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We show that backreaction of quantum fields on black hole geometries can trigger new thermal phase
transitions. Specifically, we study the phase behavior of the three-dimensional quantum-corrected static
Bañados-Teitelboim-Zanelli black hole, an exact solution to specific semiclassical gravitational equations
due to quantum conformal matter, discovered through braneworld holography. Focusing on the canonical
ensemble, for large backreaction, we find novel reentrant phase transitions as the temperature
monotonically increases, namely, from thermal anti–de Sitter space to the black hole and back to thermal
anti–de Sitter. The former phase transition is first-order, a quantum analog of the classical Hawking-Page
phase transition, while the latter is zeroth order and has no classical counterpart.
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I. INTRODUCTION

Black hole thermodynamics offers a window into the
nature of quantum gravity. A paradigmatic example is the
Hawking-Page (HP) phase transition of black holes in
asymptotically anti–deSitter (AdS) space [1]; below a certain
temperature, large AdS black holes in equilibrium with
radiation give way to thermal AdS, signaling an exchange
of the dominant contribution to the quantum gravitational
partition function. Originally discovered for four-dimen-
sional Schwarzschild-AdSblack holes, theHP transition also
exists for their three-dimensional counterparts [2–5], i.e.,
Bañados-Teitelboim-Zanelli (BTZ) black holes [6,7]. Towit,
a static BTZ black hole of mass M has metric,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dϕ2;

fðrÞ ¼ r2

l2
3

− 8G3M; ð1Þ

with AdS3 length scale l3, three-dimensional Newton’s
constant G3, and has horizon radius r2þ ¼ 8G3Ml2

3. Via

the canonical partition function, the BTZ free energy is

FBTZ ¼ M − TS ¼ −
π2l2

3

2G3

T2; ð2Þ

for temperature T ¼ rþ=2πl2
3 and entropy S ¼ 2πrþ=4G3.

Comparing to the free energy of thermal AdS, FAdS ¼
MAdS ¼ −1=8G3, a first-order phase transition occurs at a
temperature THP ¼ 1=ð2πl3Þ. When T < THP, thermal AdS
has a lower free energy than the black hole, while for
T > THP the black hole becomes the dominant contribution
to the partition function.
The study of such gravitational phase transitions has

expanded to a plethora of black hole backgrounds,
revealing rich physical phenomena. For instance,
Reissner-Nordström AdS black holes undergo a first-order
phase transition between large and small black holes
analogous to the liquid/gas phase change of van der
Waals fluids [8–10], displaying the same critical behavior
[11]. Moreover, reentrant phase transitions—a sequence of
two or more phase transitions due to a monotonic change to
any thermal quantity where the initial and final states are
macroscopically similar—occur for, e.g., d ¼ 4 Born-
Infeld AdS black holes [12], rotating AdS black holes in
d ≥ 6 dimensions [13,14], or Uð1Þ charged Lovelock black
holes [15], sharing traits akin to multicomponent fluids,
binary gases, and liquid crystals [16].
Each of these studies consider classical black hole

backgrounds. It is natural to wonder how quantum matter
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influences black hole phase transitions through semiclass-
ical backreaction. A complete treatment of this question,
however, requires solving the semiclassical Einstein equa-
tions, Gab ¼ 8πGhTabi, a difficult and open problem in
higher than two spacetime dimensions.
Here we use braneworld holography [17] to exactly

study phase transitions of semiclassical black holes to all
orders of backreaction due to a large number of quantum
fields. In this framework a d-dimensional end-of-the-world
brane is coupled to Einstein’s general relativity in an
asymptotically (dþ 1)-dimensional AdS background,
which has a dual holographic interpretation as a conformal
field theory (CFT) living on the AdS boundary. In effect,
the brane, typically located a small distance away from the
AdS boundary, renders the (on shell) bulk action finite by
integrating out bulk degrees of freedom up to the brane, as
in holographic regularization [18]. This procedure induces
a specific higher curvature gravity theory on the brane,
coupled to a CFT with an ultraviolet cutoff that backreacts
on the dynamical brane geometry. Thence, classical sol-
utions to the bulk Einstein equations exactly correspond to
solutions of the semiclassical field equations on the brane.
Specifically, classical AdS black holes map to quantum-
corrected black holes on the brane, to all orders of back-
reaction [19].

II. QUANTUM BTZ BLACK HOLE

We will study the phase transitions of a specific brane-
world model, the three-dimensional quantum BTZ (qBTZ)
family of black holes [20]. This solution follows from
introducing an AdS3 brane [21] inside a static, asymptoti-
cally AdS4 geometry described by the C-metric [20,22,23].
The brane intersects the AdS4 black hole horizon such that
the horizon localizes on the brane. Via braneworld holog-
raphy, the backreacted geometry and horizon thermody-
namics of the qBTZ are known analytically, allowing for an
exact description of its phase structure.
The metric of the quantum BTZ black hole is [20]

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dϕ2;

fðrÞ ¼ r2

l2
3

− 8G3M −
lF ðMÞ

r
; ð3Þ

with horizon radius rþ being the largest root of fðrþÞ ¼ 0.
Here M is the mass, l represents an infrared bulk cutoff
length, and G3 ¼ G3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl=l3Þ2

p
is the “renormalized”

Newton’s constant. Note for l ¼ 0 the classical BTZ
metric (1) is recovered. The form function F ðMÞ is found
by solving the brane equations of motion [20]

F ðMÞ ¼ 8
1 − κx21

ð3 − κx21Þ3
; ð4Þ

where κ ¼ �1, 0 corresponds to different brane slicings
(κ ¼ −1 gives a BTZ black hole) and x1 is a parameter
controlling the mass, see Eq. (7). Together, ðx1; κÞ para-
metrize a family of brane black holes and black strings
covering a finite range of masses [22,23]. Classically, these
solutions exist in disconnected branches of allowed masses,
while quantum effects unify these branches. Lastly, the
AdS3 radius l3 is related to the (induced) brane cosmo-
logical constant,

Λ3 ≡ −
1

L2
3

¼ −2

0
@ 1

l2
þ 1

l2
3

−
1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l2
þ 1

l2
3

s 1
A: ð5Þ

The metric (3) can be understood as a “quantum” black
hole in the sense it is guaranteed to be a solution to the full
semiclassical theory on the brane at all orders in quantum
backreaction. The parameter l controls the strength of the
backreaction due to the CFT3, and also features in the
central charge c3 of the cutoff CFT3 [20]

c3 ¼
l

2G3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl=l3Þ2

p : ð6Þ

For a small backreaction, l=l3 ≪ 1, then L2
3 ≈ l2

3 while
2c3G3 ≈ l. Thus, for fixed c3, gravity becomes weak on the
brane as l → 0 such that there is no backreaction due to the
CFT and no renormalization of Newton’s constant. Lastly,
note l ≈ 2c3LP, where LP ¼ G3 is the three-dimensional
Planck length (with ℏ ¼ 1). Hence, the quantum correction
in the qBTZ metric is not a Planckian effect since c3 ≫ 1.

III. THERMODYNAMICS OF THE
QUANTUM BTZ BLACK HOLE

The thermodynamics of the quantum BTZ black hole on
the brane is inherited from the black hole thermodynamics in
the bulk. TheAdS4 C-metric describes an accelerating black
hole, however, there is no acceleration horizon in our setup
since we work in the regime of “small acceleration” [24].
Hence, there is only a black hole horizon in thermal
equilibrium with its surrounding. The massM, temperature
T and entropy S of the classical bulk black hole are [20,23]
(see also [25])

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p

2G3

z2ð1 − νz3Þð1þ νzÞ
ð1þ 3z2 þ 2νz3Þ2 ; ð7Þ

T ¼ 1

2πl3

zð2þ 3νzþ νz3Þ
1þ 3z2 þ 2νz3

; ð8Þ

S ¼ πl3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p

G3

z
1þ 3z2 þ 2νz3

; ð9Þ

where z≡ l3=ðrþx1Þ and ν≡ l=l3 both have range ½0;∞Þ.
Each quantity may be derived by identifying the bulk on
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shell Euclidean action with the canonical free energy [25].
Previous work [24,26] examined accelerating black hole
thermodynamics but not in the presence of a brane.
From the brane perspective, the qBTZ black hole

has the same temperature T, while the four-dimensional
Bekenstein-Hawking entropy S is identified with the three-
dimensional generalized entropy, S≡Sgen [20,27], account-
ing for both higher-curvature corrections and semiclassical
matter effects. Thus, ifl andl3 are kept fixed, the qBTZ first
law takes the standard form,

dM ¼ TdSgen; ð10Þ

valid to all orders in backreaction, andwhere the qBTZmass
is identified as M. Classical entropy being replaced by the
generalized entropy in the first law also occurs for two-
dimensional semiclassical black holes [28,29].
The thermal quantities obey the Smarr relation [30],

0 ¼ TSgen − 2P3V3 þ μ3c3; ð11Þ

where P3 ¼ −Λ3=ð8πG3Þ is the pressure with conjugate
“thermodynamic volume” V3, and μ3 is the chemical
potential conjugate to c3 (see Ref. [30] for exact expressions
in terms of l3, z and ν). Unlike higher-dimensional Smarr
formulas, the mass is absent from the three-dimensional
Smarr relation (11) since G3M has vanishing scaling
dimension, as with the classical BTZ black hole [31,32].
The appearance of extra thermodynamic variables in the

Smarr relation (11) suggests an extended black hole
thermodynamics [33]. Specifically, the first law (10) gen-
eralizes to include pressure and central charge variations

dM ¼ TdSgen þ V3dP3 þ μ3dc3: ð12Þ

In the context of braneworld holography, extended thermo-
dynamics of black holes on the brane is naturally induced
from the standard thermodynamics of bulk black holes
including work done by the brane, e.g., dynamical pressure
P3 corresponds to variable brane tension [30]. Here,
however, we focus on the canonical ensemble, defined
by fixing ðT; P3; c3Þ.
In Fig. 1 we plot temperature as a function of z at fixed

P3 and c3. For all pressure—except a critical one
P3 ¼ Pcrit—the temperature has two turning points, signi-
fying three branches: (A) “cold” black hole, z∈ ð0; zmaxÞ,
with zmax denoting the local maximum of T;
(B) “intermediate” black hole, z∈ ðzmax; zminÞ, with zmin
marking the local minimum of T, and (C) “hot” black hole,
z∈ ðzmin;∞Þ. (This terminology is motivated by the end
behavior of TðzÞ, but, note that branch B black holes
can have temperatures less than those in branch A.) For
ν > 1, zmax ¼ ν−1=3 and zmin is the positive root of
νz3 þ 3z2 − 3νz − 1 ¼ 0, and conversely, for ν < 1, zmin ¼
ν−1=3 while zmax is the positive root of the same equation;

for any ν, zmax < zmin, except when ν ¼ 1, where zmax ¼
zmin ¼ zcrit (see below). Notably, for ν > 1, branch A
typifies black holes with masses 0 < M < 1=24G3, while
B and C branches have −1=8G3 < M < 0 (with M ¼ 0 at
z ¼ 0; zmax). Alternately, for ν < 1, branches A and B have
0 < M < 1=24G3, and branch C has −1=8G3 < M < 0
(with M ¼ 0 at z ¼ 0; zmin) [34]. In contrast, classical
BTZ has a single branch of black holes since T is
monotonic in rþ.
Further, for qBTZ the temperature has an inflection point

when both the first and second z-derivatives of T at fixed ν
vanish. This occurs when zcrit ¼ νcrit ¼ 1 and yields the
following critical pressure and temperature

Pcrit ¼
1

16πc23G
3
3ð2þ

ffiffiffi
2

p Þ ; Tcrit ¼
1

4
ffiffiffi
2

p
πc3G3

: ð13Þ

Both expressions depend on the fixed central charge.
Alternately, we can fix the pressure, yielding the critical
central charge given by the inverse of (13), ccrit ∝ 1=

ffiffiffiffiffiffi
P3

p
.

IV. PHASE TRANSITIONS OF THE
QUANTUM BTZ BLACK HOLE

We focus on thermal phase behavior of the quantum BTZ
black hole in the canonical ensemble with free energy

FqBTZ ≡M − TSgen

¼ −
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p

2G3

½1þ 2νzþ νz3ð2þ νzÞ�
ð1þ 3z2 þ 2νz3Þ2 : ð14Þ

Here we expressed the free energy in terms of ν, but we can
use (5) and (6) to rewrite ν in terms of P3 and c3,

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32πc23G

3
3P3ð1 − 8πc23G

3
3P3Þ

q
1 − 16πc23G

3
3P3

: ð15Þ

FIG. 1. Temperature of qBTZ black hole at c3 ¼ 10 and various
pressures (from bottom to top): G3

3P3 ¼ f5.0 × 10−7 ðgreenÞ;
5.0 × 10−6 ðorangeÞ; G3

3Pcrit ≈ 5.83 × 10−5 ðmagentaÞ; 1.33×
10−4 ðblueÞ; 1.61 × 10−4 ðredÞ; 1.81 × 10−4 ðblackÞg. The criti-
cal line inflection point is in purple.
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Observe ν diverges when c23G
2
3P3 ¼ 1=16π, placing an

upper bound on pressure, P3 < 1=16πc23G
3
3. Also note the

canonical ensemble is equivalent to a fixed ν ensemble.
Analogous to the classical case [1], the qBTZ black hole

can transition into thermal AdS, since at fixed pressure and
central charge the black hole can evaporate due to Hawking
radiation, and, conversely, thermal AdS can transition into a
qBTZ black hole via collapse of the thermal gas. Thus, to
analyze the phase behavior, we compare the free energy of
the qBTZ black hole to that of “quantum” thermal AdS3
(qTAdS) geometry, i.e., pure AdS3 including backreaction
due to the cutoff CFT3 on the brane. This geometry contains
thermal radiation in equilibrium at an arbitrary temperature
since theCFT3 is taken to be in a thermal state. Explicitly, the
qTAdS geometry takes the form (3), with F ðMÞ ¼ 0 and
MqTAdS ¼ −1=8G3, coinciding with the z → ∞ limit of the
qBTZ solution. Notice that while backreaction does not alter
the form of the metric from classical AdS3, the CFT3 makes
itself felt through the parameter ν in G3. Thus, the sole effect
of backreaction due to conformal matter in thermal AdS3 is
to renormalize Newton’s constant. An analogous result
occurs for semiclassical Jackiw-Teitelboim gravity; back-
reaction due to conformal matter does not break the
symmetries of the AdS2 geometry, only the dilaton (or,
equivalently, the effective two-dimensional Newton con-
stant) receives quantum corrections (e.g., [28]). Further, in
this limit the generalized entropy (9) vanishes, a conse-
quence of quantum fluctuations renormalizing G3 (captur-
ing the spirit of [35]), and the free energy (14) becomes
FqTAdS ¼ MqTAdS ¼ −1=8G3.
In Fig. 2 we make a parametric plot of the free energy

difference ΔF≡ FqBTZ − FqTAdS versus temperature T
(using z as the parameter). At P ¼ Pcrit the free energy
plot is smooth. However, for all positive values P ≠ Pcrit
the free energy diagram shows inverse swallowtail behavior
and contains three different branches; cold, intermediate
and hot black hole branches, corresponding to the branches
in Fig. 1. The cold branch begins at small temperature and
ends at the lower-right cusp (z ¼ zmax), whereas the hot
branch corresponds to the “horizontal” line that extends
from the upper-left cusp (z ¼ zmin) off to high temperature.
The intermediate branch is the curve connecting these two
cusps. Since the free energy FqBTZ and temperature go to
zero as z → 0, the difference ΔF does not vanish at zero
temperature; instead it starts from a positive value that
depends on P3 and c3.
The free energy plot displays phase transitions between

thermal AdS and the qBTZ black hole for a certain pressure
and temperature range. Since we are subtracting the free
energy of thermal AdS, the black hole branches below the
horizontal axis of the plot in Fig. 2 are the only ones that are
thermodynamically favored with respect to thermal AdS.
Everywhere else, thermal AdS has a lower free energy than
the black hole. When the right cusp intersects ΔF ¼ 0,
that is the starting point of the phase transitions. The

temperature and pressure where this occurs are found by
solving when ΔF ¼ 0 and z ¼ zmax, at ν ¼ 3

ffiffiffi
3

p
and

z ¼ 1=
ffiffiffi
3

p
, giving

T0 ¼
ffiffiffi
3

p

2πl3

¼ 9

8
ffiffiffi
7

p
πc3G3

; P0 ¼
14−

ffiffiffi
7

p

224πc23G
3
3

: ð16Þ

Note T0 is larger than the classical HP temperature.
For larger pressures, as the temperature monotonically

increases, there are reentrant phase transitions from
thermal AdS to qBTZ and back to thermal AdS. The
former transition occurs when branch B intersects the
ΔF ¼ 0 line. Since there is a discontinuity in the slope
of the free energy, this is a first-order phase transition, a
quantum analog of the Hawking-Page phase transition. The
latter transition between the branch B of qBTZ and thermal
AdS occurs at the right cusp. Since there is a jump
discontinuity in the free energy, this is a zeroth-order
phase transition. Thus, the reentrant phase transition is
described by the combination of the first- and zeroth-order
phase transitions as the temperature monotonically varies.
In the P3 vs T phase diagram at fixed c3 (Fig. 3) we depict
coexistence lines of first- and zeroth-order phase transi-
tions. The (black) intersection point of the two phase
transitions (16) is neither representative of a second-order
phase transition or a critical point.
Notably, such reentrant phase transitions do not occur for

the classical BTZ black hole. As noted, here the zeroth-
order phase transitions only occur for large enough P3, or,
correspondingly, ν > 3

ffiffiffi
3

p
, i.e., large backreaction. In this

FIG. 2. Free energy difference of the qBTZ black hole and
quantum thermal AdS at c3 ¼ 10 and various pressures P3 (same
values as in Fig. 1, ordered left to right). For P3 ≠ Pcrit the free
energy as a function of the temperature has inverse swallowtail
behavior and consists of three branches. For small pressures,
thermal AdS (with ΔF ¼ 0) always dominates. For G3

3P3 >
1.6135 × 10−4 (red, center curve), thermal AdS dominates for
small and large temperatures, and in between the intermediate
branch has the lowest free energy. A first-order phase transition
between thermal AdS and the intermediate branch occurs if this
branch intersects the ΔF ¼ 0 line (yellow point), and a zeroth-
order phase transition occurs at the right cusp (purple point). The
phase transitions coincide when the right cusp intersects ΔF ¼ 0
(black point).
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regime, the brane has decreasing tension and the gravita-
tional theory on the brane becomes more massive and
effectively four dimensional [20].
The heat capacity allows us to determine which branches

are stable under thermal fluctuations [25],

CP3;c3 ¼T

�
∂Sgen
∂T

�
P3;c3

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þν2

p
πl3

2G3ð1−νz3Þ
zð2þ3νzþνz3Þð3z2−1þ4νz3Þ

ð3z2−1−3νzþνz3Þð1þ3z2þ2νz3Þ :

ð17Þ

In Fig. 4 we plot the heat capacity (17) versus temperature
at fixed P3 and c3. For T ≠ Tcrit the cold black hole branch
has partly positive and negative heat capacity, while the
intermediate branch has CP3;c3 > 0 and the hot branch has

CP3;c3 < 0. The heat capacity vanishes for a z1 that is the
positive root of 4z3νþ 3z2 − 1 ¼ 0 (for ν ≠ 1), and
diverges at zmin and zmax, where z1 < zmax < zmin. Note
that the quantum Hawking-Page transition is between
qTAdS and a “stable” black hole branch, as in the classical
HP transition.

V. DISCUSSION

We used braneworld holography to study the thermal
phase structure of black holes corrected due to semi-
classical backreaction. Aside from a quantum counterpart
of the first-order Hawking-Page transition, the qBTZ black
hole also undergoes zeroth order phase transitions—a
feature solely due to semiclassical effects. The physical
viability of the zeroth-order phase transition is question-
able, since such transitions typically do not occur in nature,
for thermodynamically stable systems. A zeroth-order
phase transition may be indicating we are missing a novel
phase with lower free energy. For instance, the black hole
could transition into a system with additional degrees of
freedom or “hair” that are not captured by the qBTZ
solution. We leave this for future investigation.
The free energy of the braneworld black holes inves-

tigated here was previously derived in [25] from the four-
dimensional bulk perspective, however, that analysis lacked
a physical interpretation in terms of quantum black holes
and reentrant phase transitions were not observed. Our
analysis on the brane carries over to the bulk and thus
suggests this is the first example of a semiclassical black
hole undergoing such a thermal reentrant phase transition.
Further, we emphasize that the type of reentrant phase
transition we uncover differs from those which have
appeared in previous literature [12–15], which describe
transitions between different phases of the black hole, e.g.,
from large to small and back to large black holes.
Meanwhile, the reentrant phase transition we find is from
thermal AdS to the black hole and back to thermal AdS,
i.e., a reentrant Hawking-Page phase transition. Notably,
only for large backreaction do the reentrant phase tran-
sitions occur. This suggests such features are unlikely to be
found via standard perturbative techniques in studying
quantum backreaction [36–38].
Since the brane geometry is asymptotically AdS, the

brane gravity theory has a holographic interpretation in
terms of a two-dimensional (defect) CFT, where all 1=c
corrections are accounted for in a large central charge-c
expansion. Thus, via this second layer of AdS/CFT duality,
the phase transitions of the qBTZ black hole should have a
dual interpretation [30]. Classically, the HP phase transition
is argued to be dual to the (de)confinement transition of a
large-c conformal gauge theory [39]. Our analysis implies
the phase structure of the thermal CFT2 dual to the qBTZ
black hole drastically changes when including all 1=c
effects. Namely, in the canonical ensemble the temperature
of the first-order phase transition changes and a new

FIG. 3. P3 versus T phase diagram at fixed c3 ¼ 10. The
dashed black line corresponds to ν → ∞. The straight yellow and
curved purple lines denote lines of first- and zeroth-order phase
transitions, respectively. In the region between the yellow and
purple curves the qBTZ black hole is thermally favored; thermal
AdS dominates the canonical ensemble outside this region. The
(black) cusp where the yellow and purple lines meet corresponds
to G3

3P0 ¼ 1.6135 × 10−4 and G3T0 ¼ 0.0135. The isolated
critical point lies at G3

3Pcrit ≈ 5.83 × 10−5 and G3Tcrit ≈ 5.63 ×
10−3 (not shown).

FIG. 4. Heat capacity at fixed pressure and central charge
for select parameters in Fig. 1 [from left to right: 5.0 × 10−6

ðorangeÞ; G3
3Pcrit ≈ 5.83 × 10−5 ðmagentaÞ; 1.33 × 10−4 ðblueÞ;

1.81 × 10−4 ðblackÞ].
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zeroth-order phase transition arises, leading to reentrant
transitions between (de)confined phases. It would be
worth studying these new features from a microscopic
perspective [40]. The bulk and brane system, moreover, is
dual to a boundary CFT3 (BCFT3) [41,42]. Since the qBTZ
free energy is equal to the bulk black hole free energy, thus
having the same phase behavior, the dual BCFT3 should
exhibit reentrant phase transitions. It would be interesting
to study this further.
Our study offers many future explorations. Firstly, we

focused on the canonical ensemble. In fact, the static qBTZ
black hole has four different ensembles (at fixed temper-
ature) to examine. A study of ensembles at fixed thermo-
dynamic volume (initiated in [43]) will shed new light on the
instability of “superentropic” black holes [44,45], its micro-
scopic interpretation [46], along with other inequalities
constraining (extended) thermodynamic variables [47,48].
Further, our analysis can be generalized to other quantum
black holes, e.g., rotating and charged qBTZ [20,49], or
quantum de Sitter black holes [50,51]. Adding rotation or
chargewill enrich the phase structure. Lastly, we focused on
black holes in three dimensions. It is natural to wonder
how to generalize to higher dimensions. So far finding
higher-dimensional braneworld black holes has proven
challenging (cf. [52]). Perhaps progress can be made using

a large-dimension limit of (bulk) general relativity [53,54],
to construct higher-dimensional static braneworld black
holes, as done for evaporating black holes [55].
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