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Area metrics are an intriguing generalization of length metrics which the generalization in several
quantum-gravity approaches. We describe the space of diffeomorphism-invariant area-metric actions
quadratic in fluctuations and derivatives. A general theory is found to be specified by four parameters, two
of which are mass parameters for the nonlength degrees of freedom. We find that a two-parameter subclass
of theories exhibits an additional “shift” symmetry of the kinetic term and leads to a ghost-free graviton
propagator for the effective theory obtained after integrating out the nonlength degrees of freedom. One of
the two parameters determines the strength of parity violations; the other defines a mass parameter for the
nonlength degrees of freedom. The same type of action has been found to appear from modified Plebanski
theory and in the continuum limit of (effective) spin foams. In this case the two parameters can be identified
with the Barbero-Immirzi parameter and a combination of the Barbero-Immirzi parameter and the Planck
mass, respectively. Moreover, we find that area-metric actions in Lorentzian (but not in Euclidean)
signature feature wrong-sign kinetic and mass terms for the nonlength degrees of freedom. Nevertheless,
despite a coupling of these degrees of freedom to the length metric, the linearized dynamics turns out to be

stable for the above subclass of actions.
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I. INTRODUCTION

General relativity is built on the concept of a length
metric. However, many approaches to quantum gravity
suggest generalizations of the space of length-metric
geometries. One generalization that appears across a
number of approaches is that of area metrics. Similar to
the length metric measuring the length of tangent vectors
and angles between them, the area metric measures the
areas of parallelograms in tangent space and dihedral
angles between such parallelograms.

In four dimensions, cyclic' area metrics have 20 com-
ponents, as compared to the 10 components of the length
metric. Each length metric induces an area metric; in this
sense, area metrics constitute (in four spacetime dimen-
sions) a proper generalization of the length-metric space.

Area metrics have been proposed to describe the phe-
nomenological effects of quantum gravity in, e.g., Ref. [1].
They also appear in string theory [1] and holography, where
they are essential for the reconstruction of geometry from
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entanglement [2]. Area variables also serve as the basic vari-
ables in loop quantum gravity [3—5] and spin foams [6-8].

The spin-foam path integral sums over loop quantum
gravity data associated with simplices in a given triangu-
lation. These simplex data define an area metric for each
simplex, that is, an area metric at the microscopic level [5].
But the area metric also appears at the macroscopic level:
References [9,10] revealed that the continuum limit of the
area-Regge action [11,12], which describes the semiclass-
ical regime of spin foams, gives rise to an action for an area
metric. This area-metric action leaves only the length-
metric degrees of freedom massless, whereas the remaining
area-metric degrees of freedom obtain a (Planck-scale)
mass. One thus recovers the Einstein-Hilbert action, but
also (Planck-scale suppressed) corrections, quadratic in the
Weyl curvature tensor [10].

Spin-foam inspired area-metric dynamics can also be
directly derived from the continuum. The Plebanski action
[13] of general relativity underlies spin-foam dynamics.
The Plebanski formalism turns a topological action into an
action for general relativity by imposing so-called simplic-
ity constraints, which reduce the configuration space to the
space of length metrics (or rather tetrad variables).
Modified Plebanski theories [14] replace these simplicity
constraints by potential terms added to the action. Thus,
one enlarges the configuration space of length metrics but
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equips all additional degrees of freedom with mass via the
added potential terms.

Reference [15] chooses a splitting of the simplicity
constraints into two parts and imposes one part sharply
and the other part via potential terms. The imposition of the
first part leads to a configuration space of area metrics and
thus an action in terms of area metrics. The imposition of the
second part via potential terms adds mass to all the degrees of
freedom in addition to the length metric. Integrating out these
additional degrees of freedom allows one to find the
perturbative effective action for the length metric, and one
finds again the Einstein-Hilbert action plus a Weyl squared
term, suppressed by the mass and inverse derivatives.
Interestingly, this combination is such that it leads to a
ghost-free linearized theory, where only the graviton degrees
of freedom are propagating [15]. The same type of effective
action was found earlier for modified chiral Plebanski
theory [16,17].

The enlargement of the length-metric configuration
space to area metrics can be understood as a consequence
of a fundamental quantum uncertainty. In fact, the quan-
tization of the simplicity constraints leads to a partially
second-class constraint algebra with an anomaly [18,19]
controlled by the so-called Barbero-Immirzi parameter
[20]. This allows for imposing the second-class constraints
only weakly, which leads to an enlarged configuration
space over which the spin-foam path integral is defined. An
alternative argument for this enlargement starts from the
discrete (and asymptotically equally spaced) spectrum for
the area operators in loop quantum gravity [8]. Imposing all
the simplicity constraints sharply would lead to diophantine
equations for the discrete eigenvalues of the area operators.
The resulting solution space is too small to support semi-
classical states; thus, one is forced to consider an enlarge-
ment of the configuration space.

Having motivated the appearance of area metrics in
quantum gravity, and, in particular, in loop quantum gravity,
we now ask what type of actions one can construct using
area metrics. This question has already been addressed in
the framework of constructive gravity [21]. Thus, general
area-metric actions, up to second order in fluctuations and
derivatives, have been constructed both in the canonical [22]
and the covariant [23] version. We revisit the same problem.
We show that there is a simple solution to the problem, based
only on the representation theory of the Lorentz group,
together with the requirement of the diffeomorphism invari-
ance. The quadratic action we describe contains only a
handful of parameters, as compared to the 37 parameters
in [23].

Thus, in this work, general covariance is used as the main
guiding principle. Indeed, it is well known that imposing
diffeomorphism invariance on actions of length metrics
significantly restricts their possible form. According to
Lovelock’s theorem [24], only the Einstein field equations
can arise as Euler-Lagrange equations from a local, second-
order-in-derivatives Lagrangian for the metric tensor in four

spacetime dimensions. More straightforwardly, as is well
known, at quadratic order one can completely fix the form
of the action for length-metric perturbations using diffeo-
morphism invariance. To that end, consider the length-
metric tensor expanded around a flat background,2

(1.1)

where h,, denotes the symmetric rank-two tensor of
metric perturbations. The latter can be combined with
two powers of momenta to form four independent con-
tractions’ (h,, W p?, h,,hp* p*, hh,,p"p*, h>p?), where
h = h,,6" denotes the trace of h,,. All four of these terms
can occur with free coupling constants in the most general
second-order quadratic Lagrangian for the field 7,
However, demanding invariance of the action under linear-
ized diffeomorphisms parametrized by the vector field &,

G = 6/41/ + h;un

h/w - h/w + pufu + puf}w (12)
uniquely fixes three of these couplings as functions of the
remaining one. The most general diffeomorphism-invariant
second-order quadratic Lagrangian for metric gravity takes
the form

1 1
5 h;wh/wpz - Ehz - h;lphgpﬂpy

+ hhﬂzxpﬂpy = ‘CEH(h;w)'

L it inv(h;w) &
(1.3)

Thus, the condition of diffeomorphism invariance leads to
the linearized Einstein-Hilbert action up to a global rescaling.

One of the goals of the present paper is to apply the same
procedure to actions based on area metrics. In Sec. II, we
identify a space of covariant kinetic terms for area metrics;
then, in Sec. III, the space of diffeomorphism-invariant
linearized area-metric actions is discussed. We show that a
certain subset of these actions has a degenerate kinetic
term—this subset coincides with the actions constructed
from modified Plebanski theory in [15]. The degeneracy of
the kinetic term can be further understood and explored
from two different viewpoints. First, in Sec. IV, integrating
out the nonlength degrees of freedom, we construct
effective length-metric actions. We will see that the theories

Here, we have chosen Euclidean signature and expanded the
metric around the flat Euclidean metric (5,,) = diag(+1,
+1,41,41). Our results can be easily adapted to Lorentzian
signature and an expansion of the metric around the flat
Minkowski metric (1,,) = diag(—1, +1, +1, +1). For notational
convenience, we will work in the Euclidean version of Fourier
space.

3For notational convenience we adopt the following notation for
the Fourier-transformed Lagrangians: A term ¢, K(p*)* "y,
with ¢,....y,,.. field variables and K (p?)*** a quadratic poly-

nomial in p*, stands for 1¢,. (p)K(p*)* ¥ w,..(-p)+
W (P)K(PP) ¢y (=p).
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with degenerate kinetic terms lead to ghost-free propaga-
tors for the effective length-metric action. This subset is
described by two coupling parameters—one parameter
parametrizes parity-violating terms; the other parametrizes
the mass for the degrees of freedom which are not induced
by a length metric.

A different viewpoint that we pursue is to perform the
canonical analysis of the area-metric theories. This gives an
alternative understanding of the fact that a subclass of
actions leads to a ghost-free propagator for the effective
theory. We perform the canonical analysis by switching to
the Lorentzian version of the theory in Sec. V. We find that
the Lorentzian action—but not the Euclidean action—
contains propagating degrees of freedom with negative
definite kinetic and mass terms. This is already a possible
source of instability in classical theory. Nevertheless, a
careful analysis in Sec. VI of the equations of motion, done
using the mode expansion, shows that the linearized
dynamics is stable, despite having positive and negative
definite kinetic terms in the action, and a coupling between
these terms. This means that the problem of viability of the
Lorentzian area-metric gravity actions becomes a nonlinear
problem. We further comment on all these issues in the
discussion in Sec. VIL

II. AREA METRICS AND COVARIANT
AREA-METRIC ACTIONS

A. Definition and symmetries

An area metric G at a point p on a smooth manifold M is
a rank-four covariant tensor G:(T,M)®* — R with the
following symmetries,

G

uvpe — -G

=G (2.1)

vupo pouv*
Therefore, an area metric can be regarded as a metric for
bivectors, and it defines the linear map

B" 1> G

G: N°TM - (N’TM)*, wpeB. (2.2)
where the existence of the inverse G~! guarantees an
unambiguous raising and lowering of bivector indices. A
given area metric can be decomposed uniquely into the sum
of two parts: The first part is called cyclic and satisfies the
algebraic Bianchi identity
Guupo) = 0 © Gy’ = 0,

yupo (2.3)
where €7 denotes the Levi-Civita density and the
equivalence holds provided the algebraic symmetries
(2.1) are satisfied. The second part is a four-form and is
thus totally antisymmetric.

Cyclic area metrics are area metrics for which this
four-form part vanishes. Therefore, they have the same

algebraic symmetries as the Riemann tensor. In the follow-
ing we will restrict ourselves to cyclic area metrics.

This restriction can be motivated as follows [15]. The
components of a length metric can be reconstructed by only
measuring the lengths of basis vectors and of sums of basis
vectors in the tangent space, without measuring angles.
Similarly, the components of an area metric can be
reconstructed from measuring areas of parallelograms—
however, only up to combinations involving cyclic sums of
area-metric components of the form G, ). The cyclicity
condition (2.3) sets these terms to zero, such that a cyclic
area metric can be recovered by measuring only areas
without an independent measurement of dihedral angles
being necessary.

Every length metric g,, induces a cyclic area metric by
the definition

G (ind)

ﬂl’/’f’(g) = Yup9ve ~ Guc9up- (24)

However, a general cyclic area metric in four dimensions
has 20 independent components and therefore twice as
many as a length metric in four dimensions. Thus, not every
area metric is induced by a length metric, and the notion
of area-metric spacetimes provides a much more general
concept than length-metric spacetimes.

B. Parametrization of area-metric perturbations
and their irreducible components

Analogous to the expansion of the length metric around a
flat Euclidean background (1.1), in the following we
consider an area metric expanded around a configuration
induced by the flat Euclidean metric,

G/wpa = Gl(lll%i(z (5) + Quvpe = 26ﬂ[p50‘]b + Quypo (25)
where a,,,,, denotes the (cyclic) area-metric perturbations.
Our goal in the next sections will be to construct the full set
of possible kinetic terms of second order in the momenta
and combine these into an action whose free parameters
will later be constrained through the requirement of diffeo-
morphism invariance. Additionally, we will consider mass
terms for a subset of the degrees of freedom of the area
metric.

The 20 components of the area-metric perturbation a,,,,
can be decomposed into irreducible representations of
SO(4), which stabilizes the background metric §,,. This
decomposition is the same as the familiar decomposition of
the Riemann curvature tensor. In four dimensions, the latter
decomposes into the Ricci scalar, the trace-free part of the
Ricci tensor, and the self- and anti-self-dual parts of the
Weyl curvature. Similarly, we write

Qype = hép[ﬂév]o’ + 2<h/)[;451/]o' - hrr[u(sy]/)) + W;Jlry/)o' =+ W;y/)o"
(2.6)
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Here 71,,,, is trace-free (71””5”” = 0), and w, ,, are both trace-

Hvpo

free (wﬁmﬁ*‘” = 0) and satisfy the self-duality equations
1
Eeﬂl,o‘ﬁvv;tﬁp(f = 1w, (2.7)

The general irreducible representation of SO(4) is
of the type (j, /'), where j, j/ are both integers or both
half-integers. It is of dimension dim(j, ;") = (2j+ 1) x
(2j/ + 1). The representations that appear in (2.6) are

ac(0,0)® (1,1) @ (2.0)® (0.2).  (2.8)

We will now proceed to determine the most general
diffeomorphism invariant action to second order in the
area-metric perturbations and to second order in deriva-
tives. We assume that the area metric induced by the flat
length metric is a solution of the nonperturbative area
metric. We can thus set the linear terms (modulo boundary
terms) to zero and only need to consider terms quadratic in
fluctuations. In the next section we determine all possible
kinetic terms quadratic in derivatives. Terms in which the
two derivatives contract with each other to the Laplacian
can be generalized to include mass parameters.

C. Kinetic terms for the area-metric perturbation

We now proceed to determine all possible kinetic terms,
quadratic in a and of second order in derivatives, that can
be written. It is standard to perform such an analysis in
momentum space, so we will have two factors of the
momentum p*p* in each kinetic term.

It is straightforward to write down all possible terms
where the factors of the momenta contract between
themselves to produce p?. Indeed, these terms are just

P*Wape)®. (29)

which are built from the squares of each of the irreducible
component.

To understand the possible terms that do not involve p?,
we note that each factor of the momentum is in the vector
(1/2,1/2) representation of SO(4). The product p* p* is in
the symmetric part of the tensor product

PP pA(h)? PP (W)

p®pe(1/2.1/2) ®s (1/2.1/2)

=(L)® 0,03 (p®p),®p° (210
The second factor is where p? resides, and the first factor is
the trace-free part of p* p*, which we denote by (p ® p),f.
Given that we already described all possible terms involv-
ing p?, we need to understand all possible singlets that can
be constructed from the representation (1,1), coming from
the trace-free part of p”p*, and two copies of the repre-
sentations appearing in (2.8).

First, because (0,0) ® (1,1) = (1, 1), it is clear that the
singlet representation 4 can only appear in the combination

hp"p'h,,. (2.11)

which is one of the two terms not involving p? that appear
in the linearization of the Einstein-Hilbert action.

Second, let us determine what fzm,, if combined with
(p ® p),s» can couple to. We have the following decom-
position:

h®(p®p)e(l)®(1,1)=(2,2) & (1,1)
@ (0,0) (2.1) @ (1,2) & (2,0)
@ (0,2) & (1,0) & (0, 1), (2.12)

where every representation appears with multiplicity one.
To find possible kinetic terms we have to tensor these
representations with the representations appearing in (2.8).
The kinetic term is a singlet, the singlet appears with
multiplicity one in the tensor product (j,;) ® (j,j) =
(0,0) @ - - -. It is clear that all four representations from the
list (2.8) appear here, so there are four corresponding
kinetic terms. The kinetic term of the schematic type /ip ph
already appeared in (2.11). The kinetic term of the type
hpph is given by

(P h)?
and is the second of the terms not involving p? that appears
in the linearization of the Einstein-Hilbert action. The terms
involving w* are

(2.13)

7 V.0, ,E
R p* PO Wipe-

(2.14)

It remains to be seen that there are no new invariant terms
of the schematic type (pp),w™w", (pp),w™w™, or
(pp),ww™ that can be constructed. Let us consider

wr®(p®p),€R0)®(L1)=C1@&(21)D(1.1).
(2.15)

The only representation from the list in (2.8) that appears
here is (1,1). However, the resulting kinetic term has already
been listed in (2.14). Thus, no kinetic terms of the type
(pp) W w*, (pp) sw™w™, or (pp),,wHw™ are possible.

To summarize, we see that there are just eight possible
kinetic terms that can be constructed for the area metric.
They are best described by decomposing the area metric
into its SO(4) irreducible parts. Then, four of these kinetic
terms are those already present in the linearization of the
Einstein-Hilbert action:

PX(hy)?  hp*p hy,.  (pPhy,)*.

The four new terms involving w* are

PP, (2.16)

2(1,+ 2 20— 2 TUP U + TUP U —
P"Wipo)™s D" Wipo)™s W DY POWh s B DY DWW

(2.17)
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D. General area-metric Lagrangian

In the last section we have split the area-metric pertur-
bation a,,,,,, into four parts, h, h,,, and wi, ,,. The first two
parts combine into the length—metnc perturbation

h 5h

o = hyy +— 1 O (2.18)

and encode 10 of the 20 degrees of freedom of the area-
metric perturbation.

The Weyl-curvature-like parts WW,U include 5 degrees of
freedom each. These (2 x 5) degrees of freedom can be
encoded into a pair of trace-free and symmetric matrices ;ﬁ
of spacetime scalars, where i, j =1, 2, 3 are internal
indices which can be raised and lowered with 5% and &;

respectively. The yi 5 and WWW are related by

lj’

()(i)ij _ %Pi%fpa ahvre — %Pi;};pg(wi )/41//)6’
Wispo = 2P fhpor s (2.19)
where
P hpe = %(Zi;;pzi;;a + LT
llz(swzil 0,605, with
T, = £(805, — 895,) + € 5ok (2.20)

The Zifw coincide with the Plebanski (self-dual or anti-self-
dual) two-form evaluated on a flat (Euclidean) background.
Thus, they satisfy the (anti-)self-duality condition (2.7).

|

L( My Jh Kaw)

p

- +xﬂyx+"”p I

1 XX M D? +Z 1

TS
)( pw)( XX

The couplings involving the wff,,p,, then translate’ as
follows:
(w/:fvpay = 4()(?]:)2 (221)
and
hﬂﬂp p W o = 2hﬂl)p p{;[pi/wpa)(l]
= 5 hllﬂp prfzil Zi]ﬂ)(u (222)

Here, ;(ﬁ is symmetric and trace-free. One can then also
find that =/, Zi’ e ]6”/’ = 0, which allows us to replace
the trace-free /7** with h**.

Indeed, it is only the trace-free transverse parts of the
length-metric perturbation h,, which can couple to the
ijm and wy,,, parts of the area-metric penurbatlons
respectively. We can isometrically embed the y3 ; into the
space of symmetric, transverse, and traceless rank-two
spacetime tensors as follows:

i r P _ i
)(/4/) = Zi Zij = il‘JP)(ljjE (2.23)
Thus, the followmg equations hold: )(/w pt =0, ;(ﬂy =0,

and 5,01 = .

In Sec II C, we constructed eight possible kinetic terms
for the area metric. We also allow our general Lagrangian to
include mass terms for the ;( degrees of freedom. The most
general quadratic Lagranglan with second order deriva-
tives, is therefore given by

:AO}zW}z/"’p2 + A h?p? + Ash, h"p/‘p + Ashh,, p*p* + ;hﬂv)ﬁ"”p —1—7}1,,,,)( Y p?

2

7 (2.24)

Lagrangian (2.24) can be translated into a quadratic form in area-metric perturbations via the following relations (which

make use of the conventions of Footnote 3):

Aopysa™7° p* = 8hy, W p* + AR p* + Ayl T p* + Ay U p?,

aa/iayaﬂﬁyﬁp2 — 4h’whm/p2 + 8]’12 2’
a® ga’® 5p* = 36h*p?,
/waa/}yé

b’ = Sy p* =8y p?,

+ h2p?

aaﬁ
aa7ﬁ5ay”5ﬂp“pﬁ = 2h,, " p*

aayﬂyaaﬂﬁﬂpapﬂ = 6h2p2 + 12hh;wp p ’

ao a5, p°pP = W2p? + &by, W) p* p¥ + 4, p pY,

a%a Ve, p"pP = 2p Eﬂ'{;ﬁjh/‘” - 2p2E‘,’{yx;hﬂ”

/il

“Here, we use the identity P+ o P+ = §i('5/)] — 1557

— 4h,,, k) p* p* + 4hh,, p* p* + szﬂw)ﬁh"” + pZE_,’f,,)(l‘]h””

(2.25)
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Note that, in terms of the area-metric perturbations, we
have two contractions that include the Levi-Civita tensor
density and are hence parity-breaking. (Any terms with
more than one Levi-Civita tensor density can be rewritten
into terms containing one or zero such densities.) These
indeed lead to differences between terms involving the y*
and y~ fields.

Let us remark that the covariant version of constructive
gravity, Ref. [23] identifies 37 possible terms quadratic in
area-metric fluctuations. For these 37 terms, one does,
however, allow for the acyclic part ie,,,,, with 4 a scalar
density, for the area metrics. In [23], one also distinguishes
terms which are related by integration by parts. The 37 terms
split into six terms without derivatives and 31 quadratic
in derivatives. Allowing for acyclic area metrics, we
obtain additional couplings (p?)4%, (p?)4h, and h,, p* p¥A.
Identifying terms related by integration by parts, we can
then match all 31 terms of [23] with our eight contractions
given in (2.25) and the three terms involving 4. We match the
six terms without derivatives one to one; these are given by
h?, (h,,)? and () (y¥)* as well as 22, Ah. Thus, our
results here are not in conflict with those in [23] but are
obtained in a much more straightforward way.

Let us remark that the parametrization of the area-metric
fluctuations in terms of a length-metric perturbation #,,, and
the ten ', fields can be extended to the nonlinear theory [15].
To that end, one starts from (nonchiral) Plebanski theory,
which features so(4)-valued two-forms Bj/, with I,J =
0,...,3 as configuration variables. Via the decomposition
of so(4) into self-dual and anti-self-dual parts so(3) @ so(3),
we obtain two so(3) valued two-forms (Bi)LD. These two-
forms can be parametrized by two unimodular 3 x 3 matrices
(b.)}and two tetrads (e ) ; see [16]. Forcing the two tetrads
to be equal, one reduces the number of SO(4) invariant
degrees of freedom encoded in the B-fields from 30 to 20.
This allows us to define a cyclic area metric [15], which
is parametrized by the length metric (obtained from the
tetrad field) and two fields of unimodular 3 x 3 matrices.
Expanding these data around a flat background, one finds
that the perturbation can be parametrized by length-metric

fluctuations A, and ten scalar fields )(i [15].

III. REQUIREMENT OF DIFFEOMORPHISM
INVARIANCE

In this section, we will illustrate how the requirement of
invariance of the Lagrangian (2.24) under linearized diffeo-
morphism transformations further restricts the number of
free parameters.

Linearized diffeomorphisms parametrized by the vector
field & act on the symmetric rank-two tensor of metric
perturbations /,,, and on the spacetime scalars ;ﬁ; as follows:
(3.1)

Py = by + puly + Pl X5 = X35

Demanding invariance of the Lagrangian (2.24) under
linearized diffeomorphisms (3.1) fixes the part quadratic
in the field £, to a multiple of the Einstein-Hilbert action,’

A
[’diff inv(h;w) = A‘CEl-l(h/w) = Ehm/ (ZPMDPG - ZOP”Upg)pzhpa-
(3.3)

On the other hand, the part of the Lagrangian which is
quadratic in the fields )(f; is invariant, as these fields do not
transform under diffeomorphisms. Moreover, these fields
only couple to the transverse and traceless parts of the length-
metric perturbations, such that the coupling terms between
;(iij and h,, are left invariant under the diffeomorphism
transformation (3.1). As aresult, demanding diffeomorphism
invariance leaves us with the four free parameters o and .
in the notation of (2.24), plus one additional global rescaling
parameter denoted by A in front of the Einstein-Hilbert
term (3.2). Allowing mass terms for the y* fields, the most
general second-order quadratic diffeomorphism-invariant
Lagrangian for A, ;(j[,, (and thus for the area metric a,,,,,)
can be written in the form

£diﬁinv(huyv)(i+j’)(;j) :A‘CEH(hﬂD)
1 .
ISy
+

FPe A mi ). (3.4)

We close this section with a number of remarks:

(i) If m2 > 0, the fluctuations of y* will be suppressed
by these mass terms. We can integrate out the y=
fields and obtain, to leading order in a derivative
expansion, A times the Einstein-Hilbert term (see
below). Thus, if we wish to recover (linearized)
general relativity, we have to choose A = 1. If one is
only interested in the theory after integrating out the
y* fields, one can redefine the y* fields by a
rescaling (and the sign of a). This absorbs two
couplings. We are left with the following combina-
tion of four coupling constants: M3 = m?% /B

and py = % /p..

Here, the spin-2 projector P (which projects onto the
symmetric, transverse, and traceless tensor modes) and the
spin-0 projector °P (which projects onto the symmetric and
transverse trace tensor modes) are defined in four spacetime
dimensions as

1
OP;wpa = gP/J[vP;_m

1 1
2 — 1 pl 1 pl 1 pl
P/wpzr - E(Pﬂ/)PpD' + P/wPup) _gp//uppw

_ PuPy

2

where PL =6
7 §17% p

(3.2)

124035-6



AREA-METRIC GRAVITY REVISITED

PHYS. REV. D 109, 124035 (2024)

(i) For a parity-preserving Lagrangian, we need to set
a, =a_, f.=p_, and m3 =m?>.

(iii) The Lagrangian (3.4) features an additional shift
symmetry for special values of the coupling con-
stants: Assume the masses m? are vanishing and the
couplings satisfy

at  ar
5, + 2 =2A,

with A >0 and p,. > 0. The Lagrangian (3.4)
(without mass terms) can then be written as a
sum of two squares,

iz
»Ckin: 4 Z(\/— ;w /Bi lluj)(i)

X (ZPm/pa _

(3.5)

20 P/wpa)

(\/_ oo+ (3.6)

This leads to a five-parameter6 gauge symmetry,
which is in addition to the linearized diffeomor-
phisms:

X = X+ i

a_
AP 5 5 ERmew ST ERNL,,
af

m

+ij
§7% E;w Ctja

X =+

h, —h

(3.8)

{12

where {;; is symmetric and traceless. To see this, one
uses

Ep 848, E;F 76 EL™ = Ej, - (3.9)
as Ej;;/ 8,8, E;X equates to the 2P projector, which
acts as an identity on E*™". Adding masses m?
breaks the shift symmetry (3.8). In this case, one
still has a degenerate kinetic term. In other words,
the corresponding quadratic form has dimension

The shift symmetry (3.8) can be expressed in a more
symmetric form as

)(z] }(1] + //]_ (é‘; + 5[}115]"E;rymnayﬂ(smrE;éclé'kl)7

X; _)le (CU + 6tméan_mn6”p6D0_E+lekl)’

ﬂ_

h/w - h;w - E/:r;]gjj - E;Ij] D (37)
Here, we have five parameters C* and five parameters (;;

appearing, but one can show that there are five redundan(:les
between these parameters.

20 x 20 but features nine null vectors—four result
from the linearized diffeomorphism invariance and
five from the shift symmetry (3.8).

This degeneracy of the kinetic term appears for
area-metric actions derived from the modified Ple-
banski action; see [15-17,25]. It can be seen as a
remnant of shift symmetry for the two-form B-field
appearing in the Plebanski action. The Plebanski
action is a sum of the BF action, which is invariant
under such a shift symmetry, and constraint terms,
which break part of these symmetries.

IV. EFFECTIVE LENGTH-METRIC ACTIONS
AND PROPAGATORS

Here, we will integrate out the y* fields from the
Lagrangian (3.4) and, in this way, define an effective
Lagrangian of the length-metric perturbations only, which
captures the effects resulting from the additional degrees of
freedom in the area metric.

Varying the Lagrangian (3.4) with respect to the fields ;(iij
using the definition (2.23), we find

0L gitf iny P+ ( 1 )
Tditiny _ oyt = P2 () p2h, 5,
o “ Ty LA

(4.1)

where py = a3 /. and M% = m3 /p.. Reinserting this
solution into the Lagrangian, using
v ik <il
Eijﬂv5lk5ﬂEklp6 — 2Pﬂl/po" (42)

we obtain an effective Lagrangian for the metric fluctua-
tions given by

Eeff(h;w) - A[’EH(h;w)
P+ 1 4 2
-y Ry h, 2 PRPe (43
- 4 <p2—|—M2i>p wep ( )

We can express the last term as

p*hyh,2 P =20, (mee, (4.4)

Hvpe
where (C denotes the first-order perturbation of the
Weyl tensor. Altogether, we obtain an effective metric
Lagrangian given by a multiple of the Einstein-Hilbert
Lagrangian and a correction quadratic in the Weyl tensor,

1

= ALEH(h/w) - 5 (I)C/wpo

'Ceff (h/w)

P+ pP- (I)C/wpa 4.5
(p2+Mi+p2+M%> - (43)

The correction term is nonlocal, with the scale of non-
locality controlled by the effective mass squares
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M3 = m? /.. Remarkably, besides M2, the effective
Lagrangian is characterized by only three free parameters,
a global rescaling A and the two couplings p, = a2 /f..
Demanding that we obtain the usual Einstein-Hilbert
Lagrangian at leading order in a derivative expansion
fixes A = 1. Next we show that, if in addition we have
no further poles for the spin-2 mode, we obtain the
conditions p, +p_ =1 and M, = M_. In this case, we
are left with one free coupling parameter (corresponding to
the Barbero-Immirzi parameter in [15]) and one mass
parameter.

Poles in the effective propagator for the spin-2 mode
correspond to zeros of the inverse propagator. Omitting
tensorial structures, the latter is given by

. A 1 p P
P —l\spin-2 _ 2~ 2~ + 4
(Prop™) 2P 4<p2+Mi+p2+M% g

(4.6)

Thus, we recognize the propagator pole at p> = 0 repre-
senting the massless spin-2 graviton mode. If M2 # M2,
we can find additional poles by solving the equation

2A4(p* + M) (p* + M2) = p. p*(p?
+M2) =0.

+ M?)

—p_p*(p? (4.7)
For general couplings p.,p_, and A, the left-hand 31de of
this equation yields a second order polynomial in p?. This
equation has, in the general case, two solutions for p?, and
we thus find additional poles.

If 2A =p, +p_, that is, if (3.5) holds, the quadratic
term p? in (4.7) drops out. We obtain a linear equation for
p?, which is solved by

+p-
Y 3 Y e e 4.8
p + M%r Pyt M2 p_ (4.8)
If M2 = M% =M?* (but2A # p, +p_), add1t10nal poles

are again described by an equation linear in p?:

A#p, +p_
AP+ M) = (p +p)p* =0 =
2AM?
R — (4.9)
2A-py—p-
Finally, if 2A = p, + p_ and M%2 = M2 =: M hold, the

system does not have any additional poles In this case, the

propagator is given by
2/ . 1
CA\pr M?

and is independent of how 24 = p, + p_ splits into p, and
p_. Indeed, Eq. (4.6) specifies for p, +p_ =2A and
M,=M_=Mto

(Prop)spin-2 (4.10)

p2 _A 5 M?
P+ M2 5P 2+ M
(4.11)

) A
(Prop—l)spm—2 — EPZ (1 _

which inverts to (4.10). We note that the propagator (4.10)
features the same poles as the spin-2 propagator for the
gravitons and is therefore ghost-free.

Such a ghost-free propagator has been previously found
for two slightly different theories: first, in the context of
modified chiral Plebanski theory [16,17]. The linearized
Lagrangian for this theory corresponds to the couplings
pr=A=1p_=0,and M, #0as wellas M_ = 0. The
Lagrangian therefore depends only on the fields £, and )(?;
(and is therefore chiral) and can be written as

Echiral (hﬂu+E+lj +)(2PIU/,0¢7 20lepo—)(h + ;;]ZU)

ot iyt (4.12)
With the nonlocal field redefinition (remember that E,J{,f/
includes inverse derivatives)

hu = hy + En x5, (4.13)

we have

2

p A~
cchira] =—=h

2 PHYPO _
D) ;w(

20PN h + My Ty (4.14)
Here, y"/* appears only in the mass term and is therefore
not propagating. This explains the simple form (4.10) of the
propagator for the effective length-metric Lagrangian.

The second theory in which the propagator (4.10)
appears is modified nonchiral Plebanski theory [15,25].
The linearized theory as discussed in [25] features
30 degrees of freedom: two independent length metrics
h,, and the ten fields 7. 5. With the aim of constructing an
effectlve Lagrangian for spin foams, Ref. [15] argued that
spin-foam quantization sharply imposes constraints
hi, = hypyy = hy,. This leaves 20 degrees of freedom
which can be packaged into area-metric perturbations.
The nonchiral Plebanski Lagrangian leads to a linearized
Lagrangian which satisfies the condition 1 =A =
1(p. +p-), and the coupling described by p. can be
identified with the Barbero-Immirzi parameter. We thus
have an additional shift symmetry. However, this symmetry
only allows for absorbing 5 out of the 10 degrees of
freedom encoded in )(; and y;;.

One can therefore ask why the effective length-metric
Lagrangian features the simple propagator (4.10) in this
case as well. We answer this question later. After switching
to Lorentzian signature, we perform a canonical analysis.
This shows that we indeed have the usual 2 propagating
degrees of freedom of the graviton and an additional set of
5 degrees of freedom from the )(i fields. However, solving
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the canonical equations of motions will reveal that there is a
variable transformation that allows a decoupling of the
dynamics into two massless propagating modes and five
massive propagating modes. This explains the form of the
propagator (4.10).

V. LORENTZIAN SIGNATURE
AND WICK ROTATION

In the first part of the paper, we investigated linearized
area-metric actions in Euclidean signature. We thus
used the flat Euclidean background length metric (6,,) =
diag(+1,+1,+1,+1). Next, we consider linearized metric
actions in Lorentzian signature; that is, we use the
Minkowski metric (r,,) = diag(—1,+1,+1,+1) as a
background metric.

The linearized Einstein-Hilbert action for Minkowskian
signature can be straightforwardly obtained from the
Euclidean action by contracting indices with the
Minkowski metric # instead of the Euclidean metric &.
This can also be understood as a result of a Wick rotation
for the background time coordinate.

However, the discussion becomes more involved for
the fields ;ﬁ parametrizing our self-dual components.
Remember that these fields arose from the area-metric
perturbations via

+\ij 1 +iJ vpo

(x )]ZEP po @7, (5.1)

where P* is quadratic in the Plebanski two-forms ¥/,

(evaluated on a flat background). In Euclidean signature,
these were given by

Exti = (895, — 895.,) + ¢ 5u0k. (5.2)

The Kronecker deltas 5,’, arise from tetrad variables e,’,.

Thus, if we Wick rotate, we should multiply 52 with an 1.
This leads to the Lorentzian Plebanski two-forms,

Lyti, = 21(808) — 808,) + €' x50k (5.3)

Indeed, the Lorentzian self-duality condition is an equation
with complex coefficients, and for the Minkowski metric, it
is given by
1 palTsz:i =+ Lzzti 5.4
En;tp’/lyoe i — * Vi ( : )
Assuming a real area-metric perturbation, the fields ;(,-ij
are now complex, but they also satisfy

X=X (5.5)

We thus have as many real fields y,;; = Re()(i*j) and y,;; =
Im(y;;) as before.

Now, let us consider a term in the Lagrangian involving
these complex fields, e.g.,

‘Cmass = H4 ()(;;)2 +u_ ()(5)2

As we have complex fields, we also allow for complex
coupling constants. However, we demand a real action,
which [with (5.5)] imposes fi; = p_. Introducing a real
parametrization for these couplings u = u; + 1u,, we obtain

Linass = 2ﬂ1<()(1ij)2 - ()(2;’1)2) - 4/42)(1ij)(2ij- (5-7)

Let us assume that y, = u_ = p is real and thus u, = 0.
Indeed, we need to assume equal masses for the plus and
minus sectors in order to find no additional poles in the
length-metric effective action in Sec. IV. (These calcula-
tions proceed in the same way for a Minkowskian back-
ground.) We then see that, whereas we have a positive-
definite term (for positive u) in the Lagrangian for a
Euclidean background, we also have terms with indefinite
signature for the Lorentzian Lagrangian.

The reader might already be familiar with such an effect
for the case of electromagnetism. Therefore, one can apply a
self-dual decomposition for the electromagnetic field tensor
(or two-form) F,,, whose Lagrangian density is proportional
to F, F* = F; F*" 4 F,, F~". The real and imaginary
parts of the self-dual electromagnetic field tensor can be
parametrized by the electric and magnetic fields £ and B“.
Here, we also have a similar change in definiteness going
from the Euclidean Lagrangian density ~E? + B? to the
Lorentzian Lagrangian density ~E> — B2 In this case,
however, this change does not imply any issues for the
stability of the Lorentzian system: The E? term includes the
time derivatives of the electromagnetic potential and is
positive definite, whereas the —B? term contains the spatial
derivatives and can be understood as minus the potential
energy term that usually appears in the Lorentzian action.

However, ;(iij are fundamental fields; that is, they do not
arise as derivatives from an underlying field. We indeed
have an indefinite kinetic term and an indefinite mass term
for the y fields. One might therefore expect a nonstable
dynamics. To investigate this issue, we perform a canonical
analysis of the Lorentzian quadratic area-metric action and
consider its evolution. Here, we concentrate on the most
interesting case identified in Sec. IV, that is, the case with
shift symmetry and equal masses.

Thus, we consider the Lorentzian Lagrangian density

(5.6)

1 1
‘Cfull = A( ) (aphpw)z + (avh;u/)z - (auhyu)a”h +§<aﬂh>2>

2

1 o
> Qe ZE N, 0,0,
+

_ﬁi(a#)(jz:h)z - mi()ﬁ)z),

iniﬂb

(5.8)

where, from now on, T*H =
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In the following, we will fix the global scale by setting
A = 1. We will also use the freedom to rescale the )(i fields
and, in this way, achieve . = 1. We will consider the case
m, =m_=m, as well as o, =a_ = a; + 1a,, and later
restrict ourselves to af + a? = 2a} — 2a} = 2.

VI. HAMILTONIAN ANALYSIS

In this section, we present the Hamiltonian formulation of
the area-metric theory in Lorentzian signature. To that end,
we first review the constraints and Hamiltonian for linearized
general relativity. The linearized Einstein-Hilbert action
forms one part of the general action for the area metric in
the parametrization (h,,,, )(3) Subsequently, we extend the
canonical analysis to the full (quadratic) area-metric action
by taking into account the coupling terms between /4, and
Xi;» as well as the kinetic and mass terms for y7;.

A. Constraints and Hamiltonian
for linearized general relativity

The linearized FEinstein-Hilbert Lagrangian density is
given by

1 1
Lgn = 3 (0phy)* + (0 hy)? = (0"hy, )" + 5 (0,)?,
(6.1)

where h = h,, 1" = —hyy + h,,6 denotes the trace of the
metric perturbation. In what follows, a, b, ... =1, 2, 3 are
used as spatial indices. To identify the canonically con-
jugate variables, we perform a 3 + 1 decomposition of
the Lagrangian. Integrating by parts to remove any time
derivatives acting on the time-time and time-space compo-
nents hgg, hg, and dropping all the surface terms, the
Lagrangian can be written as

. . L.
Loy = =20phao (h = 6°(5heq)) + 5 (hap)®

1 .
) (hap8?)* + (0“ho0)0” (hap — 845 (6“hey))

1

— (0%ha0)* + (0hpo)* — 5 (0ahpe)* + (0°hyp)?

+ 6% hy,0°0%h .y + % (096°Th,y)>. (6.2)

The resulting expression does not include any time
derivatives of hgg, h,o. Thus, these components of the
metric perturbations represent Lagrange multipliers with
vanishing canonical momenta. The only nonvanishing
canonical momentum is the one conjugated to the spatial
part of the metric, i.e.,

OEEH o

Dab = m = hay — 20, hpyo — 8y (heg — 20(hyy).

(6.3)

Taking the trace of (6.3) allows us to solve for the
velocities &, as functions of the momenta p,,

; 1

hab = Pab — Eéab<5Cdpcd) + 2a(ahb)0' (64)
Additionally integrating the (d(,h))* term by parts, we
can finally express the Lagrangian (modulo surface terms)

in terms of h,,, its conjugate momentum p,,, and the
Lagrange multipliers gy, iy,

1 1
— 2 _ _(sab 2
Lgy = 3 (pab> 4 (6 pap)
. 1
+ (aahOO)ab(hah - 6ab(6thcd)) _E(aahhc)z

1
+ (Phap)® + 6 ha,0° 0 hey + 3 (0°6“heq)*.  (6.5)

The canonical Hamiltonian therefore takes the form

. 1 1
Hen = p“Phyy — Len = 2 (Pab)* — I (8" pap)?
1
+ 5 (aahbc)2 - (abhab)z - 5abhabacadhcd
1

5 (06“Uheq)* + hoo0°0° (hap — 84p(5“hcy))
= 2h,00, p“°.

To arrive at the above form of the Hamiltonian for
linearized general relativity, we have integrated by parts in
the Lagrangian to remove all derivatives from the fields /%
and h,, thereby identifying them as Lagrange multipliers
which impose the four first-class primary Hamiltonian and
diffeomorphism constraints

C =0 (hab - 5ab (5thcd)>’ Cb - aapab' (66)
These do not give rise to further secondary constraints.
Thus, the physical phase space is obtained from the
kinematical phase space (A, p,,) by imposing the four
first-class constraints. Each of the four first-class con-
straints removes 2 degrees of freedom. The reduced or
physical phase space is therefore 2x6—-2x4 =4
dimensional, describing 2 propagating degrees of freedom
which correspond to the massless spin-2 graviton of general
relativity.

We can explicitly describe the physical degrees of
freedom by imposing gauge-fixing conditions

5 pa, =0, 0%hy, = 0. (6.7)
The first condition gauge fixes the transformations gen-
erated by the Hamiltonian constraint, while the second
condition gauge fixes the diffeomorphisms. With this gauge
choice, the Hamiltonian constraint becomes 8(6%’h,;,) = 0,
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which implies that h,, is also trace-free. In summary,
we have two trace-free—transverse (7r) fields (A%, p! ).
The physical Hamiltonian is manifestly non-negative and
given by

. 1
HE" =5 (Pl)* + 5 (0chi,)’. (6.8)

| =

B. The 3+1 decomposition of the Lorentzian
area-metric action

We now consider the Lagrangian density for the 4, and
the ﬁ; fluctuations, given by

1
Lty = Len + ZZ(ZaiZi“” vsEbeop, 0,0, %,
x

= (Oura)? = m*(ra)?)- (6.9)
Here, we identify the internal indices i, j, k, ... with spatial
indices a, b, c,.... This is possible via the background
spatial triads ¢!, = &,. Remember that y* =y, 1y,
and o = a; £ 1.

The most involved new term in this Lagrangian is the
term describing the coupling between the y and 4 fields.

Using the explicit expression (5.3) for the Plebanski two-
forms, this term can be written, after partial integration, as

1 3 [ . a ae
5 D QT ERN,0,0500, = ) a1 o[~hoodadpri = 20kt + hank{ + € € hey0p0,01 2an)
+

1.2

+ 2a1 5 (h®? = 20hP)e, L 0,05 1 -

We can write the previous expression more compactly by introducing the combination

Xab = X1 X1ab — Q2 2ab

(6.10)

and recalling the relation (6.3) between the momenta p,;, and /,;, (which are conjugated variables in linearized general

relativity). Herewith, we can rewrite the coupling term as

1
EZaiziawzibmhm@yaﬂ)@ = —ho0,0px"* + puri® + €aef€hpqhepafaq)(ab + 2pab€aefae(a1)(2fb +ayip).  (6.11)
T

where we find that y ,, as well as e(aef 0\oX f|)» are trace-free. The full Lagrangian can thus be written as

N[ =

Ly (hﬂw)( 1,2ab) =

1
(pab)2 - Z (5abpab)2 - hooaaab(hab - 6ab (5thcd))

1 1
- 5 (aahbc)z + (abhab)z + 6abhabacadhcd + E (aaéwlhcd)z

— ho00u0px“” + Pap®” + €4V €"Ph, 00,1y + 2P €, 0o (@12 s + QX1 1)

1, . , 1 1 a p
+ 5(()(1(117)2 - ()Kzab)z) ) ((aa)(lbc)z - (aaﬂfzbc)z) - Emz((ﬂhb)z - (Zzb)z)- (6.12)
The conjugate momenta are determined by
P, = aEfull _ . . o) efa 2 o)
ab =S8 o Pab + WX 1ab — Od2ap + 260 01 (20001 f16) + 201 2211 )

0Ly, ) 1

Prab =~ = J1ap + A1 Pap = 5 0185 Poa,
N 1ab 3
0Ly, . 1

Prab =~ = —rap = WPap + 5 0855 P g (6.13)
a)(Zah 3

Here, we have explicitly subtracted the traces to make p; ,
trace-free.

As a next step, the velocities have to be solved as
functions of the momenta. The trace part of the first

equation is insensitive to y , as these fields are trace-free,
and thus it can be solved in the same way as for linearized
general relativity. In particular, only the trace-free parts
of the equations for the conjugate momenta are coupled.
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This system is nonsingular unless

22—
ai—a; = 1.

(6.14)
If this condition is satisfied, the rank of the system of
equations (in the space of three symmetric trace-free fields)
is two rather than three, which signalizes the presence of
the additional “shift” symmetry. In the following, we will
restrict the analysis to the case when (6.14) is satisfied. To
that end, in the next subsection we introduce an alternative
basis of fields to parametrize the Lagrangian.

C. Reparametrization of the Lagrangian

The relation (6.14) implies that we can parametrize
the real and imaginary parts of the complex parameter
|

'Cfull(hﬂw)(abv ¢ab> 2

1 . 1 .
== (Pab + Far)* — I (8 (pap +Zab))2 — hop0“0” (hap, + XYap

a, = o + 1, in terms of a single real parameter ¢ by
writing

a, = cosh(&), a, = sinh(¢). (6.15)
Introducing the field redefinitions
x =cosh(&)yy —sinh(§)ya, ¢ = sinh(&)y; — cosh(&)x,
(6.16)

allows us to express the full Lagrangian (6.12) after some
algebraic manipulations in the form

1
Y aahbc)2

_5ab(50d<hcd +)(cd)) 2(

+ (abhab) 5abhabacadhcd +5 (aa5cdh ) + 6a6f€bpqhepafaq)(ab + 2pab€aefae (Sinh(2§))(fb
1 1 1
—cosh(2&)¢y,) — (¢ah) - ((au)(in) — (0utppe)?) — Emz()(uh)z + sz(ﬁbah)z- (6.17)

From the above expression, we recognize that the terms p?, py, and 7> form a perfect square. As a next step, we rewrite the
Lagrangian in terms of

Puy = DPap + Xab + 26 efa\e(smh(zf))(f\b) —cosh(28) )
D, = ¢ab - 2005}1(25) ja\e)(f\b)-

We can use partial integration repeatedly to see that the term yy vanishes (modulo a surface term), whereas the term y¢ can
be rewritten such that the time derivative acts on ¢. Herewith, the Lagrangian can be expressed as

(6.18)

‘Cfull(h;w’)(abv ¢ab) = % (Pab)2 - % (5abPab)2 - hooaaab(hab +Xab— 5ab(50d(hcd ‘H(cd)) _%(aahbc)z + (abhab)2
6abhabacadhcd+] (096U R q)? + €T €Ph, ,0,0 400y — 2(€ 4 fa\e(smh(zf)ﬂ(f\b) —cosh(28) ¢ p)))?
2005228 (€1 Ot ) =5 (@) =5 (Ot = (0uthnc)?) = 52 s+ 5m2 (). (6.19)
From (6.19) we see that the spatial metric subject to the Hamiltonian constraint is
Hup = hap + Xap- (6.20)

Rewriting all potential terms in terms of this redefined metric, using partial integration, we can write down the full
Lagrangian in the form

1 1
‘Cfull(Hab’)(ab’ ¢ab) = (P ) - (5athzb>2 - hooaaab (Hab - 5ab<5CdHcd)) - E (aaHbL‘)z + (abl_lab)2 + 5abHabaCadHcd

1
2
+

(aaade 2)2 + 267 €bPUH 10,054 + 4 cosh(2£) sinh(28) (€ 01 1)) (€% a0 ™)

— 2 cosh?(2&)(

: 1
S =5 @ 3 (O e+ 3 (D) (621)

"Note that one can use a field redefinition y* — —y* to change a negative coupling a; into a positive coupling.

124035-12



AREA-METRIC GRAVITY REVISITED

PHYS. REV. D 109, 124035 (2024)

The first two lines represent the linearized Einstein-Hilbert
Lagrangian for the spatial metric H,, and its conjugated
momentum P, (as can be easily checked) with the Lagrange
multiplier /g imposing the Hamiltonian constraint and A,
imposing the diffeomorphism constraint (as can be seen by
inserting the explicit expression for P, ). The last line is a

|

Lagrangian for the field ¢, which notably has a wrong sign
in front of its kinetic and mass terms. The third line involves
the field y,,, whose momentum is constrained to vanish.

To express the Lagrangian in terms of the fields
H,,, %, ®qp and their time derivatives, using (6.18) and
(6.3), we find

Puy = Heap = 8,50 H g = 20(ahp)o + 26,560 hag + 2 sinh(2£)(Dy) o, — 2 cosh(2&)(Dgh) .1,

(I)ab = _¢ab - 2C05h<2§> <DZ)ab

(6.22)

where Dt,, = €<aef Oetfp)- Thus, the Lagrangian density expressed as a functional of H,;, x., and ¢, is given by

'cfull(Habﬂ)(ab? ¢ab) =+

= B = 0] —

2

(Hap = 6,56 H oy — 20(,hp)o + 26,560y + 2 sinh(2£)(Dy),,, — 2 cosh(2&)(Dgh) ;)
(=269 H p + 46" 0, hpo)* — hop0"0° (H oy — 8, (6°/H o))

: 1 .
(aaHhc)z + (abHab)z + 5abHabaLadHcd + E (aaaLdHcd)2

X . 1
+ 2¢ef equHepdfaq)(ab + 4 cosh(2¢) sinh(2¢€)(Dy),, (D) — 5 m?(yap)?

- % (¢ + 2 cosh(28)(Dy),,)* + % (0utppe)* — 2 cosh? (2E)((Dep) ) + %mz(%b)z-

(6.23)

D. Hamiltonian

Only the fields H,, and ¢,, have nonvanishing conjugate momenta equal to the already introduced combinations

Pab! (I)ab’

0L _ pab
0H .,

’

aEfull _

ol _ pab, (6.24)
a¢ab

To obtain the Hamiltonian, we need to compute P*’H ,, and ®*¢,,,. They are derived using

. 1 ) .
Hy, = Py +20,hp)0 — §5ab5‘chd — 2€(,%7 0|, (sinh(2&)y 1) — cosh(2€) 1))

¢uh = _(Duh - ZCOSh(zé)g(aefa\e)(f\b)'

(6.25)

Introducing the differential operators Dt,;, = e(aef Octppy and (D), = €, °€,11040,t.4, we can now write down the

Hamiltonian density (using integration by parts),

Hey = PPH py + ©, — Ly
1 1

o~

2

Py (Pab)z - Z <5abPah)2 + hooaaab (Hah - 6ab (6CdHcd)) + 2’Pabaahbo

1 1
+ 5 (aaHbc)2 - (ahHab)z - éabHabacadHcd - 5 (0u5CdHcd)2

— 2P (sinh(2€) Dy, — cosh(2E)Dg,;,) — 2 cosh(2E) @ Dy,
— 2y DH ,;, — 4 cosh(2&) sinh(2&) Dy ., Dp®

1
2

1 1 1
5 (‘Dab)z - 5 (aa¢bc)2 + 2 cosh? (25) (D¢ab)2 + z m2<)(ab)2 - §m2(¢ab)2'

(6.26)
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Note that the first two lines of the Hamiltonian density
agree with the Hamiltonian density for linearized GR [see
Eq. (6.6)] if we replace h,, — H,, and p,, — P,

This system has the following constraints: First, we have
the usual linearized constraints of general relativity,
C= aaab(Hab - 5ab(5CdHcd)>’ G, = aaPab' (627)
These constraints commute with each other. However, we
also have to check the time evolution of these constraints with
the Hamiltonian. It turns out that the constraints commute
with the part of the Hamiltonian involving the y and ¢ fields
and their conjugated momenta. Thus, one has the same
commutation relations as in linearized GR, namely,

{C,/d3XHfu11} =0"C,, {Cb7/d3foull} =0.

(6.28)

Therefore, we do not generate any further constraints.
Additionally, we have the primary constraint that the
momenta ©,, conjugated to y,;, vanish: ©,, = 0. We also
have to consider the time evolution of these primary
constraints. To this end, note that for symmetric tensors
|

1

5% and t,, using integration by parts, we have
(Ds)*t,,=5%(Dt),,. We thus obtain the following sec-
ondary constraints:

Cup = Mm%y, — 25inh(2E)DP,,;, — 2 cosh(2E) DD,
—2DH,;, — 4 cosh(2¢) sinh(2£)D* ¢,

= mz)(ab - Fab<Hcdv Pcd9 ¢cd7 cI)cd)' (629)

The primary and secondary constraints form a second-
class system. (The commutator of F,, with F_., vanishes,
and therefore C,;, commutes with C,;.) Following Dirac’s
procedure, we have to add the primary and secondary
constraints multiplied by Lagrange multipliers to the
system. Demanding that the constraints are preserved by
time evolution fixes these Lagrange multipliers; thus, we do
not generate further constraints.

We can eliminate the constraints ®,, and C,, from the
system by solving the C,, for y,, and by inserting this
solution into the Hamiltonian density.

Note that C,, and ®,, are conjugated to each other;
therefore, the Dirac brackets amount to the Poisson
brackets, if we restrict to the variables H, P and ¢, ©.

Thus, we are left with a reduced Hamiltonian density,

4 (8P 4p)* + hog0"0" (H yp — 84y (5°““H o)) + 2P0, 1y

1 1

3@ =3 Q) =5 5 (Fur =3B (6.30)

Here, we notice that all terms in the last line of (6.30) are negative definite. Thus, one might wonder if the dynamics will
be unstable. To investigate this issue, we solve the time evolution equations.
The time evolution equations are given by

1 2
Hah = {Huh’ / dS.X'H,qu} = Puh + 2COSh(2§)D¢ah — Eéab5Cchd + 25@52)001’!(]0 — Wsinh(Zf)DFuh,

Py, = {Pabv / d3XH;‘uu} = 0.0°H 4, — 0,0,hoo + 64,00 hoy
— 0,0°H oy — 050 H oy + 8,00 H oy + 0,050 H 1y — 8,3y0° 0,0 H oy + % DF,,,
bap = {¢ab’ / d3XH}u11} = -, — %COSh(zg)DFabv
b, = {q)ab7 / d3XH1/fun} = (=0.0° — 4 cosh(2£)>D* + m?) o, — 2 cosh(28) DP, + %COSh(zf) sinh(2€)D*F ),
(6.31)
where

F,, = 2sinh(2E)DP,,, + 2 cosh(2E) DD, + 2DH ,;, + 4 cosh(2€) sinh(2E) D, (6.32)
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E. Mode decomposition and differential operators

In order to solve these differential equations, we apply a
Fourier transform in the spatial coordinates, which replaces
d, — 1k,. Furthermore, we use a decomposition of the
symmetric tensor modes as follows. For the transverse-
traceless modes, we use the orthonormal basis given by

7070 _ 297 _ 767 70
7 (kgky — kGkY), = 7 (kok? + kek9),

(6.33)

and the alternative (complex) set, which diagonalizes
helicity,

1
R = E(kZ + k) (kG + k),
1 4 P n
ik, = 5 (Ko — 1k2) (k) — kD). (6.34)
Here, the 3-vectors k? and k” are such that (% /29,/?#)

defines the right-handed orthonormal basis, i.e.,
kokpo® = kokfo = 1,

k
k9k¢5ab k‘)k 5(119 _ k(/'k 5ab =0, abc |]:| kek(ﬂ +1.

(6.35)

We furthermore define the following basis of longitudinal
modes, projected to be traceless:

1 I
thy = —==(kuky + kaky),
2/kl?
1
1 = (kok? + k2ky).

2[kf?

1 -
s (k=5 050 ).

Note that these modes are orthogonal to the transverse-
traceless modes and that they form an orthonormal basis.

An alternative pair of (complex) basis vectors, replacing
the first two vectors in (6.36), is

(6.36)

N
=
S
If

=) ﬁ

l+_ (t l—_i

v =7

Finally, we have a trace mode. We choose this mode to
be orthogonal to all the modes listed above and normalized
to one:

+u), (% — ). (6.37)

1
1 =8,

N (6.38)

Let us now consider how the operator D, defined by
(D1),;, = €, )17, acts on these modes. It is straight-
forward to compute
(DI") g = 1,
(Dt¥) = |k|tub’

(Dr7) p = —tlk|23,,
(Dt"),;, = _lkltéh’

(D1%) ), = |k|tab’ (D1'7) gy = =5 |k|tab’
(DtlJr)ab |k|tab’ (Dtl_)ab = __|k|tah’
(Dt”)uh - 0, (Dttr)ub — O (639)

Note that for the transverse-traceless modes th, we have

(D21),, = —oFo.tt, = K[, (6.40)
In other words, D is a square root of minus the spatial
Laplacian, if we are restricted to transverse-traceless
modes. We see that D acts diagonally on the basis elements
R, L and 1, -, but not on the basis elements 7T, <
and 79, 1%

Furthermore, we have the second-order differential
operator (D1),, = €,/°€,990,0,t.4. It acts on the various
modes as follows:

(D) = |k|2 ab’ (Dr<) = kP2,
(DR) o = |K|E,, (DF) = |K|P 2L,
(Dtle)ab = O’ (Dtl(/))ah = O’
(DtH—)ab = O’ (Dtl_)ab = 0’
1~ V2 -

(D), = 3 |k[*2ll, + 3 |k|2l2rh’

V2 - 2 -
(i), =22 Pt ~ 21, (641)

Note that for the transverse-traceless modes ¢/, we have

(D1"),, = (D21"),, = K21, (6.42)

Introducing an alternative orthonormal basis for the
space spanned by the (//) and (zr) modes,

kyk 2 1
o= Za7h \/:<t” + ttr>’
ab |k|2 3 ab \/i ab

1 [(kyk, > \F ( )
tt [ i— — 5a = —| — till — ttr s 643
ab \/§ ( |k|2 b \/— b ( )

the action of D simplifies to

(D), =0, (D), = —|k|ty.  (6.44)
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F. Solution to the Hamiltonian equations of motion

To solve the Hamiltonian equations of motion (6.31) for
the dynamical variables (H,y, Pup> Pup» Pup), We decom-
pose the symmetric tensors into modes, e.g.,

H,,=HRR + Htl, + H A+ HI 6 + B+ HY e
(6.45)

and so on. (Note that ¢" = 0 and ®"” = (.) It is easy to see
that the various differential operators appearing in the
equations of motion (6.31) act diagonally on the basis
elements labeled by {R,L,I+,I-} but not on {II,tr}.

|

F s [P 1= |k

P b + 4 [
F 4 |kP — e kP
e

Here, we have abbreviated ¢ = cosh(2¢&) and s = sinh(2¢).
The solution of the system is given by XF/L =
exp(MR/L7)XE/" | where 7 denotes the time parameter,
and X®/L = (HR/L pRIL pRIL ®R/L) | with Xg/L denoting
the initial values.
The matrices M®/L are diagonalizable, and for both the R
and L polarizations, the eigenvalues are given by

(=l =R = 2R = m2). (6.48)

Remember that the eigenvalues for a harmonic oscillator
with frequency @ are given as (+1w, —iw). Therefore, we
have two massless propagating modes and two massive
propagating modes, and the dynamics of the transverse-
traceless modes is stable.

It is astonishing that, despite the coupling between the
length metric and the massive ¢, field with the “wrong sign”
for the kinetic and mass terms, we obtain the same spectrum
as for the noncoupled system. Thus, we also find that the
eigenvalues are independent of the coupling parameter &.

The eigenvectors can also be computed explicitly. Note
that the matrices M®/L are real. Therefore, we can choose
the eigenvectors associated with complex conjugate eigen-
values to also be complex conjugated to each other. Here,
we only need to consider their expansion in 1/m. The

eigenvectors for the eigenvalue —z|lz| are given by
R/L - >3 1 =5 1

Vl = 1,Zl:l|k|2|:4(—l+s)|k|‘ —2,2lC|k| —5>
m m

T 2¢(1 — 2is)|K]? %) + (’)(%) (6.49)
m m

T o2 =S5 1RP)  m? = (3 4+ 4)IRP + 195 R

We therefore obtain a closed subsystem for each label in the
first set.
For the R/L modes, we can write

EIR/L HR/L
PRIL PR/L
_ MR/L .
P M SR (6.46)
HR/L DR/L
where
- 2 = >
i—c(2|k| &g |k|3) — gy |2
e [k 6 [KP?
, - (6.47)
T 8};2s|k|3 -1 _% k|2

Lt

m?

|
whereas the eigenvector for the eigenvalue —|—1|lz| is given

by Vg/ L= Vf/ L. We see that for m — oo (that is, for
m? > k?), we approach the dynamics of the pure gravita-
tional system,8 given by a massless degree of freedom in the
R and L polarizations, respectively.

The eigenvectors for the eigenvalue —\/ —|k|> — m? are

given by

-1 —1 1
R/L _

and for the eigenvalue \/—|l¥\2 —m?, we have fo/L =

Vf/ % For m — oo, we obtain an oscillator with mass 2 in
the R and L polarizations, respectively. To higher order in
1/m, the eigenmode has a nonvanishing H%/% component.

We also have a closed system of equations of motion for
the (/£) modes, modulo a term in the shift parameters £,.
This term shows that we have first-class constraints, which
imply

k)ct =0 and kJC’ =0

=  Pr=0 and P-=0. (651
One can furthermore use the mode expansion for the
equation determining P, in (6.31) to show that P"* =0
and P~ = 0. [This also follows from (6.28).]

¥Remember, however, that H ,;, involves the & and y fields, and
P, involves (time or spatial) derivatives of the £, y, and ¢ fields.
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The remaining equations are split into two parts. First,

we have that
<¢Ii> F <3 kP —1 - S|k
AN =
(6.52)

¢I:|:
' (cbli)

Second, we have equations determining H'*, which also
involve the shift parameters,

. g s - CcS -
H™ = +clk| <1 —W|k|2> P —W|k|2¢li + 21k hdy 1'%,
(6.53)

The matrix in (6.52) can again be diagonalized, and the
eigenvalues (for the /4 and /— modes) are given by

(=R = m2. R~ m2).

Thus, we again have a stable dynamics, describing 2
propagating degrees of freedom with mass m. These
oscillations for the (/4) modes of ¢ and @ induce a time
evolution for H™*. For this time evolution, gauge param-
eters h also appear. These parameters (and the initial data)
can be chosen such that H'* = 0 throughout.

The eigenvectors of the matrix appearing in (6.52) can
also be computed; their expansion in 1/m is as follows:

1
() e(2)
m m
" 1 1
V2 — +_ ) 1 + O —3 .
m m
In the m — oo limit, we indeed obtain the dynamics of free
oscillators with mass m.

Finally, we are left with the (//) and (¢r) modes. The
constraints C and C; imply

(6.54)

(6.55)

C=0=H'-V2H" =0 and Cyk’ =0

= V2Pl pr=o. (6.56)
From (6.28), we also know that the time derivative of these
constraints vanishes. It is therefore sufficient to consider the
time evolution of the (//) mode for the H and P fields. The
same holds for the ¢ and ® fields, as the (¢7) mode vanishes
for these fields.

Here, we find a further decoupling of the equations of
motions. The time evolution of the H and P fields is
described by

. 2 . 2
H” = P” -+ 2l\/;kdhd0, P” = \/;thoo. (657)

We can again choose initial data and gauge parameters
such that H?=0 and P'"=0 (and thus H” =0

and P = 0).
The time evolution of the ¢ and ® fields is described by
P = —ot!

O = (2 +m2)p".  (6.58)

This again describes a stable propagating degree of free-
dom with mass m?.

In summary, we find that all propagating degrees of
freedom show a stable oscillating dynamics. The eigen-
frequencies are the same as for the noncoupled system and
hence do not depend on the coupling parameter £ This
explains why in Sec. IV we found that, when integrating
out the y and ¢ fields, one still just finds two massless
propagating modes without ghosts.

The Hamiltonian (6.30) indeed appears already in the
form of noncoupled oscillators if we consider the limit
m — oo. However, the harmonic oscillator Hamiltonian for
the (¢, @) fields appears with a negative overall sign.

The resulting simple eigenfrequencies for finite mass
mean that there exist coordinate transformations such that
the new Hamiltonian still describes noncoupled harmonic
oscillators, even for finite mass. The part of this new
Hamiltonian that describes the massive fields, however,
also comes with a negative overall sign, whereas the
transverse-traceless modes of the massless fields come
with a positive overall sign.

We thus obtain a stable dynamics at quadratic order for
the Lagrangian. However, going to higher order, one has to
expect instabilities that arise from the higher order coupling
between these modes with positive and negative energy.
There might exist fine-tuned choices for the higher-order
terms in the Lagrangian that lead to a stable dynamics, but
this is yet to be investigated.

Here, we chose to consider the dynamics using a mode
decomposition and the (partially complex) (R,L,I+,
I—, 11, tr) basis. With this choice, we have a decoupling
between the R and L modes and a decoupling between the
[+ and /— modes. An alternative choice would be to use the
real basis (+, X, 10, lp, 11, tr). Of course, one again finds
the same eigenfrequencies. However, one also has a
coupling between the + and X modes (and the /6 and
lp modes); see Appendix. Such a coupling does not appear
in pure gravity and could therefore lead to an observational
signature for area metrics.

VII. DISCUSSION

Area metrics have appeared in a number of approaches to
quantum gravity. Here, we constructed the space of
possible actions for cyclic area metrics to quadratic order
in the area-metric perturbations. We imposed (linearized)
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diffeomorphism invariance and allowed mass terms for the
nonlength degrees of freedom. The cyclic area-metric
perturbations can be conveniently parametrized by a
length-metric perturbation, as well as 2 x5 degrees of
freedom which parametrize the trace-free self-dual and
anti-self-dual parts of the nonlength perturbations.

Taking into account the freedom of rescaling the length-
metric and nonlength fields, we found a four-dimensional
space of the quadratic area-metric actions. Two of these
four couplings are the masses for the self-dual and anti-self-
dual parts; the other two couplings describe how strongly
the (anti-)self-dual parts are coupled to the transverse-
traceless part of the length-metric fluctuations. Restricting
to parity-invariant actions reduces the available freedom to
two couplings.

Our derivation of the second order action is more
transparent than in the (covariant) constructive gravity
approach [23] in two ways: first, the parametrization of
the area-metric perturbations in Sec. II B into different parts
according to their SO(4) transformation behavior; second,
the usage of SO(4) representation theory in Sec. I1C,
which allows us to quickly identify all possible terms in the
quadratic action. This avoids the need to use computer
algebra systems or dedicated software packages as in [23]
and leads to a more transparent representation of the
dynamics, which made the subsequent analysis and dis-
cussions possible.

A special subclass of theories identified in our work
features a degenerate kinetic term and leads to a ghost-free
propagator for the gravitons in the effective length-metric
theory. The same type of action was found to appear in the
perturbative continuum limit of (effective) spin foams [10]
and from modified Plebanski theory [15]. This special
subset is described by two couplings: One coupling
describes the strength of parity violations; the other
coupling corresponds to the mass of the self-dual and
anti-self-dual parts of the area-metric perturbations. The
former coupling corresponds to the Barbero-Immirzi
parameter in loop quantum gravity [20]. In the perturbative
continuum limit of spin foams, the mass is of the order of
the Planck mass and may also depend on the Barbero-
Immirzi parameter.

The appearance of the Barbero-Immirzi parameter in
loop quantum gravity is somewhat surprising as it para-
metrizes a family of canonical transformations in the first-
order formulation of general relativity. However, these
transformations cannot be implemented unitarily in loop
quantum gravity [26]. The appearance of the Barbero-
Immirzi parameter can also be understood as a result of the
extension of the quantum configuration space from length
metrics to area metrics in loop quantum gravity [5,8,19]. In
this paper, we found that the Barbero-Immirzi parameter
can indeed be identified as one of the couplings appearing
in area-metric gravity theories, where it already affects the
classical dynamics.

These results hold for both Euclidean and Lorentzian
signatures. Crucially, however, we found that the Lorentzian,
but not the Euclidean, area-metric action has indefinite
kinetic and mass terms for the degrees of freedom
encoding the self-dual and anti-self-dual parts of the
area-metric perturbations. As these degrees of freedom
couple to the length metric, one might expect an unstable
dynamics even for the free theory. However, this seems to
contradict the finding of a ghost-free propagator for the
effective length-metric action. We therefore performed a
canonical analysis for the actions leading to a ghost-free
propagator. Here, we found that the degeneracy of the
kinetic term, together with having mass terms, leads to
second-class constraints which remove half of the self-
dual and anti-self-dual degrees of freedom. However, the
canonical analysis confirmed that the remaining part
propagates and that it has negative definite kinetic and
mass terms. We nevertheless obtained a stable dynamics,
which moreover separated into two massless eigenmodes
(with positive energy) and five massive eigenmodes (with
negative energy). One can also find a mixing between the
cross and plus polarizations of the gravitons in area-metric
dynamics, which is parametrized by the Barbero-Immirzi
parameter. This does not appear in general relativity and
might therefore lead to an observational signature for area
metrics and allow one to constrain the Barbero-Immirzi
parameter.

A crucial question in determining whether area-metric
theories with real’ actions are viable in Lorentzian sig-
nature will be to see whether this stability can be exten-
ded to higher order in the perturbative expansion of
area metrics or whether this stability also holds for
nonflat backgrounds. For backgrounds admitting a Wick
rotation, one can connect Euclidean to Lorentzian sol-
utions. One could therefore hope to find stability for such
backgrounds.

A similar changelo in definiteness appears for the
Kodama state, which is conjectured to describe a vacuum
for quantum gravity [28]. This state is not normalizable
(in Fock space) in Lorentzian signature. The root for this
non-normalizabilty is that this state prescribes negative-
helicity gravitons to have negative energy and positive-
helicity gravitons to have positive energy [29]. On the other
hand, the Euclidean Kodama state is delta-function
normalizable [30]. Whether one can find a nonperturbative
inner product in which the Lorentzian Kodama state is
normalizable is still an open question [31].
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Unlike the case with right and left polarization, the
dynamics couples the plus and cross modes. The time
evolution is described by
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APPENDIX: DIFFERENT CHOICE =M (A1)
OF POLARIZATION BASIS ¢ ¢
In Sec. VIF, we solved the Hamiltonian equations of ¢ ¢
. . ) b+ D+
motion using a mode expansion. Here, we use an alter-
native basis of modes for the transverse-traceless sector, dx o
given by the plus- and cross-polarization tensors 7}, and
1%,; see Eq. (6.33). where MTT = (M M,) with
0 g || 1— 45 kP 0
— 4y |3 0 0 14 k]2
[k + % |k|* 0 0 — 5 |3
0 [k + & [k|* i | e 0
M, = 0 %%|%P __%%|%F 0 (A2)
— ek 0 0 — ey k2
Sy | ¢ 0 0 c(zz|/€| _ 8 y/€|3)
0 Sl o2l + 55 1R 0
and
0 c(—zz|12| +8,;1—S§|1€|3) — ey P2 0
c(zz|1?| -8,;1—sj|1?|3) 0 0 e |2
B [ 0 0 ~ e |7
i, — 0 S |l i KT 0 (A3)
0 Bics |2 —1 -2 kP2 0
- 0 0 1=tk
(1 = 4c*)[k[2 + m? 1655 |4 0 0 — 85 |3
0 (1= 4c?) [k + m? + 162 k3 8is |3 0

As before, we have abbreviated ¢ = cosh(2¢) and s = sinh(2¢). The eigenvalues of M’7 coincide with the ones found

in Sec. VIF,

4|kl —1[k], 1]k

(—z\lz

R = R — R R - ).

(A4)
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The first pair of eigenvalues comes with the following eigenvectors,

1 1 1 1 Ssa 1 1
vV, = ( —1[k| —|—4t|k|3 —|—4zs|k|3 ,0, 4—2c|k|2 4—41sc|k|3 —2lc|k|32> + (’)<3),
m? m? m? m? m m

1 1 -5 1 -, 1 S| 1
V, = (1,0, +i|k| - 4z|k|3 +us|k|P — 5.0, =2c|k]* =, —4usc|k]P =, —216|k|3—2> + (9(—3), (AS)
m m m m m nm-
and the next pair of eigenvalues is associated with
| - U | 1
V3 = <0, 1, —dus|k —, —1|k| + 4|k — —2|k|2c: .0, —i—21(:|k|3 +disclk]? ) + (’)(—3)
m m
73 L 3 1 2. 1 e 3
V,= 10,1, —4us|k| —2,—|-l|k| 4l|k| —|-2|k| —5.,0, 4+2iclk]’ — —41sc|k| +0 (A6)
m m? m m?

For m — oo (that is, for m? > k?), we approach the same dynamics as for the pure gravitational system,11 given by a
massless degree of freedom in the plus and cross polarization, respectively.

Going to higher order in the 1/m expansion, we can also observe that the presence of the area-metric degrees of freedom
induces a mixing between the plus and cross polarizations [for s = sinh(2&) # 0] H and H*.

The next four eigenvectors are given as

21
— (0, 2¢|k| =0
(02

1 1
,0,—.,0, +z——(7|k|2+8s2|k| )= ) +O<—3),
m m m

-1 1 1 1
Ve = (O, —|—2c|k‘ —2,0,0,—,0, (7|k|2 + 8s2|k| )— ) + (’)(—3) (A7)
m m m? m
and
1 L7 5170y | 1
V= +2c\k 5,0,0,0,0,— ,0, 41— = (7|k|* + 8s |k|)—2 + O — |
m 2 m m
1 1
Vg = < 2c|k’ ,0,0,0,0,—,0,— (7|k|2 +8s2|k| ) > —|—(’)< > (A8)
m

For m — oo, we obtain an oscillator with mass m, in the
plus and cross polarization, respectively. To higher order in
1/m, the ¢t dominated eigenmodes have a nonvanishing

""Remember, however, that H ap Involves the & and y fields and
P, involves (time or spatial) derivatives of the Ay, and ¢ fields.

H* component, and the ¢* dominated eigenmodes have a
nonvanishing H* component.

Considering only the dynamics of the massless modes,
we notice that these feature a mixing of the plus and cross
polarization, which, in this form, does not appear in
linearized general relativity and could lead to a possible
observational signature of area-metric dynamics.
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