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If two particles moving toward a black hole collide in the vicinity of the horizon, the energy Ec:m: in
the center-of-mass frame can grow indefinitely if one of the particles is fine-tuned. This is the Bañados-
Silk-West (BSW) effect. One of the objections against this effect is that, for some types of horizon,
fine-tuned particles cannot reach the horizon. However, this difficulty can be overcome if, instead of exact
fine-tuning, one particle is nearly fine-tuned, with the value of small detuning being adjusted to the distance
to the horizon. Such particles are called near-fine-tuned. We give classification of such particles and
describe possible high-energy scenarios of collision in which they participate. We analyze the ranges of
possible motion for each type of particle and determine under which condition such particles can reach the
horizon. We analyze collision energy Ec:m: and determine under which conditions it may grow indefinitely.
We also take into consideration the forces acting on particles and find when the BSW effect with nearly
fine-tuned particles is possible with finite forces. We demonstrate that the BSW effect with particles under
discussion is consistent with the principle of kinematic censorship. According to this principle, Ec:m: cannot
be literally infinite in any event of collision (if no singularity is present), although it can be made as large
as one likes.
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I. INTRODUCTION

At present, high-energy particle collisions near black
holes (and, more generally, collisions in a strong gravita-
tional field) remain a hot topic. This is mainly due to
findings of Bañados et al., who noticed that if two particles
move toward an extremal black hole and collide near its
horizon, under certain conditions the energy in the center-
of-mass frame Ec:m: becomes unbounded [1]. This happens
if one of the colliding particles has to be critical (meaning
that its radial velocity has to vanish on the horizon). This is
what is called the Bañados-Silk-West (BSW) effect. It also
revived interest in earlier works on this subject [2,3]. The
aforementioned conditions imply that one of colliding
particles has fine-tuned parameters (say, a special relation
between the energy and angular momentum).

A number of objections were pushed forward against this
effect [4–7]. Their meaning can be reduced to the state-
ments that there are some factors that bound the energy of
collision Ec:m:. However, now it is clear that such a kind of
objection does not abolish the BSW effect. Moreover,
according to the principle of kinematic censorship, it is
impossible to have literally infinite Ec:m: in each event of
collision. Instead, this quantity remains finite, but can be
made as large as one likes [8]. Therefore, the aforemen-
tioned objections simply put limits of validity of the BSW
effect, but do not abolish it.
Moreover, it turned out that the requirement of having an

extremal horizon is not necessary for the BSW effect. One
of factors that prevents infinite Ec:m: is correlation between
the type of a trajectory of a fine-tuned particle and a type of
a horizon. For example, the critical particle cannot reach the
horizon of a nonextremal black hole. However, if one
somewhat relaxes the condition of criticality and replaces it
with near criticality with a certain relationship between
detuning and proximity to the horizon, the BSW effect
becomes possible [9] (quite recently the BSW effect near
nonextremal black holes was discussed in [10]).
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Another objection against the BSW effect is related to
backreaction of radiation on a particle. Meanwhile, it was
shown that the BSW effect survives under the action of a
force for extremal [11] and nonextremal horizons [12].
A large number of particular results for the BSW effect

invokes the necessity of constructing the most general
scheme that would encompass all possible cases. In our
previous paper [13], such a scheme with full classification
of scenarios leading to the BSW effect was developed for
collisions in which fine-tuned particles participate. In the
present paper, we developed a corresponding scheme for
near-fine-tuned particles, thus essentially generalizing the
observation made in [9]. In doing so, we also take into
account a force acting on particles, so, in general, they are
not free falling. An important reservation to be mentioned
is that we consider motion within the equatorial plane of
rotating axially symmetric black holes. Another reservation
is that we work in the test particle approximation, neglect-
ing backreaction of particles on the metric.
The paper is organized as follows. In Sec. II, we give a

general setup for motion of particles in axially symmetric
spacetimes. In Sec. III, we introduce different types of near-
fine-tuned particles and analyze possible ranges of their
motion. In Sec. IV, we focus on kinematical properties of
near-fine-tuned particles for different ranges of their motion,
which becomes important in Sec. V, where we investigate
behavior of energy in the center-of-mass frame of two
colliding particles. In Sec. VI, we give general expressions
for an acceleration experienced by near-fine-tuned particles.
This becomes useful in Secs.VII–IX,wherewe analyzenear-
horizon behavior of acceleration for different ranges of
motion of near-fine-tuned particles. In Sec. X, we briefly
formulate the results we obtained in previous sections. In
Sec. XI, we check the validity of the aforementioned
principle of kinematic censorship. Section XII is devoted
to a possibility of varying of ranges of particle motion under
the action of the external force. In Sec. XIII, we summarize
corresponding results of our work.

II. GENERAL SETUP

In this work, we are going to analyze the properties of the
BSW phenomenon for near-fine-tuned particles. At first,
we need to define what we mean by this term. We are
investigating the motion of particles in the background of a
rotating black hole which is described in the generalized
Boyer-Lindquist coordinates ðt; r; θ;φÞ by the metric

ds2 ¼ −N2dt2 þ gφφðdt − ωdφÞ2 þ dr2

A
þ gθθdθ2; ð1Þ

where all metric coefficients do not depend on t and φ. The
horizon is located at r ¼ rh where AðrhÞ ¼ NðrhÞ ¼ 0.
Near the horizon, we utilize a general expansion for the
functions N2, A, and ω,

N2 ¼ κpvp þ oðvpÞ; A ¼ Aqvq þ oðvqÞ; ð2Þ

ω ¼ ωH þ ωkvk þ oðvkÞ; ð3Þ
where q, p, and k are numbers that characterize the rate
of a change of the metric functions near the horizon,
and v ¼ r − rh.
Now, let us investigate the motion of a particle in such a

space-time. If a particle is freely moving, the space-time
symmetries with respect to ∂t and ∂φ impose conservation
of the corresponding components of the four-momentum:
mut ¼ −E, muφ ¼ L. We assume the symmetry with
respect to the equatorial plane. In what follows, we restrict
ourselves by equatorial motion. This allows us to write the
four-velocity of a free-falling particle in the following form:

uμ ¼
�
X
N2

; σ

ffiffiffiffi
A

p

N
P; 0;

L
gφφ

þ ωX
N2

�
; ð4Þ

where σ ¼ �1, X ¼ ϵ − ωL, ϵ ¼ E=m, L ¼ L=m, and P
is given by

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

�
1þ L2

gφφ

�s
: ð5Þ

Now, let a particle move nonfreely. In the case of an
external force acting on the particles, the quantities ε and L
are obviously not conserved. However, despite this fact, we
can still use the expression (4), but with general functions
XðrÞ and LðrÞ, provided forces do not depend on time and
angle φ. If, additionally, the metric is spherically symmetric
and acceleration is pure radial, it is convenient to redefine
X ¼ E � R

r dr0aðr0Þ, where aðr0Þ is the absolute value of
acceleration and E is a constant [14]. However, in a general
case, one is led to solving equations of motion without such
a substitution.
Near the horizon, for a fine-tuned particle we can use the

Taylor expansion,

X ¼ Xsvs þ oðvsÞ; L ¼ LH þ Lbvb þ oðvbÞ: ð6Þ
Here, the fact that a particle is fine-tuned manifests itself in
that X ¼ 0 on the horizon where v ¼ 0. [Counterparts of it
for near-fine-tuned particles will be considered below—
see (10)].
In further analysis, we will also require expressions for

the tetrad components of the four-velocity. To this end, let
us introduce the corresponding tetrad,

eð0Þμ ¼ Nð1; 0; 0; 0Þ; eð1Þμ ¼
�
0;

1ffiffiffiffi
A

p ; 0; 0

�
; ð7Þ

eð2Þμ ¼ ffiffiffiffiffiffi
gθθ

p ð0; 0; 1; 0Þ; eð3Þμ ¼ ffiffiffiffiffiffiffi
gφφ

p ð−ω; 0; 0; 1Þ: ð8Þ
The tetrad components of four-velocity read

uðaÞ ¼
�
X
N
;
σ

N
P; 0;

Lffiffiffiffiffiffiffigφφ
p

�
: ð9Þ
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III. CLASSIFICATION OF DIFFERENT
NEAR-FINE-TUNED PARTICLES

In this section, we are going to define and classify
different near-fine-tuned particles that will be useful for
further analysis. The definition of near-fine-tuned particles
generalizing that introduced in previous works (see [9]) is
as follows: a particle is called near-fine-tuned if X near the
horizon has the Taylor expansion

X ¼ δþ Xsvs þ oðvsÞ; s > 0; ð10Þ

where δ ≪ 1 is a dimensionless parameter. Account for
small but nonzero δ enabled to find a version of the BSW
effect even for nonextremal black holes, contrary to some
misconceptions (see [9] for details). On the other hand, the
concept of near-fine-tuned particles plays an important role
in the analysis of full scenarios of collision including
behavior of debris. In particular, it was shown for charged
particles in the extremal Reissner-Nordström background
that a particle that can escape to infinity must be near
critical [15]. However, in what follows we restrict ourselves
to consideration of neutral particles. A combined account
for rotation and electric charge is a separate complicated
problem that can give rise to qualitatively new possibilities
and deserves separate attention (for the example of the
Kerr-Newman black hole, see [16]).
It is important to note that a particle for which the

expansion for X starts with a constant is generally called
usual (and we will see several analogies with usual particles
in our further analysis). However, we are going to show that
the case δ ≪ 1 requires a distinct analysis.
Before we proceed further, we have to note that in our

analysis we will also require that the time coordinate during
the motion of the particle has to increase (this is the so-
called forward-in-time condition). To this end, the time
component of the four-velocity has to be positive: ut > 0.
From the expression (4), one sees that this requires X ≥ 0.
In further analysis, we will require this condition to hold for
all particles under consideration.
To analyze the behavior of the four-velocity, let us

introduce a classification of different types of particles
based on different values of s (see Table I).
As we will show, these particles will correspond to

generalization, for nonzero δ, of subcritical, critical, and
ultracritical particles introduced in Ref. [13]. The only new
type of particle is the near-overcritical one that does not
have any analog for δ ¼ 0. But before doing this, let us
consider an expression for the radial component of the four-
velocity. As we will show, it depends strongly on a type of
particle that will justify the necessity of introduced clas-
sification. For this purpose and for further investigation, let
us consider the quantity P near the horizon. First of all, we
note that exactly on the horizon P ¼ jδj [this becomes
obvious if one substitutes Eqs. (10) and (2) into (5) and
takes the limit v → 0]. However, as one moves away from

the horizon, the quantity P starts to differ from the value
P ¼ jδj. Depending on the parameters of a particle, P may
either decrease or increase. In the first case, at some radial
distance vt, where the index “t” stands for “turning point,” P
becomes zero:PðvtÞ ¼ 0 (hereafter, “distance”means “coor-
dinate distance”). In the second case, there are no turning
points. However, we can still define effective coordinate
distances ve, where the index “e” stands for “effective,” at
which P changes by values comparable to the value of P on
the horizon. Formally, we can define effective distances to be
such that PðveÞ − Pð0Þ ∼ δ. As we will show in further
analysis, the physical properties of the collisional process
depend strongly on the point atwhich this process takes place
and the relationship between it and vt (or ve).
Now, let us find under which conditions P imposes the

existence of roots and in what regions a particle may move.
Using the expression for P [see (5)], we have

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

�
1þ L2

gφφ

�s
: ð11Þ

The reality of this expression is defined by the condition

X2 ≥ N2

�
1þ L2

gφφ

�
: ð12Þ

As we impose the forward-in-time condition, X > 0.
Also, by definition N2 is non-negative. Thus, we can
formally take the “square root” of (12) and get

X ≥ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

gφφ

s
: ð13Þ

Our task is to find such ranges of radial coordinate in
which this condition holds. To do this, let us at first solve

equationX ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2

gφφ

q
. Substituting (10) and (2) one gets

δþ Xsvst þ oðvst Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κp

�
1þ L2

gφφ

�s
vp=2t þ oðvp=2t Þ: ð14Þ

We cannot find general expressions for all roots, but we
can determine if there are any new roots that were absent in
the case of zero δ. To analyze the corresponding solutions,
we consider different types of particles separately.

TABLE I. Table showing classification of different near-fine-
tuned particles.

Condition
Type of particle

with nonzero δ ≪ 1 Abbreviation

s < p=2 Near subcritical NSC
s ¼ p=2 Near critical NC
s ¼ p=2 and (24) Near ultracritical NUC
s > p=2 Near overcritical NOC
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A. Near-subcritical particles (s < p=2)

In this case, it is obvious that the term vs is dominant
over the term vp=2 that gives us P ≈ jX j. Therefore, if
the forward-in-time condition is satisfied, the quantity P is
real. Thus, the entire analysis of regions of motion for
near-subcritical particles is restricted to an analysis of the
positivity of X . To analyze regions where X ≥ 0, we first
need to find where X ¼ 0. By substituting (10), we have

δþ Xsvst ¼ oðvst Þ; ð15Þ
that gives

vt ¼
�
−

δ

Xs

�
1=s

þ oðδ1=sÞ: ð16Þ

Note that this solution is only possible if δ > 0 andXs < 0
or if δ < 0 and Xs > 0. In the first case, it can be easily seen
that X is non-negative only in the range ½0; vt�, thus the
particle can onlymove from the horizon to vt, and this region
is not connected to infinity. On the other hand, in the second

case, X is non-negative only in the range ½vt;∞�. In this
section, when wewrite∞, it means that we cannot find other
roots that limit the motion of the particle. This implies that
there are no roots generated by a nonzero δ that restrict the
motion of a particle (although some of them may exist at
distances greater than vt, their existence is not defined by δ).
However, if the conditions δ > 0 andXs < 0, or δ < 0 and

Xs > 0, do not hold, then there is no δ-related root and a
particle may move in the range ½0;∞�. The forward-in-time
condition for the absence of roots holds only in the casewhen
δ > 0 and Xs > 0 (while for the case δ < 0 and Xs < 0, it
does not hold). As mentioned above, in the case of the
absence of roots, we can only define effective distances at
which P changes on the order of δ. For near-subcritical
particles, where s < p=2, we have P ≈ X ≈ δþ Xsvs. By
comparing the two terms in the expansion of P, we get

ve ∼ δ1=s: ð17Þ

To summarize, we have (hereafter, subscript “c” denotes
the collision point)

if particle is NSC ðs < p=2Þ; vc ∈

8>><
>>:

½0; vt� where vt ¼ ð− δ
Xs
Þ1=s if δ > 0 andXs < 0;

½vt;∞� where vt ¼ ð− δ
Xs
Þ1=s if δ < 0 andXs > 0;

½0;∞� if δ > 0 andXs > 0; in this case ve ∼ δ1=s:

ð18Þ

In this case, the ranges of motion were limited only by the
forward-in-time condition. Therefore, (18) describes all
cases when the forward-in-time condition holds, for general
expressions for P. This fact will be used in further analysis.
We also have to make some reservations about ranges of

motion of particles. Up to now, we have not considered
directions of their motion: ranges where X > 0 and P is
real do not depend on whether the particle is ingoing or
outgoing. However, it is obvious that in application to the
real problem this becomes important. If the particle has
the finite proper time to achieve the horizon from some
finite distance, then its motion cannot be reversed, and, in
application to our problem, this describes only the ingoing
particle. (It can be outgoing if one considers a white hole,
but we will not focus on this possibility.) If the proper time
diverges near the horizon, a particle may move not only
toward a horizon but also from its small vicinity in the
outward direction, so our analysis is applicable both to
ingoing and outgoing particles. Analysis of the proper
time is done in Appendix B, where we analyze behavior of
proper time for different types of particles. One can see
that for different types of particles the behavior of the
proper time is different. Meanwhile, we still can conclude
that, if q < 2, any particle has finite proper time, and
in this case our current analysis is applicable only for
ingoing particles.

B. Near-critical particles (s= p=2)

In this case vs and vp=2 terms are of the same order and

Eq. (14) simplifies [we denote Ap=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κpð1þ L2

gφφ
Þ

q
],

δ ≈ ðAp=2 − Xp=2Þvp=2t : ð19Þ
Solving this, we have

vt ≈
�

δ

Ap=2 − Xp=2

�
2=p

: ð20Þ

This solution is possible only in two cases: if δ > 0 and
Ap=2 > Xp=2, or if δ < 0 andAp=2 < Xp=2. In the first case,P
is positive in the range ½0; vt�, while in the second case it is
positive in the range ½vt;∞�. In other cases, there is no solution
and the particle maymove in the range ½0;∞�. In this case, we
can only define effective distances at which P changes on the
values of the order of δ. To find these distances, we write the
expression for P in the case of NC particles,

P ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 2δXp=2vp=2 þ ðX2

p=2 − A2
p=2Þvp

q
: ð21Þ

Generally, we need to determine at which distances each
term in the expression forP is compatiblewith δ2 and choose
the dominant solution in δ. We will not provide a general
analysis andwill just present a result: the effective distanceve
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is such that all terms are of the same order. In this case,

ve ∼ δ2=p: ð22Þ

We need to determine whether the forward-in-time
condition holds in regions of motion for the NC particle.
First, let us consider the case where δ > 0 and Ap=2 > Xp=2.
Then, the root (20) is closer to the horizon than (16) (this is
true because Ap=2 > 0). Therefore, in the entire range
½0; vt�, the forward-in-time condition holds.

Next, let us consider the case where δ < 0 and
Ap=2 < Xp=2. In this case, the root (20) is further from
the horizon than (16). Therefore, in the entire range ½vt;∞�,
the forward-in-time condition holds.
The remaining cases are (i) δ > 0 and Ap=2 < Xp=2 or

(ii) δ < 0 and Ap=2 > Xp=2. In case (i), the forward-in-time
condition holds according to the third case in (18). In case
(ii), it only holds for Xp=2 > 0 and for v∈ ½ð− δ

Xp=2
Þ2=p;∞�.

In all other cases, motion is forbidden.
In summary, generalizing all the above facts, we have

if particle is NC ðs¼ p=2Þ; vc∈

8>>>>>><
>>>>>>:

½0; vt� wherevt is inð20Þandδ> 0andAp=2 >Xp=2;

½vt;∞� wherevt is inð20Þandδ< 0andAp=2 <Xp=2;

½0;∞� if δ> 0andAp=2 <Xp=2; in this caseve∼ δ2=p;h
ð− δ

Xp=2
Þ2=p;0

i
if δ< 0andAp=2 >Xp=2 > 0; ve∼ δ2=p:

ð23Þ

C. Near-ultracritical particles (s= p=2 and special condition)

It may appear that coefficients in expansions forPmay be such that several first terms in it cancel. This happens in a casewhen

ðX − δÞ2 − N2

�
1þ L2

gφφ

�
¼ ðXsvs þ oðvsÞÞ2 −

�
κp

�
1þ L2

H

gφH

�
vp þ oðvcÞ

�
ð24Þ

¼ κp
Ap

ðurÞ2cv2cþp−q þ oðv2cþp−qÞ; ð25Þ

where ðurÞc and c > q=2 are some constants. It is important to note that this cancellation can only occur if s ¼ p=2. Additionally,
this condition does not involve δ and is the same as Eq. (28) from [13], which is a defining property for ultracritical particles when
δ ¼ 0. Theunusual notation and choice of parameters ðurÞc andcweremade to simplify the expression for the four-velocity in the
case of δ ¼ 0. In this case,

ur ¼
ffiffiffiffi
A

p

N
P ≈ ðurÞcvc: ð26Þ

However, if δ ≠ 0, we get from an equation for P,

PðveÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδþ Xp=2v

p=2
e Þ2 −

�
κp

�
1þ L2

H

gφH

�
vpe

�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 2δðXp=2v

p=2
e Þ þ ðXp=2v

p=2
e Þ2 −

�
κp

�
1þ L2

H

gφH

�
vpe

�s
: ð27Þ

Using (24) we can write

PðveÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 2δXp=2vp=2 þ

κp
Ap

ðurÞ2cv2cþp−q
r

¼ 0: ð28Þ

Generally, there may be three roots: the first is obtained
by comparison of the first and second terms in (28) and is
given by

vt ≈
�
−

δ

2Xp=2

�
2=p

: ð29Þ

One can easily check that this is the only possible root in
(28). This root exists in the same cases as the root for a
near-subcritical particle: it exists if δ > 0 and Xs < 0, or if
δ < 0 and Xs > 0. From (28) we can see that in both these
cases a particle can only move in the range ½0; vt�. As for all
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parameters, (29) is closer to the horizon than (16), and we
see that the forward-in-time condition holds only if δ > 0
and Xs < 0. (In the case where δ < 0 and Xs > 0, the
forward-in-time condition holds for v∈ ½ð− δ

Xs
Þ1=s;∞�,

while P is real only for v∈ ½0; ð− δ
2Xs

Þ1=s�. These regions
obviously do not intersect.)
The only remaining cases are δ > 0 and Xs > 0, or δ < 0

and Xs < 0. In the first case, both P and X are positive for
all positions of the particle, thus there are no turning points.

In the second case, X is negative, which makes this case
impossible. Therefore, we are left with only the case δ > 0
and Xs > 0, for which we only need to find the effective
distances at which P changes on the values of the order δ.
Analyzing (28), we see that the dominant behavior can be
obtained by comparing the first and second terms, which
give us

ve ∼ δ2=p: ð30Þ

Summarizing, we have

if particle is NUC ðs < p=2Þ; vc ∈
( ½0; vt� where vt ¼ ð− δ

2Xs
Þ1=s if δ > 0 andXs < 0;

½0;∞� if δ > 0 andXs > 0; in this case ve ∼ δ2=p:
ð31Þ

D. Near-overcritical particles (s > p=2)

For such particles the vp=2 term is dominant over vs and
(14) becomes

δ ¼ Ap=2v
p=2
t þ oðvp=2t Þ; ð32Þ

where Ap=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κpð1þ L2

gφφ
Þ

q
. Solving this equation, we

have

vt ≈
�

δ2

A2
p=2

�
1=p

þ oðδ2=pÞ: ð33Þ

Note that this root of equation P ¼ 0 exists for all δ
independent of the forward-in-time condition. In this case,

P is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − A2

p=2v
p

q
in dominant orders, and

solving the equation P ¼ 0 yields (33). Additionally, one
may observe that P2 is non-negative for ½0; vt� regardless of
the sign of δ. Now, let us determine the conditions under
which the forward-in-time condition holds in this range. At
first, we note that (33) is ∼δ2=p, while the root of the
equation X ¼ 0, similar to the case of near-subcritical
particles (16), is ∼δ1=s. Since for near-overcritical particles
s > p=2, (33) is closer to the horizon than (16) [it is of
lower order in δ than (16)]. Thus, in the case of δ > 0 and
X s < 0 [see the first case in (18)], the forward-in-time
condition holds throughout the range ½0; ð δ2

A2
p=2
Þ1=p�. If δ < 0

and X s > 0 [see the second case in (18)], the regions of
reality of P and positivity of X do not intersect, so motion
in this case is forbidden. The last case is δ > 0 and Xs > 0
[see the third case in (18)]. In this case, the forward-in-time
condition holds for all points, and thus the positivity of X
does not bound regions of particle motion.

In summary, we have

if particle is NOC ðs ¼ p=2Þ; vc ∈ ½0; vt�

where vt ≈
�

δ2

A2
p=2

�
1=p

if δ > 0: ð34Þ

This concludes the analysis of different regions of
motion for different types of particles. It is easy to see that
the exact expressions for turning points vt or effective
distances ve are different for each type of particle.
However, for near-critical, near-ultracritical, and near-over-
critical particles, they are of the same order in δ [see (22),
(30), and (34)]. Therefore, in this sense, they may appear to
be indistinguishable. To understand the reason why this
classification is still necessary, let us consider the radial
component of the four-velocity in the limit δ → 0. In this

case, P ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXsvsÞ2 −

�
κp
�
1þ L2

H
gφH

�
vp

�r
. By using the fact

that, for near-subcritical particles s < p=2 (and thus the v2s

term is dominant), for near-critical particles s ¼ p=2 (and
thus the v2s term and the vp term are of the same order), and
for near-ultracritical particles s ¼ p=2 and condition (24)

holds, we obtain for jurj ¼
ffiffiffi
A

p
N P,

near-subcritical particle∶ jurj ¼
ffiffiffiffiffiffi
Aq

κp

s
Xsv

q−p
2
þs; ð35Þ

near-critical particle∶

jurj ¼
ffiffiffiffiffiffi
Aq

κp

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
p=2 − κp

�
1þ L2

H

gφH

�s
v

q
2; ð36Þ

near-ultracritical particle∶ jurj ¼ ðurÞcvc: ð37Þ
In all three cases, in the limit δ → 0 we obtain corre-

spondingly subcritical, critical, and ultracritical particles, as
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introduced in [13]. As one can see, the behavior of the four-
velocity in these cases is different that justifies the necessity
of distinguishing between near-critical, near-ultracritical,
and near-overcritical particles. In our further analysis, we
will also observe that other physical quantities are different
for these particle types. The only exceptional case is near-
overcritical particles that were not considered in [13]. This
is because when we take the limit δ → 0 in this case, P
becomes complex near the horizon. Because of this fact,
overcritical particles with δ ¼ 0 cannot reach the horizon
and cannot participate in the “pure” BSW phenomenon that
was the focus of our investigation in [13]. However,
nonzero δ allows such particles to reach the horizon and
thus they are considered in our work.

IV. DIFFERENT SCALES OF PARAMETERS

Now, we are going to make a next step and discuss the
interplay of different parameters in our problem. In the
pure BSW phenomenon, there is only one small parameter:
the point of collision vc ≪ rh. However, in the case of
near-fine-tuned particles, a new parameter δ appears,
where δ ≪ 1. To analyze the different properties of near-
fine-tuned particles, we have to specify the scales of two
parameters: vc and ve (or vt if it exists). We have four
different cases (see below) which can be described by
different relations between vc and vt or ve (in each of these
cases, the conditions vc

rh
≪ 1 and δ ≪ 1 hold).

Before proceeding further, we must comment on the
situation when vc < vt. This means that a particle cannot
arrive at the point of collision from infinity since it would
bounce back in the turning point. We assume that it appears
between the horizon and a turning point due to a special
initial condition anddonot specify their nature (say, a particle
can appear there due to quantum creation, etc.). In doing so,
the interval in which the scenario develops is very tiny [for
nonextremal black holes explicit expressions for it can be
found in Eq. (18) of [9] for the Kerr metric and in Eq. (18) of
[17] for a more general case]. Nonetheless, the BSW effect
can indeed exist.

A. First case: vc ≫ ve (or vt)

In this case, the point of collision is much further from the
horizon than ve;t (hereafter, the notation ve;t means ve or vt if
it exists). This effectivelymeans that we can take δ ¼ 0while
keeping vc

rh
terms in all the quantities in which we are

interested. To seewhy this is so, let us consider the expression
for P,

P ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδþ XsvscÞ2 −

�
κp

�
1þ L2

H

gφH

�
vpc

�s
: ð38Þ

Using that ve;t ∼ δmaxð1=s;2=pÞ [see (17), (22), (30), and

(34)], or, inversely, δ ∼ vminðs;p=2Þ
e;t , we can substitute this to

the expression for (38) and get

P ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvminðs;p=2Þ

e;t þ XsvscÞ2 −
�
κp

�
1þ L2

H

gφH

�
vpc

�s
: ð39Þ

We see that the ratio vminðs;p=2Þ
e =Xsvsc tends to zero

because of the condition vc ≫ ve. This means that the

vminðs;p=2Þ
e;t term is negligible and dominant terms in (38)

contain vc without δ. Thus, we have

P ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXsvscÞ2 −

�
κp

�
1þ L2

H

gφH

�
vpc

�s
þOðδÞ ¼ ð40Þ

≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX − δÞ2 − N2

�
1þ L2

gφφ

�s
þOðδÞ: ð41Þ

One may easily see that the dominant term does not
involve δ. Thus, in this case, the dominant behavior can be
obtained by taking the δ → 0 limit. This will correspond to
a pure BSW phenomenon, which was completely analyzed
in [13]. In this case, the properties of near-fine-tuned
particles are similar to corresponding fine-tuned particles
(for example, near-subcritical particles correspond to sub-
critical particles and so on).

B. Second case: vc ∼ ve (or vt)

In this case, the point of collision is in the same scale of
distances as ve;t. Let us obtain expressions for PðvcÞ and
XðvcÞ in the leading order for different types of particles.

(i) Near-subcritical particle:
For such particles, the terms δ2, v2s, and δvs are

dominant in the expansion for P2 [see (14)]. This
indicates that X terms prevail over N2 in the ex-
pansion ofP [see (5)]. Therefore, in this case, we have

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

�
1þ L2

gφφ

�s
≈ X −

N2

2X

�
1þ L2

gφφ

�
:

ð42Þ

In this expression, we have also included higher-
order terms because, as we will demonstrate below in
the analysis of the energy of the collision, the dominant
termswill cancel each other out, and the energywill be
determined by higher-order corrections.

If there is no turning point [that occurs only when
δ > 0 andXs > 0, see the third condition in (18)], the
dominant term in P (specifically X ) at vc ∼ ve takes
the following form:

P ≈ X ¼ δþ Xsvsc þ oðδÞ: ð43Þ

Using the approximation vc ∼ ve ∼ δ1=s, we ob-
serve that P ∼ X∼ δ. However, if a turning point
exists, the situation becomes more complex. In this
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case, we can invert (16) and obtain δ ≈ −Xsvst . By
substituting this into the expression for X, we have

X ≈ δþ Xsvsc ≈ Xsðvsc − vst Þ: ð44Þ

One can easily see that, since vc ∼ ve, P is of the
order δ. However, if vc approaches vt (this means that
the collision point reaches the turning point), the
quantity X tends to zero. To describe the small dif-
ference that arises in this case, wemake the assumption

δ ¼ −Xsvsc þ Brvrc ð45Þ

[in fact, we could assume that difference vc − vt is
some small parameter, but further analysis will be
simpler if we consider a more concrete example
according to (45)]. In this case,

X ≈ Brvrc; ð46Þ

P ≈ Brvrc −
A2
p=2

2Br
vp−rc : ð47Þ

From the expression for X, we can observe that the
forward-in-time condition holds only ifBr > 0. On the
other hand, from the expression for P, we can see that
the expansion (42) holds only if s < r < p=2. It may
seem strange that this special case needs to be
considered. However, as we will demonstrate in the
analysis of the energy of the collision, the behavior of
energy becomes quite special when vc approaches vt.
In further analysis, we will need to know the

behavior of the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
. Considering that

in this case s < p=2 and thus the X term is dominant,
we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 − N2

p
≈ X −

N2

2X
: ð48Þ

As one can see, the behavior of this quantity is
similar to the behavior of P.

(ii) Near-critical particle:
For these particles, the situation is more compli-

cated because all terms are comparable, and we have
(in the main order of δ)

P ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδþ Xp=2v

p=2
c Þ2 − A2

p=2v
p
c

q
: ð49Þ

If there is no turning point, we take into account
that vc ∼ ve ∼ δ2=p [see (22)] and we see that P ∼ δ.
In this case, we also have

X ≈ δþ Xp=2v
p=2
c ∼ δ: ð50Þ

For
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
, we can observe that both X2 and

N2 are of the same order, and we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
∼ δ.

If there are roots of equation P ¼ 0 [that occurs if
δ > 0 and Ap=2 > Xp=2 or δ < 0 and Ap=2 < Xp=2,
see (23)], the expression for P becomes [by inverting
(20) that gives us δ ¼ ðAp=2 − Xp=2Þvp=2t ]

P ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 2δXp=2v

p=2
c þ ðX2

p=2 − A2
p=2Þvpc

q
≈ ð51Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAp=2 − Xp=2Þ2vpt þ 2ðAp=2 − Xp=2ÞXp=2v

p=2
t vp=2c þ ðX2

p=2 − A2
p=2Þvpc

q
: ð52Þ

Note that if vc ∼ vt ∼ δ2=p, we have P ∼ δ. However, if vc → vt one can check that P → 0. In this case, we assume

δ ¼ ðAp=2 − Xp=2Þvp=2c þ Brvrc; ð53Þ
where r > p=2.
Substituting this to P we have

P ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδþ Xp=2v

p=2
c Þ2 − A2

p=2v
p
c

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAp=2v

p=2
c þ BrvrcÞ2 − A2

p=2v
p
c

q
≈ ð54Þ

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ap=2Brv

p=2þr
c þ B2

rv2rc

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ap=2Br

q
vp=4þr=2
c : ð55Þ

This will not have any special consequences in the behavior of the energy of collision, but will influence the
behavior of acceleration.

(iii) Near-ultracritical particle:
In this case, we can use (24) and (30) that gives us

P ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 2δXp=2v

p=2
c

q
: ð56Þ
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If there is no turning point, using (30) we have vc ∼ ve ∼ δ2=p. Substituting this to (56) we see that P ∼ δ. In this
case, we also have

X ≈ δþ Xp=2v
p=2
c ∼ δ: ð57Þ

The same holds for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 − N2
p

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδþ Xp=2v

p=2
c Þ2 − ðκpvpc þ oðvpc ÞÞ

q
∼ δ: ð58Þ

If a turning point exists, inverting (31) we have δ ¼ −2Xsvst . Substituting this in the expression for P we have

P ≈ 2Xp=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vp=2t ðvp=2t − vp=2c Þ

q
: ð59Þ

If vc ∼ vt we see that P ∼ δ. While if vc → vt, P → 0. In this case, let us write

δ ¼ −2Xp=2v
p=2
c þ Brvrc; ð60Þ

where r > p=2.
Substituting this in the expression for P we have

P ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−2Xp=2v

p=2
c þ BrvrcÞ2 þ 2ð−2Xp=2v

p=2
c þ BrvrcÞXp=2v

p=2
c

q
≈ ð61Þ

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Xp=2Brv

p=2þr
c þ B2

rv2rc

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Xp=2Br

q
vp=4þr=2
c : ð62Þ

However, we will see that in this case the energy
of the collision does not change drastically depend-
ing on vc.

(iv) Near-overcritical particle:
In this case, only δ2 and vpc terms are dominant

[see (34)] and we get

P ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − A2

p=2v
p
c

q
: ð63Þ

Now, the turning point always exists. Inverting (33)
we have δ ≈ Ap=2v

p=2
t . Substituting this in P, we

obtain

P ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
p=2ðvpt − vpc Þ

q
: ð64Þ

If vc ∼ vt we see that P ∼ δ. While if vc → vt,
P → 0. In this case, let us write

δ ¼ Ap=2v
p=2
c þ Krvrc; ð65Þ

where r > p=2. Substituting this in the expression for
P, we have

P ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − A2

p=2v
p
c

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAp=2v

p=2
c þ KrvrcÞ2 − A2

p=2v
p
c

q
≈ ð66Þ

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ap=2Brv

p=2þr
c þ B2

rv2rc

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ap=2Br

q
vp=4þr=2
c :

ð67Þ

However, we will see that in this case the energy of
the collision does not change drastically depending
on vc.

C. Third case: vc ≪ ve
Now, the point of collision is much closer to the horizon

than ve. This case can be obtained simply by taking the
limit vc → 0 while keeping terms with δ. To see this, we
have to use the fact that ve;t ∼ δmaxð1=s;2=pÞ [see (17), (22),

(30), and (34)] or, inversely, δ ∼ vminðs;p=2Þ
e;t . We can sub-

stitute this into the expression for (38) and get

P ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvminðs;p=2Þ

e;t þ XsvscÞ2 −
�
κp

�
1þ L2

H

gφH

�
vpc

�
:

s
ð68Þ

First of all, we note that the ratio of the second and first
terms in P is vsc

vminðs;p=2Þ
e;t

. Since we assume vc ≪ ve, the second

term is much less than the first one. Additionally, we
observe that the third term is much less than the first term

because vpc
v2minðs;p=2Þ
e;t

≪ 1 due to vc ≪ ve. Therefore, the first

term is dominant and we can write
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P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

�
1þ L2

gφφ

�s
≈ X −

N2

2X

�
1þ L2

gφφ

�
: ð69Þ

We keep here higher-order corrections because they will
be important for analysis of energy of collision. Also we
note that in this case

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
≈ X −

N2

2X
: ð70Þ

Generally speaking, this corresponds to usual particles
because all entries of the point of collision in the expression
for P are much less than the value of X on the horizon.
The main idea of this section is that there are four cases

of possible interplay between the small parameters vc and δ
(actually, we saw that the classification is mainly defined by
the relations between vc and δ raised to some power). The
first case occurs when ve;t ≪ vc (but vc ≪ rh still holds)
that, as we showed, corresponds to the pure BSW phe-
nomenon, which is not of interest in this work. The second
case is ve;t ∼ vc, for which, as we showed, P, X , andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
are ∼δ (exact expressions can be found in the

corresponding parts of the text). In the case vc ≪ ve;t, all vc
terms in the expressions for P, X , and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
are

negligible that correspond to the case of usual particles that
have already been investigated.

D. Fourth case: vc → vt
The last case is possible if the particles impose the

existence of turning points and when vc → vt. In this case,
depending on the type of particle, we assume that δ is given
by (45), (53), (60), or (65). As we showed, in these casesP is
either ∼vrc (for near-subcritical particles) or ∼vp=4þr=2

c (for
near-critical, near-ultracritical, or near-overcritical particles).
To summarize, new scenarios of particle motion related

to the nonzero δ can only be obtained if ve;t ∼ vc or
vc → vt. All other ranges of the v coordinate correspond to
already investigated cases [13].

V. ENERGY OF COLLISION

A. General relations

As we mentioned above, we are mainly interested in the
possibility of the BSW phenomenon that is related to an
unbounded growth of energy in the center-of-mass frame of
two colliding particles. This energy is given by

E2
c:m: ¼ −ðm1u1μ þm2u2μÞðm1u

μ
1 þm2u

μ
2Þ

¼ m2
1 þm2

2 − 2m1m2u
μ
1u2μ; ð71Þ

where γ ¼ −u1μu2μ is the Lorentz γ factor of relative
motion. Substituting the expression for the four-velocity
(4), we have

γ ¼ X1X 2 − P1P2

N2
−
L1L2

gφφ
: ð72Þ

Hereafter, we assume that both particles move toward the
horizon, so σ1 ¼ σ2 ¼ −1. The second term in (72) is
regular, so we are interested, when the first one is
unbounded.
Let us discuss all possible cases of particle collision

depending on types of particles. Cases of collision between
fine-tuned particles with usual or other fine-tuned particles
have already been discussed in [13]. Thus, we are left with
a discussion of the collision between near-fine-tuned
particles with fine-tuned or usual particles, as well as the
cases where both particles participating in the collision are
near-fine-tuned.

B. First particle is fine-tuned (or usual),
second is near-fine-tuned

Let us start with the analysis of the case in which one
particle (let us call this particle 1) is fine-tuned (or usual)
and particle 2 is near-fine-tuned. Before we proceed further,
let us remind the reader of several properties of fine-tuned
particles. Different types of particles are defined through
their expansion of X . Generally, X for fine-tuned particles
has an expansion in the form

X ¼ Xsvs þ oðvsÞ; ð73Þ

where for usual particles s ¼ 0, for subcritical 0 < s < p=2,
for critical s ¼ p=2, for ultracritical s ¼ p=2, and the
condition (24) has to hold. In further analysis, we use the
abbreviations “U” for usual particle, “SC” for subcritical,
“C” for critical, and “UC” for ultracritical.
For usual and subcritical particles, as N2

X → 0 as v → 0,
we can expand the function P and obtain

P ¼ X −
N2

2X

�
L2

gφφ
þ 1

�
þ � � � ¼ X þOðvp−sÞ: ð74Þ

For critical particles N2 and X are of the same order, so
we have

P ¼ Pp=2vp=2 þ � � � ; ð75Þ

where Pp=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
p=2 − κp

�
L2
H

gφH
þ 1

�r
.

For ultracritical particles

P ¼ Pcþðp−qÞ=2vcþ
p−q
2 þ � � � ; ð76Þ

where c > q=2 and Pcþðp−qÞ=2 ¼
ffiffiffiffi
κp
Aq

q
ðurÞc [note that these

expansions correspond to the ones obtained by taking the
limit δ → 0 for near-fine-tuned particles, see (35)–(37)].
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Now, let us discuss the properties of particle 2. As
concluded at the end of Sec. IV, the only interesting cases
are those when for the second particle either vc ∼ ve;t or
vc → vt, so we only need to consider these cases.
Next, consider the collision of two particles. If the first

particle is usual or subcritical, we substitute (74) and (73) to
(72) and get

γ ≈
Xð1Þ
s1 v

s1
c ½X2 − P2�
N2

þ P2

2Xð1Þ
s1 v

s1
c

�
L2
H1

gφφ
þ 1

�

≈
Xð1Þ
s

κp

½X2 − P2�
vp−s1c

þ
�
L2
H1

gφφ
þ 1

�
2Xð1Þ

s1

P2

vs1c
; ð77Þ

where upper index (1) means quantities related to the first
particle (fine-tuned). We will postpone analysis of this
complicated expression to the next subsections.
If the first particle is critical, then we substitute (75) and

(73) to (72) and have

γ ≈
1

κp

Xð1Þ
p=2X2 − Pð1Þ

p=2P2

vp=2c

: ð78Þ

If the first particle is ultracritical,

γ ≈
1

κp

Xð1Þ
s1 X2

vp=2c

ð79Þ

(note that in this case the term with P1 is absent because P1

is of higher order in vc than X1).

1. Near-subcritical particles

Now, let us analyze the behavior of the γ factor
concerning various types of the second particle. We
begin by considering a scenario where particle 2 is near-
subcritical. The initial case for analysis involves the
situation where particle 1 is usual or subcritical. Before

delving into the analysis of the behavior of γ, it is important
to note that in this case [using (42)]

X2 − P2 ¼
N2

2X 2

�
1þ L2

2

gφφ

�
: ð80Þ

Substituting this in (77) we have

γ ≈
Xð1Þ
s1 v

s1
c

2X2

�
1þ L2

H2

gφφ

�
þ
�
L2
H1

gφφ
þ 1

�
2Xð1Þ

s1

X2

vs1c
: ð81Þ

Now, let us analyze the various possible cases. As
demonstrated in Sec. IV, the behavior of X 2 depends on
whether vc ∼ ve;t or vc → vt. If vc ∼ ve;t, we can use (17)
[or (18) if a turning point exists] and get vc ∼ δ1=s2 (or,
inverting, δ ∼ vs2c ). Furthermore, using the relation X 2 ∼ δ
when vc ∼ ve;t, we obtain two terms in the expression for γ:
the first one is proportional to ∼vs1−s2c , while the second
term is proportional to ∼vs2−s1c . The dominant term is
determined by the smaller degree in vc between these two.

Combining these terms, we can find that γ ∼ v−js2−s1jc .
If the turning point exists [this, as one can see from (18),

happens if δð2Þ > 0 and Xð2Þ
s < 0 or if δð2Þ < 0 and

Xð2Þ
s > 0] and if vc → vt, it follows from (46) that

X2 ≈ Bð2Þ
r2 v

r2
c . Substituting this in (77) we get

γ ≈
Xð1Þ
s1 v

s1
c

2Bð2Þ
r2 v

r2
c

�
1þ L2

H2

gφφ

�
þ
�
L2
H1

gφφ
þ 1

�
2Xð1Þ

s1

Bð2Þ
r2 v

r2
c

vs1c
: ð82Þ

As one can see, there are two terms: the first is ∼vs1−r2c ,
while the second is ∼vr2−s1c . Since the divergence of the γ
factor is defined by the dominant term, we can combine

these two terms and write γ ∼ v−js1−r2jc .
All these expressions can be formulated briefly under

this condition.

if the first particle is U or SC and the second is NSC; then

(
γ ∼ v−js2−s1jc if vc ∼ ve;t;

γ ∼ v−js1−r2jc if vc → vt½see ð45Þ�:
ð83Þ

In the case where the first particle is critical [see (78)] or
ultracritical [see (79)] and if vc ∼ ve;t we can use that X 2 ∼
δ [see (43) and discussion after it] and get γ ∼ δ

vp=2c
. Now,

vc ∼ δ1=s2 [see (17) and (16)]. Inverting it, we have δ ∼ vs2c ,

so we can write γ ∼ vs2−p=2c .
If the turning point exists [this, as one can see from (18),

happens if δð2Þ > 0 and Xð2Þ
s < 0 or if δð2Þ < 0 and

Xð2Þ
s > 0] and if vc → ve, we can use (46) and write

X2 ≈ Bð2Þ
r2 v

r2
c . If particle 1 is critical, we can use (78)

and write

γ ≈
1

κp

ðXð1Þ
p=2 − Pð1Þ

p=2ÞBð2Þ
r2 v

r2
c

vp=2c

: ð84Þ

From this expression, we see easily that γ ∼ vr2−p=2c . The
same holds for the case when the first particle is ultracritical
[to see this one has to substitute (46) to (79)]. To
summarize, we have
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if the first particle is C or UC and the second is NSC; then

(
γ ∼ v

s2−
p
2

c if vc ∼ ve;

γ ∼ v
r2−

p
2

c if vc → vt½see ð45Þ�:
ð85Þ

2. Near-critical, near-ultracritical,
and near-overcritical particles

Now let us consider the cases when the second particle is
near-critical, near-ultracritical, or near-overcritical. Before
we proceed further, let us consider X2 − P2 for different
types of particles. We start with a case of near-critical
particles. Using (49) and (50) we have

X2 − P2 ≈ ðδþ Xp=2v
p=2
c Þ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδþ Xp=2v

p=2
c Þ2 − κp

�
1þ L2

H

gφH

�
vpc

s
: ð86Þ

If vc ∼ ve;t, corresponding terms do not cancel each other
and, using (22), we have X2 − P2 ∼ δ (note that this also
holds for the case vc → vt because in this limit P2 → 0
while X2 remains ∼δ).
In the case of near-overcritical particles, the situation is

somehow similar. Using (63) we have

X2 − P2 ≈ δ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 − κp

�
1þ L2

H

gφH

�
vpc

s
: ð87Þ

If vc ∼ ve;t (and vc → vt) corresponding terms do not
cancel each other and, using (34), we have X2 − P2 ∼ δ.
In the case of near-ultracritical particles, the situation is

also similar. Using (56) and (57), we get

X2 − P2 ≈ ðδþ Xp=2v
p=2
c Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 2δXp=2v

p=2
c

q
: ð88Þ

If vc ∼ ve;t (and vc → vt), the corresponding terms do
not cancel each other, and using (30), we haveX2 − P2 ∼ δ.
All these cases are similar in the sense that if vc ∼ ve;t (or

vc → vt), thenX2 − P2 ∼ δ. Using these facts, we are ready
to analyze the γ factor. We start with a case when the first
particle is usual or subcritical [see (77)]. If vc ∼ ve;t, then
we have two terms: the first one is ∼ δ

v
p−s1
c

, while the second

one is ∼ δ
v
s1
c
. Since for usual or subcritical particles,

0 < s1 < p=2, the first term is dominant. Using the fact
that vc ∼ ve;t and Eqs. (22), (34), or (30), we have vc ∼ δ2=p

or, inversely, δ ∼ vp=2c . Substituting this into (77), we get

γ ∼ v
−ðp

2
−s1Þ

c . To summarize, we have

if the first particle is U or SC and the second is NC;NUC; or NOC; then γ ∼ v
−ðp

2
−s1Þ

c if vc ∼ ve;t: ð89Þ
If particle 1 is critical [see (78)] of ultracritical [see (79)], γ ∼ δ

vp=2c
if vc ∼ ve;t. Reverting (22) or (34), we can write that in a

case vc ∼ ve;t, δ ∼ vp=2c . Substituting this in the expression for the γ factor, we have

if first the particle is C or UC and the second is NC;NUC; or NOC; then γ ¼ Oð1Þ if vc ∼ ve;t or if vc → vt: ð90Þ

C. First and second particles are near-fine-tuned

First of all, let us formulate which cases we have to
consider. As we concluded at the end of Sec. IV, the only
new cases are such that for both particles either vc ∼ ve;t or
vc → vt. Let us consider different subcases.

1. First and second particles are near-subcritical

In this case, we can use (42) for both particles and get

γ ≈
X 1

2X2

�
1þ L2

2

gφφ

�
þ X2

2X 1

�
1þ L2

1

gφφ

�
: ð91Þ

Additionally, there are four subcases.
(i) If both particles satisfy vð1;2Þc ∼ vð1;2Þe;t , (43) holds for

both particles, and γ is given by two terms: the first

term is ∼ δ1
δ2
and the second one is ∼ δ2

δ1
. Using the fact

that δ1;2 ∼ vs1;2c for both particles, we can combine

both terms and write γ ∼ v−js1−s2jc .

(ii) If for the first particle vð1Þc ∼ vð1Þe;t , while for the

second particle vð2Þc → vð2Þt , we can use (43) for
the first particle and (46) for the second particle.
There are two terms: the first one is ∼ δ1

v
r2
c
, while the

second one is ∼ v
r2
c
δ1
. Since for the first particle

δ1 ∼ vs1c , we can combine these two terms and

get γ ∼ v−js1−r2jc .

(iii) If for the first particle vð1Þc → vð1Þt , while for the second

particle vð2Þc ∼ vð2Þe;t , we can use the expressions from

the previous subcase and write γ ∼ v−jr1−s2jc .
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(iv) If for both particles vð1;2Þc → vð1;2Þt , we can use (46)

for them. We have two terms: the first one is ∼ v
r1
c

v
r2
c
,

while the second one is ∼ v
r2
c

v
r1
c
. We can combine them

and write γ ∼ v−jr1−r2jc .

2. First particle is NSC while the second
is NC, NUC, or NOC

For the first particle we can use (42) and write

γ ≈
X1

κp

½X2 − P2�
vpc

þ
�
L2
H1

gφφ
þ 1

�
2X1

P2: ð92Þ

Here, there are several cases.
(i) For both particles vð1;2Þc ∼ vð1;2Þe;t . In this case, we can

use (43) for the first particle and (49), (56), or (63)
for the second particle. (All of these cases, in fact,
give the same result because P2 ∼ X2 ∼ δ2). Sub-
stituting this into the expressions for γ, we obtain
two terms: the first term is of the order ∼ δ1δ2

vpc
, while

the second one is ∼ δ2
δ1
. Using the fact that δ1 ∼ vs1c for

the first particle and δ2 ∼ vp=2c for the second
particle, we see that the expression for γ has two
terms: the first term is ∼vs1−p=2c , and the second term
is ∼vp=2−s1c . Since the first particle is near-subcriti-
cal, it holds that s1 < p=2. From this fact, we can
deduce that the first term is dominant, and we have

γ ≈ v−ðp=2−s1Þc : ð93Þ

(ii) For the first particle vð1Þc → vð1Þt , while for the second

one vð2Þc ∼ vð2Þe;t . In this case, for the first particle
condition (46) holds and the behavior of the γ factor
may be obtained by changing s1 → r1. Thus, we have

γ ≈ v−ðp=2−r1Þc : ð94Þ

Note that taking limit vð2Þc → vð2Þt does not change
the relations P2 ∼ X 2 ∼ δ2. So this case does not
require special analysis.

3. Both particles are NC, NUC, or NOC

According to Sec. IV B, the relations X1;2 ∼ P1;2 ∼ δ1;2
hold for both particles. Substituting this in the expression
for γ (72), one has

γ ∼
δ1δ2
vpc

: ð95Þ

Using that for NC, NUC, and NOC particles holds
δ1;2 ∼ vp=2c , we can deduce that γ ¼ Oð1Þ.
Now, let us briefly formulate all the aforementioned

conditions. To this end, we introduce a parameter d that
characterizes how fast γ changes as a function of the
collision point vc∶ γ ∼ v−dc . By analyzing (83)–(85), (89),
and (90), we obtain the conditions summarized in Tables II
and III.
Now, let us discuss the new scenarios that can be

obtained. It is important to note that for cases when
vc ∼ ve;t, the behavior of the γ factor is the same as for
corresponding particles with δ ¼ 0. The only difference is

TABLE II. Table showing behavior of γ factor for vc ∼ ve;t in a case when first particle is fine-tuned and second is
near-fine-tuned. Here d is defined by relation γ ∼ v−dc .

First particle Second particle d

1 U or SC NSC js1 − s2j or js1 − r2j if δ2 ¼ −Xð2Þ
s vsc þ Bð2Þ

r vrc
2 C or UC NSC p

2
− s2 or p

2
− r2 if δ2 ¼ −Xð2Þ

s vsc þ Bð2Þ
r vrc

3 U or SC NC, NUC, or NOC p
2
− s1

4 C or UC NC, NUC, or NOC 0

TABLE III. Table showing behavior of γ factor for vc ∼ ve;t in a case when both particles are near-fine-tuned. Here
d is defined by relation γ ∼ v−dc .

First particle Second particle d

1 NSC NSC js1 − s2j
jr1 − s2j if δ1 ¼ −Xð1Þ

s vsc þ Bð1Þ
r vrc

js1 − r2j if δ2 ¼ −Xð2Þ
s vsc þ Bð2Þ

r vrc
jr1 − r2j if δ1;2 ¼ −Xð1;2Þ

s vsc þ Bð1;2Þ
r vrc

2 NSC NC, NUC, or NOC p
2
− s1

3 NC, NUC, or NOC NC, NUC, or NOC 0
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the existence of near-overcritical particles, which do not
have any analog in the case of δ ¼ 0, and the possibility of
collisional processes involving them. As wewill show, such
particles are very important because they allow for high-
energy collisions for nonextremal horizons.
There are also additional differences in cases when

vc → vt. In these cases, the behavior of the γ factor is
described by different expressions. For example, if two near-
subcritical particles with s1 ¼ s2 participate in a collision,
according to Table III, γ ¼ Oð1Þ. However, if we choose δ’s
for these particles in such away that r1 ≠ r2, then the γ factor
diverges. Thus, in some cases, “fine-tuning” of the δ’s makes
previously forbidden BSW effects possible.

VI. BEHAVIOR OF ACCELERATION:
GENERAL APPROACH

Now we are going to analyze the forces acting on
particles of different types. In order to do this, at first
we need to answer a question: in which frame dowe have to
compute acceleration? Since the stationary frame is sin-
gular near the horizon, we have to choose a frame that does
not have this property. The natural frame for this purpose is
the one attached to a particle, known as the free-falling zero
angular momentum observer (FZAMO) frame. It is worth
noting that, for near-fine-tuned particles, the radial velocity
on the horizon is not zero and the particle can cross the
horizon, so we have to compute acceleration in the FZAMO
frame, unlike fine-tuned particles for which the FZAMO
frame is singular and acceleration has to be computed in the
nonsingular orbital zero angular momentum observer
(OZAMO) frame [11]. General definition of ZAMO and
description of its properties is given in [18].
To proceed further, let us use the expressions for accel-

eration in the tetrad frame that are obtained in Appendix A,

aðtÞf ¼ 0; ð96Þ

aðrÞf ¼ urffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p ð∂rX þ L∂rωÞ; ð97Þ

aðφÞf ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p 1ffiffiffiffiffiffiffigφφ
p

ffiffiffiffi
A

p

N

× ½ðX2 − N2Þ∂rL − LXð∂rX þ L∂rωÞ�; ð98Þ

where subscript fmeans that the corresponding components
of acceleration are computed in the FZAMO frame. As one
can see, there are only two nonzero acceleration components

and we are going to analyze at first aðrÞf to understand the
structure of acceleration and which terms are dominant for
each case discussed inSec. IV.To this end,weuse expansions
(2), (3), and (10) that give us

aðrÞf ≈ σ
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 − N2
p

ffiffiffiffiffiffi
Aq

κp

s �
Xssv

sþq−p
2
−1

c þ LHωkkv
kþq−p

2
−1

c

�
;

ð99Þ

where σ ¼ �1 depending onwhether the particle is outgoing
or ingoing. Our task is to consider different ranges of vc and
find the behavior of acceleration.

(i) If vc ∼ ve;t,

aðrÞf ≈ ðaðrÞf Þm1
δm1 ; aðφÞf ≈ ðaðφÞf Þm2

δm2 : ð100Þ

(ii) If vc ≪ ve;t,

aðrÞf ≈ ðaðrÞf Þn1v
n1
c ; aðφÞf ≈ ðaðφÞf Þn2v

n2
c : ð101Þ

(iii) If there exists a turning point, in the limit vc → vt we
have

aðrÞf ≈ ðaðrÞf Þi1v
i1
c ; aðφÞf ≈ ðaðφÞf Þi2v

i2
c : ð102Þ

Our goal is to obtain relations betweenm1,m2, n1, n2, i1,
i2 and the type of a particle.

VII. CASE vc ≪ ve;t

Aswe discussed in the analysis of the γ factor (see Sec. V),
the case vc ≪ ve;t corresponds to usual particles. However,
in [13], the acceleration for this case was analyzed only
qualitatively (the reason for this is that, in [13], the authors
were mainly focused on acceleration for fine-tuned particles,
for which the FZAMO frame is singular on the horizon). To
fill this gap, we are going to analyze acceleration of usual
particles in the present work.

A. General analysis of acceleration

We start with the radial component of acceleration. First of
all, we refer to the fact thatP ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 − N2

p
∼ δ for vc ≪ ve;t

[to obtain this, one has to use (69) and (70); the dominant
term X in these expressions has the order δ on the horizon].
Using this fact, we see that the prefactor Pffiffiffiffiffiffiffiffiffiffiffi

X 2−N2
p in (99) is

¼ Oð1Þ. Thus, we are left with the terms in brackets in (99).

One can see that the first term is ∼vsþ
q−p
2
−1

c , and the second

term is∼vkþ
q−p
2
−1

c . Comparing these terms with (101), we get

n1 ¼ minðs; kÞ þ q − p
2

− 1: ð103Þ

However, this expression does not describe the most
general case. It may appear that the function ω ¼ ωH is
constant (that corresponds to a static metric because
there exists a corresponding coordinate transformation
φ̃ ¼ φ − ωHt that brings the metric to an explicitly

H. V. OVCHARENKO and O. B. ZASLAVSKII PHYS. REV. D 109, 124041 (2024)

124041-14



static form). In this case, the second term in (99) is absent
and we obtain

n1 ¼ sþ q − p
2

− 1 if ω ¼ ωH: ð104Þ

There is also a special case when the coefficients in the
expansion of X and L are such that several terms in the
power series (potentially divergent, generally speaking) in
the expression for acceleration cancel each other. Full
cancellation happens, for example, for a freely falling
particle, provided X þ ωL ¼ ϵ, where ϵ and L are con-
stants that give us zero acceleration. Then, ∂rðX þ ωLÞ ¼
0 exactly. In a more general case, we can consider

ϵ ¼ X þ ωL ¼ ϵ0 þ terms of vm order; m > k: ð105Þ

Then, let us rewrite acceleration (97) as a function of ϵ,

aðrÞf ¼ urffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p ð∂rϵ−ω∂rLÞ: ð106Þ

We have

n1 ¼ minðm; bÞ þ q − p
2

− 1 in a case of ð105Þ ð107Þ

[the quantity b was defined in (6)]. However, we will not
pay much attention to this case in our further analysis.
Now let us invert all aforementioned conditions to obtain

s as a function of n1,

s ¼

8>>>>><
>>>>>:

n1 þ 1þ p−q
2

if 0 ≤ n1 < kþ q−p
2

− 1;

may be any value s ≥ k ≥ 0 if n1 ¼ kþ q−p
2

− 1;

n1 þ 1þ p−q
2

for any 0 ≤ n1 if ω ¼ ωH;

may be any value in a case of ð105Þ
�
n1 ¼ minðm; bÞ þ q−p

2
− 1

�
:

ð108Þ

Now, let us move to an angular component of accel-
eration. To analyze finiteness of this component, we note

that it follows from (97) and (98) and the fact that ur ¼
σ

ffiffiffi
A

p
N P that

XLaðrÞf þ σP
ffiffiffiffiffiffiffi
gφφ

p
aðφÞf ¼

ffiffiffiffi
A

p

N
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
∂rL: ð109Þ

As in this section we are considering the near-horizon
limit, X ≈ P ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
≈ δ. Thus, we can write in this

limit

aðφÞf þ σLaðrÞf ¼ δ

ffiffiffiffi
A

p

N
∂rL: ð110Þ

We require that both aðφÞf and aðrÞf be finite. From (110), it
follows that if the acceleration components are finite, then the
left-hand side of (110) is also finite. Because the equality
(110) has to hold, the right-hand side also has to be finite. If

q ≥ p, then the ratio
ffiffiffi
A

p
N is finite on the horizon, and thewhole

right-hand side is finite for any expansion of L. While if
q < p, then the right-hand side behaves likeffiffiffiffi

A
p

N
∂rL ∼ v

bþq−p
2
−1

c ; ð111Þ

[here we used (6)]. This quantity is finite only for

b ≥ 1þ p − q
2

: ð112Þ

The reversed statement thus can be easily proved by

extraction of aðφÞf from (110),

aðφÞf ¼ δ

ffiffiffiffi
A

p

N
∂rL − σLaðrÞf :

If (112) holds and aðrÞf is finite, then aðφÞf is also finite. This
allows us to state a proposition:
Proposition 1. If in case vc ≪ ve;t for some particle aðrÞf

is finite and condition (112) holds, then aðφÞf is also finite
and vice versa.

B. Behavior of acceleration for different types
of particles

In this subsection, we are going to analyze which types
of particles are compatible with finite acceleration.

1. Near-subcritical particles

We start with near-subcritical particles. We would like to
remind the reader that the defining condition for them is
0 < s < p=2. Let us begin with the first solution in (108).
By substituting the range of s∶0 < s < p=2, we obtain the
corresponding range for n1∶

q−p
2

− 1 < n1 <
q−2
2
. Now, let

us determine how this correlates with the condition for the
existence of the first solution in (108): n1 ≤ kþ q−p−2

2
.

For k < p
2
, the condition n1 ≤ kþ q−p−2

2
is stronger than

n1 <
q−2
2

[it is also worth noting that, according to the first
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solution in (108), s < k in this case]. However, for k ≥ p
2
,

the condition n1 <
q−2
2

becomes stronger. The lower bound
for n1 remains the same for all positive k. Therefore, we can
conclude that, for the first solution in (108),

q − p
2

− 1 < n1 ≤ kþ q − p
2

− 1 if s < k <
p
2
; ð113Þ

q − p
2

− 1 < n1 <
q − 2

2
if k ≥

p
2
: ð114Þ

The second solution in (108) gives any s that is greater
than k with n1 fixed by (104): n1 ¼ kþ q−p

2
− 1. This value

is non-negative if

k ≥
p − q
2

þ 1: ð115Þ

As we are specifically considering near-subcritical par-
ticles with 0 < s < p=2, this solution is possible only if
0 < k ≤ s < p=2. This condition necessitates that
k < p=2. By combining this condition with (115), we
can deduce that q > 2 for this solution to exist. In all other
cases, this solution does not exist. To summarize the above
findings regarding the existence of the second solution in
(108), we have

n1 ¼ kþ q − p
2

− 1 if 0 < k ≤ s < p=2; ð116Þ

second solution in ð108Þ is absent if 0 < s < k < p=2 or if k ≥ p=2: ð117Þ

If the function ω is constant [the third solution in (108)], we obtain the same range within which n1 can change. It is the
first solution in (108): q−p

2
− 1 < n1 <

q−2
2
.

By combining these facts, we can write

for near-subcritical particles holds

( q−p
2

− 1 < n1 ≤ kþ q−p
2

− 1 if k < p
2
;

q−p
2

− 1 < n1 <
q−2
2

if k ≥ p
2
or if ω ¼ ωH:

ð118Þ

2. Near-critical and near-ultracritical particles

In these cases, when s ¼ p
2
[but in the case of near-

ultracritical particles, the additional condition (24) must also
hold], despite the difference in P functions, the acceleration
for them is the same [because acceleration depends only on s
which is the same for the considered cases, see (108)].
If we substitute s ¼ p=2 into the first solution in (108), it

will give us n1 ¼ q−2
2
, so n1 is non-negative if q ≥ 2.

The first solution exists if n1 < kþ q−p
2

− 1 that
requires k > p

2
.

The second solution is true for all s ¼ p=2 ≥ k and,
similar to the case of near-subcritical particles, gives a
non-negative n1 only if k ≥ p−q

2
þ 1 (in this case,

n1 ¼ kþ q−p
2

− 1).
If the function ω is constant [the third solution in (108)],

we get n1 ¼ q−2
2

without any additional limitations.

We can combine all the aforementioned solutions and write

for NC and NUC particles holds

�
n1 ¼ kþ q−p−2

2
if k ≤ p

2
;

n1 ¼ q−2
2

if k > p
2
or if ω ¼ ωH:

ð119Þ

3. Near-overcritical particles

For near-overcritical particles s > p
2
. The first solution in

(108) gives us n1 >
q−2
2
. As the first solution exists for n1 <

kþ q−p
2

− 1 only, we have

q − 2

2
< n1 < kþ q − p

2
− 1 if k >

p
2
;

first solution is impossible if k ≤
p
2
: ð120Þ

Substituting the inequalities q−2
2

< n1 < kþ q−p
2

− 1

back to (108), one gets that the first solution in (108)
requires p=2 < s < k.
The second solution in (108) allows all s ≥ k and is only

possible if k ≥ p−q
2

þ 1 (in which case n1 ¼ kþ q−p
2

− 1).
The third solution simply gives us q−2

2
< n1 without any

upper limitations.
Now let us join all the aforementioned solutions. Let us

consider the case of k > p=2. Depending on whether s < k
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or s ≥ k, we get different solutions. In the case s < k, we
have q−2

2
< n1 < kþ q−p

2
− 1 [see (120) and the discus-

sion after it], while in the case s ≥ k, we have
n1 ¼ kþ q−p

2
− 1. We can join these conditions and write

q−2
2

< n1 ≤ kþ q−p
2

− 1 for any k > p=2, independent of
whether s is greater or smaller than k. In the case
k ≤ p=2, the situation is simpler: solution (120) is absent,
and we are left only with the second solution in (108):
n1 ¼ kþ q−p

2
− 1. By joining all these cases, we can

write

for near-over critical particles holds

×

8>><
>>:

q−2
2

< n1 ≤ kþ q−p
2

− 1 if k > p
2
;

n1 ¼ kþ q−p
2

− 1 if k ≤ p=2;

n1 >
q−2
2

if ω ¼ ωH:

ð121Þ

C. Different k regions

To reformulate conditions obtained in previous subsec-
tions, first of all we note that the existence of solutions is
defined only by different values of k. To simplify analysis
further, we introduce different k regions as we did in
Sec. VII E in [13],

0 < k <
p − q
2

þ 1; region I;

p − q
2

þ 1 ≤ k <
pþ 1 − q=2

2
; region II;

pþ 1 − q=2
2

≤ k <
p
2
; region III;

k ≥
p
2
; region IV: ð122Þ

As was discussed in [13], all these regions exist and do
not intersect if q > 2. However, if q ≤ 2, then classification
in these cases has to be introduced differently,

0 < k <
p − q
2

þ 1; region I;

k ≥
p − q
2

þ 1; region IV: ð123Þ

Let us start our analysis with the stationary metric (where
ω is nonconstant). We see that in region I n1 is negative for
any type of particle because in this case it follows from
(118), (119), and (121) that, for any type of particle, n1 is
either limited by the value kþ q−p−2

2
or is equal to it.

However, as kþ q−p−2
2

is negative in region I, n1 is also
negative.
In regions II and III (where p−q

2
þ 1 ≤ k < p

2
) we see that

for near-subcritical particles, we have to choose the first
solution in (118) that gives us q−p−2

2
< n1 ≤ kþ q−p−2

2
. For

near-critical and near-ultracritical particles, we take the first
solution in (119). For near-overcritical particles, we take
the second solution in (121) that gives us n1 ¼ kþ q−p

2
− 1

for all these particles.
In region IV (where k ≥ p

2
), for near-subcritical particles,

we use the second solution in (118) that gives us
q−p−2

2
< n1 <

q−2
2
. To include non-negative values of n1

in this region, we have to require q > 2. Otherwise,
accelerations for near-subcritical particles diverge in
region IV.
For near-critical and near-ultracritical particles, we use

either the first solution in (119) (if k ¼ p=2) that entails
n1 ¼ q−2

2
or we use the second solution in (119) that leads to

the same value n1 ¼ q−2
2
. The acceleration in these cases is

non-negative only if q ≥ 2.

TABLE IV. Classification of near-horizon trajectories for different k regions for q > 2 (ultraextremal horizon).
The fourth solution in (108) is not presented in this table.

k region n1 range s Type of trajectory

Stationary metric
1 I For any type of trajectory n1 is negative (forces diverge)
2 II and III max ð0; q−p

2
− 1Þ < n1 ≤ kþ q−p

2
− 1 First and second in (108) NSC

n1 ¼ kþ q−p
2

− 1 Second in (108) NC and NOC
n1 ¼ kþ q−p

2
− 1 and (24) Second in (108) NUC

3 IV max ð0; q−p
2

− 1Þ < n1 <
q−2
2

First in (108) NSC

n1 ¼ q−2
2

First in (108) NC

n1 ¼ q−2
2

and (24) First in (108) NUC
q−2
2

< n1 ≤ kþ q−p
2

− 1 First and second in (108) NOC

Static metric
4 k ¼ 0 Same results as in IV for stationary metric NSC, NC, and NUC

n1 >
q−2
2

Third in (108) NOC
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For near-overcritical particles, we use either the first
solution in (121) that gives us q−2

2
< n1 < kþ q−p

2
− 1 (this

solution is true if p
2
< s < k), or we use the second solution

in (121) that gives us n1 ¼ kþ q−p
2

− 1 (if s ≥ k.) This
solution in region IV is presented only if k ¼ p

2
. These two

solutions in region IV can be joined that gives us for near-
overcritical particles q−2

2
< n1 ≤ kþ q−p

2
− 1 (independent

of whether s or k is greater). This condition does not have
further limitations if q > 2.
If q ≤ 2, the lower bound for n1 is negative. The upper

bound for n1 (that is the same as in the case q > 2) is
positive, with the reservation about redefinition of k regions
in this case [see (123)].
For a constant ω, we observe that near-subcritical,

near-critical, and near-ultracritical particles experience the
same accelerations as nonconstant ω in region IV [one
can refer to second solutions in (118) and (119)]. The
only difference occurs with near-overcritical particles,
where in the case of constant ω, n1 >

q−2
2

[see third
solution (121)].
We summarize all the aforementioned results in

Tables IV–VI.
Also note that results obtained in this section include also

the case of usual particles [with arbitrary δ ¼ Oð1Þ].

VIII. CASE vc ∼ ve;t

As we already mentioned, in this case in the main
approximation acceleration reads

aðrÞf ≈ ðaðrÞf Þm1
vm1
c ; aðφÞf ≈ ðaðφÞf Þm2

vm2
c : ð124Þ

Our task is to find m1 and m2 depending on the particle
type. We begin with the radial component of acceleration

aðrÞf . At first, let us discuss the prefactor in the expression
for (99). As stated in Sec. IV B, for all types of particles,
P ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
∼ δ (note that this applies to the vc ∼ ve;t

case, but not to the limit vc → vt). Thus, the prefactor
Pffiffiffiffiffiffiffiffiffiffiffi

X2−N2
p ¼ Oð1Þ and can be ignored in this analysis.

In the expression for aðrÞf (99), there are two terms

dependent on vc: the first term is ∼vsþ
q−p
2
−1

c , and the second

term is ∼vkþ
q−p
2
−1

c . Therefore, the analysis of the radial
component of acceleration is the same as for vc ≪ ve;t, and
we can use the results obtained in the previous section.
The only differences are related to the angular compo-

nent of acceleration. In this case, X ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
∼ P ∼ δ,

and we can use Eq. (110),

aðφÞf þ σLaðrÞf ∼ δ

ffiffiffiffi
A

p

N
∂rL: ð125Þ

Relying on this condition, let us determine when aðφÞf is
finite. The right-hand side (rhs) of this condition is of the

order of δv
bþq−p

2
−1

c . It is evident that if condition (112) is
satisfied, then the rhs is also finite. Therefore, we can

conclude that, for the range vc ∼ ve;t, if a
ðrÞ
f is finite and

TABLE V. Classification of near-horizon trajectories for different k regions for q ¼ 2 (ultraextremal horizon). The fourth solution in
(108) is not presented in this table.

k region n1 range s Type of trajectory

Stationary metric
1 I For any type of trajectory n1 is negative (forces diverge)
2 IV n1 ¼ 0 First in (108) NC

n1 ¼ 0 and (24) First in (108) NUC
0 ≤ n1 ≤ kþ q−p

2
− 1 First and second in (108) NOC

Static metric
3 k ¼ 0 Same results as in IV for stationary metric NC and NUC

n1 > 0 Third in (108) NOC

TABLE VI. Classification of near-horizon trajectories for different k regions for q < 2 (ultraextremal horizon). The fourth solution in
(108) is not presented in this table.

k region n1 range s Type of trajectory

Stationary metric
1 I For any type of trajectory n1 is negative (forces diverge)
2 IV 0 < n1 ≤ kþ q−p

2
− 1 First and second in (108) NOC

Static metric
3 k ¼ 0 0 < n1 Third in (108) NOC
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condition (112) is met, then aðφÞf is also finite (see
Proposition 1).
Considering that the expression for n1 is the same for

both cases vc ∼ ve;t and vc ≪ ve;t, we can write
Proposition 2. If acceleration is finite for vc ≪ ve;t, it is

finite for vc ∼ ve;t.
This proposition is very useful because we can use the

results already obtained for vc ≪ ve;t.

IX. CASE vc → vt

If a particle is such that a turning point exists, the
quantity P tends to zero when this point is approached.
However, for different types of particles, it tends to zero at
different rates. Therefore, we will consider each of these
cases separately.

A. Near-subcritical particles

For such particles, we use (46)–(48) and see that in the
leading order

P ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
≈ X ≈ Brvrc: ð126Þ

Thus, prefactor Pffiffiffiffiffiffiffiffiffiffiffi
X2−N2

p in expression (99) is ¼ Oð1Þ.
This means that for such particles acceleration for the
vc → vt case is given by the same expressions as for the
case of vc ∼ vt.

B. Near-critical, near-ultracritical,
and near-overcritical particles

All these cases are similar in the sense that in the leading
order [see (50), (53), (55), (60), (61), (65), and (66)], we
can write

X ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
∼ vp=2c ; P ∼ vp=4þr=2

c : ð127Þ

Now, let us analyze the radial component of acceleration.
It can be observed that the prefactor Pffiffiffiffiffiffiffiffiffiffiffi

X2−N2
p in expression

(99) is approximately ∼vð
r
2
−p

4
Þ

c . Note that, by definition,
r > p=2, so this prefactor does not diverge. The struc-
ture of the terms in brackets is the same as in the pre-
viously analyzed cases of vc ≪ ve;t and vc ∼ ve;t.
Therefore, we can conclude that if the acceleration is finite
in these two cases, it will also be finite in the case
of vc → vt.
Next, we analyze the angular component (this analysis is

independent of the type of particle). To this end, we will use
expression (98),

aðφÞf ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 − N2

p 1ffiffiffiffiffiffiffigφφ
p

ffiffiffiffi
A

p

N

× ½ðX2 − N2Þ∂rL − LXð∂rX þ L∂rωÞ�: ð128Þ

Using that in the limit vc → vt quantities
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
∼ X

are of order of δ [this is true because vt is defined by
condition X2 ¼ ð1þ L2

gφφ
ÞN2, while X and N remain ∼δ],

and using expansions (2) and (6), we have three terms in

(128). The first term is ∼δvbþ
q−p
2
−1

c , the second term is

∼vsþ
q−p
2
−1

c , and the third term is ∼vkþ
q−p
2
−1

c . The second and
third terms are finite if minðs; kÞ þ q−p

2
− 1 is non-negative.

Note that this expression is the same as n1 in the case vc ≪
ve;t given by (103). So, if the radial component of the
acceleration is finite in the case vc ≪ ve;t, then the second
and third terms are also finite. The first term is finite if (112)
is satisfied, which is a necessary condition for the finiteness
of the angular component of the acceleration in the case
vc ≪ ve;t. Therefore, we can state the proposition:
Proposition 3. If acceleration is finite for vc ≪ ve;t, it is

finite for vc → vt.

X. RESULTS FOR DIFFERENT TYPES
OF HORIZONS

In this section, we formulate briefly the results obtained
for different particles near different types of horizons. To
this end, we analyze accelerations for vc ≪ ve;t, because, as
we showed above (see Propositions 1–3), if acceleration is
finite in this range, it will be finite in all other ranges.

A. Nonextremal horizons

Nonextremal horizons are such that q ¼ p ¼ 1 (for
explanation of why we use such a definition and other
properties of nonextremal horizons, see [19]). All results
corresponding to this case may be found in Table VI. One
can see that in this case (unlike that of fine-tuned particles)
it is possible to have particles that experience a finite force
near the horizon: such particles are near-overcritical ones in
range IV (or for static space-times). This correlates with the
result obtained in [20] where such a situation was dem-
onstrated explicitly for the Schwarzchild space-time.
According to our classification, such particles are near-
overcritical ones that, as we already discussed above, do not
have a fine-tuned analog.

B. Extremal horizons

Extremal horizons are such that q ¼ 2 and p ≥ q. All
results corresponding to this case may be found in Table V.
From this table, we see that finite forces act only on near-
critical, near-ultracritical, and near-overcritical particles in
region IV or in static metric.

C. Ultraextremal horizon

Ultraextremal horizons are such that q > 2. All results
corresponding to this case may be found in Table IV. One
can see that in this case a force is finite for all types of
particles if k is in regions II–IV or if space-time is static.
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We summarize all the aforementioned results in
Table VII.

XI. PARTICLES WITH FINITE PROPER TIME:
IS KINEMATIC CENSORSHIP PRESERVED?

In this section, we are going to probe the so-called
principle of kinematic censorship (KC). It excludes
unphysical situations in which the energy released in a
collisional event in a regular system is infinite in a literal
sense [8]. Something should prevent such an event. For
example, the proper time to the horizon can diverge [5], so
collision with infinite Ec:m: never occurs, although it can be
made as large as one likes. What happens if the corre-
sponding proper time is finite and Ec:m: is infinite? In
Sec. IX of our previous work [13], we showed that for fine-
tuned particles this is possible in two cases only: either (1) a
force acting on such particles is infinite or (2) the horizon
fails to be regular. As the system becomes singular in a
geometrical or dynamic sense, the KC does not apply to it
and no contradiction arises. Now, we are going to prove that
this principle is preserved for near-fine-tuned particles.
However, this requires consideration of one more factor:
(3) an interval within which motion leading to diverging
Ec:m: is allowed shrinks to the point. This makes the
scenario degenerate and unphysical.
Let us prove the corresponding theorem.
Theorem 1. If for a near-subcritical, near-critical, or near-

ultracritical particle a proper time needed to reach the
horizon is finite for all possible relations between vc and
vt;e, then at least one of three aforementioned conditions is
fulfilled.
Proof. We start with an analysis of near-subcritical, near-

critical, and near-ultracritical particles in the vc ≫ ve;t case.
As was discussed in Sec. IVA, near-fine-tuned particles in
this range behave in the same way as corresponding fine-
tuned ones. The corresponding part of the theorem (requir-
ing the horizon’s regularity) was proven for such particles
in [13].
For cases vc ≪ ve;t and vc ∼ ve;t, proof is different. We

will conduct it by considering different types of particles
separately.
Let us start with near-subcritical particles. As one can see

from Appendix B, a proper time for them is finite if q <
pþ 2 (in the range vc ≪ ve;t) and s <

p−q
2

þ 1 (in the range
vc ∼ ve;t). As we require the proper time to be finite for all

relations between vc and ve;t, this means that both these
conditions have to hold.
Now let us analyze an acceleration for these particles. We

will focus only on the acceleration for vc ≪ ve;t because, as
we showed above, if acceleration is finite in this range it
will be finite in other ranges. Finiteness of the acceleration
is defined by the sign of n1 which is given by (103),

n1 ¼ minðs; kÞ þ q − p
2

− 1: ð129Þ

First of all, we note that from defining property of
minðs; kÞ it follows that minðs; kÞ ≤ s, and using condition
s < p−q

2
þ 1 we have minðs; kÞ < p−q

2
þ 1. Property q <

pþ 2 tells us that p−q
2

− 1 is a positive value, so n1 ¼
minðs; kÞ − ðp−q

2
þ 1Þ is negative, which means that a force

diverges.
Now let us consider near-critical and near-ultracritical

particles. For them, s ¼ p=2. As one can note from
Appendix B, a proper time for these particles is finite if
q < 2. As we mentioned, minðs; kÞ ≤ s that gives
minðs; kÞ ≤ p=2. Thus, we see that n1 is given by

n1 ¼
�
minðs; kÞ − p

2

�
þ
�
q
2
− 1

�
: ð130Þ

The first bracket is ≤ 0 because minðs; kÞ ≤ p=2, the
second one is < 0 because q < 2. This makes n1 negative
and makes a force divergent.
Now let us consider near-overcritical particles. First of

all, we note that according to the result we obtained in
Sec. III D, such particles always have a turning point and a
particle may move only in the ½0; vt� interval. Thus, the case
vc ≫ ve;t is now impossible, so conclusions from the
theorem in Sec. IX of [13] simply cannot be applied
to them.
Then we focus on the vc ≪ ve;t and vc ∼ ve;t cases. The

conditions of finiteness of the proper time for such particles
are the same as for near-critical and near-ultracritical
particles, namely, q < pþ 2 and q < 2 (these conditions,
obviously, can be merged to give q < 2). However, such
particles have s > p=2 that causes the main difference
between them and the case of near-critical and near-
ultracritical particles. Indeed, the expression for n1 is given
by (129). This quantity may be made non-negative if one
chooses s ≥ p−q

2
þ 1 and k ≥ p−q

2
þ 1 (or if the metric is

static). As q < 2, the quantity p−q
2

þ 1 > p
2
. Because of this,

we obtain that k > p
2
(that corresponds to region IV) or the

metric is static.
Thus, for NOC particles, the proper time is finite, and

acceleration is also finite. Meanwhile, an infinite Ec:m: is
possible for scenarios in which such a particle collides with
a subcritical or near-subcritical particle—see Table II
(line 3) and Table III (line 2). At first glance, the KC
principle is violated. However, this is not so. Let us remind

TABLE VII. Classification of cases when forces are finite for
different types of horizons and trajectories.

Type of horizon Type of trajectory Region of k

1 Nonextremal NOC IV or static
2 Extremal NC, NUC, and NOC IV or static
3 Ultraextremal NSC, NC, NUC, and NOC II, III, IV, or static
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a reader that, say, for nonextremal black holes, the BSW
effect is possible with small but nonzero δ but in such a way
that a corresponding near-overcritical particle moves in a
very narrow strip. This was shown in [9] for the Kerr
metric. For a more general rotating axially symmetric black
hole, the corresponding allowed interval of N is propor-
tional to δ according to Eq. (18) of Ref. [17]. In the limit
δ → 0 this interval shrinks to a point and the process of
collision (as well as motion of such a particle) loses its
sense. The KC is not violated since it cannot simply be
applied to a system.
The similar situation happens for NOC particles in a

more general case. Indeed, if δ → 0, the corresponding
vt → 0 according to (33) and the allowed coordinate
interval 0 ≤ vc ≤ vt shrinks to the point. Moreover, this
is valid for the proper distance

l ¼
Z

vt

vc

drffiffiffiffi
A

p : ð131Þ

Indeed, as in the case under discussion
ffiffiffiffi
A

p
∼ vq=2 with

q < 2, the integral converges and, as the limits of integra-
tion shrink, so does τ.
This completes the proof of the theorem. ▪

XII. VARYING RANGES OF MOTION
OF PARTICLES

Our previous analysis primarily focused on investigating
the properties of the collisional process for a given particle.
Although we classified all possible cases where the BSW
phenomenon is possible with forces acting on particles,
there are still several problems with this approach. As is
shown in Sec. III, not all particles that potentially partici-
pate in the BSW effect can reach freely the collision point
from infinity. This means that such particles can only be
created in a narrow region disconnected from infinity, either
due to a quantum creation process in this region or through
multiple scattering [9]. We consider these scenarios to be
exotic and put them aside. Instead, we are interested in the
question of whether it is possible to change the ranges of
motion of a particle by the action of force in such a way that
the particle could reach infinity. To answer this question,

we need to analyze the force acting on a particle for
different types of particles.

A. Near-subcritical particle

We begin our analysis with near-subcritical particles (as
we will show later, the situation is similar for other
particles). For near-subcritical particles, using Eq. (18),
we find that the particle can reach infinity only if δ > 0 and
Xs > 0. Therefore, our task is to determine the conditions
on a force under which we can have Xs > 0. To do this, we
revisit the expression for the radial component of the
acceleration (99),

aðrÞf ≈ σ
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 − N2
p

ffiffiffiffiffiffi
Aq

κp

s �
Xssv

sþq−p
2
−1

c þ LHωkkv
kþq−p

2
−1

c

�
:

ð132Þ

As we are considering near-subcritical particles, for
which s < p=2 and X ≪ N, we have that P ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
≈ jX j (for a proof see Sec. IV B), thus

Pffiffiffiffiffiffiffiffiffiffiffi
X2−N2

p ≈ 1. This allows us to write

aðrÞf ≈ σ

ffiffiffiffiffiffi
Aq

κp

s �
Xssv

sþq−p
2
−1

c þ LHωkkv
kþq−p

2
−1

c

�
: ð133Þ

As we have previously discussed, there are two terms
here and, depending on whether s > k, s ¼ k, or s < k, we
obtain different behavior. Our task is to consider these
different cases and determine how the coefficients in the
expansions for the acceleration (100) and (101) in different
ranges of the coordinate vc are related to Xs. This will allow
us to determine whether we can control the ranges of
motion of the particle or not. It is important to note that, in
this investigation, we will only analyze the cases vc ≪ ve;t
and vc ∼ ve;t. The case vc ≫ ve;t will not be investigated
here because, as we have already discussed, at such
distances, the particle can be considered as fine-tuned
(with negligible influence of the parameter δ) and we
return to the pure BSW effect.

TABLE VIII. Conditions which have to hold for an acceleration to make different particles possible to achieve
infinity.

s < k s ¼ k s > k

NSC ðaðrÞf Þn1 < 0 ðaðrÞf Þn1 < −
ffiffiffiffi
Aq

κp

q
LHωkk

Impossible

NC ðaðrÞf Þn1 < −
ffiffiffiffi
Aq

κp

q
sAp=2 ðaðrÞf Þn1 < −

ffiffiffiffi
Aq

κp

q
ðsAp=2 þ LHωkkÞ Impossible

NUC ðaðrÞf Þn1 < 0 ðaðrÞf Þn1 < −
ffiffiffiffi
Aq

κp

q
LHωkk

Impossible

NOC Impossible Impossible Impossible
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(i) s < k:
In this case, the first term in (133) is dominant and

we have aðrÞf ≈ σ
ffiffiffiffi
Aq

κp

q
Xssv

sþq−p
2
−1

c . Substituting here

(100) and (101) one obtains

ðaðrÞf Þn1 ¼ ðaðrÞf Þm1
¼ σ

ffiffiffiffiffiffi
Aq

κp

s
sXs;

n1 ¼ m1 ¼ sþ q − p
2

− 1: ð134Þ

This gives us in this case

Xs ¼ σ
ffiffiffiffiffiffi
κp
Aq

r
ðaðrÞf Þm1

¼ σ
ffiffiffiffiffiffi
κp
Aq

r
ðaðrÞf Þn1 : ð135Þ

Therefore, we observe that the sign of Xs and thus
the possibility of reaching infinity is determined by
the sign of the acceleration. For ingoing particles
(σ ¼ −1), it is only possible if the force is negative
(attractive). This case also corresponds to static
space-times.

(ii) s ¼ k:
In this case, both terms in (133) are com-

parable and we have aðrÞf ≈ σ
ffiffiffiffi
Aq

κp

q
ðXssv

sþq−p
2
−1

c þ
LHωkkv

kþq−p
2
−1

c Þ.
Substituting here (100) and (101) one obtains

ðaðrÞf Þn1 ¼ ðaðrÞf Þm1
¼ σ

ffiffiffiffiffiffi
Aq

κp

s
ðsXs þ LHωkkÞ;

n1 ¼ m1 ¼ kþ q − p
2

− 1: ð136Þ

Reversing it, one gets

Xs ¼
1

s

� ffiffiffiffiffiffi
κp
Aq

r ðaðrÞf Þn1
σ

− LHωkk

�
: ð137Þ

One can observe that the sign of this expression
can be controlled by the choice of the proper values
of acceleration. For example, if the particle is
ingoing and we want to have a positive Xs, one
must have an acceleration that satisfies the condi-

tion ðaðrÞf Þn1 < −
ffiffiffiffi
Aq

κp

q
LHωkk.

(iii) s > k:
In this case, the second term in Eq. (133) is

dominant, and we have aðrÞf ≈ σ
ffiffiffiffi
Aq

κp

q
LHωkkv

kþq−p
2
−1

c .

As one can see, in this case, the acceleration is
independent of Xs, so Xs cannot be controlled by
leading terms in the external force.
Therefore, we observe that the range of motion of

a near-subcritical particle can be controlled by force

if s ≤ k. For these cases, n1 is defined by the first
and the second solutions in Eq. (108).

B. Near-critical, near-ultracritical,
and near-overcritical particles

As far as the behavior of acceleration is concerned, all
these cases are similar. Let us start with the case vc ≪ ve;t.

Then, as is shown in Sec. IV C, for any particle, P ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
≈ δ that gives us Pffiffiffiffiffiffiffiffiffiffiffi

X 2−N2
p ≈ 1. Thus, the expres-

sion for acceleration (99) is the same as for the case of a
near-subcritical particle (133), so the analysis is the same in
those cases. In the case vc ∼ ve;t, the quantity Pffiffiffiffiffiffiffiffiffiffiffi

X2−N2
p differs

from 1. Let us consider the Taylor expansion for this
quantity,

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p ≈ 1þ dp=2v
p=2
c ; ð138Þ

where dp=2 is some coefficient. Substituting this to (99) one
gets

aðrÞf ≈σð1þdp=2v
p=2
c Þ

ffiffiffiffiffiffi
Aq

κp

s �
Xssv

sþq−p
2
−1

c þLHωkkv
kþq−p

2
−1

c

�
:

ð139Þ
Comparing this with the expansion (101), we see that the

dominant term is obtained by taking Pffiffiffiffiffiffiffiffiffiffiffi
X2−N2

p ¼ 1 that gives

us the same expression as in the case of a near-subcritical
particle. So, we see that, for all types of particles, the
quantity Xs is given by (135) if s < k and by (137) if s ¼ k.
We observe that, for all types of particles, Xs is only

controllable in the case of s ≤ k (for any range of point of
collision). We have already extensively worked on finding
the conditions at which we obtain the first solution (that
corresponds to s < k) or the second solution (which
corresponds to s ≥ k) in (108). The corresponding results
are given in Tables IV–VI. These tables are useful in the
sense that, for a given type of particle and a given value of
k, we can easily deduce which solution for s we can use
among the ones given in (108). If it is the first solution, then
Xs is given by (135). However, if it is the second solution in
(108) and additionally s ¼ k, then Xs is given by (137). If it
is the second solution in (108) and s > k, then Xs cannot be
controlled.
Now, let us discuss how we can manipulate by the

particle parameters to make it possible to reach infinity.
If the particle is near ultracritical, it may potentially reach

infinity if δ > 0 and Xs > 0 [see (31)]. These conditions are
the same as for the case of near-subcritical particles that has
already been investigated.
If the particle is near overcritical, it is impossible to make

any such particle to reach infinity [see (34)].
However, if the particle is near critical, the corresponding

particle may reach infinity only if δ > 0 and Ap=2 < Xp=2
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[see third condition in (23)]. If s < k, using (135), this gives

us ðaðrÞf Þn1 < σ
ffiffiffiffi
Aq

κp

q
sAp=2. If s ¼ k, using (137), this gives

ðaðrÞf Þn1 < σ
ffiffiffiffi
Aq

κp

q
ðsAp=2 þ LHωkkÞ. We can summarize all

these cases in Table VIII.

XIII. SUMMARY AND CONCLUSIONS

We have shown that the BSW effect is possible for a
quite rich family of configurations that include the combi-
nation of a type of horizon, that of a near-fine-tuned
particle, and a force. We have presented the classification
of different types of near-fine-tuned particles, generalizing
the one presented for fine-tuned ones (near subcritical, near
critical, and near ultracritical) and adding a new type that is
possible only for the case of near-fine-tuned ones: near-
overcritical particles (see Table I). Particles of each type
differ in the behavior of the components of the four-
velocity near the horizon that causes different kinematical
properties. Specifically, we have analyzed the allowed
ranges of motion for each type of particle (and we have
shown that the corresponding ranges of allowed motion are
different) and the near-horizon limits of the components of
the four-velocity, which also turn out to be different. These
results have been used to describe the behavior of energy in
the center-of-mass frame of two colliding particles. It is

important to note that the investigation of near-fine-tuned
particles has opened up a wider variety of different
scenarios for particle collision. In this process, one near-
fine-tuned particle may participate with a fine-tuned one
(or a usual one), or there may be two near-fine-tuned
particles. For all of these cases, we have formulated how
the energy of collision would behave as the point of
collision approaches the horizon and have formulated
the conditions that must be met to make the energy
divergent (which is the main property of the BSW
effect). The corresponding results have been briefly sum-
marized in Tables II and III. Table II essentially generalizes
the situation considered earlier for nonextremal black
holes [9,17].
Furthermore, we have focused on the dynamic properties

of particles participating in the BSW phenomenon. We
have analyzed the behavior of the forces acting on such
particles and investigated under which conditions these
forces are finite. The corresponding results are briefly
summarized in Tables IV–VI. In Sec. X and Table VII we
indicated which types of particles experience finite force
for a given type of horizon. Then we focused on the
possibility of the preservation kinematic censorship prin-
ciple in the case of near-fine-tuned particles, and we
showed that this principle holds for them. An additional
investigation concerns the possibility of changing the

TABLE IX. Table showing for which particles and which ranges of their motion the BSW phenomenon is possible if forces acting on
both particles are finite. This table describes all new possible cases when both particles are near-fine-tuned or one is fine-tuned while the
second particle is near-fine-tuned. In near-horizon collisions, near-fine-tuned particles with vc ≪ vt;e behave similar to usual ones. If
vc ≫ vt;e, near-fined particles are similar to fine-tuned ones. The last column displays the equation number describing a corresponding
case.

Type of horizon First particle’s type and range Second particle’s type and range

Nonextremal NOC vc ≪ vð1Þt δ1 ≫ vp=2c NOC vc ∼ vð2Þt δ2 ∼ vp=2c (89)

U

Extremal NC, NUC, NOC vc ≪ vð1Þe;t δ1 ≫ vp=2c NC, NUC, NOC vc ∼ vð2Þe;t δ2 ∼ vp=2c (89)

U

Ultraextremal NSC vc ≪ vð1Þe;t
δ1 ≫ vsc NSC vc ∼ vð2Þe;t

δ2 ∼ vsc (83)

U
NSC vc ∼ vð1Þe;t

δ1 ∼ vsc NSC vc ∼ vð2Þe;t
δ2 ∼ vsc (91)

NSC vc ≫ vð1Þe;t
δ1 ≪ vsc NSC vc ∼ vð2Þe;t

δ2 ∼ vsc (83)

SC
NSC vc ≪ vð1Þe;t

δ1 ≫ vsc NC, NUC, NOC vc ∼ vð2Þe;t δ2 ∼ vp=2c (89)

U
NSC vc ∼ vð1Þe;t

δ1 ∼ vsc NC, NUC, NOC vc ∼ vð2Þe;t δ2 ∼ vp=2c (92)

NSC vc ∼ vð1Þe;t
δ1 ∼ vsc NC, NUC vc ≫ vð2Þe;t δ2 ≪ vp=2c (85)

C, UC
NSC vc ≫ vð1Þe;t

δ1 ≪ vsc NC, NUC, NOC vc ∼ vð2Þe;t δ2 ∼ vp=2c (89)

SC
NC, NUC, NOC vc ≪ vð1Þe;t δ1 ≫ vp=2c NC, NUC, NOC vc ∼ vð2Þe;t δ2 ∼ vp=2c (89)

U
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ranges of motion of particles by the action of an external
force. This is an important topic in the analysis of the
possibility of having the BSWeffect and allowing particles
falling from infinity to achieve the horizon and participate
in this phenomenon. The corresponding results have been
briefly summarized in Table VIII.
As the summary of our work, we present Tables IX and

X that show all possible cases when the BSW phenomenon
is possible for near-fine-tuned and fine-tuned particles
experiencing an action of a finite force. These tables,
being the union of Table VII (for near-fine-tuned ones)
and Table VIII from [13] (for fine-tuned ones) with
Tables II and III and Table II from [13] give the final
answer to the question related to the possibility of having
BSW phenomenon with finite forces for near-fine-tuned
and fine-tuned particles. Note an important difference
between these tables. In Table X both particles have either
vc ≪ ve;t or vc ≫ ve;t. This effectively means that such
particles behave as usual (in vc ≪ ve;t range) or as fine-
tuned ones (in vc ≫ ve;t range) (see Secs. IVA and IV C),
so this table effectively describes the possibility of standard
BSW phenomenon. However, one can see that, if one of
particles is near-fine-tuned and vc ∼ ve;t, we obtain new
scenarios described in Table IX. The most obvious case is
that appearance of near-fine-tuned particles made the BSW
phenomenon possible, forces for the nonextremal horizon
being finite (that is forbidden for fine-tuned ones). In other
words, in Table IX one of particles has properties specific
for near-fine-tuned particles that happens for vc ∼ ve;t. In
Table X any particle behaves either as usual or as a fine-
tuned one.
One reservation is in order. In the case of the pure

BSW effect NOC particles do not exist. However, we can

consider them formally if δ is large enough. For δ ≫ vp=2c

such a particle is indistinguishable from a usual one. This
justifies why we mention NOC for particle 1 in the first line
of Tables IX and X.

APPENDIX A: COMPUTATION OF
ACCELERATION IN FZAMO FRAME

In this investigation, we are dealing with near-fine-tuned
particles that have a nonzero (but quite small) P on a
horizon. As a result, the radial velocity for such particles is
nonzero on a horizon, and to compute the components of
acceleration, we need to choose a suitable frame. We will
use a free-falling zero angular momentum observer frame,
which is attached to a falling particle. This frame is
such that the three-velocity of a particle is zero in this
frame. To obtain this frame, we start with a stationary tetrad
[(7) and (8)]. The three-velocity of a particle in this frame is
given by

VðiÞ ¼ −
eðiÞμ uμ

eð0Þμ uμ
¼

�
σP
X

; 0;
LN

X ffiffiffiffiffiffiffigφφ
p

�
¼ jvjðcosψ ; 0; sinψÞ;

ðA1Þ

where

jvj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

N2

X2

r
; tanψ ¼ NL

P ffiffiffiffiffiffiffigφφ
p : ðA2Þ

The FZAMO frame may be obtained if we perform
several transformations to a stationary tetrad:

TABLE X. Table showing for which particles and which ranges of their motion BSW phenomenon is possible if forces acting on both
particles are finite. This table describes all the cases with the BSWeffect when usual, fine-tuned, or near-fined particles participate. The
last column indicates the line number in Table II from [13] that describes a corresponding case.

Type of horizon First particle’s type and range Second particle’s type and range

Extremal NC, NUC, NOC vc ≪ vð1Þe;t δ1 ≫ vp=2c NC, NUC vc ≫ vð2Þe;t δ2 ≪ vp=2c 4

U
U C, UC

Ultraextremal NSC, NC, NUC, NOC vc ≪ vð1Þe;t δ1 ≫ vp=2c NSC vc ≫ vð2Þe;t
δ2 ≪ vsc 2

U
U SC

NSC, NC, NUC, NOC vc ≫ vð1Þe;t δ1 ≪ vp=2c NSC vc ≫ vð2Þe;t
δ2 ≪ vsc 3

SC
SC SC

NSC vc ≪ vð1Þe;t
δ1 ≫ vsc NC, NUC vc ≫ vð2Þe;t δ2 ≪ vp=2c 4

U
U C, UC

NSC vc ≫ vð1Þe;t
δ1 ≪ vsc NC, NUC vc ≫ vð2Þe;t δ2 ≪ vp=2c 4

SC
SC C, UC

H. V. OVCHARENKO and O. B. ZASLAVSKII PHYS. REV. D 109, 124041 (2024)

124041-24



(i) Rotate frame in such a way that new radial tetrad
vector is codirected with direction of three-velocity,

ẽð0Þμ ¼ eð0Þμ ; ẽð2Þμ ¼ eð2Þμ ; ðA3Þ

ẽð1Þμ ¼ eð1Þμ cosψ þ eð3Þμ sinψ ;

ẽð3Þμ ¼ eð3Þμ cosψ − eð1Þμ sinψ : ðA4Þ

(ii) Perform a boost in a direction of particle’s motion,

eð2Þ0μ ¼ ẽð2Þμ ; eð3Þ0μ ¼ ẽð3Þμ ; ðA5Þ

eð0Þ0μ ¼ γðẽð0Þμ − jvjẽð1Þμ Þ; eð1Þ0μ ¼ γðẽð1Þμ − jvjẽð0Þμ Þ;
ðA6Þ

where γ ¼ 1ffiffiffiffiffiffiffiffi
1−v2

p ¼ X
N.

After these actions, we obtain tetrad vectors in a form

eð0Þ0μ ¼
�
X þ ωL;−

Pffiffiffiffi
A

p
N
; 0;−L

�
; ðA7Þ

eð1Þ0μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
�
−ωLX − X 2 þ N2;

PXffiffiffiffi
A

p
N
; 0;LX

�
;

ðA8Þ

eð2Þ0μ ¼ ffiffiffiffiffiffi
gθθ

p ð0; 0; 1; 0Þ; ðA9Þ

eð3Þ0μ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
�
−ωP ffiffiffiffiffiffiffi

gφφ
p

;−
LNffiffiffiffiffiffiffiffiffiffi
gφφA

p ; 0;
ffiffiffiffiffiffiffi
gφφ

p
P

�
:

ðA10Þ

One can easily check than indeed in this frame corre-
sponding three-velocity,

VðiÞ0 ¼ −
eðiÞ0μ uμ

eð0Þ0μ uμ
; ðA11Þ

is zero.
Acceleration components in this frame may be computed

from the definition aðaÞF ¼ eðaÞ0μ aμ. Using expressions for
acceleration in an OZAMO frame, given in Sec. VI in [13],

at ¼ aðtÞo
N

¼ ur

N2
ð∂rX þ L∂rωÞ; ðA12Þ

ar ¼
ffiffiffiffi
A

p
aðrÞo ¼ X

A
N2

�
∂rX þ L∂rω −

N2

X
L∂rL
gφφ

�
; ðA13Þ

aφ ¼ aðφÞoffiffiffiffiffiffiffigφφ
p þ ωat ¼ ur

�
∂rL
gφφ

þ ω

N2
ð∂rX þ L∂rωÞ

�
;

ðA14Þ

we have

aðtÞF ¼ 0; ðA15Þ

aðrÞF ¼ urffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p ð∂rX þ L∂rωÞ; ðA16Þ

aðφÞF ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − N2

p
ffiffiffiffi
A

p

N

×
�
ðX2 − N2Þ ∂rLffiffiffiffiffiffiffigφφ

p −
LXffiffiffiffiffiffiffigφφ
p ð∂rX þ L∂rωÞ

	
:

ðA17Þ

APPENDIX B: PROPER TIME

In this appendix, we are going to analyze the proper time
of near-fine-tuned particles for different scenarios of
particle motion. Our main aim is to find out under which
conditions the proper time will be finite and how its
behavior for near-fine-tuned particles correlates with cor-
responding fine-tuned ones. To this end, let us consider
separately different ranges of particle motion.

1. vc ≫ ve;t
In this case, as was shown in Sec. IVA, behavior of all

physical quantities is the same as for fine-tuned particles of
the same type. Thus, the proper time given by

τ ¼
Z

dr
ur

þ C ðB1Þ

in this range of coordinates can be found in [13]. Here C is
a constant of integration, which we will omit in a further
analysis because we are interested in a near-horizon
behavior of the proper time, which is independent of C.

2. vc ≪ ve;t
In this case, we can refer to Sec. IV C and simply take the

limit vc ⟶ 0 while keeping terms with δ in expressions
for the P and X . Thus, we can write

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 −

�
1þ L2

gφφ

�
N2

s
≈ δ: ðB2Þ
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The radial velocity in this case is given by

ur ¼
ffiffiffiffi
A

p

N
P ≈

ffiffiffiffiffiffi
Aq

κp

s
v

q−p
2
c δ: ðB3Þ

The proper time is given by

τ ¼
Z

dr
ur

≈
ffiffiffiffiffiffi
κp
Aq

r
v

p−q
2
þ1

c

δðp−q
2

þ 1Þ : ðB4Þ

We see that in this range of coordinates τ ∼ v
p−q
2
þ1

c and
this result does not depend on a type of corresponding near-
fine-tuned particle. Comparing this with Table I in [13], we
see, that the proper time in this range is the same as for
usual particles. This is not surprising, because, as was
discussed in Sec. IV C, in range vc ≪ ve;t all kinematic
properties of all near-fine-tuned particles are the same as for
usual ones. The proper time is finite if q < pþ 2.

3. vc ∼ ve;t
In this range of a particle’s motion expression for proper

time cannot be explicitly integrated. However, we are rather
interested in an asymptotical behavior of the proper time
than in an exact expression. For this we can use that in
vc ∼ vt range holds P ∼ δ (see Sec. IV B). This allows us to
write

τ ¼
Z

dr
ur

≈
ffiffiffiffiffiffi
κp
Aq

r Z
dr

v
q−p
2 P

∼
1

δ

Z
dr

v
q−p
2

∼
v

p−q
2
þ1

c

δ
: ðB5Þ

Note that this expression depends on both vc and δ.
However, we can relate these quantities as far as we
consider the vc ∼ ve;t case. For near-subcritical particles,
one can use that ve;t ∼ δ1=s according to (16) and (17) or,
inverting δ ∼ vsc, we have

τ ∼ v
p−q
2
þ1−s

c : ðB6Þ

As for near-subcritical particles 0 < s < p=2, we see
that proper time behaves as τ ∼ v−αc , where
q−p−2

2
< α < q−2

2
. Comparing this result with Table I in

[13], we see that the proper time for near-subcritical
particles in region vc ∼ ve;t behaves in the same way as
for corresponding subcritical particles. The proper time for
such particles is finite if s < p−q

2
þ 1.

For near-critical, near-ultracritical, and near-overcritical
ones, the situation differs. For them holds δ ∼ vp=2c , which
allows us to write

τ ∼ v
2−q
2
c : ðB7Þ

From this we see that τ ∼ v−αc with α ¼ q−2
2
.

Comparing this with Table I in [13], we see, that in
range vc ∼ vt behavior of the proper time for near-
critical particles is the same as for critical ones.
However, for near-ultracritical particles, behavior is
not the same as for ultracritical ones and is the same
as for critical ones (this also concerns near-overcritical
ones). The proper time is finite if q < 2.
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