BH shadow. We also overplot in
Fig. 2 the GSHE initial directions upon increasing ϵ for
s ¼ �2. If ϵ → 0 the GSHE initial direction coincides with
the initial geodesic direction, otherwise it is twisted by an
angle proportional to ϵ.
Now we first characterize the frequency and polarization

dependence of the time delay on the system configuration
in Sec. III A and then address its impact on the observed
waveform in Sec. III B.

A. Time delay

In Fig. 3 we plot the GSHE-to-geodesic, Δτðϵ; sÞ, and
the right-to-left, ΔτR−LðϵÞ, time of arrival delays for a
particular source-observer configuration. We find that,
independent of the mutual positions of the source and

observer, both Δτðϵ; sÞ and ΔτR−LðϵÞ are well described by
a power law. Therefore, we introduce

Δτðϵ; sÞ ≈ βϵα; ð3:1aÞ

ΔτR−LðϵÞ ≈ βR−Lϵ
αR−L ; ð3:1bÞ

for the dispersive GSHE-to-geodesic and birefringent right-
to-left delay, respectively. In all cases, we find α ≈ 2 and
αR−L ≈ 3. We note that in the former case both α and β have
what will turn out to be only a weak dependence on the
circular polarization state. The difference between the right
and left polarization results in the subdominant, but non-
zero, ΔτR−LðϵÞ delay.
The ϵ2 dependence of the GSHE-to-geodesic delay can

be understood as follows. First, the GSHE correction to the
equations of motion is proportional to ϵ and, second, to
reach the same observer, the GSHE initial direction must be
rotated with respect to the geodesic initial direction (see the
small lines in Fig. 2). The magnitude of this rotation is
proportional to ϵ, therefore, altogether these two effects
yield an approximate ϵ2 dependence. The right-to-left delay
is a comparison of two perturbed solutions, which produces
an ϵ3 dependence.
On the other hand, the proportionality factors, β or βR−L,

are set by the relative position of the source and observer
and the BH spin. β also contains information on the
polarization state of the GW. As shown in the left panel
of Fig. 3, in the case of two directly connecting bundles,
one of the bundles’ GSHE trajectories (regardless of the
polarization state) arrive with a positive time delay with
respect to its geodesic time of arrival, while the other
bundles’ GSHE trajectories arrive with a negative time
delay. We verify that this holds in all configurations that we
tested.

FIG. 3. The dispersive GSHE-to-geodesic delay with trajectory bundles indexed by n (left) and the logarithm of the absolute value of
the GSHE-to-geodesic delay along with the right-to-left delay for each bundle (right) displaying the power law dependence of the delay.
The source is at ð2Rs; π=2; 0Þ, observer at ð50Rs; 0.4π; πÞ and a ¼ 0.99.
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We may express Δτ explicitly as a function of frequency
in dimension-full units of as

Δτ ≈ β

�
2c
Rs

1

f

�
α−1 1

f
; ð3:2Þ

with a similar expression for the right-to-left delay ΔτR−L.
Thus, the right-to-left delay is suppressed relative to the
GSHE-to-geodesic delay by an additional power of
2c=ðRsfÞ and generally we have jβj ≫ jβR−Lj (exemplified
in Fig. 3).
Numerically, we find that the GSHE trajectories have a

“blind spot” approximately on the opposite side of the BH
that cannot be reached, regardless of the initial emission
direction. In other words, given a source close to the BH,
there are spacetime points on a sphere of large r that cannot
be reached by GSHE trajectories, while these points can be
reached by geodesics. The location and size of the blind
spot depend on the position of the source, ϵ (wavelength),
polarization, and the BH spin. In the Schwarzschild metric,
the blind spot is a cone whose size is ∼0.5 degrees for
rsrc ¼ 5Rs and ϵ ¼ 0.1 (upper limit considered in this
work). The size decreases with higher rsrc and lower ϵ,
approaching zero when ϵ → 0 as there is no blind spot in
the geodesic case. The blind spot is exactly centered on the
opposite side of the BH in the Schwarzschild metric. For a
source in the equatorial plane, increasing the BH spin
slightly tilts the blind spot away from the equatorial plane,
and its size remains approximately unchanged. We note
that the presence of the blind spot is not a numerical defect
and is instead a consequence of the GSHE equations. We
verify this by inspecting where the GSHE trajectories
intersect the far-observer sphere upon emission in all
possible directions from the source and increasing the
numerical accuracy. We leave a further investigation and
discussion of the blind spot for future work.
We note that each of the main GSHE trajectory bundles

has opposite signs of the time delay, cf. Fig. 3. The first
image to be received has β > 0 (i.e. low frequencies
delayed with respect to geodesic), while the second image
has β < 0 (low frequencies advanced with respect to
geodesic). As geodesics correspond to extrema of the time
delay, we interpret this property as the first bundle being
deformed by the GSHE into longer time delays, while the
second bundle gets distorted in a way that decreases the
travel time. This is analogous to standard lensing theory,
where images form at extrema of the time-delay function.
For a point lens, the first image corresponds to the absolute
minimum and the second to a saddle point of the time delay.
Angular deformations around the saddle point (as found in
Fig. 2) drive the time delay closer to the global minimum,
explaining the lower time delay associated with β < 0. The
second GSHE bundle has negative parity (μ < 0), which is
consistent with a saddle-point image in the point-lens
analogy.

We now describe the dependence of the time delay on the
mutual position of the source and observer and on the spin
of the BH. The BH mass enters only when we relate ϵ to
frequency and restore dimension-full units of time. To
demonstrate the dependence, we vary the observer’s polar
angle θobs and the radial distance rsrc of the source from the
BH. We also study the directional dependence of the
GSHE, wherein we keep the source fixed but calculate
the delay as a function of the emission direction.
Additionally, the variation of the BH spin and observer
polar angle is discussed in Appendix B. In all cases, we
place the observer at robs ¼ 50Rs after verifying that the
time delay becomes approximately independent of robs
once the observer is sufficiently far away. When we plot the
power law parameters describing the time delay, we include
the 1σ error bars estimated by bootstrapping. Upon varying
the location of the source or observer, we associate bundles
by similarity in time of arrival and initial direction.

1. Dependence on the observer polar angle

We begin by showing the dependence of the power law
parameters, describing the time delay, on θobs in Fig. 4. We
only consider direct bundles (i.e., no complete loops around
the BH) indexed by n. The source is kept at ð2Rs; π=2; 0Þ,
observer at ð50Rs; θobs; πÞ and a ¼ 0.99. In all cases, we
find near perfect agreement with the power law para-
metrized as in Eq. (3.1), according to α ≈ 2 and αR−L ≈ 3.
The power law proportionality of the GSHE-to-geodesic
delay is typically close to an order of magnitude larger than
that of the right-to-left delay, in agreement with the
example configuration shown in Fig. 3. While he
GSHE-to-geodesic delay is maximized when both source
and observer are located in the equatorial plane, the right-
to-left delay is zero in such a case, because of the reflection
symmetry about the equatorial plane. We numerically
verify that this condition applies more generally whenever
θobs þ θsrc ¼ π.
Furthermore, in the bottom panels of Fig. 4 we plotΔτgeo

defined as

Δτgeo ¼ τðn¼1Þ
GO − τðn¼2Þ

GO : ð3:3Þ

This is the GO time of arrival difference between the
geodesics of the two direct bundles indexed by n ¼ 1; 2. As
expected, Δτgeo is symmetric about θobs ¼ π=2 as the
source is in the equatorial plane. In all cases, the temporal
spacing of the directly connecting bundles is several orders
of magnitude larger than the GSHE-induced delay within a
single bundle. In the second bottom panel we show μGO, the
magnification factor of the geodesic trajectory of each of
the two bundles, which shows a weak dependence on θobs.
The magnification factor is unique for each trajectory in the
bundle and therefore is also a function of ϵs. However, we
find that its dependence on ϵs is negligible, and therefore
we only plot the geodesic magnification factor. In fact, it
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will turn out that in all cases considered in this work the ϵs
dependence of the magnification is negligible and we may
write that

μðf; sÞ ≈ μGO: ð3:4Þ

Similarly, we find that in all cases the ϵs dependence of the
gravitational redshift, discussed in Eq. (2.12), is negligible
and well described by the gravitational redshift of the
geodesic trajectory. In all cases, the image from one bundle
has positive parity and negative parity for the other bundle,
which also consistently holds when varying θobs.

2. Dependence on the source radial distance

In Fig. 5, we plot β, βR−L, Δτgeo and μGO when varying
rsrc. We do not explicitly show the power law exponent.
However, we verify that α ≈ 2 and αR−L ≈ 3 remain
satisfied. The source is at ðrsrc; π=2; 0Þ, the observer is at
ð50Rs; 0.4π; 3π=4Þ and a ¼ 0.99. We do not place the
observer directly opposite the source, instead choosing
ϕobs ¼ 3π=4. This ensures that one of the bundles

completes an azimuthal angle of 3π=4, while the other
5π=4. When the source is moved further away from the BH
the former will propagate directly to the observer without
entering the strong-field regime of the BH, whereas the
latter is forced to effectively sling by the BH.
Figure 5 shows that in the case of direct propagation,

both β and βR−L decay exponentially as the trajectories do
not experience strong gradients of the gravitational field,
for example approximately β ∝ 10−0.2rsrc=Rs. On the other
hand, when the trajectories are forced to sling around the
BH, we find that both β and βR−L tend to a constant, non-
negligible value since regardless of how distant the source
is, the trajectories pass close to the BH. This suggests that it
is possible to place the source far away from the BH and
still obtain strong GSHE corrections, provided that the
trajectories pass by the BH as expected in strong lensing.
In the bottom left panel, we plot the temporal spacing of

the two bundles, Δτgeo, which is proportional to rsrc. In the
bottom right panel, we plot the absolute value of μGO. Just
as before, the dependence of both magnification and
gravitational redshift on ϵs is negligible. We previously
noted that for the bundle that is forced to sling around the

FIG. 4. Time delay parametrization upon varying the polar angle of the observer θobs. The top row shows the power law exponent of
the dispersive GSHE-to-geodesic delay α and of the birefringent right-to-left delay αR−L. The middle row shows the corresponding
power law proportionality factors β and βR−L. The bottom row shows the temporal spacing of the two bundles’ geodesics Δτgeo and the
geodesic magnification μGO (⊕ and ⊖ indicate positive and negative parity, respectively). The source is otherwise at ð2Rs; π=2; 0Þ,
observer at ð50Rs; θobs; πÞ and a ¼ 0.99. When both the source and observer are in the equatorial plane the right-to-left delay vanishes
due to reflection symmetry. Δτgeo is nonzero and μGO remains finite when θobs ¼ π=2 because of the BH spin.
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BH we obtain a GSHE correction that is approximately
independent of rsrc. However, this bundle is also exponen-
tially demagnified, as shown in Fig. 5, with approximately
μGO ∝ 10−0.05rsrc=Rs . Since it is the square root of the
magnification that scales the signal, despite the exponential
demagnification, this configuration remains an interesting
avenue for detecting the GSHE, as long as rsrc is not
too large.

3. Directional dependence of the GSHE

We now report on the directional dependence of the time
delay from the source point of view, considering trajecto-
ries that initially point toward the BH. We emit a GSHE
trajectory from the source at the maximum value of ϵ in the
direction parametrized by ðk2; k3Þ, introduced in Eq. (2.15).
Then we record the angular coordinates where this trajec-
tory intersects a far origin-centered sphere of radius 50 Rs,
setting that location as the “observer” for the above choice
of initial direction. We find the remaining GSHE and
geodesic trajectories that connect to the same point and
form a bundle of trajectories. Starting with the maximum
value of ϵ guarantees that we never fix an observer in the
blind spot of any GSHE trajectories.
We characterize each bundle belonging to an initial

choice of ðk2; k3Þ by β of the right-polarized rays in the left
panel of Fig. 6 (note that the directions in this figure
correspond to the initial directions of the GSHE rays with
maximum ϵ ¼ 0.01). Throughout, we keep the source at

ð5Rs; π=2; 0Þ and do not calculate the left-polarized rays, as
those behave sufficiently similarly. This time, we do not
eliminate the initial directions that result in trajectories that
completely loop around the BH. We still have α ≈ 2,
although a small fraction of the initial directions, particu-
larly close to the BH horizon, deviate by ∼1%. The left
panel of Fig. 6 shows a characteristic ring of initial
directions that produce jβj ∼ 1, which approximately cor-
responds to the trajectories that are mapped to the point
opposite side of the BH (more precisely, these trajectories
are mapped close to the edge of the blind spot for the
maximum ϵ ¼ 0.01). The initial directions close to the BH
horizon produce jβj ∼ 10, although these are extreme
configurations that completely loop around the BH and
are demagnified. The initial directions of the outgoing
trajectories (not shown in Fig. 6) result in jβj lower than the
minimum of the ingoing trajectories and therefore are of
little interest for the detection of the GSHE.
Having demonstrated how jβj depends on the direction

of the emission, we now study the dependence of the
corresponding magnification factor. We again verify that
the deviation of the magnification as a function of ϵ from its
geodesic is at most ∼1%, although typically smaller by up
to several orders of magnitude. In Fig. 7, we show μGO as a
function of the emission direction, matching Fig. 6.
Additionally, in Fig. 8 we explicitly show a scatter plot
of μGO and β corresponding to the pixels in Figs. 6 and 7.
The scatter plot displays two high jβj tails—one where jβj
is positively correlated with μGO and one where the

FIG. 5. Time delay parametrization upon varying the source radial distance rsrc. Similarly to Fig. 4, the top row shows β and βR−L. The
bottom row shows Δτgeo and μGO. The source is otherwise at ðrsrc; π=2; 0Þ, observer at ð50Rs; 0.4π; 0.75πÞ and a ¼ 0.99. We have that
α ≈ 2 and αR−L ≈ 3. The n ¼ 1 bundle completes an azimuthal angle of 5π=4 and is deflected in the strong-field regime of the BH.
Consequently, β approaches a constant value, however this bundle is exponentially demagnified.
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correlation is negative. The former corresponds to the
aforementioned outer green ring of Fig. 6 of bundles that
approximately reach the point on the other side of the BH
and are magnified as they converge into a smaller region.
The latter is demagnified, as it consists of bundles that pass
close to the BH horizon and are sensitive to the initial
direction. Therefore, it is the outer green ring of Fig. 6 that
comprises a promising landscape for observing the GSHE
due to its high jβj and jμGOj > 1.
We calculate the fraction of the source celestial half-

sphere of Fig. 6 that yields jβj > βmin of the GSHE-to-
geodesic delay for the right-polarized rays as

ϒsrcðβminÞ ¼
1

2π

Z
Hðjβj − βminÞ sinψdψdρ; ð3:5Þ

where the integral runs over the celestial half-sphere of
ingoing trajectories, Hð·Þ is the Heaviside step function
defined asHðxÞ ¼ 1 if x > 0 and 0 otherwise. We note that
a fraction of the half-sphere is covered by the shadow of the
BH and, therefore,ϒsrcð0Þ < 1. We plotϒsrcðβminÞ in Fig. 9
for sources at ðrsrc; π=2; 0Þ, where we choose rsrc ¼
5; 7.5; 10Rs and a ¼ 0.99. We find that for rsrc ¼ 5Rs
about 5% of the ingoing half-sphere yield jβj≳ 0.5, and
we verify that ϒsrc is approximately proportional to 1=r2src
in the region where it is decaying.
Similarly, we calculate the fraction of the far sphere

of radius r ¼ robs where an observer would measure
jβj > βmin and μ > jμminj:

ϒobsðβmin; μminÞ ¼
1

4π

Z
Sðβ; μÞ sinϕdϕdθ;

¼ 1

4π

Z
Sðβ; μÞ sinψ

jμðψ ; ρÞj dψdρ: ð3:6Þ

Here, ðθ;ϕÞ are coordinates on the spacetime sphere
r ¼ robs, and ðρ;ψÞ are coordinates on the celestial sphere
of the source. The Jacobian relating both coordinates is the
inverse of the magnification, as has been included in the
second line: this can be intuitively understood as magni-
fied/demagnified trajectories being focused/spread out and
therefore less/more likely. The integral is weighted by a
selection function

S ¼ Hðjβðϕ; θÞj − βminÞHðjμðϕ; θÞj − μminÞ; ð3:7Þ

eliminating trajectories that are either too faint to be
detected or for which the GSHE is undetectable. We are
considering trajectories that loop around the BH. Therefore,
multiple trajectories can reach an observer, so ϒobs > 1 in
general when computing probabilities (Sec. IV E).
Figure 10 shows the observer’s cumulative GSHE

probability for different magnification cuts. Two cases
are considered: the left panel allowing for any number
of loops around the BH, which has a maximum number of 7
in our numerical exploration. The right panel restrict the
results to zero loops, although strongly deflected trajecto-
ries with α < 2π are still considered (these trajectories
could be discriminated by the sign of μ, as they have
negative parity). The differences are noticeable only for
faint trajectories with jμj ≪ 1: for βmin ≲ 1 ϒobs is larger
than unity, reflecting the existence of these additional
trajectories. For βmin ≳ 1 the additional loops increase
the probability considerably. Note that the high β end is
restricted by the resolution in our numerical exploration.
The results can be adapted to different distances between

the source and the BH without an additional sampling. The
GSHE probability for the source scales as ϒsrc ∝ r−2src,
cf. Fig. 9, as the regions contributing to the different
values of β span a smaller portion of the source’s sphere.

FIG. 7. The geodesic magnification μGO as a function of the
initial emission direction ðk2; k3Þ, corresponding to the β calcu-
lation of Fig. 6. The source is placed at ð5Rs; π=2; 0Þ. The outer
green ring of Fig. 6 is magnified (red ring), while trajectories
passing close to the BH shadow are demagnified.

FIG. 6. The dispersive GSHE-to-geodesic delay parameter β as
a function of the maximum ϵ ¼ 0.01 initial momentum para-
metrized by k2 and k3 [Eq. (2.15)]. The source is placed at
ð5Rs; π=2; 0Þ and the “observer” is defined as the point where the
ϵmax trajectory intersects a sphere of radius 50Rs. Each pixel
represents an ϵ bundle of trajectories.
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Additionally, the magnification scales by the same factor
μ ∝ r−2src [59], reflecting the divergence of rays before
encountering the lens.
Lastly, in Appendix C we discuss the relation between

the image parity of trajectory bundles of Fig. 6 and the sign
of the GSHE-to-geodesic delay. Appendix D discusses the
effect of multiple loops and sign of β on the observer’s
probability.

4. Dependence on the remaining parameters

We postpone the discussion of varying the BH spin a and
the azimuthal angle of the observer ϕobs to Appendix B.
However, we highlight that in the Schwarzschild metric, the
right-to-left delay vanishes because of reflection symmetry.
On the other hand, the GSHE-to-geodesic delay is maxi-
mized in Schwarzschild, which we attribute to the fact that
lowering the BH spin pushes its horizon outward, and
therefore the trajectories pass closer to the BH horizon
where the gradient of the gravitational field is larger. We
verify that this behavior is not a consequence of a particular
source-observer configuration and qualitatively holds in
general.

B. Waveform comparison

We consider the IMRPhenomXP waveform [106] of a
25 and 10M⊙ binary BH merger observed at an inclination
angle of 0.9π with the spin of the primary along the z-axis
az ¼ 0.7 and 0 along the remaining axes and zero spin of
the secondary. The frequency-domain waveform is gen-
erated from 40 Hz to 1024 Hz, though the merger frequency
is ∼225 Hz. Following Eq. (2.7), we fix the background

mass to achieve some maximum value ϵmax at the lower
frequency limit, since ϵ ∝ 1=f.
As an example, for ϵmax ¼ 0.1 this amounts to

M ∼ 5 × 104M⊙. Following Eq. (3.2), the GSHE-to-
geodesic and right-to-left observer time delays are

ΔτðfÞ ≈ 3 ms β

�
5 × 104M⊙

M

��
40 Hz
f

�
2

; ð3:8aÞ

ΔτR−LðfÞ ≈ 0.3 ms βR−L

�
5 × 104M⊙

M

�
2
�
40 Hz
f

�
3

:

ð3:8bÞ

The GSHE-to-geodesic delay is the dominant component.
Moreover, typically jβj ≫ jβR−Lj as demonstrated in
Sec. III A. The GSHE-to-geodesic delay shifts both polar-
izations in approximately the same direction with respect to
the geodesic, as exemplified in Fig. 3. Their difference is
the right-to-left delay, which is negligible in most cases.
Therefore, we will focus on the difference between the
GSHE-corrected and geodesic-only waveforms.
In Fig. 11, we compare the right-polarization geodesic-

only and GSHE-corrected waveforms for β ¼ 2 separately
if log ϵmax ¼ −1.5;−1. This choice of β is large enough to
demonstrate the GSHE, but still reasonably likely, as we
showed in Figs. 6 and 9. We follow the modeling
prescription of Eq. (2.4). Even in the former, more
conservative ϵmax case, the effect on the waveform is
clearly visible and manifested as a frequency-dependent
phase shift in the inspiral phase of the merger. This is
because the merger and the ringdown are propagated by
higher frequency components whose GSHE correction is
suppressed as ∼1=f2. Consequently, the intrinsic param-
eters inferred from the inspiral part of the waveform may
appear inconsistent with the merger and ringdown part of

FIG. 8. The relation between the geodesic magnification μGO
and jβj in pixels of Fig. 6. The color represents the number of
complete loopsNloops around the BH. The magnified region in the
top right consists of the high jβj outer green ring in Fig. 6. The
demagnified region in the bottom right consists of bundles that
pass very close to the BH horizon.

FIG. 9. Fraction of the source celestial half-sphere that yields
jβj ≥ βmin. In the region where ϒ is decaying we approximately
have ϒ ∝ 1=r2src. The source is in the equatorial plane and
a ¼ 0.99. The rsrc ¼ 5Rs line corresponds to Fig. 6.
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the waveform if the GSHE is not taken into account. We do
not explicitly show the detector strain, which is a linear
combination of the right- and left-polarization state wave-
forms whose phase difference due to the GSHE is
negligible.
In Fig. 12 we plot the mismatch of the right-polarization

waveform calculated following Eq. (2.30). We assume that
in Δτ the exponent is α ¼ 2. We show the mismatch for
several choices of ϵmax, which is equivalent to scaling the
background mass M while keeping the waveform fixed.
Following Eq. (2.32), this shows that we can approximate
the mismatch as M ∝ β2 for small mixing angles γ.

IV. DISCUSSION

In the derivation of the GSHE and throughout this work,
several simplifying assumptions have been made to dem-
onstrate the viability of this effect for future detection. We
now first comment on the neglected higher-order contri-
butions to the GSHE in Sec. IVA, the source-observer
placement in Sec. IV B and the GW emission modeling in
Sec. IV C. Then, in Sec. IV E we discuss the prospects of
detecting the GSHE and, finally, in Sec. IV D we discuss its
relation to tests of GR and beyond-GR theories.

A. Higher-order GSHE contributions

TheGSHEequations describe themotion of awave packet
energy centroid and are only valid up to first order in
wavelength. The relevant indicator is the WKB perturbation
parameter ϵ, the ratio between the wave packet wavelength
and the BH Schwarzschild radius. In the limit of ϵ → 0 the
geodesic propagation of the wave packet is recovered, while
ϵ ∼ 1 is the regime of wavelike phenomena, wherein the
wavelength is comparable to the characteristic length scale of
the system. Going further, if ϵ → ∞ we do not expect wave
propagation to be significantly affected by the presence of the

BHas in this limit the presence of theBHbecomes negligible
(see, for example, Ref. [107] Fig. 2).
The terms of order ϵ2 and higher were neglected in the

derivation of the GSHE. In this work, we use a maximum
value of ϵ ¼ 0.1, at which point we assume that the
beyond-linear terms are still negligible. Nevertheless, in
Fig. 12 we showed that the effect is significant even when
this maximum ϵ is relaxed. The neglected higher-order
contributions are likely to induce wavelike phenomena,
such as diffraction, as we depart further from the regime of
GO. However, the GSHE treatment describes the motion of
the energy centroid of a wave packet, which is only well
defined if ϵ ≪ 1. When the wavelength reaches ϵ ∼ 1 the
WKB expansion up to an arbitrary order in ϵ becomes of
little interest, as the perturbation series in ϵ inevitably
breaks down. Therefore, instead of extending the WKB
analysis to higher orders, it is potentially more instructive to
directly solve the linearized gravity perturbation propaga-
tion via, e.g., the Teukolsky equation approach [107–109].
This approach was used to study GW emission in hierar-
chical triple systems in Ref. [110]. An alternative but no
simpler route would be a path integral approach of
summing over all possible paths connecting the source
and observer, whose extremum would be the classical
trajectories considered in this work [111]. The upside of the
former treatment is its validity up to an arbitrary ϵ.
Moreover, it would allow matching the GSHE results in
an appropriate limit.

B. Source and observer placement

We assumed that both the observer and the source are
static. The assumption of a static, far observer in the Kerr
metric is a good approximation if we consider robs → ∞,
as would be the case for astrophysical observations.
Throughout this work, we ensured that our conclusions
are independent of the distance of the observer from the BH.

FIG. 10. Observer’s cumulative GSHE probability as a function of the minimum magnification (absolute value), including all
trajectories (left) and excluding trajectories that loop around the BH (right). Only trajectories with jμj > 10−3 are considered.
Differences are appreciable only for μ ≪ 1.
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Additionally, one needs to consider the gravitational and
cosmological redshift. We verified that the gravitational
redshift due to escaping the strong-field regime of the
background BH has a negligible dependence on ϵ. It affects
both the geodesic and GSHE rays equally, and we do not
consider it further. The cosmological redshift due to the
expansion of the universe is independent of the frequency
and, thus, enters as a simple multiplicative factor.
On the other hand, the assumption of a static source may

break down, particularly if the source is as close to the BH
as we have considered above. This depends on the distance
traveled by the source while the signal is emitted over the
frequency range of a given detector. The former factor
depends on the orbital period of the binary around the
background BH

Torb ≈ 138s

�
A

10Rs

�
3=2

�
M

5 × 104M⊙

�
; ð4:1Þ

where A is the semimajor axis of the orbit. The in-band
duration of the signal depends on the GW source masses and
intrinsic parameters. The typical range of LVK in-band
source duration are 0.1–100 s. The static-source assumption
limits the validity of our results to shorter in-band events,
including the more massive mergers expected in dynamical
formation scenarios and AGNs. Our framework can be
applied to longer events (e.g. lighter sources such as binary
neutron star mergers), but only if they orbit a sufficiently
massive BH, or are located sufficiently far. Source motion
also needs to be accounted for if the GSHE signature is very
sensitive on the source position. This can happen in strongly
aligned systems, or for trajectories that undergo a very strong
deflection, such as multiple loops around the BH.

The static source assumption will be severely violated by
stellar mass black holes emitting in the LISA frequency
band. These sources have wavelengths several orders of
magnitude larger than LVK sources. They evolve very
slowly in frequency and can be observed over several years
[71,72], completing multiple orbits around the massive BH
[58]. A treatment of a moving source would require the
composition of the GSHE signal across multiple time steps
and accounting for the Doppler effects; see Refs. [74,76].
While the very low frequency (∼mHz) enhances the GSHE
corrections, the slow frequency evolution might make a
detection challenging. Moreover, at such low frequencies
the perturbative expansion in ϵ may break down, neces-
sitating a treatment in the wave optics regime, unless the
background BH is sufficiently massive as described
in Eq. (2.7).
Another potential issue is whether the binary is tidally

disrupted by the background BH. This can be described by
the Hills mechanism [112–114] and a significant perturba-
tion occurs when the tidal force induced by the background
BH is of the same order as the binary’s self-gravity. This
effect has been estimated in Ref. [110] for hierarchical
triple systems similar to the ones we are considering. For a
binary with an orbital period of 1=f, tidal effects become
important when the binary is at a radius

rt ≲ 2M

ðMfÞ2=3 ¼ 2Mϵ2=3: ð4:2Þ

In this paper, we always consider GWs with wavelengths
smaller than ϵmax ¼ 0.1. Thus, tidal effects can be safely
ignored, as they only become significant if the binary is
placed at the radius of rt ≲ 0.43M, which is below the event
horizon of the background BH. Thus, binary disruption

FIG. 11. The GSHE-corrected and geodesic-only right polarization waveforms of a 25 and 10M⊙ merger if β ¼ 2. We show two cases
of ϵmax, the perturbation strength at the lower frequency range of the waveform, along with the corresponding GSHE-induced mismatch.
The GSHE manifests as a frequency-dependent phase shift in the inspiral part of the signal.
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only affects our results indirectly, by precluding the
formation of binaries with ϵ ≫ 1, which may later evolve
to the range of frequencies probed by LVK. Addressing this
effect requires detailed considerations on dynamical binary
formation and migration beyond the scope of this work.

C. Source emission modeling

Our analysis relies on a simplified treatment of the GW
source. Here we comment on the assumptions made:
quasicircular binaries, evolution in vacuum, and isotropic
emission.
We assume a quasicircular binary system. However,

binaries formed in dynamical environments are likely to
have non-negligible eccentricity due to three-body inter-
actions [78,115,116]. Even in this case, we expect the
eccentricity to be distinguishable from the GSHE via its
different phase evolution. The phase of eccentric binaries
evolves as ∝ f−34=9 [ [117] Eq. 3.13], different from the
dispersive GSHE, whose phase is modified by ∼f−1
(Δt ∝ f−2). Eccentricity can also be distinguished by the
presence of higher modes in the signal, which are not
induced by the GSHE. Other environmental effects can be
distinguished for similar reasons. Reference [74] computed
environmental corrections for the phase ∝ f−13=3 (accre-
tion, acceleration) and f−16=3 (dynamical friction), distinct
from that of the GSHE. We also note that these environ-
mental effects are important for low-frequency inspirals,
but very suppressed for stellar-mass coalescences.
Any other effect on the emission of GWs (such as tidal

interactions with the central BH) can be included in the
analysis by updating the unlensed waveform h̃0ðf; sÞ in
Eq. (2.24). Even if these effects are partially degenerate, the
GSHE can be unambiguously discriminated through the
existence of a second image with the same underlying
waveform but opposite sign of β.

We have also considered an isotropic GW emitter.
However, a binary merger is an anisotropic emitter—
similar to an electric dipole—and the emitted power has
a directional dependence (see Ref. [59] for a treatment of
strong-field lensing by Schwarzschild BHs). There are two
effects in which the angular dependence of the source
might play a role. First, for a given ϵs-dependent set of
trajectories connecting the source and observer, the initial
emission direction must be rotated away from the geodesic
emission direction by an angle that is approximately
proportional to ϵ. This generally corresponds to an angle
of ∼1 degrees or lower between the low- and high-
frequency components of the signal. This value is well
below the sensitivity to the GW intrinsic parameters, such
as the orbital inclination ι.
The angular structure of the source can cause differences

among the images (bundles) formed by the background
BH. The multiple images may have different relative
amplitude, polarization, and merger phase, depending on
which angular portion of the binary is projected onto the
source for each trajectory. As an example, consider the
configuration shown in Fig. 1, in which the two bundles
depart in opposite directions from the source. In contrast,
each GSHE trajectory encompasses an angular deviation
proportional to ϵ relative to the geodesic limit for that
bundle. This difference is unrelated to the GSHE correc-
tions. However, further studies that quantify the detect-
ability of the GSHE will need to explore this effect.

D. Relation to tests of GR

If not accounted for, the GSHE might be incorrectly
interpreted as a deviation from GR. In contrast, a detection
favoring beyond GR physics has to be distinguished from
the GSHE. Due to its frequency dependence, the GSHE
mimics three tests of GR: a modified dispersion relation,
constraints of the post-Newtonian parameters, and consis-
tency of the inspiral, merger, and ringdown phases of the
signal. We will focus on the modified dispersion relation,
which exactly mimics the GSHE-to-geodesic time delay
(i.e., β) if the right-to-left delay is negligible. The con-
nection to the other tests is not straightforward. Hence, we
will focus on the modified propagation, Eq. (4.3).
The GSHE-induced delay is degenerate with a modified

dispersion relation of the form

E2 ¼ p2 þ c0; ð4:3Þ

in the limit jc0=ðhfÞ2j ≪ 1, where h is Planck’s constant.
This is a particular case of a generic violation of Lorentz
invariance, in which a term proportional to pn is added
[118–120]. Our case (n ¼ 0) is equivalent to a graviton
mass m2

g ¼ c0 > 0 if the correction has a positive sign.
However, the GSHE time delay can have either sign
depending on the configuration. A modified dispersion
causes a frequency-dependent time delay of a GW signal

FIG. 12. The mismatch M, Eq. (2.28), of the GSHE-induced
corrections as a function of jβj to a single bundle of connecting
trajectories for several choices of the maximum perturbation
strength ϵmax and the waveform of Fig. 11.
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Δτc0 ¼
c0D
ðhfÞ2 þO

�
c20
h4f4

�
; ð4:4Þ

whereD is an effective distance to the source that coincides
with the standard luminosity distance for low redshift
sources [ [81], Eq. 56] (see also Ref. [121]).
Equating Eq. (4.4) and Eq. (3.2) yields a relation

between the GW propagation and GSHE parameter

β ≈
G

c4h2
MDc0 ≈ 0.148

M
5 × 104M⊙

D
Gpc

c0
ð10−23 eVÞ2 ;

ð4:5Þ

The GSHE-induced delay coefficient can be probed up to a
factor ∝ MD. The effective distance D is related to the
source’s distance (see Ref. [118], Eq. 5), which is con-
strained by the amplitude of the signal. In contrast, the mass
M of the background BH is unknown a priori. Measuring
M would be possible if multiple signals are received, e.g.,
by measuring their time delay and magnification ratio. For
a single signal, it might be possible to constrainM from the
orbital acceleration of the binary around the background
BH, cf. Eq. (4.1). Other means of constraining M may
include identifying the source’s environment, e.g. via an
electromagnetic counterpart, or statistically, e.g., modeling
the distribution of mergers around massive BHs.
The relation in Eq. (4.5) allows us to convert LVK tests

of Eq. (4.3) into constraints on β=M. We use the full
posteriors samples from the events analyzed in the third
observation run [119,120]. The results are shown in Table I,
where he show the 90% CL (confidence level) for positive
and negative values of c0, assuming a fiducial mass of
5 × 104M⊙. We note that the LVK analyses employ a
weakly informative prior on logðc0Þ, extending many
orders of magnitude below the range where the data can
probe Eq. (4.3) Therefore, most of the posterior samples lie
in a region that is indistinguishable from GR, leading to
poor sampling of the region where data is informative. An
analysis with nonlogarithmic priors would lead to more
efficient sampling and avoid the need to treat positive and
negative values of β=c0 separately.
The key difference between a modified dispersion

relation of Eq. (4.3) and the GSHE is that the former is
universal: the same coefficient c0 represents a fundamental
property of gravity and modifies the waveforms of all GW
events. On the contrary, the GSHE is environmental and the
correction is expected to vary between events. Therefore, to
constrain β from LVK bounds on anomalous GW propa-
gation, it is necessary to use the bounds on c0 for individual
events, rather than the combined value quoted by LVK
[118–120]. Another consequence is that GW propagation
tests depend on the source distance, while the GSHE does
not. Therefore, theD − c0 correlations need to be taken into
account when using Eq. (4.5) to constrain β, e.g. using the
full posteriors (as in Table I).

We note that the birefringent GSHE (i.e., polarization-
dependent time of arrival due to βR−L) resembles other
beyond-GR effects discussed in the literature. Scalar-tensor
theories with derivative couplings to curvature [122]
predict that different GW (and additional) polarization
states travel at different speeds on an inhomogeneous
spacetime. This birefringent effect is different from ours
in three respects [82]: (1) it involves a difference in theþ=×
polarization, rather than R-L (right-to-left),(2) it is inde-
pendent of frequency, and (3) it depends on the curvature of
beyond-GR fields, which can be important over astronomi-
cal scales, rather than being confined to the vicinity of a
compact object. Therefore, the time delay between polari-
zation states associated to these theories is not bounded to
any specific scale, and can range from negligible to
astronomical, depending on the theory and the lensing
configuration. The lack of observation of birefringence in
LVK datasets imposes stringent bounds on alternative
theories [123]. As deviations from GR become stronger
near a compact object, detecting the GSHE imprints for
mergers near a massive black hole would set extremely
tight bounds on such theories.
Finally, another beyond-GR birefringence effect has

been studied in Ref. [83] as emerging from higher-order
corrections to GR [124,125]. Like the GSHE, this form of
GW birefringence involves the circular polarization states
and depends on frequency, although it grows with f rather

TABLE I. 90% CL limits on β from LVK tests of Eq. (4.3),
separately for positive and negative values of c0 while assuming
background BH mass of 5 × 104. We also show the median total
mass Mtot and luminosity distance DL.

Event DL ½Mpc� Mtot ½M⊙� βþ β−

GW190706 5400 190 1.35 × 100 1.2 × 10−1

GW190707 780 23 1.5 × 10−1 7.5 × 100

GW190708 890 36 1.85 × 10−1 8.5 × 10−1

GW190720 770 25 3.3 × 10−1 3.4 × 10−1

GW190727 3000 110 1.75 × 10−1 2.1 × 10−1

GW190728 920 24 3.9 × 10−1 2.4 × 10−1

GW190814 300 27 1.3 × 10−1 5.0 × 10−2

GW190828 2200 80 7.5 × 10−2 4.7 × 10−1

GW190910 1900 100 4.65 × 10−2 3.75 × 10−1

GW190915 1700 77 8.5 × 10−2 4.3 × 10−1

GW190924 580 16 6.0 × 100 1.85 × 10−1

GW191129 800 20 6.0 × 10−1 4.95 × 10−1

GW191204 600 23 1.6 × 10−1 5.0 × 10−2

GW191215 1900 58 7.0 × 10−2 4.05 × 10−1

GW191216 360 21 1.5 × 100 6.0 × 10−2

GW191222 3100 120 7.0 × 10−2 4.4 × 10−1

GW200129 870 76 5.5 × 10−1 4.6 × 10−2

GW200208 2300 92 8.0 × 10−2 1.9 × 10−1

GW200219 3700 100 7.0 × 10−2 4.0 × 100

GW200224 1700 95 8.0 × 10−2 1.85 × 10−1

GW200225 1100 41 8.5 × 10−2 1.7 × 101

GW200311 1100 75 6.0 × 10−2 1.85 × 10−1
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than decaying like the GSHE. Moreover, it is again
assumed to be a universal property of gravity, rather than
an environmental, event-dependent effect. The analysis in
Ref. [83] showed that all but two GWevents analyzed were
compatible with GR. The outliers, GW190521 and
GW191109, preferred their form of birefringence over
the GR prediction. However, one cannot easily interpret
this preference as due to the GSHE, as a significant βR−L is
unlikely and an analog of our, typically larger, GSHE-to-
geodesic delay due to β, has not been included in the
analysis. Unfortunately, LIGO-Virgo did not quote any
results on c0 [Eq. (4.4)] for that event. Therefore, a more
detailed analysis would be required before reaching any
conclusions.

E. Detection prospects and applications

Throughout this work we considered GW sources very
close to the background BH to illustrate the consequences
of the GSHE on a waveform. We have focused on the case
of a background BH in the range of intermediate-mass to
massive of ∼105M⊙. This results in reasonable values of ϵ
that make the GSHE detectable for terrestrial observatories.
In case of studying the detectability of the GSHE with the
longer wavelength LISA-like signals, the background BH
mass would have to be correspondingly increased to
achieve similar values of ϵ, such as supermassive BHs.
We expect that there will be a partial degeneracy between
the delay proportionality factor β and the ratio between the
wavelength and the background BH mass, as both control
the strength of the GSHE corrections. Nevertheless, by
their definition β is independent of frequency, and therefore
sufficiently high-quality data should break this degeneracy.
One of the environments to produce promising sig-

nals are AGNs, whose potential is discussed, e.g., in
Refs. [116,126,127]. BHs (and binaries thereof) are
expected to migrate radially inward and form binaries
[55,128,129]. This radial migration may bring the BHs as
close as ∼6Rs to the background BH [56]. Furthermore,
migration traps could promote the growth of intermediate-
mass BHs around AGNs [130]. In addition, a population of
intermediate-mass BHs is expected in globular clusters,
although no clear detection is available as of today to
constrain their population [131]. We consider AGNs and
globular clusters to be the most likely candidates to host the
hierarchical triple systems we consider, although their
respective binary BH populations also remain poorly con-
strained [132]. Although we have focused mainly on BH
mergers, neutron star binaries in close proximity to an AGN
would be ideal to probe the GSHE, in addition to nuclear
physics [133].
We find there to exist at least two favorable source-

observer configurations that result in a strong GSHE:
aligned and close-by setups. The aligned setup occurs
when the source and observer are approximately on
opposite sides of the background BH. We show in

Fig. 6 that in this case there exists a ring of initial directions
that results in jβj≳ 1. Because such trajectories converge to
a small region opposite the source, they are also magnified,
which is represented by the high jβj and high magnification
cluster of points on Fig. 8. Additionally, we demonstrate
that in this case it is not necessary for the source to be
within a few Rs of the background BH. The sufficient
condition is for the trajectories to pass close to the BH. In
Fig. 9, we show that the fraction of these initial directions
falls approximately as 1=r2src. This is likely to be at least
partially balanced by the fact that more mergers may occur
from the outer regions of the AGN or globular cluster.
The close-by setup occurs for generic source-observer

placements, but requires proximity between the source and
the background BH. Even if the source, BH and the observer
are not aligned, there is always a strongly deflected con-
necting bundle that propagates very close to the background
BH and thus undergoes significant GSHE corrections. In
Fig. 5, we showed that the delay proportionality factor β of
such bundles tends to a constant, non-negligible value even
for large separations between the source and the background
BH. These trajectories exist in general, but their detectability
is limited by demagnification, which is significant for
sources far from the background BH and/or large deflection
angles. Hence, in this setup we expect the GSHE to be
detectable only for sufficiently close sources, although for
most observer locations.
Our scenario predicts the reception of multiple GW

signals, associated with each of the bundles connecting the
source and the observer. The time delay between the signals
(bundles) is proportional to the mass of the background
BH, and together with the relative magnification carries
information about the geometry of the system.
Furthermore, each image will contain GSHE corrections
of different strengths. In the aligned setup, we expect the
two magnified images to have only a short time delay
between them. The GSHE corrections have a sizeable β, but
generally each has an opposite sign, as exemplified in
Fig. 3. In the close-by setup, we expect to first detect a
signal with β ≪ 1; jμj ≈ 1, followed by a demagnified one
with a strong GSHE (large jβj, jμj ≪ 1). Unless the source
is very close to the background BH, the second image will
likely appear as a sub-threshold trigger due to exponential
demagnification.
The tools developed for the search and identification of

strongly lensed GWs [134,135] can be applied to searches
for GSHE imprints. A possible approach to find strongly
lensed GWevents is to use the posterior distribution of one
image as a prior for the other image, since the two should
agree if they describe the same merger [136]. The short
time delays between signals involved in our scenario offer
two advantages. First, by lowering the chance of an
unrelated event being confused as another image [137]
and, secondly, by narrowing down the interval within
which to search for sub-threshold triggers carrying a
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GSHE imprint. If the signal contains higher modes, it may
be possible to distinguish type II images (saddle points in
the lensing potential) from type I/III (local minima/
maxima) due to the lensing-induced phase shift [138–
140]. This would provide another handle on the lensing
setup, as the secondary image (negative parity, lower μ)
carries this phase.
The GSHE could be used to investigate the environment

of GW sources. The time delay between signals associated
with different bundles can be used to constrain the back-
ground BH mass M, and β can be used to infer the
alignment of the source and observer and, potentially,
the background BH spin. Furthermore, a detection of a
nonzero βR−L would further indicate a nonzero BH spin. In
addition, the source’s peculiar acceleration may be used to
recover information on the mass of the background BH if
the static-source approximation is broken, cf. Eq. (4.1). If
the acceleration can be considered constant, it will impart a
∝ f2 correction to the phase, which can be distinguished
from the GSHE. If the deviation from the static source
approximation is dramatic, as expected for LISA stellar-
mass sources, much more information about the orbit can
be recovered, e.g. [76].
The capacity to detect GSHE corrections in GW catalogs

remains largely dependent on astrophysical factors. In this
exploratory work, we demonstrate that there exist plausible
configurations in which the GSHE is significant. A
detectability study of the GSHE would strongly depend
on the prior knowledge of the background BH population,
the merger rates in their environments and their location
relative to the background BH. We show that the GSHE-
induced mismatch can reach M ∼ 10%. Under the mis-
match and signal-to-noise ratio (SNR) criterion that two
waveforms are distinguishable if the productM × SNR2 ≳
1 [141], we expect LVK detectors to find GSHE signatures
if enough stellar-mass binaries merge in the vicinity of
background BHs of intermediate mass. Recent studies of
lensed gamma-ray bursts point toward a population of
objects withM ∼ 104M⊙ [142–144], an ideal mass range to
observe the GSHE.
We now estimate the prospects of GW detectors to

distinguish the GSHE in a signal. To simplify the analysis,
we focus on a 30þ 30M⊙, nonspinning, quasicircular
binary merging at a distance of rsrc ¼ 5Rs from a
104M⊙ BH. We use the IMRPhenomD waveform model
[145], our framework and code for detection probabilities
are based on Ref. [146]. We consider two setups using the
LIGO (O4 curve in Ref. [147]), Cosmic Explorer (CE;
[148]) and Einstein Telescope (ET; [149]) noise curves. We
assume a single interferometer for simplicity: prospects will
improve when considering the LVK network, multiple arm
combinations in ETor a next-generation network of ground
detectors [150] thanks to improved SNR and sky coverage.
We quantify the observational prospects by defining the

effective observable volume as

VG ¼
Z

dz
dVz

dz
ðzÞ

Z
djμjPdet

dϒobs

djμj : ð4:6Þ

Here, dVz
dz ðzÞ is the comoving volume element at the

source’s redshift and Pdetðz; jμj; ρthÞ is the fraction of
signals with SNR above a given threshold. The latter
depends on the ratio between the detection threshold,
ρth, the optimal SNR at the source’s redshift,

ffiffiffi
μ

p
ρoptðzÞ,

and the effect of (de)magnification is shown explicitly. The
probability of observable GSHE, dϒobs

dμ ðβmin; jμjÞ, is the
derivative of Eq. (3.6) with respect to jμj. We further
enforce dϒobs

djμj ðβmin; jμjÞ ≤ 1, so multiple images contribute

at most as one event. We include all trajectories in our
analysis (excluding trajectories with multiple loops has
minimal impact on results, which is dominated by strongly
deflected trajectories but with Nloop ¼ 0, cf. Fig. 10). The
minimum observable value βmin is determined from the
mismatch (Eq. (2.28), Fig. 12) by requiring thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðβminÞ

p
> ð0.327ρoptÞ−1, where the numerical factor

relates the optimal SNR to the median SNR, given Pdet.
This threshold, known as the Lindblom criterion [151],
neglects degeneracies between parameters and thus serves
as a necessary condition for observability, although it may
not be sufficient.
The effective observable volume, Eq. (4.6), is shown in

Table II for different detectors and background BH masses.
Increasing the BH mass severely reduces VG, because only
strongly deflected and demagnified trajectories lead to
detectable GSHE. To facilitate the interpretation, we define
an effective redshift so that VcðzGÞ ¼ VG, though it should
not be interpreted as a horizon. We can obtain approximate

TABLE II. Effectivedetectionvolume andequivalent redshift for
different detectors and backgroundBHmasses. The results assume
a 30þ 30M⊙ source at a distance of rsrc ¼ 5Rs from theBH,with a
detection threshold of ρthr ¼ 8. The last column displays the 10-yr
90%CL limits on themerger rate for eventswith this characteristic,
assuming no observation (in units of Gpc−3 yr−1).

Exp. M ½M⊙� VG ½Gpc3� zG R10 yr
90 ½Gpc−3 yr−1�

LIGO 104 0.10 0.06 2.41
105 0.01 0.03 22.92
106 0.25 × 10−3 0.70 × 10−2 9.04 × 102

107 0.24 × 10−6 0.67 × 10−5 9.47 × 105

CE 104 18.58 0.41 0.01
105 2.40 0.20 0.10
106 0.37 0.10 0.62
107 0.28 × 10−2 0.02 82.36

ET 104 30.42 0.50 0.76 × 10−2

105 3.41 0.22 0.07
106 0.52 0.12 0.44
107 0.02 0.04 13.68
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estimates of the number of detections by multiplying VG by
the expected rate R of events with this characteristics
(assuming it is constant) and the observation time Tobs:
NGSHE ¼ VGRTobs. The probability of detection is
described by a Poisson process: in the absence of GSHE
signatures, the 90% limit is given by NGSHE < lnð0.1Þ.
Table II shows 90% CL limits on the merger rate of objects
at rsrc ¼ 5Rs from the background BH of different masses,
assuming no GSHE detections over an observation period
of 10 years.
Figure 13 illustrates the differential effective observable

volume, i.e. the integrand of Eq. (4.6) for CE with binary
masses of 30þ 30M⊙ at a source distance of 5Rs from a
104M⊙ BH. The probability is dominated by strongly
deflected but demagnified trajectories, for which GSHE
distortions are substantial. Highly aligned and magnified
trajectories, although less likely, still contribute signifi-
cantly to detections with jμj > 1. For ET (and similarly
CE), mildly demagnified trajectories can be observed up to
z ∼ 1–10, at least if the source merges close to the back-
ground BH.
Figure 14 shows VG for different detectors, as a function

of the background BH mass and the distance to the source.
The scaling of probabilities and magnifications with rsrc
employed is described in Sec. III A 3. The maximum
redshift of the detectable region decreases as the mass of
the background BH increases, since only β ≫ 1; jμj ≪ 1
trajectories lead to observable signals. However, our
estimates are constrained by the resolution of our numerical
exploration. A more precise sampling of strongly bent
trajectories grazing the lightring will boost the probabilities
for M ≳ 106M⊙, although detection in those cases is likely
to remain difficult even for next-generation ground
detectors.

Although the eventual detection of GSHE depends on
unknown astrophysics, the above results show how pros-
pects will improve dramatically with the next-generation of
GW detectors. Space detectors sensitive to lower frequen-
cies will provide a great opportunity to probe the GSHE in a
different regime. LISA, operating in the mHz window, can
detect stellar-mass sources years before merger, including
details of their orbit against the background BH. The lower
frequencies enable our perturbative calculations to yield
distinct predictions for binaries orbiting supermassive BHs,
with the caveat that orbital effects need to be included
(cf. Sec. IV B). The GSHE will become most dramatic for a
massive background BHs ∼106M⊙, such as the central BH
of our galaxy. Large ϵ may even allow a clear detection of
left-to-right birefringence induced by the GSHE. However,
treating these cases may require a nonperturbative approach
(cf. Section IVA). In the future, proposed space-born GW
detectors will provide new opportunities to search for
GSHE and wave optics-induced effects on GW propagation
[152–155].

V. CONCLUSION

The gravitational spin Hall effect (GSHE) describes the
propagation of a polarized wave packet of finite frequencies
on a background metric in the limit of a small deviation
from the geometrical optics (GO) limit. We follow the
GSHE prescription as presented in Refs. [24,26]. There, the
GSHE is derived by inserting the Wentzel-Kramers-
Brillouin (WKB) ansatz into the linearized gravity action
and expanding it up to first order in wavelength. The first
order contributions include the spin-orbit interaction,
resulting in polarization- and frequency-dependent propa-
gation of a wave packet. GO is recovered in the limit of
infinitesimal wavelength relative to the spacetime charac-
teristic length scale, which in our work is the Schwarzschild
radius of the background metric.

FIG. 13. Differential effective volume, Eq. (4.6) as a function of
the magnification and redshift. The plot applies to a 30þ 30M⊙
binary at 5Rs of a 104M⊙ background BH, observed by the
Einstein Telescope (see text). The solid line shows the median
response distance.

FIG. 14. Effective volume Eq. (4.6) as a function of the
background BH mass and the separation of the source. Lines
show contours of equal VG for different detectors.
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The results presented in this work can be framed as a
fixed spatial boundary problem. We study the GSHE-
induced corrections to trajectories connecting a static
source and an observer as a function of frequency and
polarization. In general, for a fixed source and observer,
there exist at least two connecting bundles of trajectories
parametrized by ϵs, with ϵ≡ 2λ=Rs and s ¼ �2 for
gravitational waves (GWs), each of whose infinite fre-
quency limit (ϵ → 0) is a geodesic trajectory. There exist
additional bundles that loop around the background black
hole (BH). Within each bundle, we compare the time of
arrival of the rays as a function of ϵs with geodesic
propagation.
We find that, regardless of the mutual position of the

source and observer or the BH spin, the time of arrival delay
follows a power law in frequency, with an exponent of 2 or 3.
The former case corresponds to the dispersive GSHE-to-
geodesic and the latter to the birefringent right-to-left delay.
The information about the relative source-observer position
and the polarization is encoded in the power law proportion-
ality constant. The right-to-left delay is suppressed in all but
the most extreme configurations, and the time delay of
trajectories within a single bundle is, thus, only weakly
dependent on the polarization state. Therefore, as an approxi-
mation, it can be assumed that the GSHE time of arrival is
polarization independent and only a function of frequency,
i.e., that the time of arrival can be parametrized by ϵ only
instead of ϵs. Consequently, there is no interference between
the right- and left-polarization states, as the difference is
negligible for the situations we have studied.
We study the GSHE-induced time delay dependence on

the relative position of the source and observer, the
direction of emission and, lastly, the BH spin. We dem-
onstrate that the GSHE predicts birefringence effects—a
different time of arrival between right- and left-polarization
at a fixed frequency—only on a spinning Kerr background
metric. This is expected from symmetry arguments: the left
and right GW polarizations are related by a parity trans-
formation, which would leave a Schwarzschild BH invari-
ant, but would flip the spin of a Kerr BH.
The GSHE corrections to the gravitational waveform

manifest as a frequency-dependent phase shift in the
inspiral phase of a waveform, the low-frequency compo-
nents, whose correction is stronger. We compare an
example waveform with and without the GSHE-induced
delay in Fig. 11. We also calculate the GSHE-induced
waveform mismatch, which can reach ∼10% in plausible
scenarios. Without accounting for the GSHE this may be
wrongly interpreted as a violation of Lorentz invariance,
anomalous GW emission or an inconsistency between
inspiral-merger-ringdown. Thenceforth, any detection of
such an inconsistency must eliminate the GSHE before
claiming the detection of new physics.

We identify two favorable configurations for detecting
the GSHE. The first case, an aligned setup, closely mimics
the traditional lensing scenario. In it the source and
observer are approximately on opposite sides of the back-
ground BH. In this case, the fraction of initial directions
that receive a significant GSHE correction falls approx-
imately as 1=r2src. The second favorable configuration, a
close-by source, follows from relaxing the assumption that
the source and the observer are aligned with the back-
ground BH. In this case, there exist observer-source
bundles of trajectories that are strongly deflected by the
background BH and hence the associated signals have a
strong GSHE imprint. While these signals are demagnified,
they can be observed if the signal-to-noise ratio (SNR) of
the source is high, it merges sufficiently close to the
background BH, or both.
These scenarios can be further probed by the existence of

multiple lensed signals corresponding to the different
GSHE bundles. A characteristic signature is that each of
the main bundles has opposite signs of the time delay: the
first received signal has positive β, with low frequency
components delayed relative to the geodesic. The second
signal has negative β, with low frequency components
advanced relative to the geodesic, in addition to a phase
shift that might be detected for GW sources emitting higher
harmonics [138–140]. If current or future GW detections
reveal GSHE imprints, they may be used to constrain the
fraction of events near massive and intermediate-mass BHs,
providing further insight into the formation channels of
compact binaries.
The GSHE is distinct from other wave propagation

phenomena, such as diffraction in weak-field lensing
[4–6]. These frequency-dependent modifications of the
waveform are associated to lenses at cosmological distances
from the source/observer, whose mass is comparable to the
GWperiod.Besides their conceptual differences, both effects
can be distinguished in data, as the GSHE time delays
converge to the geodesic/GO limit as ∼1=f2, more rapidly
than the 1=f of weak-field diffraction (e.g., interpreting the
phase correction in Ref. [156], Eq. 11 as a time delay).
The equivalence between the frequency dependence of

the GSHE and a violation of Lorentz invariance allows us to
set limits using existing LIGO-Virgo-Kagra (LVK) analy-
ses (Table I). The 90% CL limits can be as stringent as
jβj≲ 10−2, and often differ substantially for positive/
negative values of the time delay. Despite potential degen-
eracies with other waveform parameters, these constraints
are in reasonable agreement with expectations based on the
mismatch with the geodesic waveform.
We then analyse detection prospects of current and

proposed GW detectors on the ground. Next-generation
instruments (ET, CE) have the potential to detected GSHE
signatures from events near intermediate-mass BHs
(M ∼ 5 × 104M⊙) if the merger rate within ∼25Rs is
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Oð1Þ Gpc−3 yr−1. These estimates are conservative, as they
consider a single interferometer and are limited by the
resolution of our numerical studies for trajectories grazing
the background BH, which dominate the probability. The
sensitivity drops sharply for larger masses and separations;
however, upcoming instruments in space such as LISA
[71,72], TianQin and Taiji [157] in the 2030s and proposals
in the decihertz [154], millihertz [153] and microhetz [155]
bands offer the best prospect for observing the GSHE.
Addressing the full phenomenology of the GSHE and its
detectability by next-generation detectors will require
extending our formalism for nonstatic sources and beyond
the GO expansion.
We conclude that there exists potential to unambiguously

detect the GSHE. This hints at an optimistic future for
studying the gravitational wave propagation in strong
gravitational fields, novel tests of general theory of rela-
tivity and decoding imprints of the merger environment
(e.g. the spin of the lens BH if the birefringent GSHE is
observable) directly from individual waveforms.
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APPENDIX A: PROPER TIME AND
ORTHONORMAL TETRAD

1. Observer proper time

We assume the far static observer to follow a worldline
γobsðτÞ parametrized in the Boyer-Lindquist coordinate
system of a Kerr metric as

ðγobsÞμðτÞ ¼ ðtobsðτÞ; robs; θobs;ϕobsÞ; ðA1Þ
where the spatial coordinates xobs ¼ ðrobs; θobs;ϕobsÞ are
constant. Therefore, the 4-velocity of this observer is

dðγobsÞμ
dτ

¼
�
dtobsðτÞ

dτ
; 0; 0; 0

�
; ðA2Þ

and to ensure that γobsðτÞ is parametrized in terms of
observer’s proper time τ we impose that

gμν
dðγobsÞμ

dτ
dðγobsÞμ

dτ
¼ g00jxobs

�
dtobs
dτ

�
2

¼ −1: ðA3Þ

From the above equation, together with the assumption that
dγobs=dτ is future-directed with respect to the Killing vector
field ∂t, we obtain

τ ¼ tobs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00jxobs

q
; ðA4Þ

which, up to a constant addition factor, relates the coor-
dinate time to the observer’s proper time.

2. Alignment of an arbitrary tetrad

We consider another orthonormal tetrad ẽa related to ea
by spacetime-dependent boosts, with boost velocity
v ¼ ðv1; v2; v3Þ. The boosted orthonormal tetrad ẽa can
be defined as in Ref. [160], Eq. 9

ẽ0 ¼
e0 þ v1e1 þ v2e2 þ v3e3ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ; ðA5aÞ

ẽ1 ¼
ð1 − v22Þe1 þ v1ðv2e2 þ e0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v22
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v12 − v22
p ; ðA5bÞ

ẽ2 ¼
e2 þ v2e0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v22

p ; ðA5cÞ

ẽ3 ¼
ð1 − v12 − v22Þe3 þ v3ðv1e1 þ v2e2 þ e0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v12 − v22
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p ; ðA5dÞ

where v2 ¼ v12 þ v22 þ v32 < 1. In our case, we consider
the original orthonormal tetrad ea to be that of the Kerr
metric defined in Eq. (2.3).
As discussed in Appendix A 1, a static observer follows a

worldline γobsðτÞ. We wish to align e0 with ẽ0 so that
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ðẽ0Þμ ¼
dðγobsÞμ

dτ
¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00jxobs

q
δμ0: ðA6Þ

Therefore, we will need a boost with v ¼ ð0; 0; v3Þ, where

v3 ¼ −
a sin θobsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðrobsÞ

p e−ðr−robsÞ2 ; ðA7Þ

where the exponential ensures a smooth alignment from ea
far from the observer to ẽa at the observer’s position. A
similar boost can be performed at the source’s location,
which will be valid as long as the two exponentials have no
significant overlap.

APPENDIX B: ADDITIONAL
TIME DELAY SCALING

We now continue with the discussion from Sec. III A of
the GSHE-induced time delay with respect to the geodesic
arrival as a function of the azimuthal separation and the
Kerr BH spin.

1. Dependence on the azimuthal separation

In Fig. 15, we vary the azimuthal angle of the observer
ϕobs. The source is at ð2Rs; π=2; 0Þ, the observer is at
ð50Rs; 0.4π;ϕobsÞ and a ¼ 0.99. Because of the nonzero
BH spin, the setup is not symmetric around ϕobs ¼ π and

instead we find that trajectories moving against the direc-
tion of the BH spin receive stronger GSHE corrections.
There exist symmetric source-observer configurations in
which the right-to-left delay appears to vanish, although at
present we do not investigate their origin further. When
ϕobs≈ ¼ 1.1π the GSHE corrections and geodesic magni-
fication are maximized. Changing the sign of the BH spin,
this point moves as expected to 0.9π.

2. Dependence on the BH spin

In Fig. 16, we plot how the time delay parameters of
directly connecting bundles—β, βR−L, Δτgeo and μGO—
depend on the BH spin a while keeping the source and
observer fixed. The source is placed at ð2Rs; π=2; 0Þ and the
observer at ð50Rs; 0.4π; πÞ. We again note that in all cases
α ≈ 2 and αR−L ≈ 3. The GSHE-to-geodesic delay is maxi-
mized when the Kerr metric approaches the Schwarzschild
limit, while the right-to-left delay vanishes in the
Schwarzschild metric. We attribute the Schwarzschild maxi-
mum of the GSHE-to-geodesic delay to the fact that the Kerr
BH horizon grows with decreasing spin, and, therefore, the
trajectories pass closer to it. There is no GSHE birefringence
if the black hole is not spinning because of the reflection
symmetry of the Schwarzschild metric. Lastly, we verify that
this behavior is not a consequence of a particular source-
observer configuration and qualitatively holds in general.

FIG. 15. Time delay parametrization upon varying the observer azimuthal angle ϕobs. The top row shows β and βR−L. The bottom row
shows Δτgeo and μGO. The source is otherwise at ð2Rs; π=2; 0Þ, observer at ð50Rs; 0.4π;ϕobsÞ and a ¼ 0.99. We still have that
α ≈ 2 and αR−L ≈ 3.
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APPENDIX C: RELATION BETWEEN THE
IMAGE PARITY AND THE GSHE-TO-GEODESIC

DELAY SIGN

We investigate the relationship between signal parity and
the sign of the GSHE-to-geodesic delay Δτðϵ; sÞ in the
settings of Fig. 6, where we previously calculated β as a
function of the direction of emission (cf. Sec. III A 3). We

show this in Fig. 17 for a right-polarized wave (s ¼ 2),
where the red and violet regions correspond to þ1 and −1,
respectively. First, in the left panel, the negative time delay
corresponds to a well-defined region whose outside boun-
dary is the Kerr equivalent of the Einstein ring, where the
determinant of the trajectory mapping approaches zero,
or, equivalently, the magnification tends to infinity.
This boundary also delineates the middle panel which

FIG. 16. Time delay parametrization upon varying the BH spin a. The top row shows β and βR−L. The bottom row shows Δτgeo and
μGO. The source is at ð2Rs; π=2; 0Þ and the observer at ð50Rs; 0.4π; πÞ. We again have that α ≈ 2 and αR−L ≈ 3. In the Schwarzschild
metric the GSHE-to-geodesic delay is maximized, while the right-to-left delay is zero.

FIG. 17. Comparison of the GSHE-to-geodesic delay sign (left), the geodesic parity (middle), and the GSHE parity (right). Red and
violet denote þ1 and −1, respectively. This is plotted as a function of the initial momenta for a source at ð5Rs; π=2; 0Þ and a ¼ 0.99,
corresponding to Fig. 6. The GSHE-to-geodesic delay sign is in agreement with the image parity everywhere except in the central red
region of the left panel. The GSHE parity approximately agrees with the geodesic parity.
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shows the geodesic parity. However, unlike in the left
panel, the negative geodesic parity region extends almost to
the BH shadow boundary, where the parity starts to
oscillate as the solutions begin to completely loop around
the BH. Thus, outside of this, it is only within the central
red region of the left panel where the GSHE-to-geodesic
delay and image parity signs disagree. For completeness,
we also include the magnification at a finite value of ϵ in the
right panel, although it is nearly indistinguishable from the
geodesic magnification. Due to the weak dependence on ϵ,
we do not expect this picture to change qualitatively for the
left polarization. Our results are in agreement with the
theory of standard lensing in the weak limit, where
trajectories outside the Einstein ring have positive parity
and negative parity inside it [88,92].

APPENDIX D: SIGN DEPENDENCE
OF β AND Nloop

In this section, we explore some additional details
of the GSHE detection likelihood. Figure 18 shows the

dependence of the source’s probabilities on the sign of the
time delay. Negative GSHE time delays (β < 0) are less
likely when the effect is small, but larger when βmin ≳ 1. As
the sign of β can be distinguished by observation, this
information can be included when computing probabilities.
Figure 19 depicts the effect of limiting the number of

loops on the observer’s probability, without any limit on jμj.
This plot differs from Fig. 10 where no cut on the
magnification is employed: trajectories with multiple loops
are strongly demagnified (jμj ≪ 10−3), and therefore
“spread” widely over all possible observers, leading to
ϒobs ∼Oð10Þ, even for jβj≳ 1. Notably, each number of
loops contains two families of trajectories (positive and
negative parity). As βmin → 0, the Nloop ¼ 0 case
approaches the expected value 3=2, which corresponds
to two families of trajectories, with one of them (with
weaker deflection) covering only half of the sphere.
However, a similar calculation in the multiloop case is
limited by the spatial resolution of our simulations.
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