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The Standard Model of particle physics predicts the speed of light to be a universal speed
of propagation of massless carriers. However, other possibilities exist—including Lorentz-violating
theories—where different fundamental fields travel at different speeds. Black holes are interesting
probes of such physics, as distinct fields would probe different horizons. Here, we build an exact
spacetime for two interacting scalar fields which have different propagation speeds. One of
these fields is able to probe the black hole interior of the other, giving rise to energy extraction from
the black hole and a characteristic late-time relaxation. Our results provide further stimulus to the search
for extra degrees of freedom, black hole instability, and extra ringdown modes in gravitational-wave
events.
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I. INTRODUCTION

General relativity is an extremely successful description
of the gravitational interaction, which passed numerous
tests, ranging over different orders of magnitude in length
scale and field strength [1]. The advent of gravitational-
wave astronomy [2] has opened the way for unprecedented
tests of the strong-field regime, including new tests of
Einstein’s theory and the strengthening of the black hole
(BH) paradigm [3–9].
BHs are a bizarre solution of the mathematical

equations of general relativity, which nature seems to abide
by [6,10–12]. Their role in fundamental physics is high-
lighted by two powerful results. The first concerns BH
uniqueness; the most general vacuum BH solution belongs
to the Kerr family [13–15]. The second is that BH interiors
harbor the failure of the underlying theory or setup from
which the very notion of BHs arises [16,17].
In the Standard Model of particle physics, together

with general relativity, massless fields travel at the speed
of light. Hence, spacetime horizons are common to all
interactions. However, this need not be the case. One
can consider, for example, Lorentz-violating theories
where propagation speeds are different and hence different

interactions-carriers travel at different speeds.1 In such
setups, one field, say, ψ , is able to probe the region inside
the horizon of another field χ, possibly carrying important
information about BH interiors. We refer to Fig. 1.
For example, in the context of ghost condensation [19], a

scalar field ϕ with a timelike gradient ϕμ ≔ ∂μϕ provides a
preferred time slicing and, as a result, spontaneously breaks
Lorentz invariance. A spherically symmetric BH solution in
ghost condensation was constructed in Ref. [20] by taking
into account the effect of a higher-derivative term, which is
present in the theory of ghost condensation (and which was
later dubbed scordatura [21]), to the stealth Schwarzschild
solution found for the first time also in Ref. [20]. (See also
Ref. [22] for an extension to more generic scalar-tensor
theorieswith higher derivatives.) For any practical purposes at
astrophysical scales, the metric is well approximated by the
Schwarzschild geometry, and the gradient ϕμ ≔ gμνϕν is

1In this context, the Lorentz violation could be either explicit
or spontaneous, depending on whether the vacuum expectation
value is forced to be nonvanishing at the level of the underlining
theory (e.g., the khronometric theory [18]) or it happens to be
nonvanishing as a solution to the underlining theory (e.g., ghost
condensate [19]).
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tangent to a congruence of geodesics which is regular on the
BH horizon. As we shall see in the following section, coup-
ling between ϕμ and the derivative of other scalar fields can
change the propagation speeds of the latter fields and thus
provides a concrete setup for the situation depicted in Fig. 1.
An important effect of having different horizons for

different fields is the possibility of energy extraction: inside
χ’s horizon, it can have negative energy, which may, via
coupling between χ and ψ , be created together with positive
energy of ψ . While the former (negative energy) remains
inside the horizon, the latter (positive energy) can be
extracted to the BH exterior [23,24]. No concrete realiza-
tion of this setup is known, nor is there any evidence that
energy extraction indeed occurs. In addition, even if no
energy extraction occurs, the probing of the horizon interior
may affect the dynamical behavior in the BH exterior, i.e.,
ringdown or the excitation of quasinormal modes (QNMs).
Unfortunately, nothing is known about possible character-
istic signatures. The goal of this work is to fill the gap. We
discuss and study a simple example of a theory with two
interacting scalar fields, which probe different spacetime
geometries, where all of the above is realized.
The rest of this paper is organized as follows. In Sec. II,

we introduce an example of a theory where two scalar fields
couple to two different effective geometries and have
different propagation speeds. In Sec. III, we provide details
of the procedure to solve numerically the relevant equations
on a fixed background. In Sec. IV, we provide a number of
important benchmark tests. We also show two of our main
results: i. the late-time relaxation contains imprints of both
horizons, modulating the ringdown phase, with exciting
observational consequences, and ii. energy extraction
occurs in our setup, via scattering of wave packets.
Finally, we draw our conclusions in Sec. V.

II. FRAMEWORK

We want to investigate a setup where different fields
propagate at different speeds, by coupling to different

effective spacetime geometries. In particular, we focus
on two scalar fields ψ and χ that propagate on metrics
gμν and g̃μν, respectively, and that interact with each other.
For that, we consider a scalar field ψ coupled to a metric gμν
and a scalar χ coupled to a disformally transformed version
of it, g̃μν.
Our toy model that realizes such a setup is defined by the

action,

I¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μψ∂νψ −

1

2
gμν∂μχ∂νχþ

ϵ

2
ðϕμ

∂μχÞ2

−
1

2
ð∇μϕ

μÞ2ðϵ11χ2þ2ϵ12χψþ ϵ22ψ
2Þ
�
; ð1Þ

where ϕμ ¼ gμν∂νϕ, with ϕ being a scalar field that satisfies
gμν∂μϕ∂νϕ ¼ −1, and ϵ and ϵ11;12;22 are dimensionless
constants. Note that the Z2 symmetry of ϕ is respected
and the interaction between the fields χ and ψ is turned off
at infinity if ϕμ is chosen to approach the asymptotic
timelike Killing vector at infinity. This action can be
rewritten as

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μψ∂νψ −

1

2
g̃μν∂μχ∂νχ

−
1

2
ð∇μϕ

μÞ2ðϵ11χ2 þ 2ϵ12χψ þ ϵ22ψ
2Þ
�
: ð2Þ

Here, the inverse disformal metric has been defined as
g̃μν ≔ gμν − ϵϕμϕν, which corresponds to the following
disformal metric:

g̃μν ¼ gμν þ
ϵ

1þ ϵ
ϕμϕν: ð3Þ

As can be seen from Eq. (2), the effective metric governing
the dynamics of χ is the disformal metric g̃μν, which differs
from the metric gμν governing the scalar ψ when ϵ ≠ 0.
Therefore, in general, the horizon of χ is different from that
of ψ .
The model (2) is symmetric under the exchange of ψ and

χ in the sense that the action is invariant under the
replacements

ψ → ð1þ ϵÞ1=4χ; χ → ð1þ ϵÞ1=4ψ ;
gμν → g̃μν; ϕ → ð1þ ϵÞ−1=2ϕ;
ϵ → −

ϵ

1þ ϵ
; ϵij → ð1þ ϵÞ−1ϵji; ð4Þ

provided that ϵ > −1, where we have used the fact thatffiffiffiffiffiffi
−g̃

p ¼ ð1þ ϵÞ−1=2 ffiffiffiffiffiffi−gp
and that g̃μν and ∇μϕ

μ transform
under (4) as

g̃μν → gμν; ∇μϕ
μ → ð1þ ϵÞ1=2∇μϕ

μ: ð5Þ

FIG. 1. Schematic picture of how we could probe the doubled
horizons due to the difference in the speed of propagation of
fields, ψ and χ. The parameter ϵ controls the speed of the
propagation of χ. The ringdown emission and energy extraction
from a nonspinning BH are discussed in Secs. IV B and IV C,
respectively.
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Under the duality transformation (4), ϵ∈ ð−1; 0Þ is mapped
to ϵ∈ ð0;∞Þ, and vice versa. Therefore, in what follows,
we assume ϵ > 0 without loss of generality. Note that the
condition gμν∂μϕ∂νϕ ¼ −1 is preserved under the above
replacements.
For concreteness, consider a spherically symmetric,

static spacetime,

gμνdxμdxν ¼ −Adt2 þ dr2

B
þ r2dΩ2

¼ −dτ2 þ ð1 − AÞdρ2 þ r2dΩ2; ð6Þ

where dΩ2 is the metric of the unit 2-sphere, A ¼ AðrÞ, and
B ¼ BðrÞ. Here, τ and ρ represent Gaussian-normal (or
Lemaître) coordinates defined by

dτ ¼ dtþ
ffiffiffiffiffiffiffiffiffiffiffi
1−A
AB

r
dr; dρ¼ dtþ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ABð1−AÞp : ð7Þ

Note that ∂ρr ¼ −∂τr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð1 − AÞ=Ap

. The condition
gμν∂μϕ∂νϕ ¼ −1 can be realized if we choose

ϕ ¼ τ; ð8Þ

which is precisely the typical scalar field profile for the
stealth Schwarzschild solution in the Gaussian-normal
coordinate system [20,25,26]. The corresponding disfor-
mally transformed metric is

g̃μνdxμdxν ¼ −
dτ2

1þ ϵ
þ ð1 − AÞdρ2 þ r2dΩ2: ð9Þ

Note also that we assume ϵ > −1 so that the coordinate τ is
timelike with respect to not only gμν but also g̃μν.
In what follows, we specialize to the only vacuum static

solution of general relativity, i.e., the Schwarzschild back-
ground where

A ¼ B ¼ 1 −
rs
r
≕ f: ð10Þ

We find in the standard Schwarzschild coordinates

gμνdxμdxν ¼ −fdt2 þ dr2

f
þ r2dΩ2; ð11Þ

g̃μνdxμdxν ¼ −
1

1þ ϵ

�
1 − ð1þ ϵÞ rs

r

�
dt2 þ r2dΩ2

þ 2

ffiffiffiffi
rs
r

r
f−1

ϵdtdr
1þ ϵ

þ
�
1 −

rs
ð1þ ϵÞr

�
dr2

f2
:

ð12Þ

It should be noted that the disformal metric g̃μν also
describes a Schwarzschild spacetime but with a different

horizon (up to a coordinate redefinition) [27,28] (see also
Refs. [29,30]). More concretely, the Schwarzschild horizon
for the disformal metric is given by r̃s ¼ ð1þ ϵÞrs, with rs
being the Schwarzschild horizon for gμν.

2 In our setup of
ϵ > 0, the horizon for χ lies outside that for ψ.
In other words, the simple model above is a realization of

a theory where different fields probe different geometries
and different horizons. Although this is just one example
among many possibilities, it provides a concrete theoretical
framework in which one can explore the rich physics of a
BH with nested multihorizons of the effective geometries.
In the following, we will explore some of the dynamics of
the theory.

III. NUMERICAL SCHEME

We note that a minimal coupling of the scalar fields to
the curvature allows for the same vacuum solutions as
general relativity. We will study the dynamics of ψ and χ
perturbatively in their amplitude, therefore fixing the
background geometry to be the Schwarzschild one. The
equations of motion for ψ and χ are

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νψÞ −

9

4

rs
r3
ðϵ12χ þ ϵ22ψÞ ¼ 0; ð13Þ

1ffiffiffiffiffiffi
−g̃

p ∂μð
ffiffiffiffiffiffi
−g̃

p
g̃μν∂νχÞ −

9

4

rs
r3
ðϵ11χ þ ϵ12ψÞ ¼ 0: ð14Þ

The simplest possible solution to the above systems
would be a nontrivial, static profile for the scalars. We have
looked for regular, spherically symmetric solutions of ψ , χ
down to the inner horizon at r ¼ rs, and we were unable to
find any set of parameters for which this was possible. In
other words, we find no linearized hairy BHs, except the
trivial ψ ¼ χ ¼ 0 everywhere (and a special solution,
which requires that ψ , χ are constants and only exist for
a certain combination of coupling constants). We thus
resort to a numerical evolution of time-dependent
configurations.

A. Setup

Given the spherical symmetry of the background, we
expand the scalar fields ψ and χ in their multipolar
components,

2We can use the change of variables dt →
ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
dt̃þ

ϵ
ffiffiffiffiffiffi
1−f

p
fð−ϵþð1þϵÞfÞ dr with f ¼ 1 − rs=r, to bring the line element for
g̃μν to the form

g̃μνdxμdxν ¼ −
�
1 −

rsð1þ ϵÞ
r

�
dt̃2 þ

�
1 −

rsð1þ ϵÞ
r

�
−1
dr2

þ r2dΩ2;

which is clearly a Schwarzschild spacetime.
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ψðτ; ρ; θ;φÞ ¼
X
lm

ψlmðτ; ρÞYlmðθ;φÞ;

χðτ; ρ; θ;φÞ ¼
X
lm

χlmðτ; ρÞYlmðθ;φÞ; ð15Þ

where the Ylm are spherical harmonics on the 2-sphere. We
will drop the lm subscripts onward, with the understanding

that we are always discussing the multipolar components of
the field. Note also that the azimuthal number m never
plays a role, due to the spherical symmetry of the back-
ground. We then numerically solve the two partial differ-
ential equations (PDEs) (13) and (14), which reduce to the
following equations after performing the coordinate trans-
formation introduced in Eq. (7):

−∂2τψ þ r
rs
∂
2
ρψ −

lðlþ 1Þ
r2

ψ þ 1

2r2

ffiffiffiffi
r
rs

r
½3rs∂τψ þ 5r∂ρψ � −

9

4

rs
r3
ðϵ12χ þ ϵ22ψÞ ¼ 0; ð16Þ

−ð1þ ϵÞ∂2τ χ þ
r
rs
∂
2
ρχ −

lðlþ 1Þ
r2

χ þ 1

2r2

ffiffiffiffi
r
rs

r
½3rsð1þ ϵÞ∂τχ þ 5r∂ρχ� −

9

4

rs
r3
ðϵ11χ þ ϵ12ψÞ ¼ 0: ð17Þ

Here, we have used the following relation to simplify the
equations:

r ¼
�
3

2
r1=2s ðρ − τÞ

�
2=3

: ð18Þ

The two fields ψ and χ have two distinct horizons. We then
solve the equations while covering the interior of both
horizons. To avoid numerical instability that may arise near
the singularity, we will use the following coordinates
ðT; r�Þ that nicely avoid it (see Fig. 2),

dτ ¼ dT þ 1

f

�
U

ffiffiffiffi
rs
r

r
þ V

�
dr�; ð19Þ

dρ ¼ dT þ 1

f

�
U

ffiffiffiffi
r
rs

r
þ V

�
dr�; ð20Þ

where

U ≔ 1 − rU=r; ð21Þ

V ≔ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 − f

q
; ð22Þ

r� ≔ rþ rU log½ðr − rUÞ=rs�; ð23Þ

and rUð≤ rs=2Þ is a constant controlling how close con-
stant-T slices can approach the singularity.3 Note that the
coefficients of dr� in (19) and (20) are regular at r ¼ rs. We
then have the following relations:

∂ρ ¼ −
rs=rþ

ffiffiffiffiffiffiffiffiffi
rs=r

p ðV=UÞ
f

∂T þ 1

U

ffiffiffiffi
rs
r

r
∂r� ; ð24Þ

∂τ ¼
1þ ffiffiffiffiffiffiffiffiffi

rs=r
p ðV=UÞ

f
∂T −

1

U

ffiffiffiffi
rs
r

r
∂r� : ð25Þ

In what follows, we will express all our results in units of
rs and thus set rs ¼ 1. With this, we find the equations of
motion

�
∂
2
T − f∂2r� þ 2V∂T∂r� þ U2

lðlþ 1Þ
r2

�
ψ þ 1

U2

�
fV 0 −

UV
2r2

�
ð∂T þ V∂r� Þψ

−
2U
r

�
1 −

3

4r

�
∂r�ψ þ 2UV

r
∂Tψ þ 9

4

U2

r3
ðϵ22ψ þ ϵ12χÞ ¼ 0; ð26Þ

3The relation between ðT; r�Þ and ðt; rÞ is given by

dt ¼ dT þ V
f
dr�; dr ¼ Udr�:
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�
ð1þ ϵW2Þ∂2T − f∂2r� þ 2V∂T∂r� þ U2

lðlþ 1Þ
r2

�
χ

þ 1

U2

�
fV 0 −

UV
2r2

�
ð∂T þ V∂r� Þχ −

2U
r

�
1 −

3

4r

�
∂r�χ þ

2UV
r

∂Tχ þ
9

4

U2

r3
ðϵ11χ þ ϵ12ψÞ

þ ϵ

�
−2

ffiffiffi
1

r

r
W∂T∂r� −U

ffiffiffi
1

r

r �
W
U

�0
∂T þ 1

r
∂
2
r� −

2rU0 þ U2

2r2U
∂r� −

3U
2r

ffiffiffi
1

r

r �
W∂T −

ffiffiffi
1

r

r
∂r�

��
χ ¼ 0; ð27Þ

W ≔
U þ ffiffiffiffiffiffiffi

1=r
p

V
f

; ð28Þ

where a prime denotes differentiation with respect to r�. We
note that the function WðrÞ is regular at r ¼ 1. Indeed, we
have

W ¼ 1þ r2U
2ð1 − rUÞ

þOðr − 1Þ: ð29Þ

Setting rU ¼ 1=2, the function WðrÞ reduces to

W ¼ 2rþ 2
ffiffiffi
r

p þ 1

2
ffiffiffi
r

p ð ffiffiffi
r

p þ 1Þ ; ð30Þ

which is regular in the whole range of r�. In the following,
we take rU ¼ 1=2 and apply the formula (30) to the wave
equation.
The two second-order PDEs of (26) and (27) are

decomposed into four first-order PDEs:

∂Tψ ¼ Πψ ; ð31Þ

∂TΠψ ¼ f∂2r�ψ − 2V∂r�Πψ − U2
lðlþ 1Þ

r2
ψ −

1

U2

�
fV 0 −

UV
2r2

�
ðΠψ þ V∂r�ψÞ

þ 2U
r

�
1 −

3

4r

�
∂r�ψ −

2UV
r

Πψ −
9

4

U2

r3
ðϵ22ψ þ ϵ12χÞ ¼ 0; ð32Þ

∂Tχ ¼ Πχ ; ð33Þ

ð1þ ϵW2Þ∂TΠχ ¼ f∂2r�χ − 2V∂r�Πχ −U2
lðlþ 1Þ

r2
χ −

1

U2

�
fV 0 −

UV
2r2

�
ðΠχ þ V∂r�χÞ

þ 2U
r

�
1 −

3

4r

�
∂r�χ −

2UV
r

Πχ −
9

4

U2

r3
ðϵ11χ þ ϵ12ψÞ − ϵ

�
−2W

ffiffiffi
1

r

r
∂r�Πχ þW

U0

U

ffiffiffi
1

r

r
Πχ

−W0
ffiffiffi
1

r

r
Πχ þ

1

r
∂
2
r�χ −

2rU0 þU2

2r2U
∂r�χ −

3U
2r

ffiffiffi
1

r

r �
WΠχ −

ffiffiffi
1

r

r
∂r�χ

��
¼ 0: ð34Þ

We numerically solve the PDEs of (31)–(34) with the following initial conditions,4

ψðT ¼ 0; r�Þ ¼ ψ iniðr�Þ ≔ Aψ cosðΩψr� þ δψÞ exp
�
−
ðr� − rψ�;sÞ2

σ2ψ

�
; ð35Þ

Πψ ðT ¼ 0; r�Þ ¼ ∂r�ψ iniðr�Þ ¼ −Aψ

�
Ωψ sinðΩψr� þ δψÞ þ 2

ðr� − rψ�;sÞ
σ2ψ

cosðΩψr� þ δψ Þ
�
exp

�
−
ðr� − rψ�;sÞ2

σ2ψ

�
; ð36Þ

4The initial conditions may involve partially outgoing modes even when we set the wave packet at a distant region. This is not
problematic in our computation of the reflectivity performed later as we read the time-domain data inside the initial position of the wave
packets. That is, outgoing modes do not contaminate the time-domain data we use.
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χðT ¼ 0; r�Þ ¼ χiniðr�Þ ≔ Aχ cosðΩχr� þ δχÞ exp
�
−
ðr� − rχ�;sÞ2

σ2χ

�
; ð37Þ

ΠχðT ¼ 0; r�Þ ¼ ∂r�χiniðr�Þ ¼ −Aχ

�
Ωχ sinðΩχr� þ δχÞ þ 2

ðr� − rχ�;sÞ
σ2χ

cosðΩχr� þ δχÞ
�
exp

�
−
ðr� − rχ�;sÞ2

σ2χ

�
; ð38Þ

where Aψ=χ , Ωψ=χ , σψ=χ , δψ=χ , and rψ=χ�;s are arbitrary
parameters to specify the shape, initial position, and initial
velocity of the input Gaussian wave packets. We control
numerical high-frequency unstable modes by introducing
the Kreiss-Oliger dissipation [31]. We confirmed that this
does not affect the benchmark tests we perform later. We
also perform the resolution test which is described in the
Appendix.

B. Diagnostics for energy extraction

In this section, we explain how we discuss the energy
extraction from a BH. For this purpose, we obtain the time-
domain waveform of ψ and χ at some fixed position
r� ¼ r�;o ≫ 1. We set the center of the initial Gaussian

wave packet at r� ¼ rψ=χ�;s > r�;o, so that we have an
incoming wave packet in the early times, and after a while,
we detect waves scattered by the double-horizon BH.
The energy flux Tτρ evaluated at r� ¼ r�;o is given by

Tτρ ∼ −½∂Tψ∂r�ψ þ ð1þ ϵÞ∂Tχ∂r�χ�; ð39Þ

where we have approximated the expression by assuming
r�;o ≫ 1 and have omitted an overall factor which is

irrelevant in the following discussion. Moreover, since ψ ≃
ψðT ∓ r�Þ and χ ≃ χðT= ffiffiffiffiffiffiffiffiffiffiffi

1þ ϵ
p ∓ r�Þ at r� ¼ r�;o ≫ 1,

the expression for Tτρ can be rewritten as

Tτρ ∼�½ð∂TψÞ2 þ ð1þ ϵÞ3=2ð∂TχÞ2�; ð40Þ

with the plus (minus) sign in front corresponding to the
outgoing (incoming) flux. At a distant region, the total
energy flux is given by the sum of the two energy fluxes for
ψ and χ. To compute the energy flux of incoming and
scattered (outgoing) flux, we separate the energy flux into
incoming and outgoing modes in the time domain by
introducing the truncation parameters T ¼ Tcut1=cut2 as

ψ̃ in ≔
Z

Tcut1

0

dTeiωTð∂TψÞ; ψ̃out ≔
Z

Tend

Tcut1

dTeiωTð∂TψÞ;

ð41Þ

χ̃in ≔
Z

Tcut2

0

dTeiωTð∂TχÞ; χ̃out ≔
Z

Tend

Tcut2

dTeiωTð∂TχÞ;

ð42Þ

to obtain the spectral amplitude of each signal. Then, the
energy flux per frequency is

dEin

dω
∼ ½jψ̃ inj2 þ ð1þ ϵÞ3=2jχ̃inj2�; ð43Þ

dEout

dω
∼ ½jψ̃outj2 þ ð1þ ϵÞ3=2jχ̃outj2�: ð44Þ

Finally, we compute the net reflectivity R2 as

R2 ≔ R2
ψ þR2

χ ¼
jψ̃outj2 þ ð1þ ϵÞ3=2jχ̃outj2
jψ̃ inj2 þ ð1þ ϵÞ3=2jχ̃inj2

; ð45Þ

where

R2
ψ ≔

jψ̃outj2
jψ̃ inj2 þ ð1þ ϵÞ3=2jχ̃inj2

;

R2
χ ≔

ð1þ ϵÞ3=2jχ̃outj2
jψ̃ inj2 þ ð1þ ϵÞ3=2jχ̃inj2

: ð46Þ

When the net reflectivity exceeds unity for some range of
ω, we conclude that the energy extraction from a BH

FIG. 2. Coordinates covering the interior of the two horizons
and nicely avoid the singularity. Each curve corresponds to a
constant-T hypersurface.
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occurs. We shall apply the above methodology to our
model in Sec. IV C.

IV. RESULTS

A. Benchmarks

We start with a few benchmark tests on the equations of
motion and our numerical implementation. Throughout the
paper, unless otherwise mentioned, we consider the quad-
rupolar mode (l ¼ 2), r�;o ¼ 60, and set the initial
Gaussian wave packet with σψ ¼ 2 ¼ σχ , Ωψ ¼ 1 ¼ Ωχ ,
and δψ ¼ 0 ¼ δχ . Also, we set Aψ ¼ 1 ¼ Aχ in Secs. IVA
and IV B. To model a situation where the fields are
simultaneously excited near the horizons, we set its
position at rψ=χ�;s ¼ 5 unless otherwise noted. Throughout
this section, we turn off the coupling between the fields by
setting ϵ12 ¼ 0.

1. Ringdown

In Schwarzschild-like coordinates, with the coupling
turned off (ϵ12 ¼ 0) and with rψðt; rÞ ¼ e−iωtψaðrÞ,
rχðt; rÞ ¼ e−iωtψbðrÞ, we find

f2ψ 00
a þ ff0ψ 0

a þ ðω2 − VaÞψa ¼ 0; ð47Þ

Va ¼ f

�
lðlþ 1Þ

r2
þ rs
r3
ð1þ 9ϵ22=4Þ

�
; ð48Þ

and a similar (but more complicated) equation for ψb. This
equation has the same form as that of massless fields, and
standard methods can be used to calculate QNMs, for
example, a continued-fractions approach [32,33].5 In par-
ticular, for ϵ22 ¼ 0, one finds a classical result,

rsω220 ¼ 0.967288 − 0.193518i; ð49Þ

for the fundamental QNM frequency of a quadrupolar
(l ¼ 2) mode, where a QNM frequency, ω ¼ ωlmn,
is labeled by angular modes ðl; mÞ and the overtone
number n.6 For small ϵ22, we find with a continued-fraction
approach,

rsðωQ − ω220Þ ¼
9ϵ22
4

ð0.05112 − 0.0032973iÞ; ð50Þ

which agrees with the parametrized results of Ref. [34] (in
their notation, βs3 ¼ 9ϵ22=4).
Our time-domain results are summarized in Fig. 3. We

scatter a Gaussian wave packet in the spacetime, as
described previously. After an immediate response as a
consequence of direct on-light-cone propagation, the field
configuration relaxes in a series of exponentially damped
sinusoids. This stage is known as ringdown stage and is
dominated by the BH QNMs [33]. Figure 3 shows a clear
ringdown waveform for both fields. Fitting our numerical
data, we recover the prediction (49) with very good
accuracy when ϵ22 ¼ 0 for the ψ field.
The above result concerns the field ψ . It is also apparent

that the field χ decays slower. In fact, as we pointed out
before in footnote 2, the effective metric probed by the field
χ is simply a rescaled version of the Schwarzschild metric.
In particular, χ is coupling to a geometry with a Schwarzs-
child radius rsð1þ ϵÞ and time coordinate rescaled byffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
. Taking the rescalings involved, we find that the

mode frequency ω̃ of χ should be related to that of ψ via

ω̃ ¼ ω

ð1þ ϵÞ3=2 : ð51Þ

FIG. 3. Evolution of a Gaussian wave packet of the fields ψ and χ, governed by the dynamical equations (26) and (27), is shown in the
log-linear scale. We set ϵij ¼ 0 and ϵ ¼ 0.5. The ringdown of the field ψ (black solid) is consistent with the fundamental QNM
frequency (49) (red dashed). The field χ, on the other hand, couples to an effective geometry with horizon radius rsð1þ ϵÞ and thus
decays slower. We show in the right panel that its decay is equivalent to that of ψ with the appropriate rescalings, T → T=

ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
and

ωlmn → ωlmn=ð1þ ϵÞ. Throughout the discussion, we set units such that rs ¼ 1.

5In particular, we find the same continued fraction represen-
tation as Leaver [32], with his ϵ → −ð1þ 9ϵ22=4Þ.

6As mentioned earlier, the QNMs are independent of the
azimuthal number m, and we set m ¼ 2 just for concreteness.

BLACK HOLES, MULTIPLE PROPAGATION SPEEDS, AND … PHYS. REV. D 109, 124036 (2024)

124036-7



The right panel of Fig. 3 compares the decay of χ against
the prediction (51). The agreement is excellent and further
validated in Fig. 4, where we extend the comparison to
other values of ϵ11 and do it in the frequency domain
directly. We introduce the Lorentzian functions,

A
ω − ω̃Q

þ B
ωþ ω̃�

Q
; ð52Þ

where ω̃Q ≔ ωQ=ð1þ ϵÞ3=2. We then fit the model (52)
with the Fourier transform of χ, denoted as χ̃ in Fig. 4, by
using the least-square method to determine the fitting
parameters A and B. The two free parameters are real
and are relevant to the amplitude and phase. The agreement
is excellent as the peak (real part of QNM frequency) and
broadness (relevant to the quality factor) of χ̃ fit very well
with the Lorentzian function with ω̃Q.

2. Tidal numbers

It is also straightforward to calculate the tidal response in
the decoupling limit. In the standard massless scalar in a
Schwarzschild background, the tidal Love numbers are
zero. By contrast, in our setup, they are nontrivial. For a
quadrupolar field, for example, we find a “running” of the
coupling, with the regular solution at the horizon

ψa ¼ r3½1þOðr−1Þ�

−
1

180
·
9ϵ22
4

r−2½log rþOð1Þ�½1þOðr−1Þ�; ð53Þ

a result which can also be read off from the parametrized
study of Ref. [35].

3. Instability

The results so far are perturbative in ϵ22 (or ϵ11). For
large negative values of this constant, we find an unstable

mode of Eq. (48). In fact, the effective potential Va
becomes negative in some region of r and a sufficient
(but not necessary) condition for an unstable mode of ψ to
appear is that [36,37]

Z
∞

rs

dr
Va

f
< 0; ð54Þ

which amounts to the condition that 2lðlþ 1Þþ
1þ 9ϵ22=4 < 0. For l ¼ 2, for example, it is sufficient
that ϵ22 < −5.8 for an unstable mode to appear. A similar
analysis reveals that a sufficient condition for an unstable
mode of χ to appear is given by ϵ11=ð1þ ϵÞ < −5.8.
A continued-fraction solution yields accurate values for

the unstable mode, which corresponds to a purely imagi-
nary value of ω with a positive imaginary part. We define
the growth rate for ψ and χ as gψ=χ ≔ −iω. For ϵ ¼ 0.1,
l ¼ 2, and ϵ22 ¼ −7 ¼ ϵ11, we find

rsgψ ¼ 0.6283; rsgχ ¼ 0.4637: ð55Þ

Our time-domain results are shown in Fig. 5, which shows a
clear exponential growth of both fields. The growth rate is
in very good agreement with the prediction (55).

4. Graybody factors

A measure of the permeability of the angular momentum
barrier to incoming waves is the transmission coefficients
in a scattering experiment. Given regular fields at the
horizon r ¼ rs, a scattering experiment for field ψ , say,
consists of imposing the asymptotic behavior

FIG. 5. Evolution of a Gaussian wave packet of the fields ψ and
χ, governed by the dynamical equations (26) and (27), is shown in
the log-linear scale. We set ϵ ¼ 0.1 and ϵ11 ¼ ϵ22 ¼ −7. Both ϵ11
and ϵ22 are masslike parameters, and large negative values trigger
a tachyoniclike instability. The fields grow exponentially at late
times with a rate rsgψ ¼ 0.6281 and rsgχ ¼ 0.4634 as shown in
the figures. Those values are read by the least-square method. The
instability rate of ψ is in excellent agreement with rsgψ ¼ 0.6283
and rsgχ ¼ 0.4637, obtained from a continued-fraction solution
for the unstable mode of the corresponding equation in the
frequency domain, Eq. (55).

FIG. 4. Energy spectrum for the field χ, for ϵ ¼ 0.1, together
with a least-squares fit analysis. Red solid lines indicate the value
of Reðω̃QÞ for ϵ11 ¼ �2 and 0. We find excellent agreement with
the modified QNM ωQ derived in (50).
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ψ̃ ¼
�
AoutðωÞeiωx þ AinðωÞe−iωx; x → ∞;

ATe−iωx; x → −∞:
ð56Þ

Here, x is the tortoise coordinate defined by
dr=dx ¼ 1 − rs=r. A similar expression holds for χ̃, the
Fourier transform of χ. Each of the amplitudes Aout; Ain; AT
is arbitrary, since the problem is linear, but their ratio is
fixed by boundary condition at the horizon. As such, one
defines the BH graybody factor Γlm as

Γlm ≔ 1 − jAoutðωÞ=AinðωÞj2: ð57Þ

This is an important quantity that characterizes classical
BHs and also their quantum spectrum, in particular for the
emission rate of Hawking radiation [38]. We computed the
graybody factors for ψ and χ with ϵ11 ¼ ϵ22 ¼ ϵ12 ¼ 0 and
ϵ ¼ 0.5. We compute the energy flux of the injected
Gaussian wave packet and that of the reflected waves by
following the methodology presented in Sec. III. To obtain
the injected and reflected waveforms in the time domain,
we set rψ=χ�;s ¼ 80 here for both ψ and χ and read the
amplitudes at r�;o ¼ 60. Our results shown in Fig. 6 are in
excellent agreement with graybody factors computed with a
different analytic technique, using the Heun function [39].

B. QNM excitation in ringdown

In the benchmark tests performed in the previous section,
we neglected the coupling between the fields ψ and χ. This
is a fundamental piece of our setup, and we now discuss its
impact on the dynamics of linearized fields. It is important
at this stage to reiterate that both fields propagate on a
Schwarzschild background, one with radius rs and the
other with rsð1þ ϵÞ. It is also important to highlight that,
although we focus on two coupled scalars, ultimately we
want to draw conclusions for gravity as well. As such,

observable gravitational waves can be associated either
with gμν or g̃μν, and we may assume that either ψ or χ is in
an observable sector, while the other is in a hidden sector,
with negligible couplings to the Standard Model of particle
physics. As we now show, there are exciting imprints of the
hidden sector in the observable sector, specifically in the
relaxation stage. Our results of scattering Gaussian wave
packets in this setup are summarized in Figs. 7–10.
Figure 7 shows the late-time relaxation of field ψ (left)

and of field χ (right), for ϵ11 ¼ ϵ22 ¼ 0, ϵ12 ¼ 0.5, and
ϵ ¼ 0.5. Notice that the fields are coupled now, via non-
vanishing ϵ12. After the direct signal (not shown), field ψ
decays in two different stages, apparent from the figure.
The first stage corresponds to interaction with the light
ring7 in “its own” spacetime, i.e., in geometry gμν of
Eq. (11), at r ¼ 3rs=2. This explains the first exponentially
damped stage. However, the coupling to χ implies that the
field ψ also has access to the exterior light ring, that of
geometry (12). In other words, the field ψ is sensitive to the
ringdown of field χ. The effective geometry of χ corre-
sponds to a larger-mass BH, and hence rings at lower
frequencies, as we showed already. Indeed, we show in
Fig. 7 also the result of fitting the signal with the two
fundamental modes of ω220 and ω̃220 ≔ ω220=ð1þ ϵÞ3=2 in
Eq. (51). The agreement is excellent.
On the other hand, the field χ has no information on the

inner light ring (to leading order at least). In fact, for this
choice of parameters, the light ring for ψ overlaps with the
horizon for χ. This explains why χ relaxes as a clean
damped sinusoid corresponding to the fundamental quad-
rupolar mode of the outer horizon (51). Such a pure
ringdown is apparent in the right panel of Fig. 7.
For ϵ < 0.5, on the other hand, the light ring associated

to ψ lies on the exterior of the χ horizon, and one would
expect both fields to carry imprints of the two light rings.
Indeed, this feature is apparent in Fig. 8, where we evolve
both fields but now for ϵ ¼ 0.1. The two fundamental
modes of ψ and χ are excited in the ringdown of χ and lead
to the modulation pattern as shown in Fig. 8.
What we have shown is that, given an “observable field”

χ (i.e., one interacting with our detectors), its relaxation
properties can show imprints of inner horizons for invisible
fields ψ with which it couples. To quantify the effect, we
compute the mismatchM between the ringdown waveform
and the superposition of χ QNMs. The mismatch M is
defined as

FIG. 6. The graybody factors for ψ (black solid) and
χ (gray solid) are shown in the log-linear scale. We set
ϵ11 ¼ ϵ22 ¼ ϵ12 ¼ 0 and l ¼ 2. The graybody factors obtained
by the Heun function technique are shown with red dashed lines.
We set Tcut1 ¼ 82 and Tcut2 ¼ 99.

7Because of the coupling between ψ and χ, the potential in the
perturbation equations takes a matrix form. Nevertheless, when
the coupling is weak, we use the terminology “light ring” to refer
to the position of the angular momentum barrier without coupling
corrections. At the leading order, the ringdown can be approx-
imately modeled by a superposition of the QNMs in gμν and those
in g̃μν, e.g., as is shown in Fig. 7.
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M ≔ 1 −
				 hχQjχiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihχQjχQihχjχi
p

				; ð58Þ

χQ ≔
Xnmax

n¼0

An cos ðω̃nT þ δnÞ; ð59Þ

and we use up to the third overtone, i.e., nmax ¼ 3. The
inner product between two functions aðTÞ and bðTÞ is
given by

hajbi ≔
Z

Tf

Ti

dT 0aðT 0ÞbðT 0Þ; ð60Þ

withTf ¼ 200 atwhich the amplitudeof χ iswell suppressed.
The fitting parameters An and δn are obtained by using the
least-squaremethod.Results are shown inFig. 9.We find that,
for ϵ12 ¼ 0.1, there is nomodulation in ringdownand the least

value of themismatch is of theorder ofM ∼Oð10−5Þ. On the
other hand, a larger interaction with ϵ12 ¼ 1 leads to the
modulation in ringdown, and themismatch isM ∼Oð10−2Þ.
It means that the hidden sector ψ can be probed from the
ringdown of an observable sector and may affect the QNM
measurement utilizing the fitting analysis.
We also read the amplitude of each QNM. Concerning a

possible overfitting, we use the three QNMs here: the
fundamental mode and the first overtone for χ, ω̃220 and
ω̃221, and another fundamental mode for ψ, ω220. We then
find that the fundamental mode for the hidden sector can be
dominant as is shown in the left panel of Fig. 10. Indeed,
when the two horizons are close to each other, say, ϵ ¼ 0.1,
the amplitude for the hidden sector’s fundamental mode is
larger than the QNM excitation of the observable sector χ.
For a larger separation between the horizons, say, ϵ ¼ 0.2,
the fundamental mode for the hidden sector is less
dominant, as is shown in the right panel of Fig. 10. The

FIG. 7. Evolution of a Gaussian wave packet in a geometry with ϵ11 ¼ ϵ22 ¼ 0, ϵ12 ¼ 0.5, and ϵ ¼ 0.5. We show the evolution of ψ on
the left panel and of χ on the right panel in the log-linear scale. The least-square fit is performed with the data in T ≥ 90 and in T ≥ 115
for ψ and χ, respectively. We also show the QNM models with a sum of the two fundamental modes ω220 and ω̃220 (orange dashed) and
with ω220 only (blue thin solid).

FIG. 8. Waveform of χ from the scattering of a wave packet in a spacetime with ϵ ¼ 0.1, ϵ12 ¼ 1, and ϵ11 ¼ ϵ22 ¼ 0 (black solid line).
The two light rings are located outside the external horizon of χ, and therefore both fields are modulated by QNMs of each other. We fit
with two fundamental modes for the observable and hidden sectors, ω220 and ω̃220 [see Eq. (51)], by using the least-square fit (orange
dashed). The modulation at early times is well modeled by sum of the two fundamental modes. The right panel is an enlarged version of
the left one. Using only one fundamental mode does not provide a good match (blue thin solid line). Both panels are shown in the log-
linear scale.
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QNMs of ψ and χ are more or less affected by the
interaction controlled by ϵ12. Nevertheless, this result
shows that our fits extract the amplitudes in a stable
manner. It implies that at least for our parameter choice
the values of QNMs are not significantly affected by the
interaction of ϵ12 ¼ 1.

C. Superradiance

We now discuss possible energy extraction in our setup, an
exciting possibility of having one field probing the interior of
another’s horizon. In the energy extraction in the Kerr
spacetime, the accessibility of the apparent negative energy
inside the ergosphere is essential. In our model without spin,
the region between the two distinct horizons plays the role of
the ergosphere in the Kerr solution in the sense that one field
cannot access there (which leads to negative-energy modes
inside the exterior horizon) but the other field can do and can
extract positive-energy modes by leaving negative-energy
modes there. It is nothing but the Penrose process.
To numerically confirm this scenario, we compute the

reflectivity R defined in Eq. (45). We first decompose the

energy flux into two sectors, ingoing and outgoing fluxes,
by separating the time-domain data at T ¼ Tcut1=cut2 (see
Sec. III B). We have a silent phase between the ingoing and
outgoing wave packets in the time domain, where the
amplitude is quite small. We set the value of Tcut1=cut2

within the silent phase and when the sign of the energy flux
flips from negative (ingoing) to positive (outgoing). During
the silent phase, the sign flips several times, which may be
caused by numerical errors. However, the resulting reflec-
tivity R is insensitive to the choice of Tcut as long as it is
within the silent domain as shown in the right panel in
Fig. 11. We then perform the Fourier analysis and obtain
the reflectivity R as described in Sec. III B.
We find superradiant amplification of waves, or in other

words, energy extraction out of a BH, as the reflectivity
exceeds unity at lower frequencies. The reflectivity we
obtained is insensitive to the choice of the value of
Tcut1=cut2. Our results are summarized in Figs. 11–17.
Here, we fix rψ�;s ¼ 80

ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
for ψ and rχ�;s ¼ 80 for χ

so that the two wave packets arrive simultaneously to the
near-horizon region.

FIG. 9. Left panel: Waveforms for the observable sector χ, for couplings ϵ12 ¼ 0.1, 1 (black thin and red thick lines, respectively). We
set ϵ11 ¼ 0 ¼ ϵ22 and ϵ ¼ 0.1 for both cases. Right panel: The mismatch between the ringdown waveform and our QNM model
consisting of four χ QNMs up to n ¼ 3. We perform the least-square fit with the different start times of fit, Ti. Both panels are shown in
the log-linear scale.

FIG. 10. QNM amplitudes read by the least-square fit with the three QNMs: the hidden sector’s fundamental mode (red), ω220, and the
observable sector’s fundamental mode and first tone (gray), ω̃220 and ω̃221. The value of ϵ is set to ϵ ¼ 0.1 (left) and to ϵ ¼ 0.2 (right).
The start time of fit is T ¼ 76 (left) and T ¼ 82 (right). We set ϵ11 ¼ ϵ22 ¼ 0 and ϵ12 ¼ 1. Both panels are shown in the log-linear scale.
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Fluxes are shown in Fig. 11, where we can see that the
pulse is initially ingoing, after which the wave packets
interact with the geometry and get scattered back to large
spatial regions. A clear ringdown at late stages is seen,
whose features were already discussed in Sec. IV B.
However, the right panel shows that reflectivity R [as
defined in Eq. (45)] for this set of parameters is larger than
unity at small frequencies. The fields are extracting energy
away from the geometry, for reasons explained heuristically
in the Introduction. It is interesting that such “superradiant”
energy extraction takes place at low frequencies only,
something which is explained by the fact that high-
frequency waves are hard to scatter back and simply fall
onto the inner horizon.
It is natural to expect that, since there is no energy

extraction in the decoupling limit ϵ12 ¼ 0, energy extrac-
tion is larger at larger couplings. This expectation is borne
out in our numerical results, Fig. 12. We can also see two
strong suppressions at different frequencies in R. This is
caused by the fact that the two light rings for ψ and χ lead to
an abrupt decrease in the reflectivity at different frequencies
as the two light rings have different heights.

Let us now study the dependence of the superradiant
amplification on the initial data. Figure 13 shows the
reflectivityR for different combinations of the initial wave
amplitudes, Aψ and Aχ . The other parameters of the wave
packets are set to the same ones used in the ringdown

FIG. 11. Left panel: Energy flux of ψ measured at r� ¼ 60 is shown in the time domain and in the log-linear scale. Solid black and
dashed gray indicate the incoming and outgoing energy fluxes, respectively. The arrows indicate the three cutoff parameters of Tcut1=cut2

we used in the right panel. We set ϵ ¼ 0.5 and ϵ12 ¼ 2, ϵ11 ¼ ϵ22 ¼ 0. Center panel: energy flux of χ is shown in the time domain and in
the log-linear scale. All used parameters are the same as in the left panel. Right panel: ReflectivityR for the energy flux shown in the left
and center panels. For the different three lines, we change the cutoff times Tcut1 and Tcut2 to split the flux into the ingoing and outgoing
fluxes in the time domain.

FIG. 12. Reflectivity R with ϵ11 ¼ ϵ22 ¼ 0 and ϵ ¼ 0.5. We
take Aψ ¼ 1 ¼ Aχ .

FIG. 13. Reflectivity R with ϵ11 ¼ ϵ22 ¼ 0, ϵ12 ¼ 2, and
ϵ ¼ 0.5.

FIG. 14. Reflectivity for different phases of ψ ’s wave packet:
δψ ¼ 0, π=2, and π. We set ϵ11 ¼ ϵ22 ¼ 0, ϵ12 ¼ 3, and ϵ ¼ 0.5.
Another phase δχ is set to zero and Aψ ¼ 1 ¼ Aχ .
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analysis. We consider the following initial data: ðAψ ; AχÞ ¼
ð1; 1Þ, ðAψ ; AχÞ ¼ ð1; 0Þ, and ðAψ ; AχÞ ¼ ð0; 1Þ. We find
superradiant amplification when ψ ’s wave packet that can
access the horizon interior is injected. On the other hand, as
is apparent in Fig. 13, we observe less significant energy
extraction when Aχ ¼ 0 and Aψ ¼ 1 with ϵ > 0. In a more

realistic setup, events that could excite significantly and
simultaneously both the observable (e.g., gravitons) and
hidden sectors are BH mergers. Our setup Aψ ¼ 1 ¼ Aχ

could be a mimicker of such scenarios, to see the super-
radiant amplification that may be caused by strong gravity
phenomena.
Given that the two wave packets are simultaneously

injected, interference between ψ and χ affects the super-
radiant amplification. Figure 14 shows the reflectivity R
for different initial phases of ψ ’s wave packet. We can infer
that the energy extraction due to the multiple speeds of
propagation is sensitive not only to the interaction but also
to the details of the injected waves, such as interference
effects.
Let us now “freeze” the interference and study instead

the dependence on the horizon size. To this end, we inject a
single wave packet of a field that can access the interior of
the outer horizon. That is, we consider ðAψ ; AχÞ ¼ ð1; 0Þ.
From our result shown in Fig. 15, one can read that both the
Rψ andRχ are less than unity, which means that both fields
are important to yield superradiance. Also, at lower
frequencies, the superradiance is significant for a larger
separation of the two horizons, i.e., a larger value of ϵ. This
is reasonable as a larger region to cause superradiance can
efficiently accommodate lower-frequency modes relevant
to superradiance. On the other hand, the frequency range in
which superradiance appears is narrower for larger values
of ϵ. The height of the angular momentum barrier for χ is
suppressed, and it cannot contribute to the reflectivity at
higher frequencies of ω≳ 1=½rsð1þ ϵÞ�.
The height of the angular momentum barrier depends on

the multipole mode l and the mass of ψ and χ as well.
Indeed, we find that the superradiant frequency is larger for
a large value of l as is shown in Fig. 16. Figure 17 shows
that the superradiant frequency increases for massive cases.
For a higher multipole mode or massive modes, higher-
frequency modes are scattered by high potential barriers,
which increases the superradiant frequency.

FIG. 15. Reflectivity R with ϵ11 ¼ ϵ22 ¼ 0 and ϵ12 ¼ 3.

FIG. 17. ReflectivityR (left) for different values of ϵ11 with ϵ22 ¼ 0 and (right) for different values of ϵ22 with ϵ11 ¼ 0. We set ϵ12 ¼ 3
and ϵ ¼ 0.5.

FIG. 16. Reflectivity R for different multipole modes: l ¼ 2
(red thin solid), l ¼ 3 (black dashed), and l ¼ 4 (blue thick
solid). We set ϵ11 ¼ 0 ¼ ϵ22, ϵ12 ¼ 3, and ϵ ¼ 0.5.
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V. CONCLUSIONS

We have shown an explicit realization of a theory of two
coupled scalars which probe different effective geometries
and which propagate on distinct spacetimes. Our results are
very clear: one field can probe the BH interior of the other
via their coupling and transport outward important infor-
mation on the underlying theory. In particular, the relax-
ation of BHs in our setup proceeds via two dominant
QNMs, corresponding to the fundamental modes of the
two effective geometries. Also, our setup exhibits energy
extraction out of a nonspinning BH as expected from the
following reasons.
In our system, the field χ that sees the outer horizon can

indirectly access the horizon interior via the interaction
with ψ that probes the inner horizon. Given a field that can
access the horizon interior where apparent negative energy
is available, it could trigger the Penrose process even
without the spin of the BH [23,24,40]. We indeed find
superradiance in our setup, by introducing multiple speeds
of propagation in the BH background. These are exciting
results. The superradiance amplification factors are large
(i.e., without any tuning of parameters, we find amplifi-
cation of a few percent). In addition, new phenomena might
be possible, such as instabilities, if this system is enclosed
in a cavity or if the fields are massive [24].
A classical result concerning ergoregions states that

asymptotically flat, horizonless spacetimes with ergore-
gions are dynamically unstable [24,41–44]. We can
take inspiration from such a result. If we do away with
the horizon for ψ, for example by filling the interior of
r < rsð1þ αϵÞ, with α < 1 positive, then χ sees a
horizon of “size” rsð1þ ϵÞ inside of which it carries
negative energies. However, there is no horizon for ψ ;
all it sees is a star. Nevertheless, the field ψ has access to an
ergoregion (that of χ, through the coupling), and one may
expect instabilities to develop, for any sign of ϵij. A precise
study of this phenomena is outside the scope of this work.
We expect that our results would apply to any situation

where two (or more) coupled degrees of freedom have
different propagation speeds.8 Such a situation often
happens in modified gravity models where additional

field(s) are present on top of the metric in the
gravity sector. For instance, in the context of scalar-tensor
theories, black hole perturbations have been studied exten-
sively, where the scalar mode does not travel at the same
speed as that of the metric perturbations in general (see,
e.g., Refs. [25,26,48,49]). This offers an interesting
possibility that the energy extraction from a BH and the
characteristic late-time relaxation, which we have demon-
strated for a simple toy model, could be found in
gravitational wave observations. We leave this issue for
future work.
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APPENDIX: RESOLUTION TEST AND SANITY
CHECK

When we solve the PDEs (31)–(34) numerically, we
need to specify the time step ΔT and the spatial grid size
Δr�. Here, we fix the ratio between them as

λ ≔
ΔT
Δr�

¼ 0.1; ðA1Þ

which is less than unity and satisfies the Courant condition.
We then solve the PDEs in the range of −100 ≤ r� ≤ 600
with 7500 bins, i.e., Δr� ¼ 700=7500. We perform the
resolution test with three different resolutions as is shown
in Fig. 18.

8Although having (spontaneously or explicitly) Lorentz-break-
ing gravitational theories and starting with the action (1) is one of
the possibilities leading to such a situation, one could start with
Eq. (2) without making an assumption on the gravity sector or
specifying the relation between gμν and g̃μν. When the two metrics
do not share the same horizon and the two fields propagating on
eachmetric are interacting with each other, we expect to see results
qualitatively similar to what we have presented in the present
paper. Having said this, it is also true that direct interactions
between the two matter sectors tend to introduce instabilities such
as the Boulware-Deser ghost, in particular in the context of
massive gravity or bigravity [45–47]. The model described by
the action (1) trivially evades this issue, and one can safely promote
gμν to a dynamical metric without any fatal instabilities.
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We also check the superradiant amplification, discussed
in Sec. IV C, is stable against the position of the initial wave

packet. To exclude the interference effect on the super-
radiance reported in Fig. 14, we inject ψ ’s wave packet only
(see Fig. 19).
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