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The holographic superconductor phase transition and spontaneous scalarization are triggered by the
instability of the underlying vacuum black hole spacetime. Although both hairy black hole solutions are
closely associated with the tachyonic instability of the scalar degree of freedom, they are understood to be
driven by distinct causes. Therefore, it is interesting to explore the interplay between the two phenomena in
the context of a scenario where both mechanisms are present. To this end, we investigate the Einstein-
scalar-Gauss-Bonnet theory in asymptotically anti–de Sitter spacetime with the presence of a Maxwell
field. Even though different origins for the tachyonic mass behave independently and can be recognized by
the distinctive natures of their effective potentials, it is shown that near the transition curve, the holographic
superconductor, and spontaneous scalarization are found to be largely indistinguishable. This raises the
question of whether the hairy black holes triggered by different mechanisms are smoothly joined by a phase
transition or whether these are actually identical solutions. To assess the transition more closely, we
evaluate the phase diagram in terms of temperature and chemical potential and discover a smooth but first-
order transition between the two hairy solutions by explicitly evaluating the Gibbs free energy and its
derivatives. In particular, one can elaborate a thermodynamic process through which a superconducting
black hole transits into a scalarized one by raising or decreasing the temperature. Exhausting the underlying
phase space, we analyze the properties and the interplay between the two hairy solutions.

DOI: 10.1103/PhysRevD.109.124038

I. INTRODUCTION

As an enigmatic prediction of general relativity, black
holes are an extreme manifestation of spacetime curvature.
Owing to the continuous endeavor in astrophysics regard-
ing observations associated with both electromagnetic
and gravitational-wave channels, the black hole is arguably
the most notable astrophysical object [1,2]. Specifically,
recent decades have witnessed unprecedented advances in
gravitational-wave detection achieved by the LIGO-Virgo
Collaboration, which has recorded more than 100 black
hole binary mergers [3–6]. These prominent astrophysical
events provide a crucial means to investigate extreme
gravitational phenomena. In particular, the most complex
dynamics and extreme gravitational conditions occur in the
vicinity of a black hole’s horizon. As it plays a pivotal role
by connecting theoretical speculations with astrophysical

observations, the relevant studies have triggered much
attention in the literature [7–9].
One pertinent topic in black hole physics concerns a

series of “no-hair” theorems and their evasion [10–12].
These theorems state that all of the information about a
black hole is determined by its mass, charge, and angular
momentum. On the other hand, substantial insights can also
be obtained by exploring scenarios in which the prior
condition of such theorems becomes invalid. The latter
might give rise to hairy black hole solutions owing to
various mechanisms [13–15]. The celebrated holographic
superconductor is primarily due to the tachyonic instability
in asymptotically anti–de Sitter (AdS) spacetime, comple-
mented by the presence of a Maxwell field and a charged
scalar [16,17]. In this framework, asymptotic AdS space-
time is crucial to evading the prerequisite of no-hair
theorems in asymptotically flat spacetimes [18].
More recently, an alternative mechanism for hairy black

holes, known as black hole spontaneous scalarization, has
been proposed. In its original form, it refers to the scenario
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where the scalar degree of freedom is nonminimally
coupled to the Gauss-Bonnet curvature in an asymptoti-
cally Minkowski spacetime, giving rise to the emergence of
hairy black hole solutions [19–21]. In this regard, one
pivotal feature of the theory is its ability to evade the no-
hair theorem in asymptotically flat spacetimes. In the
literature, the notion of black hole spontaneous scalariza-
tion quickly garnered significant attention. It was observed
that black hole spontaneous scalarization may take place in
a more general context where the scalar field is non-
minimally coupled to source terms furnished by various
types of matter fields, including the Maxwell invariant [22],
Chern-Simons invariant [23], and the Ricci scalar [24].
Further developments in spontaneous scalarization involve
spin-induced [25–28], nonlinear [29–32], and dynamical
descalarization scenarios [33–38]. This mechanism is also
extendable to cases with a cosmological constant [39–45],
contributing to its prominence. A comprehensive survey of
recent progress can be found in [46].
Notably, spontaneous scalarization is also attributed to the

instability of the underlying hair-free black hole solution.
The latter is demonstrated as an effective tachyonic mass in
the master equation governing the linearized scalar pertur-
bations. In particular, the stability of the corresponding
“bald” black hole solution can be analyzed by expli-
citly evaluating the quasinormal frequencies [19,47,48].
In Refs. [47,48], the onset of spontaneous scalarization was
recognized as when the purely imaginary quasinormal
modes touch the origin. More specifically, bound-state
solutions of the scalar field were derived in [20,49,50],
for which the occurrence of spontaneous scalarization
was shown to coincide with that for the marginally stable
quasinormal mode encountered in [47,48]. A sufficient
condition for the tachyonic instability is attained when
the effective potential for the scalar perturbations Veff
can be essentially viewed as a potential well, namely,Rþ∞
−∞ dr�Veffðr�Þ < 0. This condition guarantees [51] at
least one bound state, indicating the instability of a bald
black hole, which typically occurs as the coupling exceeds a
critical value. It is noteworthy to point out that the
occurrence of superluminal propagation in a system with
a substantial Gauss-Bonnet term is known in the literature
and has been explored in the context of the AdS/CFT
correspondence [52–57]. In the present scenario, such an
effect becomes “dynamic” as it is nonlinearly coupled to a
scalar field. Subsequently, rather than a “static” bound for
metric parameters, one acquires a physical instability
associated with the scalar degree of freedom that eventually
gives rise to a scalarized hairy black hole.
As discussed in [47], it is also essential to note that the

tachyonic instability, being a sufficient condition, does not
always align with the onset of marginally stable quasinor-
mal modes. Nonetheless, the instability of the bald black
hole solution is ascertained by the unstable quasinormal
modes, while the subsequent transition to a hairy black hole

can be confirmed by explicitly deriving the nonvanishing
bound-state solution [20,49,50] and evaluating the entro-
pies of the scalarized black hole and comparing it against
that of its bald counterpart [19]. Given that the occurrence
of unstable quasinormal modes is a weaker condition
whose onset does not always warrant tachyonic instability,
it was argued in [48] that spontaneous scalarization is
caused by the Gregory-Laflamme instability [58]. In other
words, another mechanism might trigger scalarization
before the effective potential eventually becomes a poten-
tial well.
The present study is motivated by the above consider-

ation to further explore the properties and relation between
the two mechanisms for hairy black holes. To this end, we
employ the Einstein-scalar-Gauss-Bonnet theory in asymp-
totically AdS spacetime, a scenario where both relevant
mechanisms are present. Specifically, a charged scalar
field is coupled to the Gauss-Bonnet invariant in such a
framework. On the one hand, the minimal coupling
between the scalar field and the Maxwell field leads to a
tachyonic instability, forming an s-wave holographic super-
conductor [59]. On the other hand, the scalar field is
coupled to the Gauss-Bonnet curvature, giving rise to
spontaneous scalarization [19]. Although both instabilities
imply a transition to a hairy black hole, it is not entirely
clear whether the hairy black holes are equivalent, given
that the resulting profiles of the fields are largely indis-
tinguishable near the transition point. We scrutinize this
point by evaluating the phase diagram in terms of temper-
ature and chemical potential and explicitly calculating the
Gibbs free energy and its derivatives. In particular, we
identify a rather smooth but first-order transition between
the two hairy solutions. By exhausting the parameter space
of the underlying black hole metric, we analyze the
properties and the interplay between the two hairy solu-
tions. The holographic superconductor phase is found to
flip over to the other side of the transition curve when the
temperature drops below the critical value corresponding to
vanishing Gauss-Bonnet coupling. Moreover, it is pointed
out that the two mechanisms can also be distinguished by
the specific shapes of their effective potentials.
The remainder of the paper is organized as follows. In the

following section, we elaborate on the Einstein-scalar-
Gauss-Bonnet model, the relevant equations of motion,
and the corresponding boundary conditions. The numerical
scheme is presented in Sec. III, which is then used to derive
the hairy black hole solutions and subsequently the phase
diagram. We explore the properties of the obtained sol-
utions associated with the holographic superconductor and
spontaneous scalarization. Furthermore, the phase diagram
of the model is presented in terms of temperature and
chemical potential. We analyze the specific shapes of the
effective potentials reflecting the underlying instabilities of
the underlying gravitational system. The last section is
devoted to further discussions and concluding remarks.
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II. EINSTEIN-SCALAR-GAUSS-BONNET MODEL

In this section, we elaborate on the Einstein-scalar-
Gauss-Bonnet model employed in the present study. The
action consists of a charged massive scalar field ψ non-
minimally coupled to the Gauss-Bonnet invariant with the
presence of a Maxwell field in an asymptotically AdS
spacetime [60,61]

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

L2
−
1

4
FμνFμν − jDμψ j2

−m2jψ j2 þ fðψÞR2
GB

�
; ð1Þ

where the Gauss-Bonnet curvature R2
GB ¼R2−4RμνRμν þ

RμναβRμναβ, fðψÞ describes the nonminimal coupling
between the scalar and the spacetime curvature. The
covariant derivative is defined by Dμ ¼ ∇μ − iqAμ, where
the scalar’s electric charge q measures its coupling to the
Maxwell field. Also, GN is Newton’s constant and L
represents the curvature radius of the AdS spacetime.
On the one hand, as the charge q vanishes, the action

falls back to a more straightforward case that furnishes
spontaneous scalarization [19]. On the other hand, if one
assumes fðψÞ ¼ 0, the model is essentially an s-wave
holographic superconductor [59]. We note that to guarantee
that the coupling function fðψÞ can induce the spontaneous
scalarization, the following specific form is adopted [19]:

fðψÞ ¼ λ2

2
ð1 − e−ψ

2Þ; ð2Þ

where the strength λ is a constant so that f0ð0Þ ¼ 0 and
f00ð0Þ > 0 [19].
In the asymptotically AdS spacetime, we consider the

metric ansatz

ds2 ¼ −gðrÞdt2 þ 1

gðrÞ dr
2 þ r2ðdx2 þ dy2Þ; ð3Þ

where

gðrÞ ¼ r2

L2
−
M
r
; ð4Þ

and the Hawking temperature reads

T ¼ g0ðrhÞ
4π

: ð5Þ

In the probe limit, by varying the action (1) with respect to
the scalar and electromagnetic degrees of freedom, one
finds the following equations of motion:

∇μ∇μψ − ðm2 þ q2AμAμÞψ þ 1

2
f0ðψÞR2

GB ¼ 0; ð6Þ

∇αFαμ ¼ 2q2Aμψ2: ð7Þ

By considering the spherically symmetric case where
Aμdxμ ¼ ϕðrÞdt;ψ ¼ ψðrÞ, the equations are further sim-
plified to read

ϕ00ðrÞ þ 2

r
ϕ0ðrÞ − 2q2ψðrÞ2

gðrÞ ϕðrÞ ¼ 0; ð8Þ

ψ 00ðrÞ þ
�
2

r
þ g0ðrÞ

gðrÞ
�
ψ 0ðrÞ þ q2ϕðrÞ2 −m2gðrÞ

gðrÞ2 ψðrÞ

þ R2
GB

2gðrÞ f
0ðψÞ ¼ 0; ð9Þ

where the Gauss-Bonnet curvature is evaluated as R2
GB ¼

4
r2 ½g0ðrÞ2 þ gðrÞg00ðrÞ�.
Using the tortoise coordinate dr� ¼ dr

gðrÞ and denoting

ψ ¼ φ
r, the Klein-Gordon equation (9) can be brought into a

Schrodinger-like form as

∂
2φðrÞ
∂r2�

− VeffðrÞφðrÞ ¼ 0; ð10Þ

where the effective potential of the scalar field is

VeffðrÞ¼ gðrÞ
�
g0ðrÞ
r

þm2−
q2

gðrÞϕðrÞ
2−

λ2

2
R2

GB

�
: ð11Þ

To derive Eqs. (10) and (11), it is noted that the scalar and
electromagnetic fields are treated as perturbations and, in
particular, we have only kept the leading term in the

expansion dfðψÞ
dψ ≃ ψð1 − ψ2 þ 1

2
ψ4 þOðψ6ÞÞ.

We proceed to discuss the boundary conditions for the
above equations of motion. It is important to note that the
boundary conditions are derived based on generic require-
ments for the fields to be regular and the asymptotic forms
of the equations of motion. These conditions are universal
for distinct hairy black hole solutions associated with
different physical natures.
At the event horizon, r ¼ rh, the scalar and Maxwell

fields must be regular. From Eq. (8), the last term on the lhs
indicates

ϕðrhÞ ¼ 0: ð12Þ
By substituting it into Eq. (9), we have

ψ 0ðrhÞ ¼
L2

3rh

 
m2 −

18λ2e−ψðrhÞ2

L4

!
ψðrhÞ: ð13Þ

At spatial infinity, by analyzing the leading contributions,
the asymptotic behaviors of the scalar and Maxwell fields
are found to be
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ϕðrÞ ¼ μ −
ρ

r
; ð14Þ

ψðrÞ ¼ ψ1

rΔ−
þ ψ2

rΔþ
; ð15Þ

where Δ� ¼ 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ4m2

eL2
p

2
and the effective scalar mass is

defined as m2
e ¼ m2 − 12 λ2

L4. One enforces the condition

ψ2 ¼ 0; ð16Þ

so that the condensation is turned on without a source on
the AdS boundary.
In the framework of the holographic principle, μ is the

chemical potential and ρ describes the charge density of the
field theory. The condensate of the scalar operator O in the
field theory dual to the field ψ is given by

hO1i ¼
ffiffiffi
2

p
ψ1: ð17Þ

The asymptotical behavior of Eq. (14) can be used to
extract the density and chemical potential.
It is not difficult to observe that there is a scaling

symmetry in the model, namely, a hairy black hole solution
continues to be valid under the scaling transform

r→ ar; ðt;x;y;Þ→ ðt;x;yÞ=a; ð18Þ

accompanied by

M→ a3M; L→L; rh→ arh; g→ a2g; ð19Þ

and

ϕðrÞ→aϕðr=aÞ; ψðrÞ→ψðr=aÞ; RGB→RGB; ð20Þ

q→ q; m→m; λ→ λ: ð21Þ

In this regard, we redefine temperature and chemical
potential in a scaling transform invariant fashion, namely,
T̃ ¼ T

Tc
and μ̃ ¼ μ

Tc
, where Tc is the transition temperature at

vanishing Gauss-Bonnet coupling.

III. TWO TYPES OF HAIRY
BLACK HOLE SOLUTIONS

In this section, we demonstrate that two distinct types of
hairy black hole solutions associated with, respectively, a
holographic superconductor and scalarization, coexist in
the model. Using the numerical scheme presented in
Sec. III A, the phase diagram is evaluated and presented
in terms of temperature and Gauss-Bonnet coupling, as
shown in Fig. 1. The system comprises three phases:
thermalized vacuum represented by a phase of bald black

hole solutions, a holographic superconductor, and scalari-
zation phases indicated by hairy black hole solutions. As
will be validated in Sec. III B, to identify and explore the
transition between the two hairy black hole phases, one
may also present the phase diagram in terms of temperature
and chemical potential, as shown in Fig. 2. We note that the
latter two thermodynamic quantities are independent
ones not constrained by scaling laws, while they facilitate
the study of the phase transition’s order. Moreover, the
thermodynamic properties of their interpretation in the dual
field theory are then elaborated and, in particular, the free
energy of the obtained spacetime configurations are evalu-
ated. We relegate the stability analysis of the underlying
bald black hole solutions to Sec. III C.

A. Numerical procedure

The hairy black hole solutions are derived numerically
using the shooting method. The scalar and Maxwell fields
are evaluated by using the equations of motion (8) and (9)
using numerical integration. As mentioned above, the two
types of hairy black holes are encountered by adopting the
same boundary conditions discussed in the last section.
Besides, from a mathematical perspective, although they
originated from different physical mechanisms and reside
in different regions of the parameter space, the algorithm to
derive these solutions is mainly identical and is specified as
follows. One starts the numerical integration at the horizon
r ¼ rh where the two lowest Taylor expansion coefficients
are determined by assuming the values of ψðrhÞ and ϕ0ðrhÞ
and using Eqs. (12) and (13). The shooting procedure is
accomplished by enforcing the condition (16) at the
boundary. As for the one-dimensional Schrodinger-like

Holographic Superconductor

Bald Black Hole
Spontaneous Scalarization

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

5

FIG. 1. The phase diagram shown in terms of temperature T̃ and
Gauss-Bonnet coupling λ. The blue region (on the left-hand side of
the black dashed line) represents the holographic superconductor
phase, and the solid black curve indicates the boundary where the
transition to a bald black hole occurs. The red region (on the right-
hand side of the black dashed line) corresponds to the spontaneous
scalarization phase, with the black dashed line representing the
critical value of the Gauss-Bonnet coupling. The calculations have
been carried out by adopting rh ¼ L ¼ 1, q ¼ 1, and m2

e ¼ −2.
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equation, the number of nodes corresponds to the energy
level. In the present study, we focus on the ground state by
only considering the solution without any node, as shown
in Fig. 3.
For simplicity, the numerical calculations are carried

out using rh ¼ L ¼ 1 and q ¼ 1. In particular, follo-
wing [17,59,62–64], we set the effective mass to m2

e ¼−2,
which is above the Breitenlohner-Freedman bound for
stability. By comparing the obtained radial profiles ψðrÞ
and ϕðrÞ to the asymptotical form (15), the values of μ and ρ
are extracted. The resulting family of solutions is charac-
terized by two variables, namely, the coupling λ and ψðrhÞ.
One then employs the system’s scaling invariance by using
Eqs. (18)–(21) to cover the remainder of the parameter space.
When the Gauss-Bonnet coupling λ is sufficiently tiny,

specifically λ < λc ≈ 0.6339, it is shown that a holographic
superconductor phase is encountered featuring a transition
at a specific value of ϕ0ðrhÞ [60], which can be effectively
viewed to occur at a specific temperature employing the
scaling (18)–(21). In particular, it would be the only
relevant mechanism in the present model to form a hairy

black hole if one takes the limit λ → 0. On the other hand,
hairy solutions due to spontaneous scalarization can be
obtained by employing the same numerical scheme at
larger Gauss-Bonnet coupling. Unlike a holographic super-
conductor, such a solution persists even when the charge of
the scalar vanishes.
To explore the phase structure of the system, one may

first derive the above solutions in the specific region of the
phase space and then continuously vary the parameters to
the region of interest where both mechanisms are poten-
tially relevant. Starting from a hairy black hole solution
associated with a holographic superconductor, one explores
the solution space by continuously increasing the Gauss-
Bonnet coupling. As demonstrated in Fig. 1, it turns out
that the transition at the critical temperature diverges as
λ → λc from below. Both mechanisms persist for finite
charge q and coupling λ.
As an illustration, the radial profiles of the scalar and

Maxwell fields are shown in Fig. 3 by the blue and red
curves. The solid curves represent the numerical results
for a holographically superconducting black hole with
the metric parameters ψðrhÞ ¼ 0.1;ϕ0ðrhÞ ¼ 0.38, and
λ ¼ 0.63. The dashed lines show the radial profiles of a
spontaneous scalarization black hole with the parameters
ψðrhÞ ¼ 0.112;ϕ0ðrhÞ ¼ 0.36, and λ ¼ 0.64. We observe
the condensation of the scalar field while the temporal
component of the electromagnetic field vanishes at the
horizon. As the fundamental states, the obtained radial
profiles do not contain any nodes. Notably, the two distinct
types of hairy black holes somehow bear a strong resem-
blance if they are near the critical coupling λc. As the fields’
radial profiles of the two cases are largely indistinguish-
able, it is not entirely clear whether the hairy black hole
solutions residing on the two sides of λ ¼ λc are different
and even if they are potentially triggered by different
mechanisms. In this regard, it is interesting to further
analyze the properties of the two phases and the transition
between them in the context of the system’s phase structure.
Numerically, one may ascertain that the two types of

hairy black holes are indeed distinct when they are farther

FIG. 2. Phase diagram shown in terms of temperature T̃ and chemical potential μ̃. The conventions introduced in Fig. 1 have been
adopted and the calculations have been carried out using the same parameters. The left panel shows the phase diagram in the high-
temperature and small-chemical-potential region. The middle panel corresponds to the low-temperature and large-chemical-potential
region. The right panel shows the region where the holographic superconductor phase flips to the other side of the spontaneous
scalarization one.

0 20 40 60 80 100
–0.10

–0.05

0.00

0.05

0.10

r

FIG. 3. Radial profiles of the scalar (blue) and Maxwell
fields (red). The solid lines represent the holographic super-
conductor solution with λ ¼ 0.63;ψðrhÞ ¼ 0.1;ϕ0ðrhÞ ¼ 0.38,
and the dashed lines are the spontaneous scalarization solution
with λ ¼ 0.64;ψðrhÞ ¼ 0.112;ϕ0ðrhÞ ¼ 0.36.
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apart in the parameter space. This can be demonstrated, for
instance, by examining the scalar condensation near the
horizon ψðrhÞ as a function of the temperature for different
Gauss-Bonnet coupling constants. The results are presented
in Fig. 4. In the left panel, for a holographic super-
conductor, the results indicate how the system undergoes
a phase transition. The scalar condensation merges as the
system cools down and reaches the transition temperature
represented by the solid black curve in Fig. 1. It rapidly
grows as the temperature further decreases. However, as the
coupling approaches the critical value λc, the transition
temperature increases and eventually diverges. The depend-
ence of the condensation on temperature becomes less
drastic, and the overall shape of the curve approaches that
of the spontaneous scalarization, as shown in the right panel
of Fig. 4. The latter features distinctive patterns in two
temperature regimes. At elevated temperatures, the scalar
condensation converges to a constant magnitude that
increases with increasing Gauss-Bonnet coupling. As
temperature decreases, a surge of scalar condensation is
observed. This behavior differs from spontaneous scalari-
zation in the absence of an electromagnetic field due to an
interplay between the two instabilities.
However, the above analysis and the phase diagram in

Fig. 1 are primarily based on the coupling constant λ,
which does not possess a straightforward thermodynamic
interpretation. It is still not entirely clear whether there is a
phase transition from a superconductor phase to the
spontaneous scalarization one. In particular, it does not
seem straightforward to elaborate a thermodynamic proc-
ess through which a superconducting black hole transits
into a scalarized one by raising or decreasing the temper-
ature. Regarding the AdS/CFT dictionary, it is more
meaningful to present the results in terms of intensive
thermodynamic quantities such as temperature and chemi-
cal potential. Such an approach is carried out in the
following subsection. Moreover, we evaluate the system’s
free energy and elaborate further on the properties of the
phase transition.

B. Transitions among the black holes

The phase diagram presented in Fig. 1 is closely related
to the employed numerical scheme, which is standard in the
literature. However, to explore the underlying phase tran-
sition between the two hairy black holes, it is meaningful to
show the phase diagram in terms of thermodynamic
variables such as temperature and chemical potential.
Using the AdS/CFT dictionary, one can reiterate the phase
diagram shown in Fig. 1 in terms of intensive quantities,
namely, temperature and chemical potential. The results are
presented in Fig. 2. It is noted that the chemical potential
does not remain constant when the system evolves along a
vertical line with given λ, as shown in the bottom row of
Fig. 5. When comparing Fig. 2 with Fig. 1, one observes a
few intriguing features of the phase structure of the system.
The solid black curve bridges the transition between the

holographically superconducting black hole and a hairless
one, as shown in the left panel of Fig. 2. The latter
corresponds to the region of elevated temperature and lower
chemical potential. A dashed black curve indicates the
transition between the holographic superconductor and
spontaneous scalarization, which will be elaborated further
by evaluating the free energy. In this region, one may
consider the followingprocesswith given chemical potential
for an initially thermalized bald black hole with elevated
temperature. As the temperature gradually decreases, the
scalar field will condense and form a holographic super-
conductor via a second-order phase transition by traversing
the solid black curve. Subsequently, as the temperature
further decreases, the system transits into a scalarized black
hole through a first-order transition by crossing the dashed
black curve. However, the above qualitative properties
regarding the phase division do not change as one goes to
the higher-temperature region. In other words, even though
the solid black curve and dashed black one asymptotically
approach each other in Fig. 1 at the high-temperature limit,
the two-phase transitions do not actually intersect in the
phase space presented in terms of temperature and chemical
potential. Moreover, the spontaneous scalarization phase

= 0

= 0.4

= 0.5

= 0.6

= 0.6339

0 2 4 6 8
0.0

0.2

0.4

0.6
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= 0.8

= 1.0

= 1.5

= 1.8
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FIG. 4. Scalar condensation at the horizon ψðrhÞ as the function of temperature with different Gauss-Bonnet coupling λ in the situation
of a holographic superconductor (left) and spontaneous scalarization (right), respectively.
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does not extend and occupies the remainder of the phase
space. It can beverified numerically that the temperature and
chemical potential remain finite even at the limit λ → þ∞.
Also, a background hairless Reissner-Nordström black hole
spans the entire parameter space.
The middle panel of Fig. 2 shows a similar transition, but

the positions of the two phases are exchanged. It is also
noted that the superconducting black hole cannot transit to
a hairless counterpart in this region. This is because the
solid black curve terminates at T̃ ¼ 1 in Fig. 1 as such a
transition is confined in the region T > Tc.
The results in the left and middle panels imply that the

two phases successively flip to the other side of the
transition curve in a narrow region of the phase diagram,
as shown in the right panel of Fig. 2. Such an intriguing
phenomenon can be attributed to the nonmonotonic behav-
ior of the chemical potential as a function of Gauss-Bonnet
coupling at different temperatures. At an elevated temper-
ature related to the left panel of Fig. 2, the chemical
potential decreases as the coupling constant increases.
Conversely, at a lower temperature corresponding to the
middle panel of Fig. 2, the chemical potential increases
monotonically with increasing coupling. The above results

are explicitly shown in the top-left and top-right panels
of Fig. 5.
To provide a more comprehensive analysis of the

transition between the holographic superconductor and
spontaneous scalarization phases, we evaluate the on-shell
Gibbs free energy of the system by following [65,66],
which reads

F ¼ FΩ

V2

¼ −
1

2
μρ − ψ1ψ2

þ
Z

1

0

dz

�
q2ϕðzÞ2ψðzÞ2

z2gðzÞ −
λ2R2

GB

2z4
ψðzÞ4

�
; ð22Þ

with z ¼ rh
r here, and elaborate on the Gibbs condition.

The results are shown in Figs. 6 and 7. The three plots in
the first row of Fig. 6 demonstrate the Gibbs conditions for,
respectively, typical scenarios corresponding to the left,
middle, and right panels of Fig. 2. The Gibbs condition
dictates that a phase transition occurs with equalized
temperature, pressure, and chemical potential. When there
is competition between the two mechanisms for hairy black
holes, the surviving state corresponds to the one with less
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FIG. 5. The top row shows the chemical potential as a function of the Gauss-Bonnet coupling in the high-temperature (top left) and
low-temperature (top right) regions, where the blue curves represent the holographic superconductors while the red curves describe the
spontaneous scalarization, and the vertical gray dashed line is the critical coupling λc. The bottom row shows the chemical potential as a
function of temperature for different Gauss-Bonnet couplings.
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free energy. The magnified sections of the plots indicate
that the transition is of first order for the first two plots since
the free energy shot above the other phase after the
transition point. The latter is also confirmed by explicitly
showing that the first-order derivatives of the free energy
are discontinuous, as given in the second row of Fig. 6. We
therefore confirm that one can elaborate a thermodynamic
process through which a superconducting black hole
transits into a scalarized one by raising or decreasing the
temperature. The purple region in the bottom panel of
Fig. 2 indicates an intriguing scenario. There, the two
phases directly compete in the purple region of the right
panel of Fig. 2. According to the free energy evaluated and
presented in the last plot in the first row of Fig. 6, a
scalarized black hole possesses a smaller free energy and,
therefore, is favorable.

In Fig. 7, we present the free energy landscape from a
three-dimensional perspective. It illustrates how the tran-
sition takes place in a more intuitive fashion. The two free-
energy surfaces intersect at a dashed black curve. When
comparing the left and middle panels, one observes that the
two phases switch their positions with respect to the
transition curve. This occurs near the critical temperature
T̃ ≳ 1. There, the free-energy surface of the spontaneous
scalarization is found to swing from one side to the other
through the vertical direction, while the superconducting
phase’s surface varies moderately, and the slope remains
essentially unchanged. For the superconducting phase, the
phase transition to a bald black hole does not occur for
T̃ < 1 and, subsequently, the transition curve represented
by the solid black curves ends at T̃ ¼ 1. The latter region
T̃ < 1 bounded by λ ¼ 0 also flips to the other side of the

FIG. 6. Free energy and its first-order derivative with respect to the chemical potential as functions of temperature for different
chemical potentials. The blue curves represent the holographic superconductors, while the red curves describe the spontaneous
scalarization, and the vertical gray dashed line indicates the transition point.

FIG. 7. The system’s free energy as a function of chemical potential and temperature.
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transition curve. These characteristics lead to the exchange
of the two phases, as discussed in Fig. 6. Also, as
mentioned above, for the region where the two phases
coexist, a scalarized black hole always possesses a smaller
free energy than the superconducting one and, therefore, is
more favorable.

C. Instability analysis using effective potential

In this subsection, we complement our analysis by
studying the tachyonic instability of the effective potentials.
On the one hand, for a holographic superconductor, it is
understood that the coupling between the scalar and
Maxwell fields in asymptotic AdS spacetime leads to
tachyonic instability [17]. On the other hand, the coupling
between the scalar field and the Gauss-Bonnet curvature
also gives rise to tachyonic instability [20,49,50], and it has
been argued that the origin of the instability is of Gregory-
Laflamme type [48]. This section delves into the effective
potential (11) of the scalar perturbations regarding the
underlying instabilities. In the literature, the tachyonic
instability is primarily attributed to a negative effective
mass extracted from examining the master equation of
scalar perturbations. For a holographic superconductor, a
negative effective scalar mass arises from the nonvanishing

of the Maxwell field (electrostatic potential) in AdS
spacetime. For spontaneous scalarization, this is due to
the contribution coming from the nonvanishing coupling
between the scalar and higher-curvature term. In what
follows, the numerical results of the effective potential (11)
are obtained by solving the system of equations (8) and (9),
for given λ, q, and ϕ0ðrhÞ ¼ 0.5 instead of ψðrhÞ.
In Fig. 8, we present the effective potentials and the

corresponding profiles of the scalar field, evaluated for
various metric parameters. As pointed out in [48], the
effective potential of tachyonic instability in AdS spacetime
is featured by a positive barrier near the event horizon that
smoothly converges to a given value at infinity. In the top-
left panel of Fig. 8, the resulting effective potentials of a
pure holographic superconductor agree with such behavior.
In the present model, this can be achieved by assuming
λ ¼ 0. We note that the effective potential asymptotically
approaches Veff → −q2ϕðrÞ2 at spatial infinity for the
given metric parameters. The different curves in the plot
are obtained by taking different values for the charge q. A
positive potential barrier is formed near the event horizon
for all of the cases. An increase of the charge q causes the
potential barrier to dissipate less rapidly as the radial
coordinate increases. The negative values of the effective
potential are attributed to the condensation of the Maxwell
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FIG. 8. The top row shows the calculated effective potentials for different model parameters. Top left: effective potential for the
holographic superconductors with λ ¼ 0, evaluated for different charges q. Top right: effective potential for the spontaneously scalarized
black hole with q ¼ 0, evaluated for different values of λ. The bottom row shows the corresponding profiles of the scalar field ψðrÞ.
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field, giving rise to tachyonic instability in scalar pertur-
bations. Also, a more significant coupling between the
scalar and Maxwell fields leads to a higher transition
temperature for holographic superconductivity [17].
Conversely, a pure spontaneously scalarized black hole

metric can be obtained in the present model by taking q ¼ 0.
The corresponding effective potentials are evaluated and
shown in the top-right panel of Fig. 8, where one varies the
Gauss-Bonnet coupling λ. One observes that the obtained
effective potential’s main feature differs from that of a
holographic superconductor. In particular, a potential well is
formed near the event horizon, and the depth of this well
gradually increases as the Gauss-Bonnet coupling λ grows.
Therefore, the potential well close to the horizon caused by
the Gauss-Bonnet coupling is primarily understood to cause
the tachyonic instability. Such a characteristic of the
effective potential has been extensively discussed in the
literature of spontaneous scalarization [20,47], which was
attributed to the Gregory-Laflamme instability in Ref. [48].
The above discussions further confirm the distinct nature of

the holographic superconductivity and spontaneous scala-
rization phases, which are substantially triggered by entirely
distinct mechanisms. Besides the thermodynamic quan-
tities, such as the free energy, the difference is also
manifested by the effective potential.
The effective potentials are further explored in Fig. 9 for

different values of the charge q. It is found that a more
significant Gauss-Bonnet coupling λ deepens the potential
well near the horizon without affecting its behavior at
infinity. Also, a more significant value of q causes the value
of the effective potential to become more negative at
infinity while not influencing the potential well near the
event horizon. Therefore, one concludes that both mech-
anisms play a role in the present model rather independ-
ently. Subsequently, it is interesting to explore the
properties of the hairy black hole in the region where
the two mechanisms compete.
In the preceding subsections, we elaborated on a scenario

where both phases are present and explored the transition
between them. Therefore, it is also interesting to study the
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FIG. 9. Calculated effective potential with different couplings between the scalar and Maxwell fields. The calculations are carried
out for different charges q. Left: effective potential for a smaller coupling q ¼ 0.2. Right: effective potential for a more significant
coupling q ¼ 1.
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effective potentials in the phase transition region. This
analysis is presented in Fig. 10, showing the calculated
effective potential near the transition curve. The calcula-
tions are carried out for different charges q. In the left panel
of Fig. 10, the behavior of the effective potential closely
resembles that of a pure holographic superconductor. In
other words, the obtained effective potential clearly dem-
onstrates the physical mechanism that gives birth to a
holographic superconductor. On the other hand, in the right
panel of Fig. 10, where the Gauss-Bonnet coupling
surpasses the critical value λ > λc, the effective potential
forms a well outside the event horizon. While the presence
of the potential well does not affect its asymptotic form at
large radial coordinates, it suffices for the tachyonic
instability to trigger the scalarization. It is observed that
varying q does not alter the depth of the potential well near
the horizon, as such instability is irrelevant to the Maxwell
field. Notably, when comparing the left and right panels of
Fig. 10, one observes that the resulting effective potentials
are pretty similar, which further gives rise to similar
profiles, as discussed in Fig. 4. To distinguish the two
phases, we have to resort to explicit calculations of the free
energy.

IV. FURTHER DISCUSSIONS
AND CONCLUDING REMARKS

We employed a model that unites both mechanisms
based on existing studies of holographic superconductors
and spontaneous scalarization [41,44,60,63,67]. The sys-
tem’s phase space was scrutinized numerically by devel-
oping a high-precision shooting method. The spontaneous
scalarization phase always prevails as long as the Gauss-
Bonnet coupling exceeds the critical value λ > λc. The
phase diagram is shown in Fig. 1 in terms of ðT̃; λÞ.
Although the transition from a bald black hole to a
superconductor is well established and is a second-order
phase transition, it is somehow obscure to us whether there
is a well-defined phase transition from the superconductor
to a scalarized black hole, given that both the radial profile
and effective potential between the two phases are some-
how indistinguishable. Also, it needs to be clarified if the
system transits from one phase to another by simply raising
or decreasing the temperature. This seeming ambiguity was
further explored by examining the phase diagram in terms
of temperature and chemical potential ðT̃; μ̃Þ, as shown in
Fig. 2. By explicitly evaluating the Gibbs free energy and

its derivatives, it was shown that such a phase transition
is well defined and of first order. Moreover, the phase
diagram indicates a nontrivial feature as the two phases flip
over to the other side along the transition curve. These
results reinforced that the spontaneous scalarization and
holographic superconductor do not transit smoothly
between one another and are potentially induced by differ-
ent instabilities.
Last but not least, we mention a few topics potentially

related to the present work. In our calculations, we have
only considered the fundamental modes. The scalar per-
turbations have been shown [20] to possess further excited
states in the decoupling limit. Also, spontaneous scalariza-
tion induced by other matter sources, such as the Einstein-
Maxwell-scalar theory [42,68], is also a worthy possibility.
We focused on a minimal toy model that comprises both
phases, and a more generic background black hole metric
further spans the model’s parameter space while reflecting a
more realistic scenario. Regarding thermal properties, we
elaborated on the complexity during the transition between
these two phases, and it is interesting to probe such
properties at zero temperature [45]. The relation between
the quasinormal modes and instability has been extensively
explored in the literature. Such analysis in the context of
phase transitions is also relevant to the present model.
Given that the present study primarily adopted the probe
limit, it is imperative to consider numerical calculations
involving backreaction. Relevant studies regarding holo-
graphic superconductors have been carried out [17],
and a generalization of the present scheme will provide
further insights beyond the linearized theory. Moreover, a
study of the dual phase of scalarization was performed
in [41]. Further generalization is an intriguing direction.
Applications of the present findings to a strongly coupled
quantum system and condensed matter physics might be
beneficial.
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[50] G. Antoniou, A. Lehébel, G. Ventagli, and T. P. Sotiriou,
Black hole scalarization with Gauss-Bonnet and Ricci scalar
couplings, Phys. Rev. D 104, 044002 (2021).

[51] W. F. Buell and B. Shadwick, Potentials and bound states,
Am. J. Phys. 63, 256 (1995).

[52] M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaida,
The viscosity bound and causality violation, Phys. Rev. Lett.
100, 191601 (2008).

[53] M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaida,
Viscosity bound violation in higher derivative gravity, Phys.
Rev. D 77, 126006 (2008).

[54] A. Buchel and R. C. Myers, Causality of holographic
hydrodynamics, J. High Energy Phys. 08 (2009) 016.

[55] D. M. Hofman and J. Maldacena, Conformal collider
physics: Energy and charge correlations, J. High Energy
Phys. 05 (2008) 012.

[56] D. M. Hofman, Higher derivative gravity, causality and
positivity of energy in a UV complete QFT, Nucl. Phys.
B823, 174 (2009).

[57] X. O. Camanho and J. D. Edelstein, Causality constraints in
AdS/CFT from conformal collider physics and Gauss-
Bonnet gravity, J. High Energy Phys. 04 (2010) 007.

[58] R. Gregory and R. Laflamme, Black strings and p-branes are
unstable, Phys. Rev. Lett. 70, 2837 (1993).

[59] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Building a
holographic superconductor, Phys. Rev. Lett. 101, 031601
(2008).

[60] H. Guo, S. Kiorpelidi, X.-M. Kuang, E. Papantonopoulos,
B. Wang, and J.-P. Wu, Spontaneous holographic scalariza-
tion of black holes in Einstein-scalar-Gauss-Bonnet theo-
ries, Phys. Rev. D 102, 084029 (2020).

[61] H. Guo, X.-M. Kuang, E. Papantonopoulos, and B. Wang,
Horizon curvature and spacetime structure influences on
black hole scalarization, Eur. Phys. J. C 81, 842 (2021).

[62] S. Franco, A. Garcia-Garcia, and D. Rodriguez-Gomez, A
general class of holographic superconductors, J. High
Energy Phys. 04 (2010) 092.

[63] Y. Bao, H. Guo, and X.-M. Kuang, Excited states of
holographic superconductor with scalar field coupled to
Gauss-Bonnet invariance, Phys. Lett. B 822, 136646 (2021).

[64] J. Pan, X. Qiao, D. Wang, Q. Pan, Z.-Y. Nie, and J. Jing,
Holographic superconductors in 4D Einstein-Gauss-Bonnet
gravity with backreactions, Phys. Lett. B 823, 136755
(2021).

[65] S. Basak, P. Chaturvedi, P. Nandi, and G. Sengupta,
Thermodynamic geometry of holographic superconductors,
Phys. Lett. B 753, 493 (2016).

[66] D. Ghorai and S. Gangopadhyay, Holographic free energy
and thermodynamic geometry, Eur. Phys. J. C 76, 702
(2016).

[67] Q. Chen, Z. Ning, Y. Tian, B. Wang, and C.-Y. Zhang,
Descalarization by quenching charged hairy black hole in
asymptotically AdS spacetime, J. High Energy Phys. 01
(2023) 062.

[68] Q. Chen, Z. Ning, Y. Tian, B. Wang, and C.-Y. Zhang,
Nonlinear dynamics of hot, cold, and bald Einstein-Max-
well-scalar black holes in AdS spacetime, Phys. Rev. D 108,
084016 (2023).

PHASE STRUCTURE OF HOLOGRAPHIC SUPERCONDUCTORS IN … PHYS. REV. D 109, 124038 (2024)

124038-13

https://doi.org/10.1007/s11433-023-2160-1
https://doi.org/10.1007/s11433-023-2160-1
https://doi.org/10.1103/PhysRevD.99.064003
https://doi.org/10.1103/PhysRevD.99.064003
https://doi.org/10.1016/j.physletb.2020.135269
https://doi.org/10.1103/PhysRevD.101.124016
https://doi.org/10.1103/PhysRevD.101.124016
https://doi.org/10.1140/epjc/s10052-021-09614-7
https://doi.org/10.1140/epjc/s10052-021-09614-7
https://doi.org/10.1103/PhysRevD.108.024015
https://doi.org/10.1103/PhysRevD.108.024015
https://doi.org/10.3390/universe9010026
https://doi.org/10.1007/JHEP07(2022)100
https://doi.org/10.1007/JHEP07(2022)100
https://doi.org/10.1103/RevModPhys.96.015004
https://doi.org/10.1103/RevModPhys.96.015004
https://doi.org/10.1103/PhysRevD.98.084011
https://doi.org/10.1103/PhysRevD.98.024030
https://doi.org/10.1103/PhysRevD.99.064011
https://doi.org/10.1103/PhysRevD.99.064011
https://doi.org/10.1103/PhysRevD.104.044002
https://doi.org/10.1119/1.17935
https://doi.org/10.1103/PhysRevLett.100.191601
https://doi.org/10.1103/PhysRevLett.100.191601
https://doi.org/10.1103/PhysRevD.77.126006
https://doi.org/10.1103/PhysRevD.77.126006
https://doi.org/10.1088/1126-6708/2009/08/016
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.1088/1126-6708/2008/05/012
https://doi.org/10.1016/j.nuclphysb.2009.08.001
https://doi.org/10.1016/j.nuclphysb.2009.08.001
https://doi.org/10.1007/JHEP04(2010)007
https://doi.org/10.1103/PhysRevLett.70.2837
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevD.102.084029
https://doi.org/10.1140/epjc/s10052-021-09630-7
https://doi.org/10.1007/JHEP04(2010)092
https://doi.org/10.1007/JHEP04(2010)092
https://doi.org/10.1016/j.physletb.2021.136646
https://doi.org/10.1016/j.physletb.2021.136755
https://doi.org/10.1016/j.physletb.2021.136755
https://doi.org/10.1016/j.physletb.2015.12.061
https://doi.org/10.1140/epjc/s10052-016-4555-1
https://doi.org/10.1140/epjc/s10052-016-4555-1
https://doi.org/10.1007/JHEP01(2023)062
https://doi.org/10.1007/JHEP01(2023)062
https://doi.org/10.1103/PhysRevD.108.084016
https://doi.org/10.1103/PhysRevD.108.084016

