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We construct and discuss new solutions of primary hair charged black holes in asymptotically anti–de
Sitter space that have well-defined Coulomb-like potential in three dimensions. The gauge field source to
the Einstein equation is a power-Maxwell nonlinear electrodynamics with traceless energy-momentum
tensor. The coupled Einstein-power-Maxwell-scalar gravity system, which carries the coupling fðϕÞ
between the gauge and scalar fields, is analyzed, and hairy-charged black hole solutions are found
analytically. We consider three different profiles of the coupling functions: (i) fðϕÞ ¼ 1, corresponding to

no direct coupling between the gauge and scalar fields, (ii) fðϕÞ ¼ eϕ, and (iii) fðϕÞ ¼ eϕ
2=2,

corresponding to their nonminimal coupling. For all these cases, the scalar field, gauge fields, and
curvature scalars are regular and well behaved everywhere outside the horizon. We further study the
thermodynamics of the obtained hairy black hole in the canonical and grand-canonical ensembles and find
significant changes in its thermodynamic structure due to the scalar field. In particular, for all considered
coupling functions, the hairy parameter has a critical value above which the hairy black hole undergoes the
Hawking/Page phase transition, whereas below which no such phase transition appears.
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I. INTRODUCTION

For many years, physicists and astronomers have been
fascinated by the black hole mysteries and their fascinating
nature. The study of black holes gives a unique platform to
view the behavior of matter and energy under extreme
circumstances and provides insights into basic principles of
general relativity. They offer a unique framework for the
coexistence of strong gravity, quantum phenomena, and
thermodynamics. It is now widely accepted that black holes
carry both temperature and entropy and may experience
phase transitions much as ordinary thermodynamic systems
[1–3]. For instance, in contrast to the Schwarzschild black
hole in asymptotically flat space, black holes in anti–de
Sitter (AdS) spaces are not only thermodynamically stable
but also exhibit rich thermodynamic phase structures and
go through phase transitions such as the Hawking/Page
(black hole to thermal-AdS) or the small/large black hole
phase transitions [4–11].
Owing to their intrinsic simplicity compared to their

higher-dimensional counterparts, studies of lower-
dimensional gravitational systems have drawn a lot of
interest. The prime example is the three-dimensional
Banados-Teitelboim-Zanelli (BTZ) black holes, which
have received a lot of attention in the last three decades

and have shown to be useful simplified models for
investigating conceptual issues of black holes [12,13].
For example, general relativity becomes a topological field
theory in the three dimensions, whose dynamics can be
mapped holographically to the two-dimensional conformal
field theory (CFT) living at the boundary of spacetime [14].
The BTZ black holes, therefore provide a natural arena to
test the deep and fundamental principles of gauge/gravity
duality [15]. The use of conformal boundary conserved
charges and symmetric algebra to calculate the entropy of
BTZ black holes provides a prime example of the useful-
ness of lower-dimensional gravity systems to get possible
insight into quantum gravity [16]. In addition, the Chern-
Simons formulation of three-dimensional gravity models
has made them quintessential for investigating general
properties of gravity, and in particular its relationship with
gauge field theories [17,18]. Indeed, despite having various
contrasting features compared to their higher-dimensional
counterparts—such as not containing any curvature singu-
larity or being locally equivalent to pure AdS3—the BTZ
black holes do exhibit many of their fundamental features,
such as the presence of event and Cauchy horizons, or their
thermodynamic and holographic interpretations [19]. For
these reasons, the lower-dimensional models continue to be
the focus of considerable interest in gravitational theo-
ries [20,21].
The repertory of three-dimensional black hole solutions

has greatly broadened in a number of ways since the
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seminal discovery of the BTZ solution. In addition to the
traditional Maxwell term [22], higher-order curvature terms
[23], higher-rank tensor fields [24], gravitational Chern-
Simons terms [25], etc. have been added in the gravity
action. The extension also includes a variety of other matter
sources. These advancements have improved our knowl-
edge of lower-dimensional black hole solutions and their
interactions with various types of matter. The Maxwell
Lagrangian, LðF Þ ¼ F ¼ FμνFμν, in particular, leads to an
interesting but undesirable behavior in three dimensions,
i.e., the electric field and potential of the black hole are now
proportional to 1=r and log r respectively, r being the radial
coordinate, as opposed to 1=r2 and 1=r behavior in four
dimensions. Consequently, divergence terms appear in the
metric and gauge field, as logðrÞ blows up at r ¼ 0 and
r ¼ ∞, making the charged BTZ solution unattractive. This
raises the potential question: is it possible to construct a
Lagrangian for the gauge field that will give us a gauge
field solution just like in the case of (3þ 1) dimensions,
i.e., a regular and well-behaved gauge field solution? This
question was addressed in [26], where the answer was
found in the affirmative. The essential idea was to require,
as in four dimensions, the trace of the gauge field energy-
momentum tensor to be zero. This condition uniquely
constrained the gauge field Lagrangian to be powerlike
with exponent 3=4, i.e., for the power law Lagrangian
LðF Þ ¼ ðsF Þp, the trace

T ¼ Tμνgμν ¼ 3LðF Þ − 4FL;F ¼
�
3

2
− 2p

�
ðsF Þp

vanishes for the exponent value p ¼ 3=4. It is straightfor-
ward to check that this traceless nonlinear electrodynamics
½LðF Þ ¼ ðsF Þ3=4� causes the radial dependence of electric
field and potential to be 1=r2 and 1=r in (2þ 1) dimen-
sions, respectively. Moreover, this energy-momentum ten-
sor also fulfils the weak energy conditions. Adding this
nonlinear Lagrangian to the Einstein-Hilbert action further
gives three-dimensional black hole solutions with finite
gauge field everywhere [26], unlike the usual charged BTZ
black hole [22]. Subsequently, several works have inves-
tigated various properties of these (2þ 1)-dimensional
black holes with a Coulomb-like field [27–45].
In a similar vein, numerous hairy black hole solutions

involving self-interacting real scalar field, both minimally
and nonminimally coupled, have been investigated in three-
dimensional spacetime following the initial work of [46,47].
The investigation of the interplay between scalar fields and
black holes in three dimensions has not only improved our
understanding of the interaction between them but also has
opened up a wide range of their potential applications,
especially in the context of AdS spaces, i.e., the scalar-
gravity models are very pertinent to holography and are
useful resources for studying lower-dimensional condensed
matter systems at strong couplings. The desirable trait of

analytical tractability of three-dimensional scalar gravity
models has also greatly piqued our curiosity [48–65].
Nonetheless, it should be emphasized that not all scalar
field-dressed black hole solutions obtained in three dimen-
sions have desirable physical properties. In many cases, the
scalar field not only shows logarithmic radial dependency,
thereby making them unsatisfactory but also the geometry
does not asymptote to AdS at the boundary [57,61].
Another important reason for greatly investigating scalar-

gravity systems is due to their connections with the no-hair
theorem. The no-hair theorem basically asserts that black
holes in the asymptotically flat spaces are uniquely
described by their mass, charge, and angular momentum
[66]. Many strong arguments and critical remarks in favor of
the no-scalar hair theorem for asymptotic flat spacetime
were discussed in [67–69], and have long been thought to
apply to black holes in general. For a review on the issue of
scalar hair in asymptotic flat spaces, see [70]. While
multiple subsequent investigations have endorsed the origi-
nal no-hair theorem for black holes [71–77], it is crucial to
keep in mind that it is not a theorem in the strict
mathematical sense. Many counterexamples have contested
the no-hair theorem over time. The Einstein-Yang-Mills
theory [78,79], dilatonic black holes [80], black holes with
Skyrme hairs [81], and black hole hair with tensor vacuum
[82,83] are a few instances of these counterexamples.
The analytical tractability of scalar gravity systems in

three dimensions have made them great laboratories for
discussing the no-hair theorem [27]. It is then natural to
construct and investigate analytic scalar hair black hole
solutions with a well-behaved Coulomb-like structure for
the gauge field using the Einstein-power Maxwell-scalar
gravity system. Such solutions have been obtained in
relatively few systems [84–87]. However, the scalar field
in these hairy solutions depends logarithmically on the
radial coordinate and therefore, diverges at the boundary.
Moreover, the solutions do not asymptote to AdS at
the boundary, thereby severely restricting their potential
applicability.
From the thermodynamic perspective as well, the scalar

hair can change the thermodynamic phase structure of
three-dimensional black holes considerably. In particular,
the black hole temperature exhibits multiple branches in
four and higher dimensions, allowing for the possibility of
phase transitions as the temperature varies. Two prominent
examples of such phase transitions are the Hawking/Page
phase transition between AdS black holes and thermal-AdS
in the grand canonical ensemble and the liquid/gas type
phase transition between small and large black holes in the
fixed charge ensemble, whereas the temperature profile in
BTZ black hole exhibits only one branch, displaying no
phase transitions in both charged and uncharged cases.
However, recently, it was observed that certain three-
dimensional hairy black holes, obtained from the potential
reconstruction technique, can exhibit such phase transitions
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in the presence of nontrivial primary scalar hair [88]. In
particular, it was observed that depending on the coupling
function fðϕÞ between the gauge and scalar field, the
primary scalar hair can greatly influence the phase structure
of three-dimensional black holes and resemble them to that
of higher-dimensional charged AdS black holes.
Since the addition of scalar and gauge fields to Einstein’s

gravity usually generates unexpected and exciting features
in black hole solutions, it is instructive to find new exact
solutions to the Einstein-power Maxwell-scalar gravity
system for arbitrary coupling functions and investigate
how the geometrical and thermodynamical properties of
black holes are altered in the presence of a scalar field. In
particular, it is interesting and desirable to have three-
dimensional primary hair black hole solutions, with not just
a regular profile of the scalar field but also of the gauge
field, as such solutions might have applications in applied
holography. For instance, such solutions can be useful in
the context of (1þ 1)-dimensional holographic supercon-
ductors [89,90]1; regular gauge field solutions could also be
important for holographic Fermi-Luttinger liquids and
Friedel oscillations in two dimensions [91–93]. Such
regular field solutions might also play an important role
in investigating two-dimensional QCD, where the scalar
field plays the role of a running coupling constant in the
dual theory [94].2 This can be important from a theoretical
perspective as well since two-dimensional QCD has been
suggested to be equivalent to a string theory [95].
This paper introduces analytical charged primary hair

black hole solutions in three dimensions with a power
Maxwell field, whose thermodynamic structure is some-
what similar to that of charged AdS black holes in higher
dimensions. We focus on the Einstein-power Maxwell-
scalar gravity system, which has a coupling function fðϕÞ
between the scalar and power Maxwell fields, and use the
potential reconstruction technique [94,96–106] to simulta-
neously solve the coupled Einstein-power Maxwell-scalar
field equations in terms of functions fðϕÞ and AðzÞ (see the
next section for details). The different forms of fðϕÞ and
AðzÞ then allow us to construct a different family of hairy
black hole solutions. To make the analysis and findings
more thorough, we choose three different but physically
motivated forms of the coupling function: (i) fðϕÞ ¼ 1,
(ii) fðϕÞ ¼ eϕ, and (iii) fðϕÞ ¼ eϕ

2=2. While the second
and third coupling functions relate to a nonminimal

coupling between the scalar and gauge fields, the first
coupling function indicates that there is no direct coupling
between them. The primary reason for taking into account
such coupling functions is the fact that they have recently
been thoroughly investigated in a variety of higher-
dimensional hairy black hole contexts, from scalarization
to holographic model construction [107], and have con-
sistently contributed to our understanding of the hairy
aspects of black holes. Therefore, it is intriguing to look
into how these coupling functions affect the geometrical
and thermodynamical features of three-dimensional black
holes as well. We similarly take a particularly simple form
of AðzÞ ¼ −a2z2, which enables us to introduce the
parameter a, which regulates the strength of the scalar field.
For all forms of AðzÞ and fðϕÞ considered here, the

found hairy black hole solutions exhibit many attractive
features. This includes that (i) the scalar field is finite and
well-behaved everywhere in the outer horizon region and
falls off at the asymptotic AdS boundary; (ii) the gauge
field is also finite everywhere outside the horizon; (iii) the
curvature scalars, such as the Kretschmann and Ricci
scalars, are also finite everywhere outside the horizon,
suggesting no additional singularity in the hairy solution
than those already present in the nonhairy case; (iv) these
hairy solutions can be analytically continued to standard
BTZ solution in the limits fa → 0; qe → 0g; and (v) the
potential is bounded from above from its UV boundary
value, thereby satisfying the Gubser criterion to have a
well-defined boundary theory [108].
We then analyze the thermodynamic structure of the

obtained hairy solutions in the canonical and grand-
canonical ensembles and find that it changes significantly
when the hairy parameter a is turned on. In particular, for
all considered coupling functions, and in both canonical
and grand-canonical ensembles, a critical value of the hairy
parameter a ¼ ac appears (which is a fðϕÞ dependent
quantity) above which the hairy black hole undergoes the
Hawking/Page phase transition to thermal-AdS phase,
whereas no such phase transition appears below ac. For
the uncharged qe ¼ 0 case, the Hawking/Page phase
transition exists for all finite values of a. The corresponding
transition temperature also increases monotonically with a.
Moreover, the critical value ac turns out to be a μe and qe
dependent quantity in the grand-canonical and canonical
ensembles respectively, i.e., its magnitude increases as μe
or qe increases. This thermodynamic behavior of the hairy
black hole is therefore analogous to the BTZ black hole for
a < ac whereas it resembles the RN-AdS black hole in the
grand-canonical ensemble for a > ac. Moreover, we find
that these primary hair black holes are also thermodynami-
cally stable as they exhibit positive specific heat.
At this point, we would like to mention that our hairy

solutions correspond to the primary hair. One should in
principle distinguish primary hair from secondary hair
[109]. The secondary hair refers to black hole structures

1Unlike our gravity model, the scalar field is usually charged
under the U(1) gauge field in holographic superconductors.
However, charged AdS black hole can also become unstable
to form neutral condensate [89].

2A different metric Ansaätze (compared to Sec. II) can be
adopted where there is an overall scale factor in the metric. Such
solutions can also exhibit the Hawking/Page phase transition on
the gravity side, which can be used to probe confined/deconfined
phase transition in dual two-dimensional QCD. Such solutions
will be studied elsewhere in great detail.
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which exist solely as the result of (well-known) primary
hair such as gauge charges and hence are not really new
characteristics, i.e., a primary hair endows a black hole with
a new independent parameter (or the quantum number)
whereas the secondary hair does not [79]. The charged
dilaton black hole solutions [110,111] are examples of
secondary hair, where nontrivial scalar field configuration
is sourced by the electric charge (primary hair). The
existence of secondary hair, therefore, does not really
violate the no-hair theorem. In our work, the scalar hair
is not sourced by the gauge field and can be continuously
tuned to get the BTZ or charged BTZ solution in the limit
a → 0. It must also be stressed that the overwhelming
majority of hairy black holes existing in literature usually
possess a secondary hair, and solutions with primary hair
are rare. See [109,112–114], for a few other cases where
black hole solutions with primary hair were discussed.
The paper is structured as follows: In Sec. II, we discuss

the three-dimensional Einstein-power Maxwell-scalar grav-
ity model and present its analytic solution in terms of two
functions fðϕÞ and AðzÞ. In Sec. III, we study the
geometrical and thermodynamical properties of hairy black
hole solution for the coupling fðϕÞ ¼ 1. In Secs. IVand V,
we repeat the calculations with different couplings
fðϕÞ ¼ eϕ, and fðϕÞ ¼ eϕ

2=2. In Sec. VI, we calculate

the conserved mass of the black hole and establish the
primary nature of the scalar hair. Finally, in Sec. VII, we
conclude and summarize our results.

II. HAIRY CHARGED BLACK HOLE SOLUTION

To construct hairy-charged black holes with power
Maxwell-like electrodynamics in three dimensions, we
start with the following gravity action:

S ¼ −
1

16πG3

Z
d3x

ffiffiffiffiffiffi
−g

p �
R −

1

2
gμν∂μϕ∂νϕ

− VðϕÞ þ fðϕÞ
4

ðsF Þ34
�
; ð2:1Þ

where R denotes the Ricci scalar of the three-dimensional
manifoldM, VðϕÞ is the potential of the scalar fieldϕ, fðϕÞ
corresponds to the coupling between the gauge and scalar
fields, andFμν is the field strength tensor. In terms of the four-
potential Bμ, Fμν is expressed as Fμν ¼ ∂μBν − ∂νBμ. Note
that, as discussed in the Introduction, the electromagnetic
part of the action is traceless.
The variation of Eq. (2.1) gives the following Einstein,

gauge, and scalar field equations:

RMN −
1

2
gMNRþ 1

2

�
gMN

2
∂Pϕ∂

Pϕ − ∂Mϕ∂Nϕþ gMNVðϕÞ
�
þ fðϕÞ

4
ðsF Þ−1

4

�
−
gMN

2
ðsF Þ þ 3

2
ðsFMPFN

PÞ
�

¼ 0; ð2:2Þ

∂μ½
ffiffiffiffiffiffi
−g

p
fðϕÞðsF Þ−1

4Fμν� ¼ 0; ð2:3Þ

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
∂
μϕ� þ 1

4
f0ðϕÞðsF Þ34 ¼ ∂VðϕÞ

∂ϕ
; ð2:4Þ

where f0ðϕÞ denotes the derivative of the coupling function
with respect to the field ϕ. We consider the following
Ansaätze for the metric, scalar field, and gauge field to
construct a static and spherically symmetric (S1) hairy
black hole solution in three dimensions:

ds2 ¼ L2

z2

�
−gðzÞdt2 þ e2AðzÞdz2

gðzÞ þ dθ2
�
;

ϕ ¼ ϕðzÞ; Bμ ¼ BtðzÞδtμ; ð2:5Þ

where AðzÞ is the form factor, whose form will be crucial in
determining the hairy black hole solution and the corre-
sponding thermodynamics, L is the AdS length scale,
which we will set to one from here on for simplicity,
and gðzÞ is the blackening function. The radial coordinate z
ranges from z ¼ 0 (asymptotic boundary) to z ¼ zh (black

hole horizon radius) or to z ¼ ∞ for thermal-AdS (without
horizon).
There is only one nonzero component of Faraday’s

tensor in the geometry defined by (2.5), and that is
Ftz ¼ −B0

tðzÞ. So we can write F ¼ 2F2
tzgttgzz ¼

2B02
t ðzÞgttgzz. As a result, we set s ¼ −1 to have real

solutions for the gauge field while considering the electro-
magnetic Lagrangian’s fractional power and maintaining
generality. Now using Eq. (2.3), we get

Ftz ¼ −B0
tðzÞ ¼ −

ffiffiffi
2

p
qeeAðzÞ

fðϕÞ2 ; ð2:6Þ

where qe is an integration constant related to the charge of
the black hole (see below). Similarly, by substituting (2.5)
into (2.2), we get the following three Einstein equations of
motion:

tt≡ g0ðzÞ − gðzÞ
�
2

z
þ 2A0ðzÞ þ 1

2
zϕ0ðzÞ2

�

−
VðϕÞe2AðzÞ

z
−
fðϕÞe2AðzÞðsF Þ34

8z
¼ 0; ð2:7Þ
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zz≡ g0ðzÞ − gðzÞ
�
2

z
−
1

2
zϕ0ðzÞ2

�
−
VðϕÞe2AðzÞ

z
−
fðϕÞe2AðzÞðsF Þ34

8z
¼ 0; ð2:8Þ

θθ≡ g00ðzÞ − g0ðzÞ
�
2

z
þ A0ðzÞ

�
þ gðzÞ

�
2

z2
þ 2A0ðzÞ

z
þ 1

2
ϕ0ðzÞ2

�
þ VðϕÞe2AðzÞ

z2
−
fðϕÞe2AðzÞðsF Þ34

4z2
¼ 0: ð2:9Þ

The above three equations can be further rearranged into the following equations:

g00ðzÞ − g0ðzÞ
�
1

z
þ A0ðzÞ

�
−
3fðϕÞe2AðzÞðsF Þ34

8z2
¼ 0; ð2:10Þ

ϕ0ðzÞ2
2

þ A0ðzÞ
z

¼ 0; ð2:11Þ

g00ðzÞ − g0ðzÞ
�
3

z
þ A0ðzÞ

�
þ gðzÞ

�
4

z2
þ 2A0ðzÞ

z

�
2VðϕÞe2AðzÞ

z2
−
fðϕÞe2AðzÞðsF Þ34

8z2
¼ 0: ð2:12Þ

Similarly, the scalar field equation of motion is given by

ϕ00ðzÞ − ϕ0ðzÞ
�
A0ðzÞ − g0ðzÞ

gðzÞ þ
1

z

�
−

e2AðzÞ

z2gðzÞ
∂VðϕÞ
∂ϕ

−
e2AðzÞðsF Þ3=4

4z2gðzÞ
∂fðϕÞ
∂ϕ

¼ 0: ð2:13Þ

Therefore, overall, we have five equations of motion in the
gravity system of Eq. (2.1). However, only four of them are
independent. It can be explicitly checked that the last
Eq. (2.13) follows from the Bianchi identity and is therefore
redundant. Below we will choose Eq. (2.13) as a con-
strained equation and consider the rest of the equations as
independent. We now impose the following boundary
conditions to solve these equations:

gð0Þ ¼ 1; and gðzhÞ ¼ 0;

Btð0Þ ¼ μe; and BtðzhÞ ¼ 0;

Að0Þ ¼ 0: ð2:14Þ

The boundary conditions at z ¼ 0 are chosen to ensure that
the spacetime asymptotes to AdS at the boundary. The
parameter μe is the leading term of the near boundary
expansion of the gauge field BtðzÞ and corresponds to the
chemical potential of the theory. Using Gauss’s theorem,
we can also find a relation between μe and the electric
charge of the black hole (see the discussion below). In
addition to these boundary conditions, we further require
that the scalar field goes to zero at the boundary ϕð0Þ ¼ 0
and must remain real throughout the bulk.
Using the above boundary conditions and solving

Eq. (2.6), we get the following solution for the gauge field:

BtðzÞ ¼
ffiffiffi
2

p
qe

Z
zh

z
dξ

eAðξÞ

f2ðξÞ : ð2:15Þ

Similarly, by solving Eq. (2.10), the solution for gðzÞ is

gðzÞ ¼ C1 þ
Z

z

0

dξeAðξÞξ½C2 þKðξÞ�; ð2:16Þ

where

KðξÞ ¼ 3q3=2e

2
ffiffiffi
2

p
Z

dξ
eAðξÞ

f2ðξÞ ; ð2:17Þ

where the integration constants C1 and C2 are

C1 ¼ 1; C2 ¼ −
1þ R zh

0 dξeAðξÞξKðξÞR zh
0 dξeAðξÞξ

: ð2:18Þ

The expression of scalar field ϕ can be similarly found by
solving Eq. (2.11):

ϕðzÞ ¼
Z

dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2A0ðzÞ

z

r
þ C3; ð2:19Þ

where C3 can be obtained by demanding ϕ to vanish near
the asymptotic boundary, i.e., ϕjz¼0 → 0. Lastly, the
potential V can be found from Eq. (2.12),
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VðzÞ ¼ 1

16
e−2AðzÞð8z2A0ðzÞ þ 24zÞg0ðzÞ þ 1

16
e−2AðzÞgðzÞð−16zA0ðzÞ − 32Þ

þ z3fðzÞðe−2AðzÞB0
tðzÞ2Þ3=4

8
ffiffiffi
24

p −
1

2
z2e−2AðzÞg00ðzÞ: ð2:20Þ

It is thus clear that Eqs. (2.15)–(2.20) exhibit a closed-form
analytic solution of the gravity system of Eq. (2.1) in
(2þ 1)-dimensions in terms of two functions AðzÞ and
fðzÞ. The constructed hairy solution will depend only on
AðzÞ once the coupling function fðϕÞ is fixed. However,
different forms of AðzÞ and fðϕÞ will correspond to
different VðzÞ, i.e., various AðzÞ and fðϕÞ will ascribe
to different (2þ 1)-dimensional hairy black hole solutions.
Therefore, by selecting different forms of AðzÞ and fðϕÞ,
one may systematically construct a vast family of physi-
cally permissible primary hair charged black hole solutions
for the Einstein-power Maxwell-scalar gravity system in
(2þ 1) dimensions.
In the context of applied gauge/gravity duality, the forms

of AðzÞ and fðϕÞ are often determined or fixed by
demanding a sensible dual boundary field theory. In
particular, suitable forms of AðzÞ and fðϕÞ are typically
taken depending on the sort of boundary field theory one is
interested in. For instance, in the field of holographic QCD,
the forms of these functions are typically fixed by requiring
the dual boundary field theory to exhibit genuine QCD
characteristics, such as confinement/deconfinement phase
transition [115–117], confinement in the quark sector,
linear Regge trajectory for the excited meson mass spec-
trum, etc. In such model-building cases, the form AðzÞ ¼
−a2z2 is generally considered [94,101,103].
However, we can also take a more liberal and phenom-

enological approach and investigate various physically
motivated forms of AðzÞ and fðϕÞ to thoroughly discuss
the effects of scalar hair and make qualitative arguments
about the stability and thermodynamics of the hairy-charged
black holes in three dimensions with Maxwell-like electro-
dynamics, without worrying too much about the dual
boundary field theory. Here, we take such an approach. In
particular, we take three physically motivated forms of the
coupling function: (i) fðϕÞ ¼ 1; (ii) fðϕÞ ¼ eϕ; and
(iii) fðϕÞ ¼ eϕ

2=2. As mentioned earlier, these three types
of couplings have recently received a lot of attention in
several contexts involving hairy black holes; for example, see
[107]. It is, therefore, interesting to examine how these
coupling functions influence the hairy black hole structure in
three dimensions as well. Similarly, following [96], we focus
on a particularly straightforward form of AðzÞ ¼ −a2z2. In
addition to being simpler, this form of AðzÞ is particularly
chosen as it gives usmore control over the integrals that show
up in the solutions of various geometric functions discussed
above. This form of AðzÞ has also been widely employed in

the holographic QCD literature; for instance, see [94,101].
With the considered form of AðzÞ ¼ −a2z2, the parameter a
determines the strength and backreaction of the scalar field.
As a result, the scalar field backreaction drops to zero when
the parameter a goes to zero. Thus, as desired, one returns to
the charged BTZ black-hole-like solution withMaxwell-like
electrodynamics in the limit a → 0.
There are also other important reasons for taking the

above-mentioned forms of fðϕÞ and AðzÞ:
(1) They ensure that the obtained hairy solution asymp-

totes to AdS, i.e., at the boundary z → 0, we have

VðzÞjz→0 ¼ −
2

L2
þm2ϕ2

2
þ…;

VðzÞjz→0 ¼ 2Λþm2ϕ2

2
þ…; ð2:21Þ

where, as usual, Λ ¼ − 1
L2 is the negative cosmo-

logical constant in three dimensions. Similarly, the
Ricci scalar R approaches −6=L2 asymptotically.
This, together with the fact that gðzÞjz→0 ¼ 1, indeed
ensures that the obtained solutions asymptote to AdS
at the boundary. Moreover, the mass of the scalar
field m2 ¼ −1 also satisfies the Breitenlohner-
Freedman bound for stability in AdS space, i.e.,
m2 ≥ −1 [118].

(2) Furthermore, as we will show shortly, the hairy
solutions satisfy the Gubser criterion to have a well-
defined dual boundary field theory [108].

(3) These forms of fðzÞ and AðzÞ also ensure that the
null energy condition is always respected in our
gravity model. The null energy condition can be
expressed as

TMNNMN N ≥ 0; ð2:22Þ
where the null vector NM satisfies the condition
gMNNMN N ¼ 0 and TMN is the energy-momentum
tensor of the matter fields. The null vector NM can
be chosen as

NM ¼ 1ffiffiffiffiffiffiffiffiffi
gðzÞp N t þ cos α

ffiffiffiffiffiffiffiffiffi
gðzÞp

eAðzÞ
N z þ sin αN θ;

ð2:23Þ

for arbitrary parameter α. The null energy condition
then becomes
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TMNNMN N ¼ 3zfðzÞsin2αðe−2AðzÞB0
tðzÞ2Þ3=4

8
ffiffiffi
24

p

þ 1

2
e−2AðzÞgðzÞcos2αϕ0ðzÞ2 ≥ 0;

ð2:24Þ

which is always satisfied everywhere outside the
horizon for the chosen forms of AðzÞ and fðϕÞ.

Now that the hairy black hole solutions have been con-
structed, let us write down the expressions for various
thermodynamic quantities. This will be useful later in
discussing hairy black hole thermodynamics. The black
hole temperature (T) and entropy (SBH) are given by

T ¼ −
e−AðzhÞg0ðzhÞ

4π
;

SBH ¼ A
4G3

¼ 2π

4G3zh
; ð2:25Þ

where A ¼ 2π=zh is the area of the event horizon.
Similarly, we can compute the electric charge Q of the
black hole by measuring the flux of the electric field at the
boundary,

Qe ¼
3

16πG3

Z
fðϕÞ
4

ðsF Þ−1
4Fμνuμnνdθ; ð2:26Þ

where uμ and nν are the unit spacelike and timelike normals
to the constant radial surface, respectively,

uμ ¼ 1ffiffiffiffiffiffiffiffi−gtt
p δμt ¼

z

L
ffiffiffiffiffiffiffiffiffi
gðzÞp δμt ;

nν ¼ 1ffiffiffiffiffiffi
gzz

p δνz ¼
z

ffiffiffiffiffiffiffiffiffi
gðzÞp

LeAðzÞ
δνz; ð2:27Þ

and dθ represents the integration across the one-
dimensional boundary space. Using (2.6), and after sim-
plification, we obtain the following expression of the black
hole charge:

Qe ¼
3

ffiffiffiffiffi
qe

p
64πG3

: ð2:28Þ

We can also find a relation between the electric charge and
the corresponding conjugate chemical potential μe. The
chemical potential is the leading term of the near boundary
expansion of the gauge field BtðzÞ. Substituting BtðzÞ from
Eq. (2.15) into Eq. (2.6), we get

μe ¼
ffiffiffi
2

p
qe

Z
zh

0

dξ
eAðξÞ

f2ðξÞ : ð2:29Þ

With hairy black hole solution in hand, let us also mention
that there exists another solution to the gravity equations of
motion. This solution does not exhibit the horizon and is
called thermal AdS.3 The thermal-AdS solution can be
derived from the black hole solution by taking the limit
zh → ∞. Depending on the nature of AðzÞ, the thermal AdS
may have a nontrivial structure in the bulk. However, due to
the imposed boundary conditions (2.14), and just like in the
case of black hole solution, it always asymptotes to AdS at
the boundary. Intriguingly, as we shall show later, depend-
ing on the magnitudes of a and fμe; qeg, there may also be
a Hawking/Page type thermal-AdS/black hole phase tran-
sition between these two solutions.

III. HAIRY BLACK HOLE SOLUTION WITH
COUPLING f ðϕÞ= 1

In this section, we will first look at the geometric and
thermodynamic properties of the hairy black hole solution
for the simplest coupling function fðϕÞ ¼ 1. With the
considered form factor AðzÞ ¼ −a2z2, the solution for the
scalar field is

ϕðzÞ ¼ 2az: ð3:1Þ

From the Eq. (2.6), we have Ftz ¼ −
ffiffiffi
2

p
qee−a

2z2 . This gives
us the gauge field solution

BtðzÞ ¼
ffiffiffi
π

p
qeðerfðazhÞ − erfðazÞÞffiffiffi

2
p

a
; ð3:2Þ

where erf is the error function. Notice that the scalar field
vanishes in the limit a → 0. Similarly, in the limit a → 0,
the gauge field also reduces to

BtðzÞ ¼
ffiffiffi
2

p
qeðzh − zÞ; ð3:3Þ

indicating that the electrodynamics employed here in three
dimensions for a nonhairy black hole is Maxwellian type.
Using Eq. (2.29), we can further find the relation between
μe and qe:

qe ¼
ffiffiffi
2

π

r
aμe

erfðazhÞ
: ð3:4Þ

Now, Using the Eq. (2.10), we have the following solution
for gðzÞ:

3We will refer to this without horizon solution as thermal AdS
here for convenience, even though this solution does not have a
constant curvature throughout the spacetime.
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gðzÞ ¼ 1 − ea
2ðz2h−z2Þ

1 − ea
2z2h

þ 3
ffiffiffi
π

p
e−a

2z2q3=2e ðea2z2erfð ffiffiffi
2

p
azÞ − ffiffiffi

2
p

erfðazÞÞ
16a3

þ 3
ffiffiffi
π

p
e−a

2z2ðea2z2 − 1Þq3=2e ð ffiffiffi
2

p
erfðazhÞ − ea

2z2herfð ffiffiffi
2

p
azhÞÞ

16a3ðea2z2h − 1Þ : ð3:5Þ

Note that in the limit a → 0, this expression reduces to the
charged black hole expression found in [26] with a
Maxwell-like potential, i.e.,

gðzÞ ¼ 1 −
z2

z2h
−
z2zhq

3=2
e

2
ffiffiffi
2

p þ z3q3=2e

2
ffiffiffi
2

p : ð3:6Þ

Similarly, we have calculated VðzÞ, but since it is rather
long and not very informative, we prefer not to write it
down here for brevity.
In Fig. 1, the radial profile of gðzÞ, Kretschmann scalar

RμνρσRμνρσ, scalar field, and the potential is shown for
different values of scalar hair parameter a. Note that, at
z ¼ zh, gðzÞ changes its sign, indicating the presence of a
horizon. This is true for all values of a. Similarly, the Ricci
and Kretschmann scalars are finite everywhere outside the
horizon. The curvature singularity appears only at
z¼ 1=r¼∞, which is shielded by the horizon. Therefore,
there is no additional singularity in the hairy black hole case

than those already present at the nonhairy-charged BTZ
black hole. Note that in the usual three-dimensional Einstein-
Maxwell gravity system, the curvature is constant throughout
the spacetime for the uncharged BTZ case. The curvature
singularity arises only when the charge is added. The same is
true for the Einstein-power Maxwell gravity system.
However, in the presence of scalar hair, the curvature
singularity can arise even when the charge is zero, i.e., the
strength of the singularity increases with the scalar hair. In
particular, RμνρσRμνρσ ∝ z2 for the charged BTZ case,
whereas RμνρσRμνρσ ∝ z6 for the hairy case of fractional
power law electrodynamics employed here. This can be
clearly observed in Fig. 1(b). Interestingly, compared to the
Einstein-Maxwell-scalar gravity system, where there is an
additional logarithmic singularity at the center of the black
hole (RμνρσRμνρσ ∝ z6 log z) [88], the strength of the singu-
larity is milder in the case of Einstein-power Maxwell-scalar
gravity system where no such logarithmic singularity arises.
This is expected considering that the gauge field gives log z

(a) (b)

(c) (d)

FIG. 1. The nature of gðzÞ, RμνρσRμνρσ , ϕðzÞ, and VðzÞ for different values of hairy parameter a. Here zh ¼ 3.0 and qe ¼ 0.15 are used.
Red, green, blue, brown, orange, and cyan curves correspond to a ¼ 0; 0.1; 0.2; 0.3; 0.4, and 0.5, respectively.
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contribution to gðzÞ, thereby giving additional log z contri-
butions to the curvature scalars in the Einstein-Maxwell
theory, whereas no such contribution arises in the Einstein-
power Maxwell theory.
Also, the scalar field is finite and real everywhere at and

outside the horizon and only goes to zero at the asymptotic
boundary. This suggests the presence of a well-behaved
hairy black hole solution with Maxwell-like electrodynam-
ics in three dimensions. In the outer horizon area, the
potential is similarly regular and limited. The potential
asymptotes to Vðz ¼ 0Þ ¼ −2=L2 at the boundary for all a
and qe. Moreover, provided that the charge qe is not too
large, the potential is also bounded from above by its UV
boundary value, i.e., Vð0Þ ≥ VðzÞ, hence satisfying the
Gubser criterion to have a well-defined boundary field
theory [108]. However, the said criterion can be violated for
higher values of qe ≳ 5. In the rest of the work, we will
concentrate on only those parameter values for which the
Gubser criterion is respected.
Now, let us discuss the thermodynamics of the black

hole. For fðϕÞ ¼ 1, the expression of the black hole
temperature is given by

T ¼ a2zhea
2z2h

2πðea2z2h − 1Þ

þ q3=2e zhea
2z2hð3 ffiffiffi

π
p

erfð ffiffiffi
2

p
azhÞ − 3

ffiffiffiffiffiffi
2π

p
erfðazhÞÞ

32πaðea2z2h − 1Þ :

ð3:7Þ
The aforementioned expression smoothly reduces to the
typical charged BTZ-like expression in the limit when
a → 0, i.e.,

Tja→0 ¼
1

2πzh
−
q3=2e z2h
8

ffiffiffi
2

p
π
; ð3:8Þ

which also indicates that the black hole can become
extremal when the charge is added to the system, as
opposed to the uncharged case.
Let us first discuss the black hole thermodynamics in the

grand-canonical ensemble. Figure 2 illustrates the temper-
ature variation with regard to the (inverse) horizon radius zh
for various values of hairy parameter a. Here we have kept
μe ¼ 0 fixed, which is also equivalent to qe ¼ 0. Observe
that for a ¼ 0 (red line), there is only one black hole phase.
The temperature of this phase decreases with zh and has a
positive specific heat. Correspondingly, this black hole
phase is thermodynamically stable. The local thermody-
namic stability of the hairy black holes will be discussed
shortly. This is an expected result considering that for
a ¼ 0 and μe ¼ 0, our hairy solution reduces to the stable
uncharged BTZ black hole, which is thermodynamically
stable at all temperatures.

The thermodynamic structure changes drastically when
the hairy parameter a is switched on. With finite a, there are
now two black hole phases at a fixed temperature: a small
phase (unstable) and a large phase (stable). These stable
and unstable phases are marked by ① and ②, respectively, in
Fig. 2. While the temperature increases with zh for the
small-unstable black hole phase, it falls with zh for the
large-stable black hole phase (cyan line). The appearance of
the small-unstable phase can also be analytically noticed
from Eq. (3.7). Observe that for μe ¼ 0, the second term
vanishes, and only the first term contributes to the temper-
ature, and this first term increases with zh for large zh.
Interestingly, unlike the uncharged BTZ black hole, the
uncharged hairy black hole phases exist only above a
certain minimum temperature Tmin, i.e., below Tmin, the
hairy black hole phases cease to exist and leaving the
thermal-AdS solution as the only remaining feasible phase.
This is true for all finite values of a. Importantly, as it
generally happens, the occurrence of multivaluedness of the
temperature also indicates a possible phase transition in the
hairy context.
To further investigate the global thermodynamic stabil-

ities of the above-discussed hairy black hole phases, we
need to study their free energy behavior. The Gibbs free
energy G at a fixed potential in differential form is related to
the black hole entropy as

dG ¼ −SBHdT; ð3:9Þ

which can be used to compute the free energy difference
between the black hole and thermal-AdS phases,

ΔG ¼ −
Z

SBHdT ¼ −
Z

zh

zΛ¼∞
SBH

dT
dzh

dzh: ð3:10Þ

FIG. 2. Hawking temperature T as a function of horizon radius
zh for various values of a. Here μe ¼ 0 is used. Red, green, blue,
brown, orange, and cyan curves correspond to a ¼ 0; 0.1;
0.2; 0.3; 0.4, and 0.5, respectively.
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In Fig. 3, the Gibbs free energy of the hairy black hole
phases is shown.4 The color pattern used here is identical to
Fig. 2. We observe that for all finite values of a, there
appears a transition temperature THP at which the Gibbs
free energy changes its sign. It suggests the occurrence of a
well-known Hawking/Page type phase transition between
an uncharged large-stable hairy black hole phase and the
thermal-AdS phase at THP. Accordingly, below THP ther-
mal AdS is thermodynamically favored, whereas above
THP large hairy black hole is thermodynamically favored.
Also, the free energy of the small-unstable black hole phase
is always higher than the large-stable black hole phase,
indicating that the small-unstable black hole phase is
always thermodynamically disfavored for the large-stable
black hole phase.
The above thermodynamic structure of the hairy black

hole gets more interesting as the chemical potential is
turned on. Depending upon the relative magnitudes of μe
and a, not only the hairy black hole can become extremal,
but it can also exist in one or two phases. This is illustrated
in Fig. 4. Here, we have presented the results for a
particular value of a ¼ 0.2; however, analogous results
appear for other values of a as well. For small μe, like in the
μe ¼ 0 case, there again appear two black hole phases
above Tmin, with the large black hole phase (indicated by①)
being thermodynamically more favored and stable com-
pared to the small black hole phase (indicated by ②) at all
temperatures T > Tmin. Therefore, for small μe, there again
occurs a Hawking/Page phase transition between the large
hairy black hole and thermal-AdS phases. This is illustrated
in Fig. 5, where one can clearly observe a sign change in the
Gibbs free energy as the temperature is varied. However,
for large μe, this phase transition ceases to exit. For large μe,

there exists only one stable black hole phase which
becomes extremal at some horizon radius zexth (cyan line),
and the free energy of this black hole phase is always
smaller than the thermal AdS. This result is completely
analogous to the charged BTZ black hole. For the nonhairy-
charged BTZ black hole (with Coulomb-like potential), the
extremal horizon radius can be found from Eq. (3.8). It
occurs at zexth ¼ 4ð2Þ1=6=μe, whereas for the hairy black
hole case, the magnitude of this zexth increases with a. These
results further imply that irrespective of the temperature, at
least one black hole phase always exists and remains stable
for the charged case when μe is relatively large. Our whole
analysis, therefore, suggests that for a fixed value of a,
there exists a critical chemical potential μce below which the
Hawking/Page phase transition between the thermal-AdS
and hairy black hole phases takes place, whereas no such
phase transition appears above μce.

FIG. 3. The Gibbs free energy difference ΔG as a function of T
for various values of a. Here μe ¼ 0 is used. Red, green, blue,
brown, orange, and cyan curves correspond to a ¼ 0; 0.1;
0.2; 0.3; 0.4, and 0.5, respectively.

FIG. 4. Hawking temperature T as a function of horizon radius
zh for various values of chemical potential μe. Here, a ¼ 0.2 is
used. Red, green, blue, brown, orange, and cyan curves corre-
spond to μe ¼ 0; 0.2; 0.4; 0.6; 0.8, and 1.0, respectively.

FIG. 5. The Gibbs free energy difference ΔG as a function of T
for various values of chemical potential μe. Here a ¼ 0.2 is used.
Red, green, blue, brown, orange, and cyan curves correspond to
μe ¼ 0; 0.2; 0.4; 0.6; 0.8, and 1.0, respectively.

4Here, we have taken the upper limit of integration zΛ ¼ 106 in
the numerical computation.
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We further investigate the dependence of THP on a and
μe. Figures 6 and 7 depict the overall dependence of THP on
these variables. Our finding shows that when a increases,
THP shows a monotonically rising tendency. Specifically,
the transition temperature rises with awhile falling with μe.
Although THP rises with a for every μe, it should be noted
that, unlike the μe ¼ 0 case, the slope of the a vs THP line is
not constant for finite μe. Our results, therefore, suggest that
the possibility of Hawking/Page phase transition in the
hairy context increases for large a and small μe values. It
also implies that for large chemical potential, one needs a
higher value of a to observe the Hawking/Page phase
transition. This, in turn, implies the existence of critical
hairy parameter ac below which no Hawking/Page phase
transition takes place in the fixed μe grand-canonical
ensemble.

Having discussed the thermodynamic structure of the
hairy black hole in the grand-canonical ensemble, we now
move on to discuss it in the canonical ensemble. We find
that the thermodynamic results in the canonical ensemble
are quite similar to the grand-canonical ensemble. The case
qe ¼ 0 ¼ μe is already discussed above. The results for
finite qe are shown in Figs. 8 and 9. In the canonical
ensemble as well, depending upon the magnitude of a,
there appear two black hole phases for small qe, whereas
only one black hole phase appears for large qe. While the
temperature increases with zh for the unstable black hole
phase, it falls with zh for the stable black hole phase. The
temperature expression shows that for qe ≠ 0 and very
small values of a, there is only one stable branch of the
black hole, and it becomes extremal at some horizon radius
zexth (orange and cyan lines). These findings also suggest
that, for the fixed charged case, at least one stable black
hole branch always exists when a is relatively small. While
keeping qe fixed, the temperature starts to rise with zh for

FIG. 6. Hawking/Page phase transition temperature THP as a
function of a for various values of chemical potential μe. Red,
green, blue, brown, orange, and cyan curves correspond to
μe ¼ 0; 0.2; 0.4; 0.6; 0.8, and 1, respectively. The black dots
indicate the critical hairy parameter ac.

FIG. 7. Hawking/Page phase transition temperature THP as a
function of chemical potential μe for various values of a. Red,
green, blue, brown, orange, and cyan curves correspond to
a ¼ 0.1; 0.2; 0.3; 0.4; 0.5, and 0.6, respectively. The black dots
indicate the critical chemical potential μce.

FIG. 8. Hawking temperature T as a function of horizon radius
zh for various values of charge qe. Here, a ¼ 0.3 is used. Red,
green, blue, brown, orange, and cyan curves correspond to
qe ¼ 0; 0.1; 0.2; 0.3; 0.4, and 0.5, respectively.

FIG. 9. The Helmholtz free energy difference ΔF as a function
of T for various values of charge qe. Here a ¼ 0.3 is used. Red,
green, blue, brown, orange, and cyan curves correspond to
qe ¼ 0; 0.1; 0.2; 0.3; 0.4, and 0.5, respectively.
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large a values. Notably, the hairy black hole phases are
restricted to temperatures over a certain threshold Tmin, in
contrast to the BTZ black hole. This suggests the possibility
of Hawking/Page transition between large hairy black hole
phase and thermal AdS as a increases in the canonical
ensemble as well. This is indeed the case, as can be
explicitly observed from the free energy behavior shown
in Fig. 9. The Helmholtz free energy difference between the
black hole and thermal-AdS phases can be computed from
the analogous differential first law,

dF ¼ −SBHdT;

ΔF ¼
Z

zΛ¼∞

zh

SBH
dT
dzh

dzh: ð3:11Þ

The transition temperatureTHP again depends nontrivially
on a and qe. Figures 10 and 11 show the full illustration of
this dependency. Our analysis shows that when a changes,
THP shows amonotonically rising tendency. Specifically, the
transition temperature rises with a while falling with qe.
Although THP rises with a for every qe, it should be noted
that, unlike the situation where qe ¼ 0, the slope of the a vs
THP line is not constant for qe ≠ 0. Overall, our analysis
suggests that there exists a critical value ac of the hairy
parameter in the fixed charge ensemble as well. The charged
hairy black hole undergoes the Hawking/Page phase tran-
sition above this critical value,while below ac, no such phase
transition takes place.5

Let us emphasize that the obtained hairy black holes are
also locally stable. The local stability corresponds to the
response of the equilibrium system under a small fluctuation
in thermodynamical variables and is established by the
positivity of the specific heat at a constant chemical potential
Cμe ¼ Tð∂SBH=∂TÞjμe or charge Cqe ¼ Tð∂SBH=∂TÞjqe in
the grand-canonical and canonical ensembles, respectively.
Since SBH ∝ z−1h , it is straightforward to see from Figs. 2 and
8 that the slope of the SBH − T plane is always positive in the
thermodynamically favored hairy black hole phase ①.
Accordingly, Cμe > 0 and Cqe > 0 in the favored hairy
black hole phase, indicating the local stability of hairy black
holes. Similarly, Cμe and Cqe are negative in the thermody-
namically disfavored hairy black hole phase ②.

IV. HAIRY BLACK HOLE SOLUTION WITH
COUPLING f ðϕÞ= eϕ

In this section, we investigate the geometrical and
thermodynamical structure of the charged hairy black hole
solutions for the exponential coupling function fðϕÞ ¼ eϕ.
The form of AðzÞ ¼ −a2z2 is the same as in the previous
section. Therefore, the solution of the scalar field will
remain the same. This indicates that the scalar field remains
regular, finite, and well behaved everywhere outside the
horizon for this coupling as well. From the Eq. (2.6), we get
the gauge field solution

BtðzÞ ¼
qe

ffiffiffi
π

p
e4ffiffiffi

2
p

a
ðerfð2þ azhÞ − erfð2þ azÞÞ; ð4:1Þ

with relation between μe and qe as

qe ¼
ffiffiffi
2

π

r
aμe

e4ðerfð2þ azhÞ − erfð2ÞÞ : ð4:2Þ

FIG. 10. Hawking/Page phase transition temperature THP as a
function of a for various values of qe. Red, green, blue, brown,
orange, and cyan curves correspond to qe ¼ 0; 0.2; 0.4; 0.6; 0.8,
and 1.0, respectively. The black dots indicate the critical hairy
parameter ac.

FIG. 11. Hawking/Page phase transition temperature THP as a
function of qe for various values of a. Red, green, blue, brown,
orange, and cyan curves correspond to a ¼ 0.1; 0.2; 0.3; 0.4; 0.5,
and 0.6, respectively. The black dots indicate the critical
charge qce.

5Here we like to emphasize that the Helmholtz free energy
difference cannot be computed from Eq. (3.11) for nonhairy
black holes corresponding to a → 0. This is because the integrand
in Eq. (3.11) contains z3h and log zh terms which give diverging
contributions to the free energy difference in the upper limit of
integration. For this reason, here as well as in the subsequent
sections, we discuss thermodynamic results only for the hairy
case in the canonical ensemble.
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Notice that in the limit a → 0, BtðzÞ again reduces to the Coulomb-like potential. In a similar manner, we obtain the
following expression for gðzÞ:

gðzÞ ¼ 1 − ea
2ðz2h−z2Þ

1 − ea
2z2h

þ 3
ffiffiffi
π

p
q3=2e ð ffiffiffi

2
p

e2erfð2Þ − erfð ffiffiffi
2

p ÞÞe2−a2z2ðea2z2h−ea2z2 Þ
16a3ðea2z2h − 1Þ

þ 3q3=2e
ffiffiffi
π

p
e4−a

2z2ðea2z2 − 1Þerfð2þ azhÞ
8

ffiffiffi
2

p
a3ðea2z2h − 1Þ þ 3e2

ffiffiffi
π

p
q3=2e erfð ffiffiffi

2
p ðazþ 1ÞÞ

16a3

−
3q3=2e

ffiffiffi
π

p ðea2z2 − 1Þe2þa2z2h−a
2z2erfð ffiffiffi

2
p ðazh þ 1ÞÞ

16a3ðea2z2h − 1Þ −
3

ffiffiffi
π

p
e4−a

2z2q3=2e erfð2þ azÞ
8

ffiffiffi
2

p
a3

; ð4:3Þ

which again, under the limit a → 0, reduces to the standard
charged BTZ black-hole-like expressions with Coulomb-
like potential. In Fig. 12, the behavior of gðzÞ and the
Kretschmann scalar RμνρσRμνρσ is illustrated. The spacetime
exhibits a horizon at zh and does not contain any additional
singularity, thereby emphasizing the well-behaved nature
of the obtained hairy solution. The Ricci scalar is similarly
finite and well behaved everywhere outside the horizon.
The hair parameter again nontrivially modifies the
Kretschmann and Ricci scalars, implying that the spacetime
curvature depends nontrivially on the hairy parameter and
is no longer a constant. Similarly, the potential asymptotes
to a constant value VðzÞjz→0 ¼ 2Λ at the AdS boundary and
is bounded from above.
Let us now talk about the thermodynamics of this black

hole. For the coupling function fðϕÞ ¼ eϕ, the expression
of the black hole temperature is

T¼ a2zhea
2z2h

2πðea2z2h −1Þþ
3q3=2e zhea

2z2hþ4ðerfð2Þ−erfðazhþ2ÞÞ
16

ffiffiffiffiffiffi
2π

p
aðea2z2h −1Þ

þ3q3=2e zhea
2z2hþ2ðerfð ffiffiffi

2
p ðazhþ1ÞÞ− erfð ffiffiffi

2
p ÞÞ

32
ffiffiffi
π

p
aðea2z2h −1Þ ; ð4:4Þ

which also reduces to Eq. (3.8) in the limit a → 0 and to the
uncharged BTZ expression in the limit a → 0 and qe → 0.
Let us again first discuss the black hole thermodynamics

in the grand-canonical ensemble. The thermodynamic
structure of the hairy black hole with fðϕÞ ¼ eϕ coupling
remains quite similar to the fðϕÞ ¼ 1 coupling for the fixed
chemical potential ensemble. Notice that for μe ¼ 0, the
Einstein-power Maxwell-scalar gravity action becomes the
same for both fðϕÞ ¼ 1 and fðϕÞ ¼ eϕ couplings, which in
turn produces identical thermodynamic structure for both
couplings for μe ¼ 0. Consequently, for fðϕÞ ¼ eϕ cou-
pling as well, there exists a thermodynamically stable hairy
black hole phase which undergoes a phase transition to
thermal-AdS phase as the temperature is lowered, i.e., the
Hawking/page phase transition continues to exist, with the
thermal-AdS phase dominating the structure at lower
temperatures whereas a large stable hairy black hole phase
dominates the phase structure at higher temperatures. For
μe ¼ 0, the phase diagram is essentially identical to Fig. 3.
The thermodynamic structure with fðϕÞ ¼ eϕ coupling

remains quite similar to the fðϕÞ ¼ 1 coupling for the finite
chemical potential as well. The results are shown in
Figs. 13 and 14. Here again, there exists a critical chemical
potential μce below which the Hawking/Page phase

(a) (b)

FIG. 12. The nature of gðzÞ and RμνρσRμνρσ for different values of hairy parameter a. Here zh ¼ 2.0 and qe ¼ 0.2 are used. Red, green,
blue, brown, orange, and cyan curves correspond to a ¼ 0; 0.1; 0.2; 0.3; 0.4, and 0.5, respectively.
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transition between the thermal-AdS and hairy black hole
phases take place, whereas no such phase transition appears
above μce. In particular, for μe < μce, two black hole
branches appear which exist only above a certain minimum
temperature, whereas, for μe > μce, only one black hole
branch appears which becomes extremal and remain
thermodynamically stable at all temperatures. The magni-
tudes of μce and the Hawking/Page phase transition THP
again depend nontrivially on the hair parameter a. This
dependence is shown in Figs. 15 and 16. The overall
behavior of THP concerning a and μe is quite similar to the
case of fðϕÞ ¼ 1, albeit with a different magnitude.
We have similarly analyzed the thermodynamic structure

in the canonical ensemble. The temperature and free energy
profiles are shown in Figs. 17 and 18. Again, for small

FIG. 13. Hawking temperature T as a function of horizon radius
zh for various values of chemical potential μe. Here a ¼ 0.1 is
used. Red, green, blue, brown, orange, and cyan curves corre-
spond to μe ¼ 0; 0.2; 0.4; 0.6; 0.8, and 1.0, respectively.

FIG. 14. The Gibbs free energy differenceΔG as a function of T
for various values of chemical potential μe. Here, a ¼ 0.1 is used.
Red, green, blue, brown, orange, and cyan curves correspond to
μe ¼ 0; 0.2; 0.4; 0.6; 0.8, and 1.0, respectively.

FIG. 15. Hawking/Page phase transition temperature THP as a
function of a for various values of chemical potential μe. Red,
green, blue, brown, orange, and cyan curves correspond to
μe ¼ 0; 0.2; 0.4; 0.6; 0.8, and 1.0, respectively. The black dots
indicate the critical hairy parameter ac.

FIG. 16. Hawking/Page phase transition temperature THP as a
function of chemical potential μe for various values of a. Red,
green, blue, brown, orange, and cyan curves correspond to
a ¼ 0.1; 0.2; 0.3; 0.4; 0.5, and 0.6, respectively. The black dots
indicate the critical chemical potential μce.

FIG. 17. Hawking temperature T as a function of horizon radius
zh for various values of charge qe. Here a ¼ 0.1 is used. Red,
green, blue, brown, orange, and cyan curves correspond to
qe ¼ 0; 0.1; 0.2; 0.3; 0.4, and 0.5, respectively.
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values of qe, two hairy black hole phases appear, with the
large stable hairy black hole phase undergoing phase
transition to the thermal-AdS phase as the temperature is
lowered, whereas, for relatively large values of qe, only one
stable hairy black hole phase appears which becomes
extremal at a certain horizon radius. These results again
suggest that, just like in the case of fðϕÞ ¼ 1, the charged
black hole can undergo a Hawking/Page phase transition
depending upon the relative magnitude of a and qe. The
structure of THP again shows monotonic behavior with a
and qe. In particular, THP increases with a for a fixed qe,
whereas it decreases with qe for a fixed a. This is shown in
Figs. 19 and 20. These results in the canonical ensemble are

again quite similar to the fðϕÞ ¼ 1 coupling, albeit with
different magnitudes of THP and critical values ac and qce.

V. HAIRY BLACK HOLE SOLUTION WITH
COUPLING f ðϕÞ= eϕ2=2

Now we consider the coupling function fðϕÞ ¼ eϕ
2=2.

Such a coupling function has been thoroughly considered
in the hairy black hole context in recent years; see for
instance [107]. Therefore, it is instructive to analyze such
coupling functions here as well. With fðϕÞ ¼ eϕ

2=2 cou-
pling, most of our results for the hairy black hole solution
remain the same as in the case of previous coupling
fðϕÞ ¼ eϕ. We will, therefore, be brief here. Since the
form factor is the same, the solution for the scalar field will
remain the same. This implies that the scalar field continues
to be regular, finite, and well-behaved everywhere in the
exterior horizon region for this exponential coupling
function as well. The solution of the gauge field is now
given by

BtðzÞ ¼
ffiffiffi
π

p
qeðerfð

ffiffiffi
5

p
azhÞ − erfð ffiffiffi

5
p

azÞÞffiffiffiffiffi
10

p
a

; ð5:1Þ

with relation between μe and qe as

qe ¼
ffiffiffiffiffi
10

π

r
aμe

erfð ffiffiffi
5

p
azhÞ

; ð5:2Þ

which has the same a → 0 limit as with the previous
coupling functions. The expression for gðzÞ comes out to be

FIG. 18. The Helmholtz free energy difference ΔF as a
function of T for various values of charge qe. Here, a ¼ 0.1 is
used. Red, green, blue, brown, orange, and cyan curves corre-
spond to qe ¼ 0; 0.1; 0.2; 0.3; 0.4, and 0.5, respectively.

FIG. 19. Hawking/Page phase transition temperature THP as a
function of a for various values of charge qe. Red, green, blue,
brown, orange, and cyan curves correspond to qe ¼ 0; 0.2;
0.4; 0.6; 0.8, and 1.0, respectively. The black dots indicate the
critical hairy parameter ac.

FIG. 20. Hawking/Page phase transition temperature THP
as a function of charge qe for various values of a. Red, green,
blue, brown, orange, and cyan curves correspond to
a ¼ 0.1; 0.2; 0.3; 0.4; 0.5, and 0.6, respectively. The black dots
indicate the critical charge qce.
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gðzÞ ¼ 1 − ea
2ðz2h−z2Þ

1 − ea
2z2h

−
q3=2e ð3 ffiffiffiffiffiffiffiffi

10π
p

e−a
2z2erfð ffiffiffi

5
p

azÞ − 5
ffiffiffiffiffiffi
3π

p
erfð ffiffiffi

6
p

azÞÞ
80a3

þ q3=2e
ffiffiffi
π

p
e−a

2z2ðea2z2 − 1Þð3 ffiffiffiffiffi
10

p
erfð ffiffiffi

5
p

azhÞ − 5
ffiffiffi
3

p
ea

2z2herfð ffiffiffi
6

p
azhÞÞ

80a3ðea2z2h − 1Þ ; ð5:3Þ

which reduces to Eq. (3.6) in the a → 0 limit as in the case
of previous coupling functions. Therefore, for all different
coupling functions considered here, the hairy black hole
expressions of various quantities reduce smoothly to the
nonhairy expressions in the limit a → 0.
The behavior of gðzÞ and the Kretschmann scalar for the

coupling fðϕÞ ¼ eϕ
2=2 are shown in Fig. 21. The hairy

black hole solution is again regular and well behaved
everywhere outside the horizon. The curvature is finite

everywhere outside the horizon, and the singularity appears
only inside the horizon. The potential similarly asymptotes
to a constant value VðzÞjz→0 ¼ 2Λ at the AdS boundary and
is bounded from above. These results firmly establish the
well-behaved geometric nature of the hairy black hole with
fðϕÞ ¼ eϕ

2=2 coupling as well.
Let us now briefly talk about the thermodynamics of this

black hole. The temperature now has the expression,

T ¼ a2zhea
2z2h

2πðea2z2h − 1Þ þ
q3=2e zhea

2z2hð5 ffiffiffiffiffiffi
3π

p
erfð ffiffiffi

6
p

azhÞ − 3
ffiffiffiffiffiffiffiffi
10π

p
erfð ffiffiffi

5
p

azhÞÞ
160πaðea2z2h − 1Þ ; ð5:4Þ

which also reduces to Eq. (3.8) in the limit a → 0 and to the
standard BTZ expression in the limits a → 0 and qe → 0.
The thermodynamic structure of the hairy black hole in

the grand-canonical ensemble is shown in Figs. 22 and 23.
Since for μe ¼ 0, the Einstein-power Maxwell-scalar grav-
ity action becomes identical for all fðϕÞ, it ensures identical
thermodynamic structure for hairy black holes at μe ¼ 0 for
all fðϕÞ. For fðϕÞ ¼ eϕ

2=2 and for small chemical potential,
there exists a thermodynamically stable hairy black hole
phase which undergoes a phase transition to thermal-
AdS phase as the temperature is lowered, i.e., the
Hawking/Page phase transition continues to exist, with
the thermal-AdS phase dominating the structure at lower
temperatures. In contrast, a large stable hairy black hole
phase dominates the phase structure at higher temperatures.

Similarly, there exists a critical chemical potential μce above
which the Hawking/Page phase transition ceases to exist.
Therefore, here again for μe < μce, two black hole branches
appear which exist only above a certain minimum temper-
ature, whereas, for μe > μce, only one black hole branch
appears which can become extremal and remain thermo-
dynamically stable at all temperatures. The thermodynami-
cally favored black holes are also thermodynamically stable
as they have positive specific heat. The magnitudes of μce
and the Hawking/Page phase transition THP again depend
nontrivially on the hair parameter a. This dependence is
shown in Figs. 24 and 25.
The thermodynamic results in the canonical ensemble

are shown in Figs. 26 and 27. Here again, we find that
depending upon the relative magnitude of a and qe, the

(a) (b)

FIG. 21. The nature of gðzÞ and RμνρσRμνρσ for different values of hairy parameter a. Here zh ¼ 2.0 and qe ¼ 0.2 are used. Red, green,
blue, brown, orange, and cyan curves correspond to a ¼ 0; 0.1; 0.2; 0.3; 0.4, and 0.5, respectively.
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FIG. 22. Hawking temperature T as a function of horizon radius
zh for various values of chemical potential μe. Here a ¼ 0.05 is
used. Red, green, blue, brown, orange, and cyan curves corre-
spond to μe ¼ 0; 0.2; 0.4; 0.6; 0.8, and 1.0, respectively.

FIG. 23. The Gibbs free energy differenceΔG as a function of T
for various values of chemical potential μe. Here a ¼ 0.05 is
used. Red, green, blue, brown, orange, and cyan curves corre-
spond to μe ¼ 0; 0.2; 0.4; 0.6; 0.8, and 1.0, respectively.

FIG. 24. Hawking/Page phase transition temperature THP as a
function of a for various values of chemical potential μe. Red,
green, blue, brown, orange, and cyan curves correspond to
μe ¼ 0; 0.2; 0.4; 0.6; 0.8, and 1.0, respectively. The black dots
indicate the critical hairy parameter ac.

FIG. 25. Hawking/Page phase transition temperature THP as a
function of chemical potential μe for various values of a. Red,
green, blue, brown, orange, and cyan curves correspond to
a ¼ 0.1; 0.2; 0.3; 0.4; 0.5, and 0.6, respectively. The black dots
indicate the critical chemical potential μce.

FIG. 26. Hawking temperature T as a function of horizon radius
zh for various values of charge qe. Here, a ¼ 0.1 is used. Red,
green, blue, brown, orange, and cyan curves correspond to
qe ¼ 0; 0.1; 0.2; 0.3; 0.4, and 0.5, respectively.

FIG. 27. The Helmholtz free energy difference ΔF as a
function of T for various values of charge qe. Here, a ¼ 0.1 is
used. Red, green, blue, brown, orange, and cyan curves corre-
spond to qe ¼ 0; 0.1; 0.2; 0.3; 0.4, and 0.5, respectively.
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fixed-charged hairy black hole undergoes a Hawking/Page
phase transition as the temperature is varied. The corre-
sponding phase transition temperature and critical point qce
behavior are illustrated in Figs. 28 and 29.
We end this section by emphasizing that with fðϕÞ ¼

eϕ
2=2 coupling, the thermodynamic phase diagram of the

hairy black hole, both in the canonical and grand-canonical
ensemble, remains quite similar to the fðϕÞ ¼ 1 and
fðϕÞ ¼ eϕ cases. Our investigation, therefore, indicates
some type of universality in the thermodynamic phase
structure of the hairy black hole with Coulomb-like
potential for different coupling functions. Particularly, there
exist critical points fμce; qceg, the magnitude of which are
coupling function dependent, below which there appears
first-order phase transition between the large hairy black
hole and thermal-AdS phases, whereas above these critical

points, no such phase transition exits. We analyzed some
other forms of AðzÞ as well and found similar universal
results in the thermodynamic phase structure of hairy
black holes.

VI. CONSERVED MASS AND PRIMARY HAIR

In this section, we explicitly show that the obtained
three-dimensional hairy black holes are of primary nature.
For this purpose, we first compute the conserved charges
and show that they depend only on the respective inde-
pendent integration constants. For the black hole electric
charge Qe, we have already shown that it depends only on
the integration constants qe [Eq. (2.28)]. To show the same
for the conserved mass, we need to explicitly evaluate its
expression. This can be done using the holographic
techniques to construct a Brown-York quasilocal stress
tensor [119]. For simplicity, we work in the grand-
canonical ensemble, and we concentrate on the simplest
fðϕÞ ¼ 1 case as analogous calculations can be straight-
forwardly performed in the canonical ensemble as well as
for other coupling functions. In the holographic technique,
the conserved quantities can be evaluated from the regu-
larized action by adding boundary counterterms. For the
gravity system in Eq. (2.1), the same can be computed by
subtracting the boundary terms from the bulk on shell
action:

Sren ¼ Son−shellES þ 1

8πG3

Z
∂M

d2x
ffiffiffiffiffiffi
−γ

p
Θ

−
1

16πG3

Z
∂M

d2x2
ffiffiffiffiffiffi
−γ

p þ SbðϕÞ; ð6:1Þ

where the first term is the on shell action, the second term is
the Gibbons-Hawking surface term, the third term is the
Balasubramanian-Kraus counterterms, and the fourth term
is the scalar counterterm. γ is the induced metric on the
boundary ∂M, and Θ is the trace of the extrinsic curvature
Θμν. Note that the variation of the scalar kinetic term
contains the boundary term6

FIG. 28. Hawking/Page phase transition temperature THP as a
function of a for various values of charge qe. Red, green, blue,
brown, orange, and cyan curves correspond to qe ¼ 0; 0.2;
0.4; 0.6; 0.8, and 1.0, respectively. The black dots indicate the
critical hairy parameter ac.

FIG. 29. Hawking/Page phase transition temperature THP as a
function of charge qe for various values of a. Red, green, blue,
brown, orange, and cyan curves correspond to a ¼ 0.1; 0.2;
0.3; 0.4; 0.5, and 0.6, respectively. The black dots indicate the
critical charge qce.

6Depending up on the ensemble there can be additional
boundary terms due to the gauge field as well. For instance, the
variation of gauge part of the action gives a boundary termR
∂M d2x

ffiffiffiffiffiffi−γp
nrfðϕÞðsF Þ−1=4FrμðδBμÞ. This term goes to zero

in the fixed chemical potential ensemble δBμ ¼ 0. Therefore, this
boundary term is not needed in the action for studying thermody-
namics in the grant canonical ensemble. However, in the canonical
ensemble, corresponding to fixed chargeqe, i.e., δFrμ ¼ 0, then the
boundary term

R
∂M d2x

ffiffiffiffiffiffi−γp
nrðsF Þ−1=4FrμðδBμÞ does not vanish,

and the term
R
∂M d2x

ffiffiffiffiffiffi−γp
nrfðϕÞðsF Þ−1=4FrμBμ then needs to be

added in the action. Also note that the gauge field does not
introduce any additional UV divergences in the on shell action as it
falls off sufficiently fast near the asymptotic boundary. Therefore,
no additional counterterms are needed when qe ≠ 0 other than
those already present in Eq. (6.3).
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δϕSES ¼ −
1

16πG3

Z
∂M

d2x
ffiffiffiffiffiffi
−γ

p
nr∂rϕδϕ; ð6:2Þ

which needs to be added in the action to have a well-
defined scalar equation of motion. Therefore, for the scalar
counterterm we choose

SbðϕÞ ¼
1

16πG3

Z
∂M

d2x
ffiffiffiffiffiffi
−γ

p �
ϕnr∂rϕþ 1

2
ϕ2

�
; ð6:3Þ

to make the action well defined [120]. From Sren, we can
evaluate the stress energy tensor using the Arnowitt-Deser-
Misner decomposition

Tμν ¼ 1

8πG3

�
Θγμν − Θμν þ 2ffiffiffiffiffiffi−γp δLct

δγμν

�
; ð6:4Þ

where Lct is the Lagrangian of the counterterms only.
Explicitly, we have

Tμν ¼
1

8πG3

�
Θγμν − Θμν − γμν þ γμν

�
ϕ

2
nr∂rϕþ 1

4
ϕ2

��
:

ð6:5Þ

The conserved mass of the hairy black hole is then
associated to the tt component of the stress tensor. In
particular, if Kμ is a Killing vector generating an isometry
of the boundary space, then the associated conserved
charge is

M ¼
Z
Σ
dx

ffiffiffi
σ

p
uμTμνKν; ð6:6Þ

where Σ is a spacelike surface in ∂M, with induced metric
σ, and uμ ¼ −

ffiffiffiffiffiffiffiffiffi
gðzÞp

δtμ is the timelike unit normal to Σ.
To compute M and show that it is proportional to the

integration constant, let us first write down the metric
coefficient gðzÞ in the following form:

gðzÞ ¼ 1þ Ce−a
2z2ðea2z2 − 1Þ
2a2

−
3

ffiffiffi
π

p
e−a

2z2q3=2e ð ffiffiffi
2

p
erfðazÞ − ea

2z2erfð ffiffiffi
2

p
azÞÞ

16a3
; ð6:7Þ

where C is the integration constant coming from solving
Eq. (2.10). Explicitly, we have

C ¼
2a2

�
3

ffiffi
π
2

p
q3=2e ð ffiffi

2
p

erfð ffiffi
2

p
azhÞ−2e−a2zh2erfðazhÞÞ
16a3 þ 1

�

e−a
2zh2 − 1

: ð6:8Þ

Substituting Eq. (6.7) into Eq. (6.6) and simplifying, the
hairy black hole mass expression is given by

M ¼ −
CΩ1

32πG3

; ð6:9Þ

where Ω1 ¼ 2π is the unit volume of the boundary space
constant hypersurface. We see that M is indeed propor-

tional to the constant C, suggesting that the black hole hair
in our cases is of the primary nature. Moreover, this mass
expression also matches with the z2 coefficient of gðzÞ at
the asymptotic boundary, i.e., using the near the boundary
expansion of gðzÞ,

gðzÞ ¼ 1þ Cz2

2
þOðz3Þ; ð6:10Þ

we can show

M ¼ −
Ω1

16πG3

× ½z2 coefficient of gðzÞ�: ð6:11Þ

Now, substituting the expression of C into M, we have

M ¼ Ω1

16πG3

a2

1 − e−a
2z2h

�
1þ 3

ffiffiffi
π

p
q3=2e ð ffiffiffi

2
p

erfð ffiffiffi
2

p
azhÞ − 2e−a

2z2herfðazhÞÞ
16

ffiffiffi
π

p
a3

�
; ð6:12Þ

which smoothly reduces to the BTZ black hole mass expression M ¼ Ω1=ð16πz2hÞ in the limit fa → 0; qe → 0g.
From Sren, we can further obtain the Gibbs free energy G ¼ −Sren=β:

G ¼ Ω1C
32πG3

;

¼ −
Ω1

16πG3

�
a2ea

2z2h

ea
2z2h − 1

þ q3=2e ð3 ffiffiffi
π

p
ea

2z2herfð ffiffiffi
2

p
azhÞ − 3

ffiffiffiffiffiffi
2π

p
erfðazhÞÞ

16aðea2z2h − 1Þ

�
ð6:13Þ
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where qe is given by Eq. (3.4). The above free energy
expression also reduces to the BTZ black hole free energy
expression in the limit fa → 0; qe → 0g. Importantly, it
also satisfies the expected thermodynamic relation
G ¼ M − TSBH −Qeμe. This provides a nontrivial consis-
tency check for the thermodynamic expressions obtained
here for the hairy black holes. Moreover, we further
calculated the pressure and find that the standard relation

G ¼ −P ð6:14Þ

is also satisfied in the constructed hairy black holes.7How-
ever, unfortunately, the differential form of the first law is
not satisfied in this gravity system. This undesirable result
might be correlated to the fact that with hair this form needs
to be expanded by additional terms. Indeed, by now many
works have advocated for modification of the differential
first law in the presence of a scalar field [121,122]. It is of
course of great importance to clearly establish the first law
in our hairy model; however, since our main aim in this
work is on the construction and thermodynamic stability of
three-dimensional hairy black holes (and on the corre-
sponding nontrivial phase transitions), we therefore post-
pone this interesting problem for future work.
Before concluding this section, we would like to empha-

size that the near boundary structure of the geometry can be
nontrivially modified in the presence of matter fields,
especially if they do not fall off reasonably fast at the
boundary. This in turn can further modify the conserved
charge expression; for instance, see [123,124]. In our hairy-
charged gravity model, we too have matter fields that
backreact on the geometry; however, importantly they do
not change the leading order asymptotic structure of the
metric.

VII. CONCLUSIONS

In this paper, we have constructed a new family of three-
dimensional hairy-charged black hole solutions from the
Einstein-power Maxwell-scalar action. The gauge field
solution in particular, being devoid of logarithmic singu-
larity, is everywhere well behaved and reduces to the usual
inverse power law behavior for the nonhairy case, thereby
downplaying the usual issues faced in Maxwell electrody-
namic in three dimensions. The constructed solutions were
based on two functions: the coupling function fðϕÞ and the
form factor AðzÞ. We specifically analyzed the solutions for
three interesting and physically motivated forms of the
coupling function: (i) fðϕÞ ¼ 1, (ii) fðϕÞ ¼ eϕ, and lastly
(iii) fðϕÞ ¼ eϕ

2=2, along with the simple form of AðzÞ ¼
−a2z2. The parameter a regulates the strength of the scalar
hair, and in the limit a → 0, the solution always reduces to

the standard nonhairy BTZ black hole with a Coulomb-like
potential. We have observed that in each of the solutions,
(i) the scalar hair is found to be regular everywhere outside
the horizon and goes to zero at the asymptotic AdS
boundary, (ii) the Kretschmann and Ricci scalars are always
finite and well behaved outside the horizon, and diverge
only at the center of the black hole, and (iii) the potential is
found to be bounded from above from its UV boundary
value. These results indicate the smooth and desirable
nature of the constructed hairy black holes for these
different coupling functions.
Next, we analyzed the thermodynamic properties of the

hairy black hole solutions in canonical and grand-canoni-
cal ensembles and found some universal and intriguing
results. For each of the considered coupling functions, a
critical value of the hairy parameter ac appeared above
which the black hole exhibited the Hawking/Page phase
transition to the thermal-AdS phase as the temperature is
lowered, whereas below this ac no phase transition
existed. This result should be contrasted with the usual
uncharged BTZ black hole case, where no such phase
transition appeared. This suggests that the addition of a
scalar hair makes the three-dimensional phase structure
much richer. Additionally, it is observed that the asso-
ciated transition temperature also increases monotonically
with a. We similarly analyzed the hairy thermodynamic
structure for finite values of qe and μe in the canonical and
grand-canonical ensembles and found that the Hawking/
Page phase transition continues to persist for small values
of qe and μe, whereas for large values of μe and qe no such
phase transition occurs. These results indicate the exist-
ence of critical values qce and μce [which are fðϕÞ
dependent] at which the Hawking/Page phase transition
line stops. The transition temperature was further found to
be decreasing monotonically with qe and μe. Interestingly,
this thermodynamic pattern matches quite well with the
charged Reissner-Nordström-AdS black holes in four and
higher dimensions. This is intriguing because while BTZ
black holes and their counterparts in higher dimensions
share a number of geometric characteristics, their thermo-
dynamic structures are very different. We also found that
the specific heat is always positive in the thermodynami-
cally favored hairy black hole phase, hence establishing
the local stability of the hairy black holes.
This work might be extended in many directions. It

would be interesting to extend this work by finding its
axisymmetric counterpart. We anticipate that similar to the
BTZ black hole, the charged hairy black hole thermody-
namic structure may be significantly altered by the rota-
tional parameter. It is also important to check the dynamical
stability of the constructed hairy black hole under various
perturbations. Our preliminary analysis in this direction
leads us to believe that these hairy black holes are
dynamically stable under scalar field perturbations. Work
in these directions is in progress.7The pressure can be computed from the φφ component of Tμν.
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