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Area metrics are an intriguing generalization of length metrics which the generalization in several
quantum-gravity approaches. We describe the space of diffeomorphism-invariant area-metric actions
quadratic in fluctuations and derivatives. A general theory is found to be specified by four parameters, two
of which are mass parameters for the nonlength degrees of freedom. We find that a two-parameter subclass
of theories exhibits an additional “shift” symmetry of the kinetic term and leads to a ghost-free graviton
propagator for the effective theory obtained after integrating out the nonlength degrees of freedom. One of
the two parameters determines the strength of parity violations; the other defines a mass parameter for the
nonlength degrees of freedom. The same type of action has been found to appear from modified Plebanski
theory and in the continuum limit of (effective) spin foams. In this case the two parameters can be identified
with the Barbero-Immirzi parameter and a combination of the Barbero-Immirzi parameter and the Planck
mass, respectively. Moreover, we find that area-metric actions in Lorentzian (but not in Euclidean)
signature feature wrong-sign kinetic and mass terms for the nonlength degrees of freedom. Nevertheless,
despite a coupling of these degrees of freedom to the length metric, the linearized dynamics turns out to be
stable for the above subclass of actions.
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I. INTRODUCTION

General relativity is built on the concept of a length
metric. However, many approaches to quantum gravity
suggest generalizations of the space of length-metric
geometries. One generalization that appears across a
number of approaches is that of area metrics. Similar to
the length metric measuring the length of tangent vectors
and angles between them, the area metric measures the
areas of parallelograms in tangent space and dihedral
angles between such parallelograms.
In four dimensions, cyclic1 area metrics have 20 com-

ponents, as compared to the 10 components of the length
metric. Each length metric induces an area metric; in this
sense, area metrics constitute (in four spacetime dimen-
sions) a proper generalization of the length-metric space.
Area metrics have been proposed to describe the phe-

nomenological effects of quantum gravity in, e.g., Ref. [1].
They also appear in string theory [1] and holography, where
they are essential for the reconstruction of geometry from

entanglement [2]. Area variables also serve as the basic vari-
ables in loop quantum gravity [3–5] and spin foams [6–8].
The spin-foam path integral sums over loop quantum

gravity data associated with simplices in a given triangu-
lation. These simplex data define an area metric for each
simplex, that is, an area metric at the microscopic level [5].
But the area metric also appears at the macroscopic level:
References [9,10] revealed that the continuum limit of the
area-Regge action [11,12], which describes the semiclass-
ical regime of spin foams, gives rise to an action for an area
metric. This area-metric action leaves only the length-
metric degrees of freedom massless, whereas the remaining
area-metric degrees of freedom obtain a (Planck-scale)
mass. One thus recovers the Einstein-Hilbert action, but
also (Planck-scale suppressed) corrections, quadratic in the
Weyl curvature tensor [10].
Spin-foam inspired area-metric dynamics can also be

directly derived from the continuum. The Plebanski action
[13] of general relativity underlies spin-foam dynamics.
The Plebanski formalism turns a topological action into an
action for general relativity by imposing so-called simplic-
ity constraints, which reduce the configuration space to the
space of length metrics (or rather tetrad variables).
Modified Plebanski theories [14] replace these simplicity
constraints by potential terms added to the action. Thus,
one enlarges the configuration space of length metrics but
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1See below for a definition of cyclic. In this paper, we restrict

ourselves to cyclic area metrics; a general area metric has 21
components.
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equips all additional degrees of freedom with mass via the
added potential terms.
Reference [15] chooses a splitting of the simplicity

constraints into two parts and imposes one part sharply
and the other part via potential terms. The imposition of the
first part leads to a configuration space of area metrics and
thus an action in terms of area metrics. The imposition of the
second part via potential terms addsmass to all the degrees of
freedom in addition to the lengthmetric. Integrating out these
additional degrees of freedom allows one to find the
perturbative effective action for the length metric, and one
finds again the Einstein-Hilbert action plus a Weyl squared
term, suppressed by the mass and inverse derivatives.
Interestingly, this combination is such that it leads to a
ghost-free linearized theory, where only the graviton degrees
of freedom are propagating [15]. The same type of effective
action was found earlier for modified chiral Plebanski
theory [16,17].
The enlargement of the length-metric configuration

space to area metrics can be understood as a consequence
of a fundamental quantum uncertainty. In fact, the quan-
tization of the simplicity constraints leads to a partially
second-class constraint algebra with an anomaly [18,19]
controlled by the so-called Barbero-Immirzi parameter
[20]. This allows for imposing the second-class constraints
only weakly, which leads to an enlarged configuration
space over which the spin-foam path integral is defined. An
alternative argument for this enlargement starts from the
discrete (and asymptotically equally spaced) spectrum for
the area operators in loop quantum gravity [8]. Imposing all
the simplicity constraints sharply would lead to diophantine
equations for the discrete eigenvalues of the area operators.
The resulting solution space is too small to support semi-
classical states; thus, one is forced to consider an enlarge-
ment of the configuration space.
Having motivated the appearance of area metrics in

quantum gravity, and, in particular, in loop quantum gravity,
we now ask what type of actions one can construct using
area metrics. This question has already been addressed in
the framework of constructive gravity [21]. Thus, general
area-metric actions, up to second order in fluctuations and
derivatives, have been constructed both in the canonical [22]
and the covariant [23] version. We revisit the same problem.
We show that there is a simple solution to the problem, based
only on the representation theory of the Lorentz group,
together with the requirement of the diffeomorphism invari-
ance. The quadratic action we describe contains only a
handful of parameters, as compared to the 37 parameters
in [23].
Thus, in this work, general covariance is used as the main

guiding principle. Indeed, it is well known that imposing
diffeomorphism invariance on actions of length metrics
significantly restricts their possible form. According to
Lovelock’s theorem [24], only the Einstein field equations
can arise as Euler-Lagrange equations from a local, second-
order-in-derivatives Lagrangian for the metric tensor in four

spacetime dimensions. More straightforwardly, as is well
known, at quadratic order one can completely fix the form
of the action for length-metric perturbations using diffeo-
morphism invariance. To that end, consider the length-
metric tensor expanded around a flat background,2

gμν ¼ δμν þ hμν; ð1:1Þ

where hμν denotes the symmetric rank-two tensor of
metric perturbations. The latter can be combined with
two powers of momenta to form four independent con-
tractions3 (hμνhμνp2, hμρh

ρ
νpμpν, hhμνpμpν, h2p2), where

h ¼ hμνδμν denotes the trace of hμν. All four of these terms
can occur with free coupling constants in the most general
second-order quadratic Lagrangian for the field hμν.
However, demanding invariance of the action under linear-
ized diffeomorphisms parametrized by the vector field ξμ,

hμν → hμν þ pμξν þ pνξμ; ð1:2Þ

uniquely fixes three of these couplings as functions of the
remaining one. The most general diffeomorphism-invariant
second-order quadratic Lagrangian for metric gravity takes
the form

Ldiff invðhμνÞ ∝
1

2
hμνhμνp2 −

1

2
h2p2 − hμρh

ρ
νpμpν

þ hhμνpμpν ¼ LEHðhμνÞ: ð1:3Þ

Thus, the condition of diffeomorphism invariance leads to
the linearizedEinstein-Hilbert action up to a global rescaling.
One of the goals of the present paper is to apply the same

procedure to actions based on area metrics. In Sec. II, we
identify a space of covariant kinetic terms for area metrics;
then, in Sec. III, the space of diffeomorphism-invariant
linearized area-metric actions is discussed. We show that a
certain subset of these actions has a degenerate kinetic
term—this subset coincides with the actions constructed
from modified Plebanski theory in [15]. The degeneracy of
the kinetic term can be further understood and explored
from two different viewpoints. First, in Sec. IV, integrating
out the nonlength degrees of freedom, we construct
effective length-metric actions. We will see that the theories

2Here, we have chosen Euclidean signature and expanded the
metric around the flat Euclidean metric ðδμνÞ ¼ diagðþ1;
þ1;þ1;þ1Þ. Our results can be easily adapted to Lorentzian
signature and an expansion of the metric around the flat
Minkowski metric ðημνÞ ¼ diagð−1;þ1;þ1;þ1Þ. For notational
convenience, we will work in the Euclidean version of Fourier
space.

3For notational conveniencewe adopt the following notation for
the Fourier-transformed Lagrangians: A term ϕμ���Kðp2Þμ���ν���ψν���,
with ϕμ���;ψμ��� field variables and Kðp2Þμ���ν��� a quadratic poly-
nomial in pμ, stands for 1

2
ϕμ���ðpÞKðp2Þμ���ν���ψν���ð−pÞ þ

1
2
ψμ���ðpÞKðp2Þμ���ν���ϕν���ð−pÞ.

BORISSOVA, DITTRICH, and KRASNOV PHYS. REV. D 109, 124035 (2024)

124035-2



with degenerate kinetic terms lead to ghost-free propaga-
tors for the effective length-metric action. This subset is
described by two coupling parameters—one parameter
parametrizes parity-violating terms; the other parametrizes
the mass for the degrees of freedom which are not induced
by a length metric.
A different viewpoint that we pursue is to perform the

canonical analysis of the area-metric theories. This gives an
alternative understanding of the fact that a subclass of
actions leads to a ghost-free propagator for the effective
theory. We perform the canonical analysis by switching to
the Lorentzian version of the theory in Sec. V. We find that
the Lorentzian action—but not the Euclidean action—
contains propagating degrees of freedom with negative
definite kinetic and mass terms. This is already a possible
source of instability in classical theory. Nevertheless, a
careful analysis in Sec. VI of the equations of motion, done
using the mode expansion, shows that the linearized
dynamics is stable, despite having positive and negative
definite kinetic terms in the action, and a coupling between
these terms. This means that the problem of viability of the
Lorentzian area-metric gravity actions becomes a nonlinear
problem. We further comment on all these issues in the
discussion in Sec. VII.

II. AREA METRICS AND COVARIANT
AREA-METRIC ACTIONS

A. Definition and symmetries

An area metric G at a point p on a smooth manifoldM is
a rank-four covariant tensor G∶ðTpMÞ⊗4 → R with the
following symmetries,

Gμνρσ ¼ −Gνμρσ ¼ Gρσμν: ð2:1Þ

Therefore, an area metric can be regarded as a metric for
bivectors, and it defines the linear map

G∶ Λ2TM → ðΛ2TMÞ�; Bμν ↦ GμνρσBρσ; ð2:2Þ

where the existence of the inverse G−1 guarantees an
unambiguous raising and lowering of bivector indices. A
given area metric can be decomposed uniquely into the sum
of two parts: The first part is called cyclic and satisfies the
algebraic Bianchi identity

Gμ½νρσ� ¼ 0 ⇔ Gμνρσϵ
μνρσ ¼ 0; ð2:3Þ

where ϵμνρσ denotes the Levi-Civita density and the
equivalence holds provided the algebraic symmetries
(2.1) are satisfied. The second part is a four-form and is
thus totally antisymmetric.
Cyclic area metrics are area metrics for which this

four-form part vanishes. Therefore, they have the same

algebraic symmetries as the Riemann tensor. In the follow-
ing we will restrict ourselves to cyclic area metrics.
This restriction can be motivated as follows [15]. The

components of a length metric can be reconstructed by only
measuring the lengths of basis vectors and of sums of basis
vectors in the tangent space, without measuring angles.
Similarly, the components of an area metric can be
reconstructed from measuring areas of parallelograms—
however, only up to combinations involving cyclic sums of
area-metric components of the form Gμ½νρσ�. The cyclicity
condition (2.3) sets these terms to zero, such that a cyclic
area metric can be recovered by measuring only areas
without an independent measurement of dihedral angles
being necessary.
Every length metric gμν induces a cyclic area metric by

the definition

GðindÞ
μνρσðgÞ ¼ gμρgνσ − gμσgνρ: ð2:4Þ

However, a general cyclic area metric in four dimensions
has 20 independent components and therefore twice as
many as a length metric in four dimensions. Thus, not every
area metric is induced by a length metric, and the notion
of area-metric spacetimes provides a much more general
concept than length-metric spacetimes.

B. Parametrization of area-metric perturbations
and their irreducible components

Analogous to the expansion of the length metric around a
flat Euclidean background (1.1), in the following we
consider an area metric expanded around a configuration
induced by the flat Euclidean metric,

Gμνρσ ¼ GðindÞ
μνρσðδÞ þ aμνρσ ¼ 2δμ½ρδσ�ν þ aμνρσ; ð2:5Þ

where aμνρσ denotes the (cyclic) area-metric perturbations.
Our goal in the next sections will be to construct the full set
of possible kinetic terms of second order in the momenta
and combine these into an action whose free parameters
will later be constrained through the requirement of diffeo-
morphism invariance. Additionally, we will consider mass
terms for a subset of the degrees of freedom of the area
metric.
The 20 components of the area-metric perturbation aμνρσ

can be decomposed into irreducible representations of
SOð4Þ, which stabilizes the background metric δμν. This
decomposition is the same as the familiar decomposition of
the Riemann curvature tensor. In four dimensions, the latter
decomposes into the Ricci scalar, the trace-free part of the
Ricci tensor, and the self- and anti-self-dual parts of the
Weyl curvature. Similarly, we write

aμνρσ ¼ hδρ½μδν�σ þ 2ðh̃ρ½μδν�σ − h̃σ½μδν�ρÞ þ wþ
μνρσ þ w−

μνρσ:

ð2:6Þ
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Here h̃μν is trace-free (h̃μνδμν ¼ 0), andw�
μνρσ are both trace-

free (w�
μνρσδ

μρ ¼ 0) and satisfy the self-duality equations

1

2
ϵμν

αβw�
αβρσ ¼ �w�

μνρσ: ð2:7Þ

The general irreducible representation of SOð4Þ is
of the type ðj; j0Þ, where j, j0 are both integers or both
half-integers. It is of dimension dimðj; j0Þ ¼ ð2jþ 1Þ×
ð2j0 þ 1Þ. The representations that appear in (2.6) are

a∈ ð0; 0Þ ⊕ ð1; 1Þ ⊕ ð2; 0Þ ⊕ ð0; 2Þ: ð2:8Þ
We will now proceed to determine the most general

diffeomorphism invariant action to second order in the
area-metric perturbations and to second order in deriva-
tives. We assume that the area metric induced by the flat
length metric is a solution of the nonperturbative area
metric. We can thus set the linear terms (modulo boundary
terms) to zero and only need to consider terms quadratic in
fluctuations. In the next section we determine all possible
kinetic terms quadratic in derivatives. Terms in which the
two derivatives contract with each other to the Laplacian
can be generalized to include mass parameters.

C. Kinetic terms for the area-metric perturbation

We now proceed to determine all possible kinetic terms,
quadratic in a and of second order in derivatives, that can
be written. It is standard to perform such an analysis in
momentum space, so we will have two factors of the
momentum pμpν in each kinetic term.
It is straightforward to write down all possible terms

where the factors of the momenta contract between
themselves to produce p2. Indeed, these terms are just

p2h2; p2ðh̃μνÞ2; p2ðwþ
μνρσÞ2; p2ðw−

μνρσÞ2; ð2:9Þ
which are built from the squares of each of the irreducible
component.
To understand the possible terms that do not involve p2,

we note that each factor of the momentum is in the vector
ð1=2; 1=2Þ representation of SOð4Þ. The product pμpν is in
the symmetric part of the tensor product

p ⊗ p∈ ð1=2; 1=2Þ ⊗S ð1=2; 1=2Þ
¼ ð1; 1Þ ⊕ ð0; 0Þ ∋ ðp ⊗ pÞtf ⊕ p2: ð2:10Þ

The second factor is where p2 resides, and the first factor is
the trace-free part of pμpν, which we denote by ðp ⊗ pÞtf.
Given that we already described all possible terms involv-
ing p2, we need to understand all possible singlets that can
be constructed from the representation (1,1), coming from
the trace-free part of pμpν, and two copies of the repre-
sentations appearing in (2.8).
First, because ð0; 0Þ ⊗ ð1; 1Þ ¼ ð1; 1Þ, it is clear that the

singlet representation h can only appear in the combination

hpμpνh̃μν; ð2:11Þ
which is one of the two terms not involving p2 that appear
in the linearization of the Einstein-Hilbert action.
Second, let us determine what h̃μν, if combined with

ðp ⊗ pÞtf, can couple to. We have the following decom-
position:

h̃ ⊗ ðp ⊗ pÞtf ∈ ð1; 1Þ ⊗ ð1; 1Þ ¼ ð2; 2Þ ⊕ ð1; 1Þ
⊕ ð0; 0Þ ⊕ ð2; 1Þ ⊕ ð1; 2Þ ⊕ ð2; 0Þ
⊕ ð0; 2Þ ⊕ ð1; 0Þ ⊕ ð0; 1Þ; ð2:12Þ

where every representation appears with multiplicity one.
To find possible kinetic terms we have to tensor these
representations with the representations appearing in (2.8).
The kinetic term is a singlet, the singlet appears with
multiplicity one in the tensor product ðj; j0Þ ⊗ ðj; j0Þ ¼
ð0; 0Þ ⊕ � � �. It is clear that all four representations from the
list (2.8) appear here, so there are four corresponding
kinetic terms. The kinetic term of the schematic type h̃pph
already appeared in (2.11). The kinetic term of the type
h̃pph̃ is given by

ðpμh̃μνÞ2 ð2:13Þ
and is the second of the terms not involving p2 that appears
in the linearization of the Einstein-Hilbert action. The terms
involving w� are

h̃μρpνpσw�
μνρσ: ð2:14Þ

It remains to be seen that there are no new invariant terms
of the schematic type ðppÞtfwþwþ, ðppÞtfw−w−, or
ðppÞtfwþw− that can be constructed. Let us consider

wþ ⊗ ðp⊗ pÞtf∈ð2;0Þ⊗ ð1;1Þ ¼ ð3;1Þ⊕ ð2;1Þ⊕ ð1;1Þ:
ð2:15Þ

The only representation from the list in (2.8) that appears
here is (1,1). However, the resulting kinetic term has already
been listed in (2.14). Thus, no kinetic terms of the type
ðppÞtfwþwþ, ðppÞtfw−w−, or ðppÞtfwþw− are possible.
To summarize, we see that there are just eight possible

kinetic terms that can be constructed for the area metric.
They are best described by decomposing the area metric
into its SOð4Þ irreducible parts. Then, four of these kinetic
terms are those already present in the linearization of the
Einstein-Hilbert action:

p2h2; p2ðh̃μνÞ2; hpμpνh̃μν; ðpμh̃μνÞ2: ð2:16Þ
The four new terms involving w� are

p2ðwþ
μνρσÞ2; p2ðw−

μνρσÞ2; h̃μρpνpσwþ
μνρσ; h̃μρpνpσw−

μνρσ:

ð2:17Þ
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D. General area-metric Lagrangian

In the last section we have split the area-metric pertur-
bation aμνρσ into four parts, h, h̃μν, and w�

μνρσ. The first two
parts combine into the length-metric perturbation

hμν ¼ h̃μν þ
1

4
δμνh; ð2:18Þ

and encode 10 of the 20 degrees of freedom of the area-
metric perturbation.
The Weyl-curvature-like parts w�

μνρσ include 5 degrees of
freedom each. These ð2 × 5Þ degrees of freedom can be
encoded into a pair of trace-free and symmetric matrices χ�ij
of spacetime scalars, where i, j ¼ 1, 2, 3 are internal
indices which can be raised and lowered with δij and δij,
respectively. The χ�ij and w�

μνρσ are related by

ðχ�Þij ¼ 1

2
P�ij

μνρσaμνρσ ¼ 1

2
P�ij

μνρσðw�Þμνρσ;
w�
μνρσ ¼ 2Pþij

μνρσχþij; ð2:19Þ
where

P�ij
μνρσ ¼ 1

8
ðΣ�i

μνΣ�j
ρσ þ Σ�j

μνΣ�i
ρσÞ

−
1

12
δijΣ�i0

μνΣ�j0
ρσδi0j0 ; with

Σ�i
μν ¼ �ðδ0μδiν − δ0νδ

i
μÞ þ ϵijkδ

j
μδkν: ð2:20Þ

The Σ�i
μν coincide with the Plebanski (self-dual or anti-self-

dual) two-form evaluated on a flat (Euclidean) background.
Thus, they satisfy the (anti-)self-duality condition (2.7).

The couplings involving the w�
μνρσ then translate4 as

follows:

ðω�
μνρσÞ2 ¼ 4ðχ�ijÞ2 ð2:21Þ

and

h̃μρpνpσw�
μνρσ ¼ 2hμρpνpσP�ij

μνρσχ�ij

¼ 1

2
hμρpνpσΣ�i

μνΣ�j
ρσχ�ij: ð2:22Þ

Here, χ�ij is symmetric and trace-free. One can then also

find that Σ�i
μνΣ�j

ρσχ�ijδ
μρ ¼ 0, which allows us to replace

the trace-free h̃μρ with hμρ.
Indeed, it is only the trace-free transverse parts of the

length-metric perturbation hμν which can couple to the
wþ
μνρσ and w−

μνρσ parts of the area-metric perturbations,
respectively. We can isometrically embed the χ�ij into the
space of symmetric, transverse, and traceless rank-two
spacetime tensors as follows:

χ�μρ ≡ Σ�i
μνΣ�j

ρσ
pνpσ

p2
χ�ij ≡ E�ij

μρχ�ij: ð2:23Þ

Thus, the following equations hold: χ�μνpμ ¼ 0, χ�μνδμν ¼ 0,
and χ�μνχ

�μν ¼ χ�ijχ
�ij.

In Sec. II C, we constructed eight possible kinetic terms
for the area metric. We also allow our general Lagrangian to
include mass terms for the χ�ij degrees of freedom. The most
general quadratic Lagrangian, with second order deriva-
tives, is therefore given by

Lðhμν; χþμν; χ−μνÞ ¼ A0hμνhμνp2 þ A1h2p2 þ A2hμρh
ρ
νpμpν þ A3hhμνpμpν þ αþ

2
hμνχþμνp2 þ α−

2
hμνχ−μνp2

þ βþ
4
χþμνχþμνp2 þ β−

4
χ−μνχ

−μνp2 þm2þ
4

χþμνχþμν þm2
−

4
χ−μνχ

−μν: ð2:24Þ

Lagrangian (2.24) can be translated into a quadratic form in area-metric perturbations via the following relations (which
make use of the conventions of Footnote 3):

aαβγδaαβγδp2 ¼ 8hμνhμνp2 þ 4h2p2 þ 4χþijχ
þijp2 þ 4χ−ijχ

−ijp2;

aαβαγaβδγδp
2 ¼ 4hμνhμνp2 þ 8h2p2;

aαβαβaγδγδp2 ¼ 36h2p2;

aαβμνaαβγδϵγδμνp2 ¼ 8χþijχ
þijp2 − 8χ−ijχ

−ijp2;

aαγβδaγμδμp
αpβ ¼ 2hμνhμνp2 þ h2p2 − 4hμρh

ρ
νpμpν þ 4hhμνpμpν þ p2Eþij

μνχþijh
μν þ p2E−ij

μνχ−ijh
μν;

aαγβγaδμδμpαpβ ¼ 6h2p2 þ 12hhμνpμpν;

aαγγδaμβδμpαpβ ¼ h2p2 þ 4hμρh
ρ
νpμpν þ 4hhμνpμpν;

aαγδλaγμμ
νϵβδνλpαpβ ¼ 2p2Eþij

μνχþijh
μν − 2p2E−ij

μνχ−ijh
μν: ð2:25Þ

4Here, we use the identity P�ij ∘P�i0j0 ¼ δiði0δj0Þj − 1
3
δijδi

0j0.
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Note that, in terms of the area-metric perturbations, we
have two contractions that include the Levi-Civita tensor
density and are hence parity-breaking. (Any terms with
more than one Levi-Civita tensor density can be rewritten
into terms containing one or zero such densities.) These
indeed lead to differences between terms involving the χþ
and χ− fields.
Let us remark that the covariant version of constructive

gravity, Ref. [23] identifies 37 possible terms quadratic in
area-metric fluctuations. For these 37 terms, one does,
however, allow for the acyclic part λϵμνρσ , with λ a scalar
density, for the area metrics. In [23], one also distinguishes
terms which are related by integration by parts. The 37 terms
split into six terms without derivatives and 31 quadratic
in derivatives. Allowing for acyclic area metrics, we
obtain additional couplings ðp2Þλ2; ðp2Þλh, and h̃μνpμpνλ.
Identifying terms related by integration by parts, we can
then match all 31 terms of [23] with our eight contractions
given in (2.25) and the three terms involving λ. Wematch the
six terms without derivatives one to one; these are given by
h2; ðh̃μνÞ2 and ðχijþÞ2; ðχij−Þ2 as well as λ2; λh. Thus, our
results here are not in conflict with those in [23] but are
obtained in a much more straightforward way.
Let us remark that the parametrization of the area-metric

fluctuations in terms of a length-metric perturbation hμν and
the ten χi� fields can be extended to the nonlinear theory [15].
To that end, one starts from (nonchiral) Plebanski theory,
which features so(4)-valued two-forms BIJ

μν, with I; J ¼
0;…; 3 as configuration variables. Via the decomposition
of so(4) into self-dual and anti-self-dual parts soð3Þ ⊕ soð3Þ,
we obtain two so(3) valued two-forms ðB�Þiμν. These two-
forms can be parametrized by two unimodular 3 × 3matrices
ðb�Þij and two tetrads ðe�ÞIμ; see [16]. Forcing the two tetrads
to be equal, one reduces the number of SOð4Þ invariant
degrees of freedom encoded in the B-fields from 30 to 20.
This allows us to define a cyclic area metric [15], which
is parametrized by the length metric (obtained from the
tetrad field) and two fields of unimodular 3 × 3 matrices.
Expanding these data around a flat background, one finds
that the perturbation can be parametrized by length-metric
fluctuations hμν and ten scalar fields χij� [15].

III. REQUIREMENT OF DIFFEOMORPHISM
INVARIANCE

In this section, we will illustrate how the requirement of
invariance of the Lagrangian (2.24) under linearized diffeo-
morphism transformations further restricts the number of
free parameters.
Linearized diffeomorphisms parametrized by the vector

field ξμ act on the symmetric rank-two tensor of metric
perturbations hμν and on the spacetime scalars χ�ij as follows:

hμν → hμν þ pμξν þ pνξμ; χ�ij → χ�ij: ð3:1Þ

Demanding invariance of the Lagrangian (2.24) under
linearized diffeomorphisms (3.1) fixes the part quadratic
in the field hμν to a multiple of the Einstein-Hilbert action,5

Ldiff invðhμνÞ ¼ ALEHðhμνÞ ¼
A
2
hμνð2Pμνρσ − 20PμνρσÞp2hρσ:

ð3:3Þ
On the other hand, the part of the Lagrangian which is
quadratic in the fields χ�ij is invariant, as these fields do not
transform under diffeomorphisms. Moreover, these fields
only couple to the transverse and traceless parts of the length-
metric perturbations, such that the coupling terms between
χ�ij and hμν are left invariant under the diffeomorphism
transformation (3.1).As a result, demandingdiffeomorphism
invariance leaves us with the four free parameters α� and β�
in the notation of (2.24), plus one additional global rescaling
parameter denoted by A in front of the Einstein-Hilbert
term (3.2). Allowing mass terms for the χ� fields, the most
general second-order quadratic diffeomorphism-invariant
Lagrangian for hμν; χ�μν (and thus for the area metric aμνρσ)
can be written in the form

Ldiff invðhμν;χþij;χ−ijÞ¼ALEHðhμνÞ

þ1

4

X
�
ð2α�hμνE�μν

ij χ
�ijp2

þβ�χ�ijχ�ijp
2þm2

�χ
�ijχ�ijÞ: ð3:4Þ

We close this section with a number of remarks:
(i) If m2

� > 0, the fluctuations of χ� will be suppressed
by these mass terms. We can integrate out the χ�
fields and obtain, to leading order in a derivative
expansion, A times the Einstein-Hilbert term (see
below). Thus, if we wish to recover (linearized)
general relativity, we have to choose A ¼ 1. If one is
only interested in the theory after integrating out the
χ� fields, one can redefine the χ� fields by a
rescaling (and the sign of α). This absorbs two
couplings. We are left with the following combina-
tion of four coupling constants: M2

� ¼ m2
�=β�

and ρ� ¼ α2�=β�.

5Here, the spin-2 projector 2P (which projects onto the
symmetric, transverse, and traceless tensor modes) and the
spin-0 projector 0P (which projects onto the symmetric and
transverse trace tensor modes) are defined in four spacetime
dimensions as

0Pμνρσ ¼
1

3
P⊥
μνP⊥

ρσ ;

2Pμνρσ ¼
1

2
ðP⊥

μρP⊥
ρσ þ P⊥

μσP⊥
νρÞ −

1

3
P⊥
μνP⊥

ρσ ;

where P⊥
μν ¼ δμν −

pμpν

p2
: ð3:2Þ
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(ii) For a parity-preserving Lagrangian, we need to set
αþ ¼ α−, βþ ¼ β−, and m2þ ¼ m2

−.
(iii) The Lagrangian (3.4) features an additional shift

symmetry for special values of the coupling con-
stants: Assume the masses m2

� are vanishing and the
couplings satisfy

α2þ
βþ

þ α2−
β−

¼ 2A; ð3:5Þ

with A > 0 and β� > 0. The Lagrangian (3.4)
(without mass terms) can then be written as a
sum of two squares,

Lkin ¼
p2

4

X
�

�
α�ffiffiffiffiffiffi
β�

p hμν þ
ffiffiffiffiffiffi
β�

p
E�ij
μν χ�ij

�
× ð2Pμνρσ − 20PμνρσÞ

×

�
α�ffiffiffiffiffiffi
β�

p hρσ þ
ffiffiffiffiffiffi
β�

p
E�ij
ρσ χ�ij

�
: ð3:6Þ

This leads to a five-parameter6 gauge symmetry,
which is in addition to the linearized diffeomor-
phisms:

χþij → χþij þ ζij;

χ−ij → χ−ij þ
α−βþ
αþβ−

δimδjnE−mn
μν δμρδνσEþkl

ρσ ζkl;

hμν → hμν −
βþ
αþ

Eþij
μν ζij; ð3:8Þ

where ζij is symmetric and traceless. To see this, one
uses

E−ij
μν δikδjlE−kl

ρσ δρκδσκEþmn
κλ ¼ Eþmn

μν ; ð3:9Þ

as E−ij
μρ δikδjlE−kl

ρσ equates to the 2P projector, which
acts as an identity on Eþmn. Adding masses m2

�
breaks the shift symmetry (3.8). In this case, one
still has a degenerate kinetic term. In other words,
the corresponding quadratic form has dimension

20 × 20 but features nine null vectors—four result
from the linearized diffeomorphism invariance and
five from the shift symmetry (3.8).

This degeneracy of the kinetic term appears for
area-metric actions derived from the modified Ple-
banski action; see [15–17,25]. It can be seen as a
remnant of shift symmetry for the two-form B-field
appearing in the Plebanski action. The Plebanski
action is a sum of the BF action, which is invariant
under such a shift symmetry, and constraint terms,
which break part of these symmetries.

IV. EFFECTIVE LENGTH-METRIC ACTIONS
AND PROPAGATORS

Here, we will integrate out the χ� fields from the
Lagrangian (3.4) and, in this way, define an effective
Lagrangian of the length-metric perturbations only, which
captures the effects resulting from the additional degrees of
freedom in the area metric.
Varying the Lagrangian (3.4) with respect to the fields χ�ij

using the definition (2.23), we find

∂Ldiff inv

∂χ�ij
¼ 0 ⇒ χ�ij ¼ −

ρ�
α�

�
1

p2 þM2
�

�
p2hμνE

�μν
ij ;

ð4:1Þ
where ρ� ¼ α2�=β� and M2

� ¼ m2
�=β�. Reinserting this

solution into the Lagrangian, using

E�μν
ij δikδjlE�ρσ

kl ¼ 2Pμνρσ; ð4:2Þ

we obtain an effective Lagrangian for the metric fluctua-
tions given by

LeffðhμνÞ ¼ ALEHðhμνÞ

−
X
�

ρ�
4

�
1

p2 þM2
�

�
p4hμνhρσ2Pμνρσ: ð4:3Þ

We can express the last term as

p4hμνhρσ2Pμνρσ ¼ 2ð1ÞCμνρσ
ð1ÞCμνρσ; ð4:4Þ

where ð1ÞC denotes the first-order perturbation of the
Weyl tensor. Altogether, we obtain an effective metric
Lagrangian given by a multiple of the Einstein-Hilbert
Lagrangian and a correction quadratic in the Weyl tensor,

LeffðhμνÞ ¼ ALEHðhμνÞ −
1

2
ð1ÞCμνρσ

×

�
ρþ

p2 þM2þ
þ ρ−
p2 þM2

−

�
ð1ÞCμνρσ: ð4:5Þ

The correction term is nonlocal, with the scale of non-
locality controlled by the effective mass squares

6The shift symmetry (3.8) can be expressed in a more
symmetric form as

χþij → χþij þ
αþ
βþ

ðζþij þ δimδjnEþmn
μν δμρδνσE−kl

ρσ ζ−klÞ;

χ−ij → χ−ij þ
α−
β−

ðζ−ij þ δimδjnE−mn
μν δμρδνσEþkl

ρσ ζþklÞ;

hμν → hμν − Eþij
μν ζþij − E−ij

μν ζ−ij: ð3:7Þ

Here, we have five parameters ζþij and five parameters ζ−ij
appearing, but one can show that there are five redundancies
between these parameters.
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M2
� ¼ m2

�=β�. Remarkably, besides M2
�, the effective

Lagrangian is characterized by only three free parameters,
a global rescaling A and the two couplings ρ� ¼ α2�=β�.
Demanding that we obtain the usual Einstein-Hilbert
Lagrangian at leading order in a derivative expansion
fixes A ¼ 1. Next we show that, if in addition we have
no further poles for the spin-2 mode, we obtain the
conditions ρþ þ ρ− ¼ 1 and Mþ ¼ M−. In this case, we
are left with one free coupling parameter (corresponding to
the Barbero-Immirzi parameter in [15]) and one mass
parameter.
Poles in the effective propagator for the spin-2 mode

correspond to zeros of the inverse propagator. Omitting
tensorial structures, the latter is given by

ðProp−1Þspin-2 ¼ A
2
p2 −

1

4

�
ρþ

p2 þM2þ
þ ρ−
p2 þM2

−

�
p4:

ð4:6Þ
Thus, we recognize the propagator pole at p2 ¼ 0 repre-
senting the massless spin-2 graviton mode. If M2

− ≠ M2þ,
we can find additional poles by solving the equation

2Aðp2 þM2þÞðp2 þM2
−Þ − ρþp2ðp2 þM2

−Þ
− ρ−p2ðp2 þM2þÞ ¼ 0: ð4:7Þ

For general couplings ρþ; ρ−, and A, the left-hand side of
this equation yields a second order polynomial in p2. This
equation has, in the general case, two solutions for p2, and
we thus find additional poles.
If 2A ¼ ρþ þ ρ−, that is, if (3.5) holds, the quadratic

term p2 in (4.7) drops out. We obtain a linear equation for
p2, which is solved by

p2 ¼ −M2þM2
−

ρþ þ ρ−
M2þρþ þM2

−ρ−
: ð4:8Þ

IfM2
− ¼ M2þ≕M2 (but 2A ≠ ρþ þ ρ−), additional poles

are again described by an equation linear in p2:

2Aðp2 þM2Þ − ðρþ þ ρ−Þp2 ¼ 0 ⟹
A≠ρþþρ−

p2 ¼ −
2AM2

2A − ρþ − ρ−
: ð4:9Þ

Finally, if 2A ¼ ρþ þ ρ− and M2
− ¼ M2þ≕M2 hold, the

system does not have any additional poles. In this case, the
propagator is given by

ðPropÞspin-2 ¼ 2

A

�
1

p2
þ 1

M2

�
ð4:10Þ

and is independent of how 2A ¼ ρþ þ ρ− splits into ρþ and
ρ−. Indeed, Eq. (4.6) specifies for ρþ þ ρ− ¼ 2A and
Mþ ¼ M− ¼ M to

ðProp−1Þspin-2 ¼ A
2
p2

�
1 −

p2

p2 þM2

�
¼ A

2
p2

M2

p2 þM2
;

ð4:11Þ

which inverts to (4.10). We note that the propagator (4.10)
features the same poles as the spin-2 propagator for the
gravitons and is therefore ghost-free.
Such a ghost-free propagator has been previously found

for two slightly different theories: first, in the context of
modified chiral Plebanski theory [16,17]. The linearized
Lagrangian for this theory corresponds to the couplings
ρþ ¼ A ¼ 1; ρ− ¼ 0, and Mþ ≠ 0 as well as M− ¼ 0. The
Lagrangian therefore depends only on the fields hμν and χ

þ
ij

(and is therefore chiral) and can be written as

Lchiral¼
p2

2
ðhμνþEþij

μν χþijÞð2Pμνρσ−20PμνρσÞðhρσþEþij
ρσ χ�ijÞ

þM2χijþχþij: ð4:12Þ

With the nonlocal field redefinition (remember that Eþij
μν

includes inverse derivatives)

ĥμν ¼ hμν þ Eþij
μν χþij; ð4:13Þ

we have

Lchiral ¼
p2

2
ĥμνð2Pμνρσ − 20PμνρσÞĥρσ þM2χijþχþij: ð4:14Þ

Here, χijþ appears only in the mass term and is therefore
not propagating. This explains the simple form (4.10) of the
propagator for the effective length-metric Lagrangian.
The second theory in which the propagator (4.10)

appears is modified nonchiral Plebanski theory [15,25].
The linearized theory as discussed in [25] features
30 degrees of freedom: two independent length metrics
h�μν and the ten fields χ�ij. With the aim of constructing an
effective Lagrangian for spin foams, Ref. [15] argued that
spin-foam quantization sharply imposes constraints
hþμν ¼ h−muν ≡ hμν. This leaves 20 degrees of freedom
which can be packaged into area-metric perturbations.
The nonchiral Plebanski Lagrangian leads to a linearized
Lagrangian which satisfies the condition 1 ¼ A ¼
1
2
ðρþ þ ρ−Þ, and the coupling described by ρ� can be

identified with the Barbero-Immirzi parameter. We thus
have an additional shift symmetry. However, this symmetry
only allows for absorbing 5 out of the 10 degrees of
freedom encoded in χþij and χ−ij.
One can therefore ask why the effective length-metric

Lagrangian features the simple propagator (4.10) in this
case as well. We answer this question later. After switching
to Lorentzian signature, we perform a canonical analysis.
This shows that we indeed have the usual 2 propagating
degrees of freedom of the graviton and an additional set of
5 degrees of freedom from the χ�ij fields. However, solving
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the canonical equations of motions will reveal that there is a
variable transformation that allows a decoupling of the
dynamics into two massless propagating modes and five
massive propagating modes. This explains the form of the
propagator (4.10).

V. LORENTZIAN SIGNATURE
AND WICK ROTATION

In the first part of the paper, we investigated linearized
area-metric actions in Euclidean signature. We thus
used the flat Euclidean background length metric ðδμνÞ ¼
diagðþ1;þ1;þ1;þ1Þ. Next, we consider linearized metric
actions in Lorentzian signature; that is, we use the
Minkowski metric ðημνÞ ¼ diagð−1;þ1;þ1;þ1Þ as a
background metric.
The linearized Einstein-Hilbert action for Minkowskian

signature can be straightforwardly obtained from the
Euclidean action by contracting indices with the
Minkowski metric η instead of the Euclidean metric δ.
This can also be understood as a result of a Wick rotation
for the background time coordinate.
However, the discussion becomes more involved for

the fields χ�ij parametrizing our self-dual components.
Remember that these fields arose from the area-metric
perturbations via

ðχ�Þij ¼ 1

2
P�ij

μνρσaμνρσ; ð5:1Þ

where P� is quadratic in the Plebanski two-forms Σ�i
μν

(evaluated on a flat background). In Euclidean signature,
these were given by

EΣ�i
μν ¼ �ðδ0μδiν − δ0νδ

i
μÞ þ ϵijkδ

j
μδkν: ð5:2Þ

The Kronecker deltas δIμ arise from tetrad variables eIμ.
Thus, if we Wick rotate, we should multiply δ0μ with an {.
This leads to the Lorentzian Plebanski two-forms,

LΣ�i
μν ¼ �{ðδ0μδiν − δ0νδ

i
μÞ þ ϵijkδ

j
μδkν: ð5:3Þ

Indeed, the Lorentzian self-duality condition is an equation
with complex coefficients, and for the Minkowski metric, it
is given by

1

2
ημρηνσϵ

ρσλτLΣ�i
λτ ¼ �{LΣ�i

λτ: ð5:4Þ

Assuming a real area-metric perturbation, the fields χ�ij
are now complex, but they also satisfy

χþij ¼ χ−ij: ð5:5Þ

We thus have as many real fields χ1ij ¼ ReðχþijÞ and χ2ij ¼
ImðχþijÞ as before.

Now, let us consider a term in the Lagrangian involving
these complex fields, e.g.,

Lmass ¼ μþðχþijÞ2 þ μ−ðχ−ijÞ2: ð5:6Þ
As we have complex fields, we also allow for complex
coupling constants. However, we demand a real action,
which [with (5.5)] imposes μþ ¼ μ−. Introducing a real
parametrization for these couplings μ ¼ μ1 þ {μ2, we obtain

Lmass ¼ 2μ1ððχ1ijÞ2 − ðχ2ijÞ2Þ − 4μ2χ1ijχ2
ij: ð5:7Þ

Let us assume that μþ ¼ μ− ¼ μ is real and thus μ2 ¼ 0.
Indeed, we need to assume equal masses for the plus and
minus sectors in order to find no additional poles in the
length-metric effective action in Sec. IV. (These calcula-
tions proceed in the same way for a Minkowskian back-
ground.) We then see that, whereas we have a positive-
definite term (for positive μ) in the Lagrangian for a
Euclidean background, we also have terms with indefinite
signature for the Lorentzian Lagrangian.
The reader might already be familiar with such an effect

for the case of electromagnetism. Therefore, one can apply a
self-dual decomposition for the electromagnetic field tensor
(or two-form)Fμν, whose Lagrangian density is proportional
to FμνFμν ¼ Fþ

μνFþμν þ F−
μνF−μν. The real and imaginary

parts of the self-dual electromagnetic field tensor can be
parametrized by the electric and magnetic fields Ea and Ba.
Here, we also have a similar change in definiteness going
from the Euclidean Lagrangian density ∼E2 þ B2 to the
Lorentzian Lagrangian density ∼E2 − B2. In this case,
however, this change does not imply any issues for the
stability of the Lorentzian system: The E2 term includes the
time derivatives of the electromagnetic potential and is
positive definite, whereas the −B2 term contains the spatial
derivatives and can be understood as minus the potential
energy term that usually appears in the Lorentzian action.
However, χ�ij are fundamental fields; that is, they do not

arise as derivatives from an underlying field. We indeed
have an indefinite kinetic term and an indefinite mass term
for the χ fields. One might therefore expect a nonstable
dynamics. To investigate this issue, we perform a canonical
analysis of the Lorentzian quadratic area-metric action and
consider its evolution. Here, we concentrate on the most
interesting case identified in Sec. IV, that is, the case with
shift symmetry and equal masses.
Thus, we consider the Lorentzian Lagrangian density

Lfull ¼ A

�
−
1

2
ð∂ρhμνÞ2þð∂νhμνÞ2− ð∂μhμνÞ∂νhþ

1

2
ð∂μhÞ2

�
þ 1

4

X
�
ð2α�Σ�iμνΣ�jρσhμρ∂ν∂σχ�ij

− β�ð∂μχ�abÞ2−m2
�ðχ�ijÞ2Þ; ð5:8Þ

where, from now on, Σ�iμν ¼ LΣ�iμν.
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In the following, we will fix the global scale by setting
A ¼ 1. We will also use the freedom to rescale the χ�ij fields
and, in this way, achieve β� ¼ 1. We will consider the case
mþ ¼ m− ¼ m, as well as αþ ¼ α− ≡ α1 þ {α2, and later
restrict ourselves to α2þ þ α2− ¼ 2α21 − 2α22 ¼ 2.

VI. HAMILTONIAN ANALYSIS

In this section, we present the Hamiltonian formulation of
the area-metric theory in Lorentzian signature. To that end,
we first review the constraints andHamiltonian for linearized
general relativity. The linearized Einstein-Hilbert action
forms one part of the general action for the area metric in
the parametrization ðhμν; χ�ijÞ. Subsequently, we extend the
canonical analysis to the full (quadratic) area-metric action
by taking into account the coupling terms between hμν and
χ�ij, as well as the kinetic and mass terms for χ�ij.

A. Constraints and Hamiltonian
for linearized general relativity

The linearized Einstein-Hilbert Lagrangian density is
given by

LEH ¼ −
1

2
ð∂ρhμνÞ2 þ ð∂νhμνÞ2 − ð∂μhμνÞ∂νhþ 1

2
ð∂μhÞ2;

ð6:1Þ
where h ¼ hμνημν ¼ −h00 þ habδab denotes the trace of the
metric perturbation. In what follows, a; b;… ¼ 1, 2, 3 are
used as spatial indices. To identify the canonically con-
jugate variables, we perform a 3þ 1 decomposition of
the Lagrangian. Integrating by parts to remove any time
derivatives acting on the time-time and time-space compo-
nents h00; h0a and dropping all the surface terms, the
Lagrangian can be written as

LEH ¼ −2∂bha0ðḣab − δabðδcdḣcdÞÞ þ
1

2
ðḣabÞ2

−
1

2
ðḣabδabÞ2 þ ð∂ah00Þ∂bðhab − δabðδcdhcdÞÞ

− ð∂aha0Þ2 þ ð∂ahb0Þ2 −
1

2
ð∂ahbcÞ2 þ ð∂bhabÞ2

þ δabhab∂c∂dhcd þ
1

2
ð∂aδcdhcdÞ2: ð6:2Þ

The resulting expression does not include any time
derivatives of h00; ha0. Thus, these components of the
metric perturbations represent Lagrange multipliers with
vanishing canonical momenta. The only nonvanishing
canonical momentum is the one conjugated to the spatial
part of the metric, i.e.,

pab ≡ ∂LEH

∂ḣab
¼ ḣab − 2∂ðahbÞ0 − δabδ

cdðḣcd − 2∂ðchdÞ0Þ:

ð6:3Þ

Taking the trace of (6.3) allows us to solve for the
velocities ḣab as functions of the momenta pab,

ḣab ¼ pab −
1

2
δabðδcdpcdÞ þ 2∂ðahbÞ0: ð6:4Þ

Additionally integrating the ð∂ðahbÞ0Þ2 term by parts, we
can finally express the Lagrangian (modulo surface terms)
in terms of ḣab, its conjugate momentum pab, and the
Lagrange multipliers h00; h0a,

LEH ¼ 1

2
ðpabÞ2−

1

4
ðδabpabÞ2

þð∂ah00Þ∂bðhab − δabðδcdhcdÞÞ−
1

2
ð∂ahbcÞ2

þð∂bhabÞ2þ δabhab∂c∂dhcdþ
1

2
ð∂aδcdhcdÞ2: ð6:5Þ

The canonical Hamiltonian therefore takes the form

HEH ≡ pabḣab − LEH ¼ 1

2
ðpabÞ2 −

1

4
ðδabpabÞ2

þ 1

2
ð∂ahbcÞ2 − ð∂bhabÞ2 − δabhab∂c∂dhcd

−
1

2
ð∂aδcdhcdÞ2 þ h00∂a∂bðhab − δabðδcdhcdÞÞ

− 2ha0∂bpab:

To arrive at the above form of the Hamiltonian for
linearized general relativity, we have integrated by parts in
the Lagrangian to remove all derivatives from the fields h00
and ha0, thereby identifying them as Lagrange multipliers
which impose the four first-class primary Hamiltonian and
diffeomorphism constraints

C ¼ ∂
a
∂
bðhab − δabðδcdhcdÞÞ; Cb ¼ ∂

apab: ð6:6Þ

These do not give rise to further secondary constraints.
Thus, the physical phase space is obtained from the
kinematical phase space ðhab; pabÞ by imposing the four
first-class constraints. Each of the four first-class con-
straints removes 2 degrees of freedom. The reduced or
physical phase space is therefore 2 × 6 − 2 × 4 ¼ 4
dimensional, describing 2 propagating degrees of freedom
which correspond to the massless spin-2 graviton of general
relativity.
We can explicitly describe the physical degrees of

freedom by imposing gauge-fixing conditions

δabpab ¼ 0; ∂
ahab ¼ 0: ð6:7Þ

The first condition gauge fixes the transformations gen-
erated by the Hamiltonian constraint, while the second
condition gauge fixes the diffeomorphisms. With this gauge
choice, the Hamiltonian constraint becomes δðδabhabÞ ¼ 0,
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which implies that hab is also trace-free. In summary,
we have two trace-free–transverse (tt) fields ðhttab; ptt

abÞ.
The physical Hamiltonian is manifestly non-negative and
given by

Hphys
EH ¼ 1

2
ðptt

abÞ2 þ
1

2
ð∂chttabÞ2: ð6:8Þ

B. The 3 + 1 decomposition of the Lorentzian
area-metric action

We now consider the Lagrangian density for the hμν and
the χ�ij fluctuations, given by

Lfull ¼ LEH þ 1

4

X
�
ð2α�Σ�aμνΣ�bρσhμρ∂ν∂σχ�ab

− ð∂μχ�abÞ2 −m2ðχ�abÞ2Þ: ð6:9Þ

Here, we identify the internal indices i; j; k;… with spatial
indices a; b; c;…. This is possible via the background
spatial triads eia ¼ δia. Remember that χ� ¼ χ1 � {χ2
and α� ¼ α1 � {α2.
The most involved new term in this Lagrangian is the

term describing the coupling between the χ and h fields.
Using the explicit expression (5.3) for the Plebanski two-

forms, this term can be written, after partial integration, as

1

2

X
�
α�Σ�aμνΣ�bρσhμρ∂ν∂σχ�ab ¼

X
1;2

� α1;2½−h00∂a∂bχab1;2 − 2∂ahb0χ̇ab1;2 þ ḣabχ̇ab1;2 þ ϵaefϵbpqhep∂f∂qχ1;2ab�

þ 2α1;2ðḣab − 2∂ðahbÞ0Þϵaef∂eχ2;1fb:

We can write the previous expression more compactly by introducing the combination

χab ≡ α1χ1ab − α2χ2ab ð6:10Þ

and recalling the relation (6.3) between the momenta pab and ḣab (which are conjugated variables in linearized general
relativity). Herewith, we can rewrite the coupling term as

1

2

X
�
α�Σ�aμνΣ�bρσhμρ∂ν∂σχ�ab ¼ −h00∂a∂bχab þ pabχ̇

ab þ ϵaefϵbpqhep∂f∂qχab þ 2pabϵa
ef
∂eðα1χ2fb þ α2χ1fbÞ; ð6:11Þ

where we find that χ1;2, as well as ϵðaef∂jeχfjbÞ, are trace-free. The full Lagrangian can thus be written as

Lfullðhμν; χ1;2abÞ ¼
1

2
ðpabÞ2 −

1

4
ðδabpabÞ2 − h00∂a∂bðhab − δabðδcdhcdÞÞ

−
1

2
ð∂ahbcÞ2 þ ð∂bhabÞ2 þ δabhab∂c∂dhcd þ

1

2
ð∂aδcdhcdÞ2

− h00∂a∂bχab þ pabχ̇
ab þ ϵaefϵbpqhep∂f∂qχab þ 2pabϵa

ef
∂eðα1χ2fb þ α2χ1fbÞ

þ 1

2
ððχ̇1abÞ2 − ðχ̇2abÞ2Þ −

1

2
ðð∂aχ1bcÞ2 − ð∂aχ2bcÞ2Þ −

1

2
m2ððχab1 Þ2 − ðχab2 Þ2Þ: ð6:12Þ

The conjugate momenta are determined by

Pab ≡ ∂Lfull

∂ḣab
¼ pab þ α1χ̇1ab − α2χ̇2ab þ 2ϵðaef∂jeð2α2χ1fjbÞ þ 2α1χ2fjbÞÞ;

ρ1ab ≡ ∂Lfull

∂χ̇1ab
¼ χ̇1ab þ α1pab −

1

3
α1δabδ

cdpcd;

ρ2ab ≡ ∂Lfull

∂χ̇2ab
¼ −χ̇2ab − α2pab þ

1

3
α2δabδ

cdpcd: ð6:13Þ

Here, we have explicitly subtracted the traces to make ρ1;2
trace-free.
As a next step, the velocities have to be solved as

functions of the momenta. The trace part of the first

equation is insensitive to χ1;2 as these fields are trace-free,
and thus it can be solved in the same way as for linearized
general relativity. In particular, only the trace-free parts
of the equations for the conjugate momenta are coupled.
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This system is nonsingular unless

α21 − α22 ¼ 1: ð6:14Þ

If this condition is satisfied, the rank of the system of
equations (in the space of three symmetric trace-free fields)
is two rather than three, which signalizes the presence of
the additional “shift” symmetry. In the following, we will
restrict the analysis to the case when (6.14) is satisfied. To
that end, in the next subsection we introduce an alternative
basis of fields to parametrize the Lagrangian.

C. Reparametrization of the Lagrangian

The relation (6.14) implies that we can parametrize
the real and imaginary parts of the complex parameter

αþ ¼ α1 þ {α2 in terms of a single real parameter ξ by
writing7

α1 ¼ coshðξÞ; α2 ¼ sinhðξÞ: ð6:15Þ

Introducing the field redefinitions

χ ≡ coshðξÞχ1 − sinhðξÞχ2; ϕ≡ sinhðξÞχ1 − coshðξÞχ2
ð6:16Þ

allows us to express the full Lagrangian (6.12) after some
algebraic manipulations in the form

Lfullðhμν; χab;ϕabÞ ¼
1

2
ðpab þ χ̇abÞ2 −

1

4
ðδabðpab þ χ̇abÞÞ2 − h00∂a∂bðhab þ χab − δabðδcdðhcd þ χcdÞÞ −

1

2
ð∂ahbcÞ2

þ ð∂bhabÞ2 þ δabhab∂c∂dhcd þ
1

2
ð∂aδcdhcdÞ2 þ ϵaefϵbpqhep∂f∂qχab þ 2pabϵa

ef
∂eðsinhð2ξÞχfb

− coshð2ξÞϕfbÞ −
1

2
ðϕ̇abÞ2 −

1

2
ðð∂aχbcÞ2 − ð∂aϕbcÞ2Þ −

1

2
m2ðχabÞ2 þ

1

2
m2ðϕabÞ2: ð6:17Þ

From the above expression, we recognize that the terms p2, pχ̇, and χ̇2 form a perfect square. As a next step, we rewrite the
Lagrangian in terms of

Pab ≡ pab þ χ̇ab þ 2ϵðaef∂jeðsinhð2ξÞχfjbÞ − coshð2ξÞϕfjbÞÞ;
Φab ≡ −ϕ̇ab − 2 coshð2ξÞϵðaef∂jeχfjbÞ: ð6:18Þ

We can use partial integration repeatedly to see that the term χχ̇ vanishes (modulo a surface term), whereas the term χ̇ϕ can
be rewritten such that the time derivative acts on ϕ. Herewith, the Lagrangian can be expressed as

Lfullðhμν;χab;ϕabÞ¼
1

2
ðPabÞ2−

1

4
ðδabPabÞ2−h00∂a∂bðhabþ χab−δabðδcdðhcdþ χcdÞÞ−

1

2
ð∂ahbcÞ2þð∂bhabÞ2

þδabhab∂c∂dhcdþ
1

2
ð∂aδcdhcdÞ2þ ϵaefϵbpqhep∂f∂qχab−2ðϵðaef∂jeðsinhð2ξÞχfjbÞ−coshð2ξÞϕfjbÞÞÞ2

þ2cosh2ð2ξÞðϵðaef∂jeðχfjbÞÞ2−
1

2
ðΦabÞ2−

1

2
ðð∂aχbcÞ2− ð∂aϕbcÞ2Þ−

1

2
m2ðχabÞ2þ

1

2
m2ðϕabÞ2: ð6:19Þ

From (6.19) we see that the spatial metric subject to the Hamiltonian constraint is

Hab ≡ hab þ χab: ð6:20Þ

Rewriting all potential terms in terms of this redefined metric, using partial integration, we can write down the full
Lagrangian in the form

LfullðHab; χab;ϕabÞ ¼
1

2
ðPabÞ2 −

1

4
ðδabPabÞ2 − h00∂a∂bðHab − δabðδcdHcdÞÞ −

1

2
ð∂aHbcÞ2 þ ð∂bHabÞ2 þ δabHab∂

c
∂
dHcd

þ 1

2
ð∂aδcdHcdÞ2 þ 2ϵaefϵbpqHep∂f∂qχab þ 4 coshð2ξÞ sinhð2ξÞðϵðaef∂jeχfjbÞÞðϵacd∂cϕdbÞ

−
1

2
m2ðχabÞ2 −

1

2
ðΦabÞ2 þ

1

2
ð∂aϕbcÞ2 − 2 cosh2ð2ξÞðϵðaef∂jeϕfjbÞÞ2 þ

1

2
m2ðϕabÞ2: ð6:21Þ

7Note that one can use a field redefinition χ� → −χ� to change a negative coupling α1 into a positive coupling.
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The first two lines represent the linearized Einstein-Hilbert
Lagrangian for the spatial metric Hab and its conjugated
momentumPab (as can be easily checked) with the Lagrange
multiplier h00 imposing the Hamiltonian constraint and h0a
imposing the diffeomorphism constraint (as can be seen by
inserting the explicit expression for Pab). The last line is a

Lagrangian for the field ϕab which notably has a wrong sign
in front of its kinetic and mass terms. The third line involves
the field χab, whose momentum is constrained to vanish.
To express the Lagrangian in terms of the fields

Hab; χab;ϕab and their time derivatives, using (6.18) and
(6.3), we find

Pab ¼ Ḣab − δabδ
cdḢcd − 2∂ðahbÞ0 þ 2δabδ

cd
∂chd0 þ 2 sinhð2ξÞðDχÞab − 2 coshð2ξÞðDϕÞab;

Φab ¼ −ϕ̇ab − 2 coshð2ξÞðDχÞab ð6:22Þ

where Dtab ≡ ϵðaef∂jetfjbÞ. Thus, the Lagrangian density expressed as a functional of Hab; χab, and ϕab is given by

LfullðHab; χab;ϕabÞ ¼ þ 1

2
ðḢab − δabδ

cdḢcd − 2∂ðahbÞ0 þ 2δabδ
cd
∂chd0 þ 2 sinhð2ξÞðDχÞab − 2 coshð2ξÞðDϕÞabÞ2

−
1

4
ð−2δabḢab þ 4δab∂ahb0Þ2 − h00∂a∂bðHab − δabðδcdHcdÞÞ

−
1

2
ð∂aHbcÞ2 þ ð∂bHabÞ2 þ δabHab∂

c
∂
dHcd þ

1

2
ð∂aδcdHcdÞ2

þ 2ϵaefϵbpqHep∂f∂qχab þ 4 coshð2ξÞ sinhð2ξÞðDχÞabðDϕÞab − 1

2
m2ðχabÞ2

−
1

2
ðϕ̇ab þ 2 coshð2ξÞðDχÞabÞ2 þ

1

2
ð∂aϕbcÞ2 − 2 cosh2ð2ξÞððDϕÞabÞ2 þ

1

2
m2ðϕabÞ2: ð6:23Þ

D. Hamiltonian

Only the fields Hab and ϕab have nonvanishing conjugate momenta equal to the already introduced combinations
Pab;Φab,

∂Lfull

∂Ḣab
¼ Pab;

∂Lfull

∂ϕ̇ab
¼ Φab: ð6:24Þ

To obtain the Hamiltonian, we need to compute PabḢab and Φabϕ̇ab. They are derived using

Ḣab ¼ Pab þ 2∂ðahbÞ0 −
1

2
δabδ

cdPcd − 2ϵðaef∂jeðsinhð2ξÞχfjbÞ − coshð2ξÞϕfjbÞÞ;
ϕ̇ab ¼ −Φab − 2 coshð2ξÞϵðaef∂jeχfjbÞ: ð6:25Þ

Introducing the differential operators Dtab ¼ ϵðaef∂jetfjbÞ and ðDtÞab ¼ ϵa
fcϵb

qd
∂f∂qtcd, we can now write down the

Hamiltonian density (using integration by parts),

Hfull ¼ PabḢab þΦabϕ̇ab − Lfull

b¼ 1

2
ðPabÞ2 −

1

4
ðδabPabÞ2 þ h00∂a∂bðHab − δabðδcdHcdÞÞ þ 2Pab

∂ahb0

þ 1

2
ð∂aHbcÞ2 − ð∂bHabÞ2 − δabHab∂

c
∂
dHcd −

1

2
ð∂aδcdHcdÞ2

− 2Pabðsinhð2ξÞDχab − coshð2ξÞDϕabÞ − 2 coshð2ξÞΦabDχab

− 2χabDHab − 4 coshð2ξÞ sinhð2ξÞDχabDϕab

−
1

2
ðΦabÞ2 −

1

2
ð∂aϕbcÞ2 þ 2 cosh2ð2ξÞðDϕabÞ2 þ

1

2
m2ðχabÞ2 −

1

2
m2ðϕabÞ2: ð6:26Þ
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Note that the first two lines of the Hamiltonian density
agree with the Hamiltonian density for linearized GR [see
Eq. (6.6)] if we replace hab → Hab and pab → Pab.
This system has the following constraints: First, we have

the usual linearized constraints of general relativity,

C ¼ ∂
a
∂
bðHab − δabðδcdHcdÞÞ; Cb ¼ ∂

aPab: ð6:27Þ

These constraints commute with each other. However, we
also have to check the time evolutionof these constraintswith
the Hamiltonian. It turns out that the constraints commute
with the part of the Hamiltonian involving the χ and ϕ fields
and their conjugated momenta. Thus, one has the same
commutation relations as in linearized GR, namely,�
C;
Z

d3xHfull

�
¼ ∂

bCb;

�
Cb;
Z

d3xHfull

�
¼ 0:

ð6:28Þ

Therefore, we do not generate any further constraints.
Additionally, we have the primary constraint that the

momenta Θab conjugated to χab vanish: Θab ¼ 0. We also
have to consider the time evolution of these primary
constraints. To this end, note that for symmetric tensors

sab and tab, using integration by parts, we have
ðDsÞabtab b¼sabðDtÞab. We thus obtain the following sec-
ondary constraints:

Cab ¼ m2χab − 2 sinhð2ξÞDPab − 2 coshð2ξÞDΦab

− 2DHab − 4 coshð2ξÞ sinhð2ξÞD2ϕab

≕m2χab − FabðHcd; Pcd;ϕcd;ΦcdÞ: ð6:29Þ

The primary and secondary constraints form a second-
class system. (The commutator of Fab with Fcd vanishes,
and therefore Cab commutes with Ccd.) Following Dirac’s
procedure, we have to add the primary and secondary
constraints multiplied by Lagrange multipliers to the
system. Demanding that the constraints are preserved by
time evolution fixes these Lagrange multipliers; thus, we do
not generate further constraints.
We can eliminate the constraints Θab and Cab from the

system by solving the Cab for χab and by inserting this
solution into the Hamiltonian density.
Note that Cab and Θab are conjugated to each other;

therefore, the Dirac brackets amount to the Poisson
brackets, if we restrict to the variables H, P and ϕ;Φ.
Thus, we are left with a reduced Hamiltonian density,

H0
full ¼

1

2
ðPab þ 2 coshð2ξÞDϕabÞ2 −

1

4
ðδabPabÞ2 þ h00∂a∂bðHab − δabðδcdHcdÞÞ þ 2Pab

∂ahb0

þ 1

2
ð∂aHbcÞ2 − ð∂bHabÞ2 − δabHab∂

c
∂
dHcd −

1

2
ð∂aδcdHcdÞ2

−
1

2
ðΦabÞ2 −

1

2
ð∂aϕbcÞ2 −

1

2m2
ðFabÞ2 −

1

2
m2ðϕabÞ2: ð6:30Þ

Here, we notice that all terms in the last line of (6.30) are negative definite. Thus, one might wonder if the dynamics will
be unstable. To investigate this issue, we solve the time evolution equations.
The time evolution equations are given by

Ḣab ¼
�
Hab;

Z
d3xH0

full

�
¼ Pab þ 2 coshð2ξÞDϕab −

1

2
δabδ

cdPcd þ 2δcðaδ
d
bÞ∂chd0 −

2

m2
sinhð2ξÞDFab;

Ṗab ¼
�
Pab;

Z
d3xH0

full

�
¼ ∂c∂

cHab − ∂a∂bh00 þ δab∂
c
∂ch00

− ∂a∂
cHcb − ∂b∂

cHca þ δab∂
c
∂
dHcd þ ∂a∂bδ

cdHcd − δab∂
e
∂eδ

cdHcd þ
2

m2
DFab;

ϕ̇ab ¼
�
ϕab;

Z
d3xH0

full

�
¼ −Φab −

2

m2
coshð2ξÞDFab;

Φ̇ab ¼
�
Φab;

Z
d3xH0

full

�
¼ ð−∂c∂c − 4 coshð2ξÞ2D2 þm2Þϕab − 2 coshð2ξÞDPab þ

4

m2
coshð2ξÞ sinhð2ξÞD2Fab;

ð6:31Þ

where

Fab ¼ 2 sinhð2ξÞDPab þ 2 coshð2ξÞDΦab þ 2DHab þ 4 coshð2ξÞ sinhð2ξÞD2ϕab: ð6:32Þ
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E. Mode decomposition and differential operators

In order to solve these differential equations, we apply a
Fourier transform in the spatial coordinates, which replaces
∂a → {ka. Furthermore, we use a decomposition of the
symmetric tensor modes as follows. For the transverse-
traceless modes, we use the orthonormal basis given by

tþab ≡ 1ffiffiffi
2

p ðk̂θak̂θb − k̂φa k̂
φ
bÞ; t×ab ≡ 1ffiffiffi

2
p ðk̂θak̂φb þ k̂φa k̂

θ
bÞ;

ð6:33Þ
and the alternative (complex) set, which diagonalizes
helicity,

tRab ≡ 1

2
ðk̂θa þ {k̂φaÞðk̂θb þ {k̂φbÞ;

tLab ≡ 1

2
ðk̂θa − {k̂φaÞðk̂θb − {k̂φbÞ: ð6:34Þ

Here, the 3-vectors ˆk⃗θ and ˆk⃗φ are such that ð k⃗
jk⃗j ;

ˆk⃗θ; ˆk⃗φÞ
defines the right-handed orthonormal basis, i.e.,

k̂θak̂
θ
bδ

ab ¼ k̂φa k̂
φ
bδ

ab ¼ 1;

k̂θak̂
φ
bδ

ab ¼ k̂θakbδab ¼ k̂φakbδab ¼ 0; ϵabc
ka
jk⃗j

k̂θbk̂
φ
c ¼ þ1:

ð6:35Þ
We furthermore define the following basis of longitudinal
modes, projected to be traceless:

tlθab ≡ 1ffiffiffiffiffiffiffiffiffiffi
2jk⃗j2

q ðkak̂θb þ k̂θakbÞ;

tlφab ≡ 1ffiffiffiffiffiffiffiffiffiffi
2jk⃗j2

q ðkak̂φb þ k̂φakbÞ;

tllab ≡
ffiffiffiffiffiffiffiffiffiffi
3

2jk⃗j4

s �
kakb −

1

3
jk⃗j2δab

�
: ð6:36Þ

Note that these modes are orthogonal to the transverse-
traceless modes and that they form an orthonormal basis.
An alternative pair of (complex) basis vectors, replacing

the first two vectors in (6.36), is

tlþab ≡ 1ffiffiffi
2

p ðtlθab þ {tlφabÞ; tl−ab ≡ 1ffiffiffi
2

p ðtlθab − {tlφabÞ: ð6:37Þ

Finally, we have a trace mode. We choose this mode to
be orthogonal to all the modes listed above and normalized
to one:

ttrab ¼
1ffiffiffi
3

p δab: ð6:38Þ

Let us now consider how the operator D, defined by
ðDtÞab ¼ ϵðaef∂jetfjbÞ, acts on these modes. It is straight-
forward to compute

ðDtþÞab ¼ {jk⃗jt×ab; ðDt×Þab ¼ −{jk⃗jtþab;
ðDtRÞab ¼ jk⃗jtRab; ðDtLÞab ¼ −jk⃗jtLab;
ðDtlθÞab ¼

{
2
jk⃗jtlφab; ðDtlφÞab ¼ −

{
2
jk⃗jtlθab;

ðDtlþÞab ¼
1

2
jk⃗jtlþab; ðDtl−Þab ¼ −

1

2
jk⃗jtl−ab;

ðDtllÞab ¼ 0; ðDttrÞab ¼ 0: ð6:39Þ

Note that for the transverse-traceless modes tttab, we have

ðD2tttÞab ¼ −∂c∂ctttab ¼ jk⃗j2tttab: ð6:40Þ

In other words, D is a square root of minus the spatial
Laplacian, if we are restricted to transverse-traceless
modes. We see thatD acts diagonally on the basis elements
tR, tL and tlþ; tl−, but not on the basis elements tþ; t×

and tlθ; tlϕ.
Furthermore, we have the second-order differential

operator ðDtÞab ¼ ϵa
fcϵb

qd
∂f∂qtcd. It acts on the various

modes as follows:

ðDtþÞab ¼ jk⃗j2tþab; ðDt×Þab ¼ jk⃗j2t×ab;
ðDtRÞab ¼ jk⃗j2tRab; ðDtLÞab ¼ jk⃗j2tLab;
ðDtlθÞab ¼ 0; ðDtlφÞab ¼ 0;

ðDtlþÞab ¼ 0; ðDtl−Þab ¼ 0;

ðDtllÞab ¼ −
1

3
jk⃗j2tllab þ

ffiffiffi
2

p

3
jk⃗j2ttrab;

ðDttrÞab ¼
ffiffiffi
2

p

3
jk⃗j2tllab −

2

3
jk⃗j2ttrab: ð6:41Þ

Note that for the transverse-traceless modes tttab, we have

ðDtttÞab ¼ ðD2tttÞab ¼ jk⃗j2tttab: ð6:42Þ

Introducing an alternative orthonormal basis for the
space spanned by the ðllÞ and ðtrÞ modes,

tdlab ≔
kakb
jk⃗j2

¼
ffiffiffi
2

3

r �
tllab þ

1ffiffiffi
2

p ttrab

�
;

ttab ≔
1ffiffiffi
2

p
�
kakb
jk⃗j2

− δab

�
¼

ffiffiffi
2

3

r �
1ffiffiffi
2

p tllab − ttrab

�
; ð6:43Þ

the action of D simplifies to

ðDtdlÞab ¼ 0; ðDttÞab ¼ −jk⃗j2ttab: ð6:44Þ
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F. Solution to the Hamiltonian equations of motion

To solve the Hamiltonian equations of motion (6.31) for
the dynamical variables ðHab; Pab;ϕab;ΦabÞ, we decom-
pose the symmetric tensors into modes, e.g.,

Hab ¼HRtRabþHLtLabþHlþtlþabþHl−tl−abþHlltllabþHtrttrab
ð6:45Þ

and so on. (Note that ϕtr ¼ 0 and Φtr ¼ 0.) It is easy to see
that the various differential operators appearing in the
equations of motion (6.31) act diagonally on the basis
elements labeled by fR;L; lþ; l−g but not on fll; trg.

We therefore obtain a closed subsystem for each label in the
first set.
For the R=L modes, we can write

0BBB@
ḢR=L

ṖR=L

ϕ̇R=L

Φ̇R=L

1CCCA ¼ MR=L ·

0BBB@
HR=L

PR=L

ϕR=L

ΦR=L

1CCCA ð6:46Þ

where

MR=L ¼

0BBBBBB@
∓ 4s

m2 jk⃗j3 1 − 4s2

m2 jk⃗j2 �c
�
2jk⃗j − 8s2

m2 jk⃗j3
�

− 4cs
m2 jk⃗j2

−jk⃗j2 þ 4s2

m2 jk⃗j4 � 4s
m2 jk⃗j3 8cs

m2 jk⃗j4 � 4c
m2 jk⃗j3

∓ 4c
m2 jk⃗j3 − 4cs

m2 jk⃗j2 ∓ 8c2s
m2 jk⃗j3 −1 − 4c2

m2 jk⃗j2
8cs
m2 jk⃗j4 ∓ c

�
2jk⃗j − 8s2

m2 jk⃗j3
�

m2 − ð3þ 4s2Þjk⃗j2 þ 16s2c2

m2 jk⃗j4 � 8c2s
m2 jk⃗j3

1CCCCCCA: ð6:47Þ

Here, we have abbreviated c ¼ coshð2ξÞ and s ¼ sinhð2ξÞ.
The solution of the system is given by XR=L ¼

expðMR=LτÞXR=L
0 , where τ denotes the time parameter,

and XR=L ¼ ðHR=L; PR=L;ϕR=L;ΦR=LÞ, with XR=L
0 denoting

the initial values.
The matricesMR=L are diagonalizable, and for both the R

and L polarizations, the eigenvalues are given by�
−{jk⃗j;þ{jk⃗j;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jk⃗j2 −m2

q
;þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jk⃗j2 −m2

q �
: ð6:48Þ

Remember that the eigenvalues for a harmonic oscillator
with frequency ω are given as ðþ{ω;−{ωÞ. Therefore, we
have two massless propagating modes and two massive
propagating modes, and the dynamics of the transverse-
traceless modes is stable.
It is astonishing that, despite the coupling between the

lengthmetric and themassiveϕab fieldwith the “wrong sign”
for the kinetic and mass terms, we obtain the same spectrum
as for the noncoupled system. Thus, we also find that the
eigenvalues are independent of the coupling parameter ξ.
The eigenvectors can also be computed explicitly. Note

that the matrices MR=L are real. Therefore, we can choose
the eigenvectors associated with complex conjugate eigen-
values to also be complex conjugated to each other. Here,
we only need to consider their expansion in 1=m. The
eigenvectors for the eigenvalue −{jk⃗j are given by

VR=L
1 ¼

�
1;�{jk⃗j � 4ð−{þ sÞjk⃗j3 1

m2
; 2{cjk⃗j2 1

m2
;

∓ 2cð1 − 2{sÞjk⃗j3 1

m2

�
þO

�
1

m3

�
; ð6:49Þ

whereas the eigenvector for the eigenvalue þ{jk⃗j is given
by VR=L

2 ¼ VR=L
1 . We see that for m → ∞ (that is, for

m2 ≫ k2), we approach the dynamics of the pure gravita-
tional system,8 given by a massless degree of freedom in the
R and L polarizations, respectively.

The eigenvectors for the eigenvalue −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jk⃗j2 −m2

q
are

given by

VR=L
3 ¼

�
�2jk⃗jc 1

m2
; 0;

−{
m

; 1

�
þO

�
1

m3

�
; ð6:50Þ

and for the eigenvalue
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jk⃗j2 −m2

q
, we have VR=L

4 ¼
VR=L
3 . For m → ∞, we obtain an oscillator with mass m in

the R and L polarizations, respectively. To higher order in
1=m, the eigenmode has a nonvanishing HR=L component.
We also have a closed system of equations of motion for

the ðl�Þ modes, modulo a term in the shift parameters h0a.
This term shows that we have first-class constraints, which
imply

k̂θbC
b ¼ 0 and kφbC

b ¼ 0

⇒ Plþ ¼ 0 and Pl− ¼ 0: ð6:51Þ

One can furthermore use the mode expansion for the
equation determining Ṗab in (6.31) to show that Ṗlþ ¼ 0

and Ṗl− ¼ 0. [This also follows from (6.28).]

8Remember, however, thatHab involves the h and χ fields, and
Pab involves (time or spatial) derivatives of the h, χ, and ϕ fields.
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The remaining equations are split into two parts. First,
we have that

�
ϕ̇l�

Φ̇l�

�
¼
 ∓ c2s

m2 jk⃗j3 −1 − c2

m2 jk⃗j2

m2 − s2jk⃗j2 þ c2s2

m2 jk⃗j4 � c2s
m2 jk⃗j3

!

·

�
ϕl�

Φl�

�
: ð6:52Þ

Second, we have equations determining Ḣl�, which also
involve the shift parameters,

Ḣl� ¼�cjk⃗j
�
1−

s
m2

jk⃗j2
�
ϕl�−

cs
m2

jk⃗j2Φl� þ 2{kchd0tl�cd:

ð6:53Þ

The matrix in (6.52) can again be diagonalized, and the
eigenvalues (for the lþ and l− modes) are given by

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jk⃗j2 −m2

q
;þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jk⃗j2 −m2

q �
: ð6:54Þ

Thus, we again have a stable dynamics, describing 2
propagating degrees of freedom with mass m. These
oscillations for the ðl�Þ modes of ϕ and Φ induce a time
evolution for Hl�. For this time evolution, gauge param-
eters hd0 also appear. These parameters (and the initial data)
can be chosen such that Hl� ¼ 0 throughout.
The eigenvectors of the matrix appearing in (6.52) can

also be computed; their expansion in 1=m is as follows:

Vl�
1 ¼

�
−

{
m
; 1

�
þO

�
1

m3

�
;

Vl�
2 ¼

�
þ {
m
; 1

�
þO

�
1

m3

�
: ð6:55Þ

In the m → ∞ limit, we indeed obtain the dynamics of free
oscillators with mass m.
Finally, we are left with the ðllÞ and ðtrÞ modes. The

constraints C and Cb imply

C ¼ 0 ⇒ Hll −
ffiffiffi
2

p
Htr ¼ 0 and Cbkb ¼ 0

⇒
ffiffiffi
2

p
Pll þ Ptr ¼ 0: ð6:56Þ

From (6.28), we also know that the time derivative of these
constraints vanishes. It is therefore sufficient to consider the
time evolution of the ðllÞ mode for the H and P fields. The
same holds for the ϕ andΦ fields, as the ðtrÞmode vanishes
for these fields.
Here, we find a further decoupling of the equations of

motions. The time evolution of the H and P fields is
described by

Ḣll ¼ Pll þ 2{

ffiffiffi
2

3

r
kdhd0; Ṗll ¼

ffiffiffi
2

3

r
k2h00: ð6:57Þ

We can again choose initial data and gauge parameters
such that Hll ¼ 0 and Pll ¼ 0 (and thus Htr ¼ 0
and Ptr ¼ 0).
The time evolution of the ϕ and Φ fields is described by

ϕ̇ll ¼ −Φll; Φ̇ll ¼ ðk2 þm2Þϕll: ð6:58Þ

This again describes a stable propagating degree of free-
dom with mass m2.
In summary, we find that all propagating degrees of

freedom show a stable oscillating dynamics. The eigen-
frequencies are the same as for the noncoupled system and
hence do not depend on the coupling parameter ξ. This
explains why in Sec. IV we found that, when integrating
out the χ and ϕ fields, one still just finds two massless
propagating modes without ghosts.
The Hamiltonian (6.30) indeed appears already in the

form of noncoupled oscillators if we consider the limit
m → ∞. However, the harmonic oscillator Hamiltonian for
the ðϕ;ΦÞ fields appears with a negative overall sign.
The resulting simple eigenfrequencies for finite mass

mean that there exist coordinate transformations such that
the new Hamiltonian still describes noncoupled harmonic
oscillators, even for finite mass. The part of this new
Hamiltonian that describes the massive fields, however,
also comes with a negative overall sign, whereas the
transverse-traceless modes of the massless fields come
with a positive overall sign.
We thus obtain a stable dynamics at quadratic order for

the Lagrangian. However, going to higher order, one has to
expect instabilities that arise from the higher order coupling
between these modes with positive and negative energy.
There might exist fine-tuned choices for the higher-order
terms in the Lagrangian that lead to a stable dynamics, but
this is yet to be investigated.
Here, we chose to consider the dynamics using a mode

decomposition and the (partially complex) ðR;L; lþ;
l−; ll; trÞ basis. With this choice, we have a decoupling
between the R and L modes and a decoupling between the
lþ and l−modes. An alternative choice would be to use the
real basis ðþ;×; lθ; lφ; ll; trÞ. Of course, one again finds
the same eigenfrequencies. However, one also has a
coupling between the þ and × modes (and the lθ and
lφ modes); see Appendix. Such a coupling does not appear
in pure gravity and could therefore lead to an observational
signature for area metrics.

VII. DISCUSSION

Area metrics have appeared in a number of approaches to
quantum gravity. Here, we constructed the space of
possible actions for cyclic area metrics to quadratic order
in the area-metric perturbations. We imposed (linearized)

AREA-METRIC GRAVITY REVISITED PHYS. REV. D 109, 124035 (2024)

124035-17



diffeomorphism invariance and allowed mass terms for the
nonlength degrees of freedom. The cyclic area-metric
perturbations can be conveniently parametrized by a
length-metric perturbation, as well as 2 × 5 degrees of
freedom which parametrize the trace-free self-dual and
anti-self-dual parts of the nonlength perturbations.
Taking into account the freedom of rescaling the length-

metric and nonlength fields, we found a four-dimensional
space of the quadratic area-metric actions. Two of these
four couplings are the masses for the self-dual and anti-self-
dual parts; the other two couplings describe how strongly
the (anti-)self-dual parts are coupled to the transverse-
traceless part of the length-metric fluctuations. Restricting
to parity-invariant actions reduces the available freedom to
two couplings.
Our derivation of the second order action is more

transparent than in the (covariant) constructive gravity
approach [23] in two ways: first, the parametrization of
the area-metric perturbations in Sec. II B into different parts
according to their SOð4Þ transformation behavior; second,
the usage of SOð4Þ representation theory in Sec. II C,
which allows us to quickly identify all possible terms in the
quadratic action. This avoids the need to use computer
algebra systems or dedicated software packages as in [23]
and leads to a more transparent representation of the
dynamics, which made the subsequent analysis and dis-
cussions possible.
A special subclass of theories identified in our work

features a degenerate kinetic term and leads to a ghost-free
propagator for the gravitons in the effective length-metric
theory. The same type of action was found to appear in the
perturbative continuum limit of (effective) spin foams [10]
and from modified Plebanski theory [15]. This special
subset is described by two couplings: One coupling
describes the strength of parity violations; the other
coupling corresponds to the mass of the self-dual and
anti-self-dual parts of the area-metric perturbations. The
former coupling corresponds to the Barbero-Immirzi
parameter in loop quantum gravity [20]. In the perturbative
continuum limit of spin foams, the mass is of the order of
the Planck mass and may also depend on the Barbero-
Immirzi parameter.
The appearance of the Barbero-Immirzi parameter in

loop quantum gravity is somewhat surprising as it para-
metrizes a family of canonical transformations in the first-
order formulation of general relativity. However, these
transformations cannot be implemented unitarily in loop
quantum gravity [26]. The appearance of the Barbero-
Immirzi parameter can also be understood as a result of the
extension of the quantum configuration space from length
metrics to area metrics in loop quantum gravity [5,8,19]. In
this paper, we found that the Barbero-Immirzi parameter
can indeed be identified as one of the couplings appearing
in area-metric gravity theories, where it already affects the
classical dynamics.

These results hold for both Euclidean and Lorentzian
signatures. Crucially, however, we found that the Lorentzian,
but not the Euclidean, area-metric action has indefinite
kinetic and mass terms for the degrees of freedom
encoding the self-dual and anti-self-dual parts of the
area-metric perturbations. As these degrees of freedom
couple to the length metric, one might expect an unstable
dynamics even for the free theory. However, this seems to
contradict the finding of a ghost-free propagator for the
effective length-metric action. We therefore performed a
canonical analysis for the actions leading to a ghost-free
propagator. Here, we found that the degeneracy of the
kinetic term, together with having mass terms, leads to
second-class constraints which remove half of the self-
dual and anti-self-dual degrees of freedom. However, the
canonical analysis confirmed that the remaining part
propagates and that it has negative definite kinetic and
mass terms. We nevertheless obtained a stable dynamics,
which moreover separated into two massless eigenmodes
(with positive energy) and five massive eigenmodes (with
negative energy). One can also find a mixing between the
cross and plus polarizations of the gravitons in area-metric
dynamics, which is parametrized by the Barbero-Immirzi
parameter. This does not appear in general relativity and
might therefore lead to an observational signature for area
metrics and allow one to constrain the Barbero-Immirzi
parameter.
A crucial question in determining whether area-metric

theories with real9 actions are viable in Lorentzian sig-
nature will be to see whether this stability can be exten-
ded to higher order in the perturbative expansion of
area metrics or whether this stability also holds for
nonflat backgrounds. For backgrounds admitting a Wick
rotation, one can connect Euclidean to Lorentzian sol-
utions. One could therefore hope to find stability for such
backgrounds.
A similar change10 in definiteness appears for the

Kodama state, which is conjectured to describe a vacuum
for quantum gravity [28]. This state is not normalizable
(in Fock space) in Lorentzian signature. The root for this
non-normalizabilty is that this state prescribes negative-
helicity gravitons to have negative energy and positive-
helicity gravitons to have positive energy [29]. On the other
hand, the Euclidean Kodama state is delta-function
normalizable [30]. Whether one can find a nonperturbative
inner product in which the Lorentzian Kodama state is
normalizable is still an open question [31].
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APPENDIX: DIFFERENT CHOICE
OF POLARIZATION BASIS

In Sec. VI F, we solved the Hamiltonian equations of
motion using a mode expansion. Here, we use an alter-
native basis of modes for the transverse-traceless sector,
given by the plus- and cross-polarization tensors tþab and
t×ab; see Eq. (6.33).

Unlike the case with right and left polarization, the
dynamics couples the plus and cross modes. The time
evolution is described by0BBBBBBBBBBBBB@

Ḣþ

Ḣ×

Ṗþ

Ṗ×

ϕ̇þ

ϕ̇×

Φ̇þ

Φ̇×

1CCCCCCCCCCCCCA
¼ MTT ·

0BBBBBBBBBBBBB@

Hþ

H×

Pþ

P×

ϕþ

ϕ×

Φþ

Φ×

1CCCCCCCCCCCCCA
ðA1Þ

where MTT ¼ ðM1M2Þ with

M1 ¼

0BBBBBBBBBBBBBBBBBBB@

0 4{s
m2 jk⃗j3 1 − 4s2

m2 jk⃗j2 0

− 4{s
m2 jk⃗j3 0 0 1 − 4s2

m2 jk⃗j2

−jk⃗j2 þ 4
m2 jk⃗j4 0 0 − 4{s

m2 jk⃗j3

0 −jk⃗j2 þ 4
m2 jk⃗j4 4{s

m2 jk⃗j3 0

0 4{c
m2 jk⃗j3 − 4cs

m2 jk⃗j2 0

− 4{c
m2 jk⃗j3 0 0 − 4cs

m2 jk⃗j2
8cs
m2 jk⃗j4 0 0 c

�
2{jk⃗j − 8{s2

m2 jk⃗j3
�

0
8csjk⃗j4
m2 c

�
−2{jk⃗j þ 8{s2

m2 jk⃗j3
�

0

1CCCCCCCCCCCCCCCCCCCA

ðA2Þ

and

M2 ¼

0BBBBBBBBBBBBBBBBBBB@

0 c
�
−2{jk⃗j þ 8{s2

m2 jk⃗j3
�

− 4cs
m2 jk⃗j2 0

c
�
2{jk⃗j − 8{s2

m2 jk⃗j3
�

0 0 − 4cs
m2 jk⃗j2

8cs
m2 jk⃗j4 0 0 − 4{c

m2 jk⃗j3

0 8cs
m2 jk⃗j4 4{c

m2 jk⃗j3 0

0 8{c2s
m2 jk⃗j3 −1 − 4c2

m2 jk⃗j2 0

− 8{c2s
m2 jk⃗j3 0 0 −1 − 4c2

m2 jk⃗j2

ð1 − 4c4Þjk⃗j2 þm2 16c2s2

m2 jk⃗j4 0 0 − 8{c2s
m2 jk⃗j3

0 ð1 − 4c2Þjk⃗j2 þm2 þ 16c2s2

m2 jk⃗j3 8{c2s
m2 jk⃗j3 0

1CCCCCCCCCCCCCCCCCCCA

: ðA3Þ

As before, we have abbreviated c ¼ coshð2ξÞ and s ¼ sinhð2ξÞ. The eigenvalues of MTT coincide with the ones found
in Sec. VI F,

�
−{jk⃗j;þ{jk⃗j;−{jk⃗j;þ{jk⃗j;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jk⃗j2 −m2

q
;þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jk⃗j2 −m2

q
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jk⃗j2 −m2

q
;þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jk⃗j2 −m2

q �
: ðA4Þ
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The first pair of eigenvalues comes with the following eigenvectors,

V1 ¼
�
1; 0;−{jk⃗j þ 4{jk⃗j3 1

m2
;þ4{sjk⃗j3 1

m2
; 0;þ2cjk⃗j2 1

m2
;þ4{scjk⃗j3 1

m2
;−2{cjk⃗j3 1

m2

�
þO

�
1

m3

�
;

V2 ¼
�
1; 0;þ{jk⃗j − 4{jk⃗j3 1

m2
;þ4{sjk⃗j3 1

m2
; 0;−2cjk⃗j2 1

m2
;−4{scjk⃗j3 1

m2
;−2{cjk⃗j3 1

m2

�
þO

�
1

m3

�
; ðA5Þ

and the next pair of eigenvalues is associated with

V3 ¼
�
0; 1;−4{sjk⃗j3 1

m2
;−{jk⃗j þ 4{jk⃗j3 1

m2
;−2jk⃗j2c 1

m2
; 0;þ2{cjk⃗j3 1

m2
;þ4{scjk⃗j3 1

m2

�
þO

�
1

m3

�
;

V4 ¼
�
0; 1;−4{sjk⃗j3 1

m2
;þ{jk⃗j − 4{jk⃗j3 1

m2
;þ2jk⃗j2c 1

m2
; 0;þ2{cjk⃗j3 1

m2
;−4{scjk⃗j3 1

m2

�
þO

�
1

m3

�
: ðA6Þ

For m → ∞ (that is, for m2 ≫ k2), we approach the same dynamics as for the pure gravitational system,11 given by a
massless degree of freedom in the plus and cross polarization, respectively.
Going to higher order in the 1=m expansion, we can also observe that the presence of the area-metric degrees of freedom

induces a mixing between the plus and cross polarizations [for s ¼ sinhð2ξÞ ≠ 0] Hþ and H×.
The next four eigenvectors are given as

V5 ¼
�
0;−2cjk⃗

				 1

m2
; 0; 0;

1

m
; 0;þ{ −

{
2
ð7jk⃗j2 þ 8s2jk⃗j2Þ 1

m2
; 0

�
þO

�
1

m3

�
;

V6 ¼
�
0;þ2cjk⃗

				 1

m2
; 0; 0;

1

m
; 0;−{þ {

2
ð7jk⃗j2 þ 8s2jk⃗j2Þ 1

m2
; 0

�
þO

�
1

m3

�
ðA7Þ

and

V7 ¼
�
þ2cjk⃗

				 1

m2
; 0; 0; 0; 0;

1

m
; 0;þ{ −

{
2
ð7jk⃗j2 þ 8s2jk⃗j2Þ 1

m2

�
þO

�
1

m3

�
;

V8 ¼
�
−2cjk⃗

				 1

m2
; 0; 0; 0; 0;

1

m
; 0;−{þ {

2
ð7jk⃗j2 þ 8s2jk⃗j2Þ 1

m2

�
þO

�
1

m3

�
: ðA8Þ

For m → ∞, we obtain an oscillator with mass m, in the
plus and cross polarization, respectively. To higher order in
1=m, the ϕþ dominated eigenmodes have a nonvanishing

H× component, and the ϕ× dominated eigenmodes have a
nonvanishing Hþ component.
Considering only the dynamics of the massless modes,

we notice that these feature a mixing of the plus and cross
polarization, which, in this form, does not appear in
linearized general relativity and could lead to a possible
observational signature of area-metric dynamics.
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