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Kantowski-Sachs and Bianchi III dynamics in f(Q) gravity
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We explore the phase-space of homogeneous and anisotropic spacetimes within symmetric teleparallel
f(Q) gravity. Specifically, we consider the Kantowski-Sachs and locally rotational Bianchi III geometries
to describe the physical space. By analyzing the phase-space, we reconstruct the cosmological history
dictated by f(Q) gravity and comment about the theory’s viability. Our findings suggest that the free
parameters of the connection must be constrained to eliminate nonlinear terms in the field equations.
Consequently, new stationary points emerge, rendering the theory cosmologically viable. We identify the

existence of anisotropic accelerated universes, which may correspond to the preinflationary epoch.
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I. INTRODUCTION

Even though the flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) A cold dark matter (ACDM) model passes
most of the observational tests with flying colors, recent
cosmological data suggest a tension between early and
late Universe measurements of the expansion rate, i.e. the
Hubble parameter. Specifically, cosmic microwave back-
ground (CMB) data from Planck collaboration in their
2018 release’ [1], propagated to today using flat ACDM
suggest a value of the Hubble parameter at Hy = 67.4 &
0.5 km/s/Mpc. On the other hand, Cepheid variable stars
are used as standard candles to measure the distances of
galaxies with the distance ladder method, inferring a value
of Hy =744+ 1.4 km/s/Mpc (see SHOES [2]). The stat-
istical significance between these two measurements is at
50. In addition, a nontrivial tension is related to the
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amplitude of density fluctuations at low redshifts when
compared to the one predicted by CMB. The amplitude of
these fluctuations, also known as linear matter perturba-
tions, is often defined by the value of the linear matter
overdensity field in spheres with a radius 8h~! Mpc.
This value is called og. The parameter Sg is defined as
05(Q,,/0.3)%, where Q,, is the fractional energy density of
nonrelativistic matter and «a is selected to minimize the
correlation between Sg and €,. Several weak lensing
surveys such as DES [3], HSC [4], and Heymans et al
[5], have measured Sg, but they have encountered different
levels of disagreement with the value inferred from mea-
surements by the Planck satellite. Cosmic shear data tend
to recover slightly lower values of Sg than the CMB. The
Kilo-Degree Survey collaboration (KiDS) has reported the
most significant disagreement so far with a significance of
around 3¢ [5-9]. These are only some of the issues that the
concordance cosmological model needs to address.

A possible alternative to solve these tensions is to
consider extensions beyond ACDM; see Ref. [10] for a
review. However, incomprehension between the SNla
absolute magnitude and the Cepheid-based distance ladder
instead of an exotic late- or early-time physics could be the
reason for the tensions [11].

Because of the above, even though inflation is widely
considered to be the most plausible explanation for the
homogeneity and isotropy of the observable Universe,

© 2024 American Physical Society
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among others, most of the studies base their analysis on the
fact that the Universe should be flat FLRW and, based on
that, they study the evolution of perturbations. However, it
could be the case that inflation does occur, but the Universe
evolves toward homogeneity and isotropy starting from a
more complicated metric. There have been attempts to
consider an entirely arbitrary metric, meaning both inho-
mogeneous and anisotropic [12]; however, the calculations
become cumbersome. In this paper, we focus on homo-
geneous and anisotropic cosmology to extract analytical
information. This class of geometries [13] exhibits exciting
cosmological features in the inflationary and postinfla-
tionary epochs [14]. Nine spatially homogeneous, but
generally anisotropic, Bianchi exist based on the real
three-dimensional Lie algebra classification. In these space-
times, three-dimensional hypersurfaces are defined by the
orbits of three isometries. An essential characteristic of the
Bianchi models is that the physical variables depend only
on time, which means that the field equations are a system
of ordinary differential equations [15,16]. In recent years,
the class of anisotropic geometries has gained much interest
because of anisotropic anomalies in the CMB and large-
scale structure (LSS) data. The origin of asymmetry and
other measures of statistical anisotropy on the large scales
of the Universe is a long-standing open question in cosmo-
logy. “Planck legacy” temperature anisotropy data [17]
show strong evidence of violating the cosmological prin-
ciple in its isotropic aspect [18,19].

The family of spatially homogeneous Bianchi cosmol-
ogies includes as subclasses many important gravitational
models, such as the mixmaster Universe or the isotropic
FLRW spacetimes [20-23]. As expected, the latter comes
as a limit of Bianchi models where the anisotropy vanishes.
Indeed, the flat, the open, and the closed FLRW geometries
are related to the Bianchi I, V and IX spacetimes respec-
tively [24]. In general, the Bianchi spacetimes are defined
by three scale factors [23]; however, the locally rotational
spacetimes (LRS) admit an extra fourth isometry, and the
LRS Bianchi line elements admit two independent scale
factors. It is interesting to mention that the LRS Bianchi IX
spacetime is related to the Kantowski-Sachs geometry [25].

Symmetric teleparallel general relativity (STGR) [26,27]
is a geometric theory of gravity, equivalent to general
relativity. The theory is described by a metric tensor g,,, (x*)
and a symmetric flat connection I'§ (x*), different from
that of the Levi-Civita connection. It is assumed that the
connection I'{ (x*) admits the same symmetries with the
metric tensor g,,(x*) and the corresponding Riemann
tensor is assumed to have zero components (flat connec-
tion). Since the connection is considered to be symmetric, it
means that its torsion also vanishes. The nonmetricity
tensor plays an important role in symmetric teleparallel
geometries, since it is the fundamental geometric object
used to define the gravitational action integral [27] and thus
describe gravitational interactions.

To explain the observed cosmic acceleration [28-31] in
the context of symmetric teleparallel theory in a natural
way, it has been proposed the employ of nonlinear terms
of the nonmetricity scalar, Q, in the gravitational action,
leading to the symmetric teleparallel f(Q)-theory [32,33].
The same approach has been considered before in the case
of f(R) [34] and f(T) theories of gravity [35], where the
Ricci scalar R of the Levi-Civita connection and the torsion
scalar T of the teleparallel connection [36] are considered
to define the gravitational theory. For a comprehensive
review on teleparallel theories of gravity see Ref. [37]. The
novelty of the f(X)-theories [38,39], where X is a geo-
metric scalar, is that new terms which are introduced in the
modified field equations drive the dynamics to describe the
expansion of the universe in a geometric way, without
the addition of any exotic form of matter/energy [40].

Preliminary cosmological studies in f(Q)-theory have
shown that it is a potential geometric dark energy candi-
date which can challenge the concordance model in cosmo-
logy [41-43]. Numerous studies show that f(Q)-theory
can reproduce various cosmological scenarios [44—47];
in [48], the authors determined the criteria for the existence
of scaling cosmological solutions; the detailed phase-
space analysis was presented in [49] and it indicates that
f(Q)-theory can be used to describe not only late-time but
also early-time acceleration phases of the Universe. Similar
results are presented in [50]. The Hamiltonian analysis
of f(Q)-theory was studied in [51-53], while quantum
cosmology was investigated in [54,55]. For extensions of
f(Q)-theory we refer the reader to [56-59] and other
cosmological applications are discussed in [60—62] and
references therein. A recent review on the topic is [63].

Because the connection in f(Q)-theory is flat and
symmetric, it comes naturally that there exists a coordinate
system where all the components of the connection can
vanish; as a result, the covariant derivatives are reduced to
partial derivatives. This characteristic coordinate system is
known as the coincident gauge [33].

Different connections, in general, affect the dynamics in
a given nonlinear f(Q)-theory. Consider for example the
case of a spatially flat FLRW metric expressed in a certain
coordinate system (Cartesian or spherical). It is found that
there exist three distinct choices of connections which share
the symmetries of the spacetime [64,65]. One of them is
dynamically irrelevant, i.e. its components can vanish
through a pure time transformation. The other two, on
the other hand, involve functions of time which are to be
calculated by solving the relative equations of motion for
the connection for a given f(Q) theory. Thus, if one uses
one of the latter two connections, additional degrees of
freedom are introduced. We will see this happening also in
the Kantowski-Sachs/Bianchi type III model which we
discuss here, where we shall introduce additional scalar
degrees of freedom to incorporate the dynamics owed to the
connection [33,66,67]. Although the coincident gauge
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can always be recovered for a given geometry, it cannot
always be used blindly, when a specific assumption for the
spacetime metric has been made. See for instance the
discussion in [68].

The structure of the paper is as follows. In Sec. II
we briefly discuss the basic properties and definitions of
symmetric teleparallel general relativity and of the sym-
metric teleparallel f(Q)-theory of gravity. We discuss
previous results for the spatially flat and isotropic universe
in Sec. III. Homogeneous and isotropic locally rotational
spacetimes with nonzero spatial curvature in symmetric
teleparallel f(Q)-theory are introduced in Sec. IV. We give
emphasis in the Kantowski-Sachs and Bianchi III geom-
etries and we present the gravitational field equations in the
case of vacuum for a nonlinear function f(Q). Section V
includes the main results of this analysis where we present a
detailed analysis of the phase-space for the anisotropic
cosmological model. From our analysis it follows that for
specific values of the free parameters which define the
connection the theory can provide the limit of general
relativity (GR) and there exist a plethora of asymptotic
solutions which can describe anisotropic inflationary sol-
utions. However, in the generic case of the connection these
solutions are lost. Thus the cosmological viability of the
theory constraints the free parameters of the connection as
it follows from the analysis of the asymptotics. Finally, in
Sec. VI we discuss our results.

II. SYMMETRIC TELEPARALLEL GEOMETRY
AND GRAVITY

In teleparallel theories, parallelism at a distance is
achieved by the vanishing of the curvature of the con-
nection, 1i.e. R%,5, =0, which makes the connection
become integrable and thus it can be expressed as

Fa/,w = (A_l)aﬂaﬂAllw (1)
where A € GL(4,R). In addition, symmetric means that
the torsion of the connection vanishes, ie. T%, =
ZFQM =0, in which case A can be written as A"/)» =
05&*, with &% being an arbitrary coordinate system. This
leads to the symmetric teleparallel connection that can be
expressed as

axll

s

0,0, (2)
Since &% is arbitrary, we can always find a coordinate
system in which the connection vanishes by performing a
diffeomorphism; this is called the coincident gauge.
Notice that, the theory of gravity could be perfectly
formulated just by the metric tensor, g,,, with the kinetic

term in the action being d,g,,. However, this would not
have the same symmetries as general relativity (GR); it

would violate diffeomorphism (Diff) invariance. In order to
resolve that, we can employ the above £’s as Stiickelberg
fields and the Diff symmetry will be restored.

According to the above, the only nontrivial geometric
object in a symmetric teleparallel geometry is the non-
metricity tensor, expressed as

Qam/ = aagm/ - Flayg/h/ - r%m/giy
0x°
= aag;w - za_aaaa(ﬂfﬂgv)o' (3)

This object transforms clearly covariantly and thus any
theory formulated with it will be automatically Diff
invariant.

A. Symmetric teleparallel equivalent
of general relativity

By defining the two independent traces Q, = Q,,* and

Q"> the nonmetricity scalar is defined as

Q = Qa/wPaﬂD: (4)
where
1 1 1 R
I‘U:—ZQ ﬂy+§Q(/4 D>+ZgﬂD(Q —Q )—16 (be)&

(5)

with éa, being the 4-dimensional Kronecker delta and the
brackets denote symmetrization 24,,) = A, +A,,.

As mentioned above, the curvature of the symmetric
teleparallel connection (2) is zero. However, the curvature
calculated from the Levi-Civita connection, R ? pv» 18 MOL.
The relation between the nonmetricity scalar Q and the
Ricci scalar R is given by

o o

R=0+V,(0%- 0. (6)

By taking the functional integral of the above, the last term
will act as a boundary term and thus contribute nothing at
the dynamics of the theory. This means that GR and STGR
are two dynamically equivalent theories since

Ser _/d4x\/__gie~SSTGR = /d“x\/—_gQ. (7)

What is more, any prediction of GR should be predicted by
STGR as well and any solution in GR should have an
analog solution in STGR. The only thing that changes is the
geometric interpretation of gravitational interactions.

124044-3
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B. f(Q) theory

In the same spirit as with f(R) theories, we can gene-
ralize the nonmetricity scalar (4) with a general function of
it, so that the new action will read

Siio) = [ dx/=af(@). ®)

Since the action contains nonlinear terms in Q, not only the

two theories are no longer equivalent, but also solutions,

like the nonflat FLRW one, which worked fine in the

coincident gauge STGR, are no longer solutions in f(Q).

So in this case, we have both the metric and the

connection (2) as fundamental variables. Varying the action
(8) with respect to the metric, we get

2 v 1O\ P 1

\/——_g l(\/_gf (Q) /w) —Ef(Q)g,w

=+ f/(Q> (PppanpU - 2Qpa;4Ppgy) =0, (9)

where the prime denotes differentiation with respect to
the argument, i.e. f'(Q) = f o. Respectively, varying the
action with respect to the connection” we get

V.V (V=g (Q)P*,) = 0. (10)

In the coincident gauge, the latter is satisfied identically.

III. FLAT FLRW COSMOLOGY IN f(Q) GRAVITY

Consider a homogeneous and isotropic flat FLRW metric
of the form

ds? = —N(1)%de? + a(t)z(dr2 + r?(d6? + sin? 9d¢2)),
(11)

with N being the lapse function and a the scale factor. By
forcing the symmetries of this metric, i.e. three rotations
and three translations, to an arbitrary connection, we find
that the connection depends on five unknown functions (out
of 64 independent components). Once we impose the sym-
metric teleparallel constraints, i.e. vanishing curvature and
torsion of the connection, we end up with three unknown
functions {C;, C,, C3} and three constrain equations

CiC;—C3-C3=0, (12)
C,Cy — Cy,C3+ C, =0, (13)

2Obvi0usly, instead of the connection I'“,,,, one could vary the
action with respect to the arbitrary £’s; the equations of motion
would be the same.

Because of the last of the above, we have three cases
(i) Case I. C, =0 = C3 where T, = y.
(i) Case II. C, =0 and C; #0 where I',, =y —%
and IV, =17, = nge = Feet = F¢t(/) = F¢(/)t =7
(iii) Case III: C, # 0 and C3 = 0 where I'Y,, = —% and
I, =7y, Ty =yr?, I'yy = yrisin6.
The rest of the components of the connection are the
same as the Levi-Civita one for the three-dimensional flat
space, i.e.

Frgg = -7, Fr¢¢ = —rsin29,
F¢9¢ - F¢¢0 =cotf, TYy=T%, = F¢,¢ = F¢¢r =r
(15)

%, =—sinfcos®,

Summarizing, a connection which is spatially flat, homo-
geneous, isotropic, torsionless and with no curvature can be
parametrized in the above three distinct ways, which could
lead to interesting phenomenology in cosmology.

IV. KANTOWSKI-SACHS AND BIANCHI III
GEOMETRY

We proceed our study by considering the anisotropic
cosmological models with line element

ds* = —=N(1)2di® + a*(1) (e**Vdx?
+ e (dy? + Sz(y)dzz)), (16)

with S(y) = siny or S(y) = sinhy.

For S(y) =siny the line element (16) describes the
Kantowski-Sachs space, while for S(y) = sinhy the line
element (16) corresponds to the locally rotational (LRS)
Bianchi III geometry. The scale factor a() describes the
size of the universe; that is, the volume of the three-
dimensional space is defined as V = a*. Moreover, b(t) is
the anisotropic parameter.

Indeed, spacetime (16) admits a four-dimensional Lie
algebra consisted by the vector fields

SW)
& =0, & =coszd, — S0 sin zd,
, 5'(y)
53 = SIn Zay -+ T)})COS Zaz and 54 = dx.

In this study we consider the symmetric and flat
connection I'%, with nonzero components [67]
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I
F'rxz—E[YerClVl(z—CzYl)Jrk]a Fttx:cl(l —027/1)7 [ = cic272,

1 .
Ftyy =72 thz = 725@)2’ I, = F b’l(k + Cl}’l)(027’1 - 1) - }’271]
2

€Y1

FX[X:_Z(]“FCNQ) M = ¢+ ek +crearys [y =711 I, =rS()%
k+cyy S'(y
Fyty = thz = _év Fyxy = szz =C1 Fyzz = _S(y)S/(y)’ Fzyz = ) > (17)
72 S(y)
with y; = —lz — -£. This choice for the y; is needed in order to eliminate the nondiagonal term produced in the field

equations [67]. Th1s value of y; is selected in order the nondiagonal terms of the field equations to be zero. If we do not
make this choice, then the resulting field equations imply that either f(Q) is linear (theory equivalent to general relativity)
or that Q = const. (theory equivalent to general relativity plus a cosmological constant). Hence, the choice for y| is unique if
we want to study a modification of General Relativity with an actual effect on the dynamics. The field equations for
arbitrary y; are presented in the Appendix.
Furthermore, the & in the previous relations is a constant given by k = —S"(y)/S(y) and it can be equal to +1 or —1.
For the latter connection and the line element (16) the nonmetricity scalar is derived to be

30> 6kH e’ 7,N e’ .
_3ph . 2 -3b
+§m—y2—N+;(2+c1cze )(HN}/Z—i—yz +T> +2?(1 —cice)yab

+3(2€1+C2k)2 H (Czk—2C1>2 N+}/2
4ciea Nys  4cipN*yy \N 1)’

k
— 2 b
Q——6H +2?€

(18)

in which H stands for H = .
Hence, the gravitational field equations in the vacuum are [67]
tt:

r@) (s + ke 25 ) L0 - 05 + 2o [SERE SN (1 42 )] <o o)

4 N? 8ci1caNy, a
XX:
b b bN _H ke® 3 b? 1
HS -2 22 agr 2 27 )~ —of
710+ g - -2l -ame K22 o)~ 0r10)
Q 11 (C2k_2c1)2 ebNYZ C1C2 3 b
1- ——2H| = 2
Nf< 8cicaNy, + a’ 2 ¢ +N . (20)
Yy, 2Z:
b b bN H 3 b2
7@+ - 4k o+ 22 + (1(0) - 07/(@)
0 ., b (cok=2¢))* cicpe™®
Q ag 4+ 2 _ Ny, | = o0. 21
+Nf (0) N 4c,c,Ny, a’ 7 (21)

In order to write the field equations in a simpler form we introduce the scalar field ¢ = f'(Q), the potential function
V(g) = (f(Q) — Of'(Q)), from where we can write the pointlike Lagrangian [66]

L(a,a,b,b, . %, 9) =% @a3¢bz-6a¢a2-“3(k - 420“)2‘1"’5) w(“"zb@f;b 7 )4’—2kaeb¢—a3V<¢)), (22)

with y, = &, a = C‘ and = ¢ c,.
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The field equations follow from the variation of the latter Lagrangian with respect to the dynamical variables
{N,a,b,¢p,¥}. Specifically, the gravitational field equations are (here and henceforth we impose N = 1 for the lapse

function)

i _ 12aa D +6¢pa> — 2ke’p N a(6aph® + (k —2a)*¥(=¢) + 4aV())

12a¢ 16ag)
(P +2eP)gp | a(6agh® + (k = 22)*¥(=¢) + 4aV(9)) (23)
12a¢¥ 16a¢ ’
) sap 207 (keBb n (/7’7;;”)45)
b:_ a + 302 _?’ (24)
b= d(a(40aa?e® (k — 2a)?(2¢% + B)¥? — 3a*e*? (k — 2a)*"W* + 16022 + f)?))
B a(a?e® (k — 2a)*¥? — 4a(2e% + B))?
b(8aa(6aa’e® (2e3 + B)b*W + 4ae? (2¢3 + B)W(a®V' () + 2ke?)))
a(a?e® (k - 2a)*¥? — 4a(2e% + p))?
n d(8aa((e? — p)b(a*e? (k — 2a)*W? + 4af + 8ae’))) d(=192a%ae*a?(2¢% + B)P) (25)
a(a?e® (k — 2a)*¥? — 4a(2e% + B))? a(a?e® (k —2a)*¥? — 4a(2e% + §))*’
¥ — ¥(8ae’ (a+ a(b 4 k¥')) + ae®¥(3a(k — 2a)2a ¥ —24ad® + 2aa> (3% +2V'(¢))))
- daa(2e’ + ) — a*e? (k — 2a)*P?
Y(4ap(a —2ab)) (26)

daa(2e’ + p) — a*e? (k — 2a)*¥?

Additionally, the Friedmann equation reads

2kebp  petp 2eb¢p 3 ., 2
R A LA
— k¥ p+a¥ p+V(p) = 0. (27)

For simplicity, we kept the scale factor a in the field
equations, but in the computations, we write everything in

terms of the Hubble function, that is a = ef Hdt 1 the
following we consider the power-law potential V(¢) =
Vo, which correspond to a power-law f(Q) function.

V. PHASE-SPACE ANALYSIS

In this section, we set k = 2a in the pointlike Lagrangian
(22) and obtain a simplified version of system (23)—(26).
This choice corresponds to having y; = 0 in the compo-
nents of the connection. The ensuing equations are

ae®  petg ) 3.,

T3 T 12a2¢¥ i 6a2p¥ g”
Hp 3 V(¢)

dae 1 . . . bhe
= B p—2ebp) —3HH "L, (29
3@ g T2 PRl
é= 2T (3a2e* 0¥ p+2a2e* W V' (p) + 27 b )
PE
1 . ..
—m(lzazesz2T¢+2ﬂb¢)
+ m (2€3bH¢ +ﬂH¢ + 8(1@317‘1;45) s (30)
i 1 3a%e* b 2,262y 3bj
?_2e3b—|—ﬂ< 5 + a*e’" WV () + 2e b‘P)
1 . ..
- m (6&2€2bH21P2 + Zﬁb lP)
e
+m(263bH‘i"+ﬁH'~P+4ae3b\P2). (31)
e

In this case, the Friedmann equation becomes

4acbp pe=p 2¢P¢ 3
a? a*¥ Ay 2

$b* + 6H?*p + V() = 0.
(32)
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At this point, we define the dimensionless variables

zaeb—szdt 5 V(¢) 5 bz
o=—7m — Y =eps  F Tap
3H 6H>¢ 4H
(33)
p . H (203 +ﬂ)¢€—2(b+fHdt)
X = H¢ ’ - lP ) - 6H2¢‘P ’

(34)

and the new independent variable 7 =Ina, such that
¥ =&
dr’

Using these variables, we can write the modified
Friedmann’s equation as

Q-2 +w+y?+1=0, (35)

and solve it for w to reduce the dimension of the dynamical
system, that is

w=3X>—-y>—-Qp—1. (36)

The field equations are reduced to the following system
of first order differential equations

Qf = 20,23 + X + x +y?), (37)
! 1 2 2
y :Ey(42 + Ax +x + 2y +2),
Z
Y =3+ 1)+§QR (2—%) + (T +2)y?, (38)
20(Z? + Ay* — 1) + Qg(2 327z
xl_x<x( a( + y2 2)+ R( a+ ))+2(2_1)2+y2)’ (39)
_— QrZQ2a(2-1)> +x2a+32Z)) ZQRa(Z-13(Z+1)-ay?)
a2+ 2+ Qp + 1) a2 +y>+ QR +1)
2Z(Z-4)T 1 Q

— 4y 4+ Qp +1

Each stationary point of the latter system describes an
asymptotic solution with deceleration parameter

H
q:—l—m:222+x+y2. (41)

The initial assumption that k = 2a means that the
system, the critical points, and their stability depends only
on two parameters a and A. Since k = %1, this means that
a= j:%. The dynamical system has the following equilib-
rium points (Qg,y, X, x, Z):

(1) The family L; = (Qg.,0,—1,—1,-2a), where
Qr. €R is a free parameter. Hence, the asymptotic
solution is that of anisotropic or Kantowski-Sachs
or Bianchi III universe. On the surface Q. =0,
the Bianchi type I dynamics are recovered. The
value of the deceleration parameter is g(L;) = 1,
this means that L, defines a decelerated solution.
The eigenvalues are {0, —2,2, 6,32}, The family is

normally hyperbolic the stability is given by the
nonzero eigenvalues, L; is a saddle. From (41)
we calculate H(r) =4, that is, a(r) = ag\/t and

2 2

(2) The family L, = (Q,0.1,-3,-%), where
Qr.€R is a free parameter. The value of the
deceleration parameter is g(L,) = 1, which means
it has the same physical properties with point L;.
The eigenvalues are {0,-6,-6,6,—3(1—1)}, as
Ly, L, is a saddle.

3) P, = (—%,0,0,0,0), with eigenvalues {-2,2,
—1+iV3,-1-iV3, 1}. P, is a saddle. The value
of the deceleration parameter is g(P;) = 0. The
asymptotic solution is isotropic and with nonzero
spatially curvature. That is the limit of Milne
universe, since b =0, a(t) = aygt and Qi #0. It
is a solution which provides the limit of GR in the
theory.
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(4) P,=(2(v/13-4),0,1(3-V13),1(7V/13-25).0). The eigenvalues are

&)

Q)

(a) for a =1, {3(3-V13),3(3-V13).1(9-3V13 = i\/14(37\/ﬁ —133)).1(7V132 - 252 - 513 + 23)},
(b) fora = -1 {3(3-v13).33-V13).1(9-3V13 ¥ i\/14(37\/E - 133)).1(7V132 - 252 - 5V/13 + 23)}.

The point is an attractor for 4 < % and a saddle in any other case, the stability does not change if a = % or — %

The value of the deceleration parameter is ¢(P,) =3(v/13=3)~0.3 > 0, this means that P, describes a
decelerated solution. Those asymptotic solutions belong to an anisotropic Bianchi III universe because Qg (P,) < 0.

Py =(-2(4+ \/ﬁ),O,%B + \/ﬁ),%(—% — 7\/ﬁ),0), the eigenvalues are
@ fora=1 {3(3+13),3(3+13),1(9+3V13 F \/14(133 +37V13)),1(=7V134 =251+ 5V13 +23)},
(b) fora=-1 {3(3+V13),3(3+13).1(9+3V13 i\/14(133 +37V13)).4(-7V134-254+5V13 +23)}.

The point is a saddle for 1 < % or A > % the stability does not change if o = % or — % The value of the

deceleration parameter is g(P,) =3(—3—V/13) % =3.3 < —1, this means that P; describes an accelerated
anisotropic universe with negative curvature, that is, a Bianchi III geometry.

Py = (Qp.y.E.x.g) = (826 YOVAU01T _20-2) 18 ) This point exist for 4 # 5/7 and 2 < —10 — 3v/13 or
22 3+/13 = 10. The eigenvalues are [, = — 222 1) = f,(a,2), 13 = fa(a, 2), Iy = f3(a,2),Is = f4(a,2), where
fi are complicated expressions depending on the parameters. Setting o = i% slightly changes the eigenvalues but

not the stability, see Fig. 1. The point is a saddle. The value of the deceleration parameter is g(P,) = %, P,

describes an accelerated solution for% < A < 2 and a de Sitter solution for 4 = 1. In Fig. 2 we present some numerical

a=1/2
2 a=1/2
1 10
0 —h —h
lz 5 IZ
T et B s \ """ 3
ol Ae—— —
-2 o 15 — IS
-5
-3
-10
-100 -80 -60 -40 -20 5 10 15 20 25 30
a=-1/2
2 a=-1/2
1 10
0 —h — h
L 5 A
e k \ """ I3
ol re—— — Iy
-2 o 15 — IS
-5
-3
-10
-100 -80 -60 -40 -20 5 10 15 20 25 30

FIG. 1. Real part of the eigenvalues for point P, for a = i% and different ranges for A where the point exists.
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a=%, A=1, i.c. near P, a=—%, A=1, i.c. near P,
1.5 : 1.5

-4 -2 0 2 4 ' -4 -2 0 2 4
a=%, A=1, i.c. near P; a=—%, A=1, i.c. near P;

-0.4 -0.2 0.0 0.2 -0.20 -0.15 -0.10 -0.05 0.00 0.05

FIG. 2. Evolution of Qp, y, X, x, Z evaluated at a numerical solutions of system (37)—(40) for a = j:% and A = 1 for initial conditions

(i.c.) near the points P, and P5 with a displacement of ¢ = m. Also present as a red dotted line is the evolution of the deceleration

parameter ¢ evaluated at these points.

solutions of system (37)—(40) for a = i% and A = 1 for initial conditions (i.c.) near the points P, and P; with a

displacement of ¢ = Wloo- Additionally, depicted as a red dotted line is the evolution of the deceleration parameter

evaluated at each solution.
(7) Ps=(Qz,¥,.Z,x,2) = (%’ﬁv /15(5320)—17’_27(1:? ,513:.0). The difference with P, is a minus sign in the y
coordinate, it exists for the same values of P, as well. The stability is also the same (saddle) since they share

eigenvalues see Fig. 1 for reference. The value of the deceleration parameter is g(Ps) = % P5 describes an

accelerated solution for % < A < 2 and a de Sitter solution for 4 = 1.

A. General case

For the general case with « arbitrary, we introduce the dimensionless variables

ke [ Hat . V() ) B2 p N fpe2 [ Hat
Qp =—F75—, V==, ¥r=—, X =—, 7=—, w=————. (42)
3H 6H?¢ 4H H¢ H 6H*p¥
In these variables, the Friedmann equation reads
k—2a)? Q
(k=2a)%z xQ% w0 2ia 11—, (43)

24a kz

This means that we can solve (43) for w to obtain the dynamical system
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_ xQp(12a — (k - 20)*z)

+2Qp (257 + Z +7), (44)

+y(222 +y2 +1) (45)

Q/
R 6a
,xy(6ali+ 1) - (k=20%)
B 12a
o (k=2a)*(Z—1)xz  3xQ

12a

+2(Z=1)*(Z+ 1)+ (T+2)y* + 3Qp, (46)

(2242 + Qe + 1) =2(2(Z-1P3E+ 1) + 29 ((Z-1)> +x)) + z(*(E-4)Z+ A+ 1)x

+Qp +3) +y*) -

12az

(k = 2a)?
12a

6
xZ(—(Z =12+ 2+ Q) + £ 230, (47)

—= (=24 Y+ Qp + 12X = = (k= 2a)?x2? (x(Z2 + > + Qg — 1)) + (k= 2a2)*x2* ((—=(Z = 6)Z + y* + Qg = 5)
X

X(-Z24+y2+ Qg+ 1)) -

6_kz ((k —2a)?Zx?Qg) — 6z (4ax (=% + y* + Qg + 1)

X (Z2+ 2 +Qp—1)) — 6—; (2ak(2(Z = 1)? + y*) (=2 + y* + Qg + 1)?)

. (k—2a)*

-1 2.3
6a ( ¥z

where once more the prime means a total derivative with
respect the independent variable 7 = In(a).
The equilibrium points for the latter system are given by

. a(X2-
the family (Qg,y,%,x,z) = (0,0,Z., 2(2_(2%)22 e

2. and z. €R are the parameters that define the family.
This family is a normally hyperbolic set of equilibrium
points and therefore it has two zero eigenvalues. We
observe that there are not any asymptotic solutions which
can describe anisotropic solutions with nonzero spatial
curvature, that is, the limit of GR is not recovered in
this case.

We conclude that the general case is not of physical
interest, thus we end the discussion here.

) where

VI. CONCLUDING REMARKS

In this study we investigated the asymptotic dynamics
for the field equations in symmetric teleparallel f(Q)-
theory for Kantowski-Sachs and Bianchi type III back-
ground geometries. The field equations of f(Q)-theory are
of second-order where the geometrodynamical degrees of
freedom can be attributed to two scalar fields. By using
the scalar field description we were able to write a mini-
superspace Lagrangian. From the minisuperspace approach
we observed that, for specific values of some of the free
parameters of theory, some nonlinear terms in the field
equations are eliminated.

To understand the overall evolution of physical param-
eters in the solution space, we determined the stationary
points of the phase-space and investigated their stability
properties. Employing the Hubble normalization approach,

T2aX
k

xQp(=Z? +y? + Qp + 1), (48)

|

we transformed the field equations into a system of
algebraic-differential equations. Each stationary point of
this system corresponded to an asymptotic solution, whose
stability properties and physical characteristics we thor-
oughly examined.

We found that for the general form of the symmetric and
teleparallel connection provided by the theory, the field
equations admit asymptotic solutions describing dynamics
similar to that of the Bianchi type I geometry, without
recovering the limit of general relativity (GR). However,
for specific values of the free parameters, new stationary
points emerged, describing the limit of GR and potentially
representing anisotropic and accelerated solutions that
could describe the pre-inflationary epoch of the universe.

From the results of this work it follows that symmetric
teleparallel f(Q)-theory can describe anisotropic solutions
with acceleration. However, we have considered a power-
law function for the f(Q)-only and we have not found any
future attractor which can describe an accelerating uni-
verse. However, for a more general f(Q) function, new
stationary points exist. Finally, we demonstrated how
the phase-space analysis can be utilized to constrain the
free parameters of the connection, in order to ensure the
viability of the theory.
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APPENDIX: FIELD EQUATIONS FOR ARBITRARY vy,

In this Appendix we present the general definition of the nonmetricity scalar Q and the gravitational field equations for
arbitrary y; with the lapse function N set to 1 for simplicity.
For the connection of our consideration the nonmetricity scalar reads

0— e (crea(ra(H = 2b) +7a) + 2 (ra(b + H) + k + 7)) +§l§2 _3H(cari +2)(ciy1 +k)
a2 2 V&)
_11(2cicay1 4 2¢1 4 62k) n (car1 +2)7a(cir1 + k)

72 }’%

— 6H>. (A1)

Furthermore, the gravitational field equations are
1t

_nf(Q)(=3a’h’ + 128 H? + 4ke®) +2a%y,(f(Q) - Of'(Q))

0

4612]/2
_Of"(Q)(@*(cars +2)(crry +K) + ep3(2¢ + ¢1¢3)) (A2)
2a%y,
[
0= 0f"(Q(2¢cicay1 + 2¢1 + €2k) (A3)
XX:
0= —2a2**(f(Q) — Of'(Q)) — e f(Q)(=12a>Hb + a>(3b*> — 4b) + Sa(aH + aH?) + 4a>H? + 4ke®)
" 201"(Q)(=a*e* (=2y2b + ccari + 2¢171 + cokyy + 2k) —4d?>e® Hy, + r3(2¢% = ¢1cy)) (A4)
72
Yy, 22
0— _20f"(Q)(@*e® (rab + 11 (2¢1 + k) + cicap] + 2k) + 4a*e*" Hy, — ¢1¢373)
72
— 21 (Q)(6a’*Hb + a(a(2b + 3b*) + 8(aH + aH?)) + 4a>H?) + 2a*e**(f(Q) — Of'(Q)) (A5)
Finally, the equations of motion for the connection are
0= 0260 — 1) f"(Q) + (26 + ¢16y) (fP(Q)Q* + 0f"(Q))))
P
n e (Hy: Q2™ + c162)f"(Q) + 2075 (2™ + c162)f"(Q))
P
(3) 2 A £ oYU
" (cari +2)(crrs +K)(f (Q7),2Q +3HOf"(Q) + 0f"(Q)) (A6)
0= f"(Q)(=QBH(2cico71 + 2¢1 + ¢2k) + 2¢1¢071) = O(2¢16271 + 2¢1 + ¢2k))
— Q) Q*(2¢1¢a71 + 261 + 2k) (A7)
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