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Space-based gravitational wave detectors like TianQin or LISA could observe extreme-mass-ratio-
inspirals (EMRIs) at millihertz frequencies. The accurate identification of these EMRI signals from the data
plays a crucial role in enabling in-depth study of astronomy and physics. We aim at the identification stage
of the data analysis, with the aim to extract key features of the signal from the data, such as the evolution of
the orbital frequency, as well as to pinpoint the parameter range that can fit the data well for the subsequent
parameter inference stage. In this manuscript, we demonstrate the identification of EMRI signals without
any additional prior information on physical parameters. High-precision measurements of EMRI signals
have been achieved, using a hierarchical search. It combines the search for physical parameters that guide
the subsequent parameter inference, and a semicoherent search with phenomenological waveforms that
reaches precision levels down to 10−4 for the phenomenological waveform parameters ω0, ω̇0, and ω̈0. As a
result, we obtain measurement relative errors of less than 4% for the mass of the massive black hole, while
keeping the relative errors of the other parameters within as small as 0.5%.
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I. INTRODUCTION

The successful detection of gravitational waves (GWs)
has provided a newway to understand the Universe. To date,
ground-based gravitational wave observatories such as
LIGO and Virgo have detected nearly one hundred GW
signals originating from the coalescence of compact binary
systems at high frequencies (10–1000 Hz) [1–3]. Future
space-based detectors, including TianQin and LISA, with
longer armlengths will detect heavier sources, such as
ones involving massive black holes (MBHs), or even the
low-frequency (subhertz) inspiral phase of stellar-origin
compact binaries [4–8].
A prominent source that space-based detectors will detect

is extreme mass ratio inspirals (EMRIs). These sources are
formed by a stellar-mass compact object such as a stellar
origin black hole (SOBH) with a mass μ ∼ 1–102M⊙
inspiralling into a massive black hole (MBH) with a mass
M ∼ 104–107M⊙ [9,10]. During the inspiral, EMRIs com-
plete ∼104–105 orbits and emit GWs that will allow us to
study the space-time around the MBH with TianQin or
LISA. Modeling and extracting EMRI signals from data

streams will allow us to provide an intrinsic parameter
estimation accuracy of 10−5 or even higher [8,11–14].
This precision will enable precise tests of general relativity
[15–17], better understanding of the properties of MBHs
[18–20] and their surrounding environments [21–23].
Furthermore, gravitational wave signals from EMRIs could
be used to understand themass function ofMBHs [24] and to
constrain cosmological parameters [25,26].
Performing an end-to-end data analysis process for EMRIs

is still a great challenge. This is mainly constrained by two
aspects. First, it requires waveform templates that can be
generated both quickly and highly accurately. Based on the
Teukolsky equation and gravitational self-force calculations,
one can obtain accurate EMRI waveforms but generating
them is very expensive [27–29]. Therefore, data analysis
often chooses computationally affordable alternatives such
as kludge waveform [30–32] that are fast but inaccurate. For
our analysis, we use FastEMRIWaveforms (FEW) in the
Schwarzschild eccentric condition which is a state-of-the-art
model that can rapidly generate fully relativistic EMRI
waveforms while being more accurate than the aforemen-
tioned kludge waveforms [33,34]. Second, data analysis
methods pose significant challenges to achieving high-
precisionmeasurements for EMRIs. Themultipeak structure
of the posterior distribution in intrinsic parameter space
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makes it difficult for stochastic sampling algorithms to
efficiently explore the parameter space, especially to enable
transition between peaks [35]. Meanwhile, the order-of-
magnitude estimate shows that naively placing grids over the
parameter space might require ∼1040 templates [36].
The task of an end-to-end data analysis process can be

divided into three distinct steps [37]. (i) Detection: establish-
ing the statistically significant presence of a GW signal in
noisy detector data. This step can, for example, be performed
relatively quickly and with a low false alarm rate using
machine learning methods [38]. (ii) Identification: mapping
the detected signal (sufficiently) accurately to the source
parameters of a (sufficiently) representative forward model
which can guide the next step of parameter inference.
Phenomenological waveforms [39] and harmonic search
methods [40] can both identify the phase evolution of the
signal, and provide the information of the source parameters.
Other methods have been applied to these two processes,
such as the semicoherent method [36], F–statistic algo-
rithms [41], and time-frequency algorithms [42–44].
(iii) Inference: estimating the Bayesian posterior probability
of the actual source parameters, using for example, a
Metropolis-Hastings search [35,45], Gaussian processes
[46,47], or the one-step likelihood function method [37].
Due to the algorithm’s limited sampling efficiency and the
waveform’s computational speed, all inference processes are
performed within the range of ∼100 standard deviation (σ)
around the true value. Therefore, the signal identification
process must already provide information about the param-
eters to control the inference process.
An EMRI signal is composed of many harmonics that are

functions of the three fundamental orbital frequencies related
to the radial r-motion, the azimuthal ϕ-motion, and the polar
θ-motion, which are all evolving in time [30,33]. Nonlocal
parameter degeneracy in the physical intrinsic space, defined
by parameters such as the MBH mass M, MBH spin a,
SOBH mass μ, semimajor axis p, orbital eccentricity e, and
orbital inclination ι, typically leads to similar phase evolu-
tions. This means that even though the physical parameters
may differ significantly, their phenomenological evolution
can be very similar [40,48]. The one-step likelihood function
method can break this multipeak structure but it only flattens
these local peaks and thus does not effectively guide us into
the signal neighborhood (the range of ∼100σ) [37].
In this work, we implemented an identification of an

EMRI system, using simulated TianQin data as an example.
In this work, the data processing is divided into three
stages. In the first stage, the relativistic waveform is used to
search the whole parameter space, leading to a rough
estimate for the parameters for the phenomenological
waveform, which serves as a reference for the follow-up
physical parameter search. In the second stage, a semi-
coherent phenomenological waveform search in the pheno-
menological parameter space is performed, which can
efficiently identify the signal without the challenge of
multipeak features in the physical parameter space. In

the third stage, the intrinsic parameters of the EMRI are
further refined within the parameter space bounded by the
search results from the earlier stages.
This paper is organized as follows. In Sec. II, we describe

the generation of the simulated data used. The approach to
search for the signal’s neighborhood is introduced in
Sec. III. Section III A presents the method and results
for the search with the physical harmonic waveform. The
method and results for the phenomenological waveform
detection are presented in Sec. III B. In Sec. III C, we show
the results of parameter inversion. Conclusions and dis-
cussions are provided in Sec. IV. Throughout the paper, we
use geometrical units where G ¼ c ¼ 1.

II. DATA SIMULATION

This section primarily presents the methods used to
generate the simulated data, which is intended to replicate
as closely as possible the characteristics of real data
observed in future detections [49–51]. In order to verify
the reliability of the principles underlying the entire signal
identification process, we assume the simplest scenario.
The simulated data d ¼ sþ n is the corresponding
Michelson streams, which are a combination of the GW
signal s and the detector noise n.

A. EMRI waveform

Building EMRI waveforms is a challenging task for two
main reasons. (i) The phase error of the waveform template
needs to be as small as ΔΦ≲ 1=ρ, where ρ is the signal-to-
noise ratio (SNR) of the source [34,52]. To reach such an
accuracy, it is required to consider the effects of the
gravitational self-force caused by the small celestial body’s
own gravity [28,29]. (ii) The calculation time to generate
waveform should be less than a second, because the typical
stochastic sampling methods require a large number of
templates for likelihood evaluation. Therefore, early data
processing of EMRI signals used semirelativistic kludge
waveforms such as AK [30] or AAK [53]. Kludge wave-
forms trade accuracy for efficiency by means of a modular
build and various computational approximations. Since
these kludge waveforms do not consider the effects of the
gravitational self-force, there will be a difference of tens to
hundreds of radians relative to the real waveform on the
radiation response timescale [54].
Therefore, we use in this study the fully relativistic

waveforms FEW to accurately identify the EMRI signal
and track EMRI phase evolution. In the Schwarzschild
eccentric condition, FEW can generate fast, accurate, and
fully relativistic waveforms [33,34]. This condition allows us
to calculate the accurate phase evolution by considering the
adiabatic-order gravitational self-force [55,56]. Moreover,
FEW uses order-reduction and deep-learning techniques to
derive a global fit for harmonic modes of EMRIs so that the
waveform can be generated in under 1 s [57]. Using the
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Schwarzschild condition allows us to exclude various
parameters. We can set the spin parameter of the MBH to
be zero, a ¼ 0, so that the spacetime becomes spherically
symmetric, which further allows us to remove the inclination
parameter (xI ¼ 1) as we can consider any orbit to be in the
equatorial plane. Moreover, we can remove the polar phase
Φθ in this configuration.
EMRI waveforms can be represented by the complex

time domain dimensionless strain hðtÞ ¼ hþ − ih×, where
hþ and h× are the normal transverse-traceless gravita-
tional wave polarizations. The waveform hðtÞ can then be
written as [34]

h ¼ μ

dL

X
lmn

AlmnðtÞ−2Ylmðθ;ϕÞe−iΦmnðtÞ; ð1Þ

where −2Ylmðθ;ϕÞ are the −2 spin-weighted spherical
harmonics functions, θ is the source-frame polar viewing
angle, ϕ is the source-frame azimuthal viewing angle,
μ is the mass of the stellar-mass compact object, dL is the
luminosity distance of the source in the observer frame, l,
m, n are the indices of the orbital angular momentum,
the azimuth modes, and the radial modes, respectively.
The phaseΦmn ¼ mΦφ þ nΦr represents the summation of
decomposed phases for each given mode. It is noteworthy
that the index for the polar phase Φθ is k ¼ 0. In the search
for GW signals, methods like the matched filtering are
much more sensitive to the phase evolution than to the
amplitude. Since the index l only appears in the amplitude,
while we are more interested in the phase, it would be
convenient to absorb the l−dependency by summing over l.

h ¼ μ

dL

X
mn

AmnðtÞðθ;ϕÞe−iΦmnðtÞ: ð2Þ

The adopted Schwarzschild eccentric waveform pro-
vides an accurate and fast calculation of EMRI waveforms
required to verify the feasibility of the algorithm presented
in this paper. In particular, when focusing on the sensitivity

of detection algorithms to the orbital phase evolution.
Therefore, we use these waveforms for the generation of
the signal and for parameter extraction.

B. Detection with TianQin

TianQin is a proposed spaceborne laser interferometer
detector consisting of three identical drag-free satellites
orbiting Earth in a nearly equilateral triangle [7,13,58]. The
distance from the center of the Earth to each satellite is
about 105 km, which results in an armlength of about
1.73 × 105 km. Each satellite has a Kepler orbital period of
about 3.64 days due to Earth’s gravity and the detector’s
plane is oriented so that its normal vector points toward the
reference source RX J0806þ 1527. The three satellites of
the detectors are connected to each other by laser links to
form Michelson interferometers.
The detected GW signal strain hðtÞ can be described as a

linear combination of the two GW polarizations hþ;×ðtÞ
modulated by the detector’s response

hðtÞ ¼ FþðθS;ϕS;ψÞhþðtÞ þ F×ðθS;ϕS;ψÞh×ðtÞ: ð3Þ
Here θS and ϕS are the sky location of the source and Fþ;×

are the so-called antenna pattern functions

FþðtÞ ¼ Dþðt; fÞ cosð2ψÞ −D×ðt; fÞ sinð2ψÞ;
F×ðtÞ ¼ Dþðt; fÞ sinð2ψÞ þD×ðt; fÞ cosð2ψÞ; ð4Þ

where the polarization angle ψ is defined as

ψ ¼ cos θS sin θK cos ðϕS − ϕKÞ − sin θS cos θK
sin θK sin ðϕS − ϕKÞ

: ð5Þ

Here, θK and ϕK are the azimuthal and polar angles of the
orbital angular momentum vector, respectively.
In the low-frequency regime (f < f� ≈ 0.28 Hz) Fþ;×

becomes independent of the GW’s frequency f, and Dþ;×

can be analytically approximated as [59]

Dþðt; θS;ϕSÞ ¼
ffiffiffi
3

p

32
ð4 cosð2κ1Þðð3 − cosð2θSÞÞ cos θ̄ sinð2ϕS − 2ϕ̄Þ þ 2 sinðϕS − ϕ̄Þ sinð2θSÞ sinðθ̄ÞÞ

− sinð2κ1Þð3þ cosð2ϕS − 2ϕ̄Þð9 − cosð2θSÞð3þ cosð2θ̄ÞÞÞ − 6 cosð2θ̄Þsin2ðϕS − ϕ̄Þ
þ 6 cosð2θSÞsin2ðθ̄Þ þ 4 cosðϕS − ϕ̄Þ sinð2θSÞ sinð2θ̄ÞÞÞ; ð6aÞ

D×ðt; θS;ϕSÞ ¼
ffiffiffi
3

p

8
ð−4 cosð2κ1Þðcosð2ϕS − 2ϕ̄Þ sinðθSÞ cosðθ̄Þ þ cosðϕS − ϕ̄Þ cosðθSÞ sinðθ̄ÞÞ

þ sinð2κ1Þð− sinðθSÞð3þ cosð2θ̄ÞÞ sinð2ϕS − 2ϕ̄Þ − 2 sinðϕS − ϕ̄Þ cosðθSÞ sinð2θ̄ÞÞÞ: ð6bÞ

Here κ1 ¼ 2πfsctþ κ0, fsc ¼ 1=ð3.64 dayÞ, and κ0 is
the constant phase determined by the setup of the satellites’
coordinates (see [59] for details). Moreover, ðθ̄ ¼ 1.65;
ϕ̄ ¼ 2.10Þ are the colatitude and longitude of the reference
source RX J0806þ 1527 [60].

A correction term is further added to account for the
Doppler effect induced by the orbital motion of the TianQin
satellites [13,61]

ΦDðtÞ ¼ 2πνðtÞR sinðθSÞ cosðϕðtÞ − ϕSÞ; ð7Þ
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where 2νðtÞ is the frequency of the GW signal, R ¼ 1 AU,
ϕðtÞ ¼ ϕ0 þ 2πt=T with T ¼ 1 yr the Earth’s orbital
period around the Sun, and ϕ̄0 is the initial location of
TianQin at the time t ¼ 0.
We simulate TianQin’s noise assuming it is Gaussian and

stationary. It is then encoded in the following sensitivity
curve

SnðfÞ ¼
1

L2

�
4Sa

ð2πfÞ4
�
1þ 10−4 Hz

f

�
þ Sx

�

×

�
1þ 0.6

�
f
f�

�
2
�
; ð8Þ

where S1=2a ¼ 1 × 10−15 ms−2=Hz1=2 characterizes the
residual acceleration on a test mass playing the role of
an inertial reference, S1=2x ¼ 1 × 10−12 m=Hz1=2 character-
izes the one-way noise of the displacement measurement
with inter-satellite laser interferometry, and f� ¼ c=ð2πLÞ
is the transfer frequency [60], with L being the armlength.
Using the one-sided PSD given in Eq. (8), the SNR can

be defined as

ρ ¼ ðdjhÞ1=2 ¼ 2

�Z
∞

0

d̃ðfÞh̃�ðfÞ
SnðfÞ

df

�
1=2

; ð9Þ

where ð·j·Þ denotes the noise-weighted inner product defined
on the right side of the equation, and d̃ðfÞ and h̃ðfÞ are the
data and the template in the frequency domain, respectively.

C. Data

We consider a GW signal originating from an EMRI
formed by a SOBH orbiting a Schwarzschild MBH. We
assume for the observation time of the data 0.5 yr and set
the EMRI parameters as follows: the mass of the MBH is
M ¼ 106M⊙, the mass of the SOBH is μ ¼ 10M⊙, the
initial orbital eccentricity is e0 ¼ 0.2, and the initial
semilatus rectum is p0 ¼ 8.5M. We further set the sky
position of the source to ðθS;ϕSÞ ¼ ðπ=4; π=4Þ, the polari-
zation angle to ψ ¼ 1.125, and the initial phases to
ðΦϕ;0;Φr;0Þ ¼ ð1.0; 3.0Þ where they can be random in
the interval ½0; π�. The plunge of the SOBH in the MBH
occurs around 0.44 yr after the detection begins. The
simulated data is then obtained by applying TianQin’s
Michelson response to the EMRI waveform.
The total SNR of the source is 50 and the SNR of the

dominant harmonic modes (m ¼ 2, n∈ ½−2; 2�) [48] is
shown in Fig. 1. We note that the search algorithm crucially
depends on the SNR of the source and in particular on the
SNR of the dominant modes. Although the SNR of the
dominant modes in the separate time segments is relatively
low, precise measurements can still be achieved through the
search with phenomenological waveforms.

III. THREE STAGE SIGNAL SEARCH

As described in the introduction, we present in this work
an approach to search for the neighborhood of the signal in

three stages. The first step, where a search using physical
harmonic waveforms in the whole parameter space is
implemented to find a rough range of the phenomenologi-
cal waveform parameters and the physical parameters
that are used in the subsequent search is introduced in
Sec. III A. In Sec. III B, we present the semicoherent
phenomenological waveform search, which is used to
improve the search efficiency. The third stage, where the
intrinsic parameters of the EMRI are retrieved based on the
previous search results is presented in Sec. III C.

A. Harmonic mode search

In this section, we begin the initial search for signals using
physical harmonic waveforms. Despite the relatively time-
consuming process of generating physical waveforms com-
pared to phenomenological waveforms, we still choose to
employ physicalwaveforms as the first stage in our search for
the following two reasons: First, physical waveforms are
directly correlated with the parameters of the EMRI system,
allowing us to approximate the range of signal parameters as
long as the templates match the signal. Second, the harmonic
information within the physical waveforms can directly
guide the search for phenomenological waveforms.

1. Detection principle

The advantage of the harmonic mode search is that it
allows for data matching by the different harmonic modes
of the EMRI signal. It is difficult to find a template where
all the harmonics exactly match the corresponding har-
monics of the signal. Therefore, we search for templates
where the harmonics match the harmonics of the signal
independent from the indices of the harmonics, i.e., we
also allow for matches where the indices of the harmonics
of the template do not correspond to the indices of the
harmonics of the signal. The effectiveness of this method
depends on the harmonics SNR, with higher SNRs
yielding better results. During the search, we generate
many templates and give the possible parameter range of

FIG. 1. The SNR of the five dominant harmonic modes for the
entire observation time and the time segments considered.
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the signal according to the distribution of the SNR of the
corresponding templates.
The initial search involves the maximization of the

plunge time and the initial phase Φ. The maximization
of the plunge time is similar to the one used in Ref. [62],
where the correlation of the template with the data is
computed (instead of using the inner product). The corre-
lation Ch;sðτÞ is defined as [62]

Ch;sðτÞ ¼ 2

Z
s̃ðfÞh̃�ðfÞ
SnðfÞ

ei2πfτdf ð10Þ

where τ is the time lag between the signal and the template.
We introduce here briefly the maximization of the initial

phase, and interested readers are suggested to check
Ref. [63] for more details. Each harmonic of the waveform
can be approximated as

h ¼ AconsAðtÞ cosðΦ0 þ Φ̃ðtÞÞ ð11Þ
where Acons and AðtÞ are the amplitudes of the constant
parts and the time-related parts, respectively. Therefore, h
can be decomposed as

h ¼ cosΦ0hð0Þ − sinΦ0hðπ=2Þ; ð12Þ
where hð0Þ is the value of the harmonic h taken at zero
initial phase. Omitting all cross harmonic terms, a0 ¼
Acons cosΦ0 and a1 ¼ Acons sinΦ0 can be obtained from the
following ratios of inner products (similar to F -statistics)

a0 ¼
ðdjhð0ÞÞ
ðhjhÞ ; a1 ¼

ðdjhðπ=2ÞÞ
ðhjhÞ : ð13Þ

Using a0 and a1, we then get the following maximum
likelihood estimators for the amplitude and phase of the
harmonics

Φ0 ¼ arctan

�
a1
a0

�
; Acons ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 þ a21

q
: ð14Þ

Notice that for each harmonic search, we are more interested
in Acons since it is equivalent to the harmonic’s SNR.

We start the search using a random template bank with
parameter distributions as listed in Table I. To optimize
over the plunge time, each set of parameters in the template
bank is used to generate the waveform for the last half year
of the inspiral before plunge tp ¼ 0.5 yr. After obtaining
the best fit of the plunge time, we use the harmonic
waveform m ¼ 2, n∈ ½−2; 2� to match the signal respec-
tively. We calculate the harmonic’s SNR for each harmonic
by optimizing over the initial phase using Eq. (14). From
this result, we obtain the distribution of the harmonic’s
SNR after completing the search for a large enough number
of sets of parameters. The mean μθ and the standard
deviation σθ of the parameter distribution is then obtained
by setting an appropriate threshold for the SNR to set the
parameter range ½μθ − σθ; μθ þ σθ�.

2. Harmonic detection results

In this stage, we use as many templates as possible
keeping the calculation time acceptable. As we show later, a
total of 600,000 templates were utilized for the search,
implemented on a cluster with 100 cores. FEW generates an
EMRI waveform in ∼5 s, thus the calculation time for the
entire search is of 1–2 days. A good search result is given
when five (n∈ ½−2; 2�) harmonics of a template match with
five harmonics of the signal. However, finding a template
with multiple harmonic modes matching the signal is
challenging. Therefore, we select the harmonic mode that
best matches the signal to present our search results. The
distribution of the harmonic’s SNR for the parameters
logðMÞ and p0 of these templates are shown in Fig. 2. As
can be seen, a large number of templates with high harmonic
SNR accumulate near the signal.
Next, we set the threshold value and boundaries for the

search results to obtain the range of physical parameters.
We select the top ∼0.01% templates with the highest SNR
corresponding to a SNR threshold of around 6. For the first
search, we use approximately 500 000 templates. Among
them are around 50 000 templates with SNR > 3 and only

TABLE I. Meaning of the physical parameters in FEWand their distribution considered. In the Schwarzschild eccentric condition, the
MBH’s spin vanishes, a ¼ 0, resulting in a fixed inclination angle ι ¼ 0 and the initial phase Φθ can be ignored.

Symbol Physical Meaning Distribution

M MBH mass Uniform in lnM over ½104; 107�M⊙
μ SOBH mass Uniform in ½5–15�M⊙
e0 Initial orbital eccentricity at t0 Uniform in [0, 0.7]
p0 Semilatus rectum at t0 Depends on ½tp;M; μ; e0�
θS Polar angle to the source Uniform in ½0; 2π�
ϕS Azimuthal angle to source Uniform in ½0; π�
ψ Polarization angle Uniform in ½0; 2π�
Φφ Azimuth phase Uniform in ½0; 2π�
Φr Radial phase Uniform in ½0; 2π�
θK Polar angle of the source’s angular momentum Uniform in ½0; 2π�
ϕK Azimuthal angle of the source’s angular momentum cosðϕKÞ is uniform in ½−1; 1�
DL Luminosity distance of the source 1 Gpc
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80 templates with SNR > 6. We see in Fig. 2 that there
are a few templates with SNR > 6 further away from the
signal but most of the high SNR templates cluster around
the signal. This phenomenon is particularly evident for the
parameters M and p0. To obtain the boundaries for the
physical parameters, we calculate the mean and standard
deviation for the distribution of the templates. The mean
value and the standard deviation for log10ðM=M⊙Þ are 6.02
and 0.29, respectively, while the mean value and the
standard deviation for p0 are 8.75M and 1.52M, respec-
tively. We focus on the points locate in the boundaries
½μθ − σθ; μθ þ σθ�, and update the parameters to [5.73,
6.31] and ½7.23; 10.27�M for the ranges of log10ðM=M⊙Þ
and p0, respectively.
The initial search provides a rough indication of the

source parameter. We refine the search by performing a
second round of search in the zoomed-in range. In the
second round, we expand the boundaries obtained from the
initial search by 10%. For this search, we use approx-
imately 100 000 templates, where we get 187 templates
with a SNR greater than 6. We combine the results from this
search and the previous search, and obtained a total of 267
templates with SNR > 6. The mean value and the standard
deviation we get from the combined distribution for
log10ðM=M⊙Þ are 6.01 and 0.16, respectively, while the
mean value and the standard deviation for p0 are 8.58M and
0.90M, respectively. Therefore, we obtain the final param-
eter range [5.85, 6.17] and ½7.68; 9.48�M for log10ðM=M⊙Þ
and p0, respectively.
In Fig. 2, results from the first coarse search are labeled in

blue points and the pink-shaded region. The orange stars
represent the refined search results and the injected value is
indicated by the red vertical line. After the refined search, the
denser templates allow us to increase the SNR threshold,
which we used value of 7, to concentrate on better-fit
templates. In the top left panel of Fig. 3, we present the
phase evolution of the harmonics for all templates with
SNR > 7, while the harmonics of the injected signal are
represented with red dashed lines. We can clearly see that all
templates with SNR > 7 have at least one harmonic whose

phase evolution tracks the signal closely, and all phase
evolutions display polynomial features.

B. Semicoherent search with
a phenomenological waveform

Using the physical waveforms to search is very time-
consuming, especially considering the multipeak nature.
Hence we use a phenomenological waveform for the next
search stage. The top left panel of Fig. 3 indicates that
polynomial functions might be sufficient to describe the
phase evolution. Here, a semicoherent search is employed,
where we divide the data into time segments of 0.1 yr and
infer the phenomenological parameters for each time seg-
ment. Before discussing the details and results of the search in
this stage, we introduce some basic concepts of the phe-
nomenological waveforms we use in the following section.

1. Phenomenological waveform

The key idea of searching for signals using a phenom-
enological waveform is that the evolution of the EMRI’s
orbital frequency is relatively smooth in the early stage of
the inspiral. In a short period, the phase ΦmnðtÞ can be
Taylor expanded as [64]

ΦmnðtÞ ¼ Φmnðt0Þ þ ωm;nðt0Þðt − t0Þ þ
1

2
ω̇m;nðt0Þ

× ðt − t0Þ2 þ
1

3
ω̈m;nðt0Þðt − t0Þ3 þOð4Þ; ð15Þ

where we define the angular frequency ωm;n≕mωϕ þ nωr,
and ω̇m;n and ω̈m;n are its first and second time-derivatives,
respectively. The amplitudes in GWs Amn evolve even
smoother than the phase over an extended period of time.
Moreover, detection is more sensitive to a mismatch in the
phase than in the amplitude. Therefore, for simplicity, we
ignore the time evolution of the amplitudes and treat all of
them as constants [56,64]. The Doppler effect induced by
the orbital motion of the detectors is also smoother than the
phase over an extended time period, and we can also ignore
it in the template.

FIG. 2. The distribution of the harmonic’s SNR for the parameters M and p0. We select only the strongest harmonic mode for each
template. Templates with a high harmonic SNR cluster near the signal.
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To check the similarity of the phenomenological wave-
form to the physical waveform, we calculate their mis-
match, which is defined as

Mismatch ¼ 1 −
ðajbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðajaÞðbjbÞp ; ð16Þ

where a and b are the phenomenological waveform and the
physical waveform, respectively. We demonstrate the effi-
cacy of the phenomenological waveform by showing the
mismatch between the physical waveform in Fig. 4. Each
point in the figure represents a set of physical parameters,
and all other parameters are fixed to the same values, such as
M ¼ 106M⊙, μ ¼ 10M⊙. Then we let this parameter set
evolve for the initial 0.1 year, obtaining the phase evolution
and the physical waveform. The mismatch of the best-fit
phenomenological waveform and the physical waveform is
calculated with Eq. (15). For better intuition, we indicate the
p − e-evolution of a signal from (8.5, 0.2) to (6.43, 0.165)
with the dashed line. The red solid linemarks where the time
from ðp; eÞ to plunge is 0.3 yr, i.e., a source with parameters
on the right side from the red line needs longer than 0.3 yr to
plunge. We can observe that regions to the right side of the
red line show good consistency between the phenomeno-
logical waveform and the physical waveform. Considering
shorter time segments for the semicoherent search can

further increase the applicable range for phenomenological
waveform [36].

2. Template search

At this stage, a semicoherent approach is adopted to search
with the phenomenological waveforms. Semicoherent

FIG. 3. The phase evolution distribution of high SNR physical harmonic templates. The top-left panel illustrates the phase evolution
for all high SNR templates.The remaining panels show the phenomenological parameter distributions ofω0, ω̇0, and ω̈0 (c.f. Sec. III B 1)
in the initial time segment of 0.1 yr, respectively.

FIG. 4. The mismatch between the phenomenological and
physical waveforms with different p and e. The purple dashed
line indicates the p − e evolution of the signal from (8.5, 0.2) to
(6.43, 0.165). The red solid line indicates where the evolution
time from ðp; eÞ to the plunge is 0.3 yr, points on the right side
being longer than 0.3 yr.
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methods relax the stringent requirements on the phase
accuracy of the models, combined with the usage of simpler
waveforms like phenomenologicalwaveforms for the search,
the total computational time can be hugely compressed [36].
In exchange, the semicoherent likelihood leads to wider
posterior distributions, particularly on those parameters that
strongly influence the phase of theGW signal. Semicoherent
methods arewidely used in searches for continuous waves in
LIGO/Virgo data [65,66]. Here, we divided the data into five
segments, each with a duration of 0.1 yr. Notice that the
validity of the phenomenological waveform drops signifi-
cantly when the system approaches merge, in practise only
the results from the first three segments were used.
In each segment, we search using three different har-

monic modes of the phenomenological waveforms. We
sample the posterior distribution of the phenomenological
parameters for each harmonic mode within each segment.
The posterior probability distribution of the parameters
pðθjdÞ can be obtained using a Bayesian analysis

pðθjdÞ ¼ pðθÞpðdjθÞ
pðdÞ ð17Þ

where pðθÞ is the prior probability distribution of the para-
meters, pðdjθÞ is the likelihood, and pðdÞ is the evidence.
The evidence is a normalization factor that is independent
of the parameters and hence we can ignore it here. The
standard Bayesian (log-)likelihood ratio function of the
source parameters θ, is given by

ΛðθÞ ≔ ðdjhÞ − 1

2
ðhjhÞ: ð18Þ

Next, we discuss how to select the prior for the parameters
of a harmonic modewithin each time segment. Based on the
search results using physical waveforms in Sec. III A, we
can obtain harmonic phases that match the signal.We divide
these phases into segments of 0.1 yr each and fit them using
Eq. (15). The upper right and the two lower subplots in
Fig. 3 show the distributions of the three phenomenological
parameters ω0, ω̇0, and ω̈0 for the harmonic phases in the

first time segment, respectively. The distribution of ω0

shows three different harmonic modes. Despite the absence
of evident harmonic structures in the parameter distributions
of ω̇0 and ω̈0, they can still provide a narrow parameter
range. We summarize the prior parameter ranges of ω0, ω̇0,
and ω̈0 for the three main harmonic modes in the different
time segments in Table II. Furthermore, we refer to Table I
for the selection of the priors for the extrinsic parameters.

3. Results of the phenomenological waveform search

For this search, we employ nested sampling to obtain the
posterior distribution for each harmonic mode and each time
segment to extensively explore the high posterior regions
[67,68]. In addition to estimating the posterior distribution,
nested sampling methods also can calculate the evidence by
integrating the prior within nested “shells” of a constant
likelihood. Inpractice, for eachnested sampling execution,we
use approximately 500 core hours before stop the sampling.
We execute a total of 11 nested sampling operations. The

results of nested sampling for each harmonic mode and each
time segment are summarized in Table III. The results show
the median and the 1-σ range of the posterior distribution for
the phenomenological parameters. We see that the bias ofω0

is less than the bias of ω̇0, and the bias of ω̇0 is smaller than
the bias of ω̈0. This can be understood as the lower order term
in the Taylor expansion of the phase evolution can be better
tracked. In the first two time segments, the bias precision for
ω0 is ∼0.1%, and it can even reach 10−6. Furthermore, the
bias precision for the parameter ω̇0 also remains within 10%.
However, as the observation time segments get closer to the
plunge, the measured bias of the phenomenological param-
eters increases because the orbital evolution of the signal
becomes faster, leading to the failure of the phenomeno-
logical waveform reproducing the signal accurately.
As an illustration, we display the results of the posterior

distribution sampling for the phenomenological parameters
of the (2, 0) harmonic mode for the first time segment in
Fig. 5. We see that the posterior distributions for the
parameters ω and ω̇ exhibit very narrow and sharp peaks.
The 1-σ ranges for ω and ω̇ are 0.01% and 1% of the prior

TABLE II. The prior distributions for the three phenomenological parameters ω0, ω̇0, and ω̈0 in the different time segments.

ω0 ω̇0 ω̈0

Time segment Modes Prior Signal Prior Signal Prior Signal

1-segment (2, 0) [0.015,0.017] 0.0158 ½0; 1 × 10−10� 5.71 × 10−11 ½0; 2 × 10−18� 1.03 × 10−18
(2, 1) [0.019,0.021] 0.0201 ½0; 1 × 10−10� 6.13 × 10−11 ½0; 2 × 10−18� 9.68 × 10−19
(2, 2) [0.024,0.026] 0.0244 ½0; 1 × 10−10� 6.55 × 10−11 ½0; 2 × 10−18� 9.08 × 10−19

2-segment (2, 0) [0.016,0.018] 0.0166 ½0; 1 × 10−10� 7.11 × 10−11 ½0; 3 × 10−18� 1.73 × 10−18
(2, 1) [0.020,0.022] 0.021 ½0; 1 × 10−10� 7.46 × 10−11 ½0; 3 × 10−18� 1.56 × 10−18
(2, 2) [0.024,0.026] 0.0253 ½0; 1 × 10−10� 7.80 × 10−11 ½0; 3 × 10−18� 1.39 × 10−18

3-segment (2, 0) [0.016,0.018] 0.0177 ½−1 × 10−10; 1 × 10−10 9.32 × 10−11 ½0; 1 × 10−16� 3.57 × 10−18
(2, 1) [0.019,0.024] 0.022 ½−1 × 10−10; 1 × 10−10� 9.49 × 10−11 ½0; 1 × 10−16� 3.01 × 10−18
(2, 2) [0.023,0.027] 0.026 ½−1 × 10−10; 1 × 10−10� 9.66 × 10−11 ½0; 1 × 10−16� 2.46 × 10−18
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range, respectively while the 1-σ range for ω̈ can extend to
10% of the prior range. However, for extrinsic parameters
like the initial phase Φ0 and the positional parameters
(θ;ϕ;ψ), the measurements are not accurate. This is because
we do not take into account the evolution of the amplitude
over time and the mutual coupling between these extrinsic
parameters, causing the measurement results to deviate from
the true values.

C. Hierarchical search for physical parameters

Achieving the data analysis of EMRI signals without
extensive prior knowledge of the physical parameters poses
a formidable challenge since expanding the parameter
space for the search entails a commensurate increase in
computational demands. For example, in previous works
the parameter range for log10ðM=M⊙Þ was within ∼0.05
for a harmonic search [40], it was within ∼0.2when using a
MCMCmethod [35], and for a phenomenological searchM
was fixed [39]. In this study, we combined various search
methods to perform a hierarchical search for the physical

parameters considering a parameter range for M over two
orders of magnitudes.
Our ultimate goal is to obtain the range for the physical

parameters using a hierarchical search method based on
the highly precise measurement results of the phenomeno-
logical parameters in Sec. III B and the rough range of
physical parameters obtained in Sec. III A. The phenom-
enological parameters of different harmonics at various time
segments provide strong constraints on the physical param-
eters and thus we attempt to map the posterior distribution of
the phenomenological parameters to thephysical parameters.

1. Search method

It is difficult to directly convert from phenomenological
waveform parameters to physical parameters. On the one
hand, there is no analytical formula to deduce the physical
parameters directly from the phenomenological parameters.
On the other hand, the multipeak structure of the posterior
distribution of physical parameters means that it might be
one-to-many mapping from phenomenological parameters.

FIG. 5. The posterior distribution of the four phenomenological parameters for the first time segment (2, 0) mode.
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Here, we employ a grid-based approach to the physical
parameters to facilitate the resolution of this procedure.
For each point on the grid, we use FEW to calculate the
harmonic phase evolution for each time segment. Then, we
fit them using Eq. (15) to obtain the corresponding
phenomenological parameters. In the Schwarzschild eccen-
tricity condition, the parameters ½M; μ; p0; e0� directly
determine the trajectory of the phase evolution. There-
fore, the set of four physical parameters can be transformed
into the phenomenological parameter space. Here, we
choose 18 phenomenological parameters for the first two
time segments with three main harmonic modes in each
segment and the three parameters (ω0; ω̇0; ω̈0) for each
harmonic mode. This choice is based on the exceptional
accuracy of the parameter measurement in these segments
when compared to the other time segments (see Table III).
Moreover, we further choose a set of nine phenomeno-
logical parameters, which include the (2, 0) and (2, 1)
modes for the first time segment and the (2, 0) mode for the
second time segment, which are the closest to the signal in
terms of their corresponding phenomenological parameters
and will be used for a finer differentiation in the search.
For each phenomenological parameter, we check if the

parameter falls within the 3-σ posterior distribution
obtained from the nested sampling. In principle, one can
depict the physical parameters using a sufficiently dense
grid. The number of such “close” parameters is used to rank
the fitness. However, to account for practical computational
constraints we first employ a coarse grid to the region of the
parameter space obtained from the harmonic mode search
and then a finer grid to a smaller region identified during
the search with the coarse grid.

2. Results of the hierarchical search

Figure 6 shows the hierarchical research of physical
parameters, showcasing the outcomes at each stage of the
search process. The left image represents the search results
obtained from the physical harmonic search. The middle
and right images depict the outcomes obtained through
coarse and fine grid-based methods, respectively.
From the distribution of parameters from the harmonic

template search introduced in Sec. III A, we obtain the
parameter range ([5.85, 6.17] for log10ðM=M⊙Þ and
½7.68; 9.48�M for p0) shown in the red box in the left
graph of Fig. 6. For the grid-based search, the parameter
range is determined based on the number of parameters for
which the phenomenological parameters fall within the 3-σ
posterior distribution obtained in Sec. III B. This is not
equivalent to the criteria in the first step.
For the coarse grid, we uniformly sample 100 points for

the parameters M and p0 within the range of the first step
results. Additionally, for the parameters e0 and μ, we
uniformly sample 10 points within the parameter ranges
[0, 0.7] and ½5; 15�M⊙, respectively. This grid comprises a
total of 1 000 000 points and the overall computational costTA
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FIG. 6. The results of the hierarchical search for physical parameters. The left graph shows the search result using the physical
harmonic waveforms. The middle graph presents the search results from the coarse grid and the results from the fine grid search are
shown in the right graph. Different search methods and strategies were employed here, as detailed in Secs. III A and III C.

FIG. 7. The hierarchical search results for the four physical parameters obtained from the coarse grid and the fine grid. The terms “12
parameters” and “13 parameters” refer to the presence of 12 phenomenological parameters within the 3-σ range of the coarse grid and 13
phenomenological parameters within the 3-σ range of the fine grid, respectively. The inference range indicates that a specific set of nine
parameters that were measured with particularly high precision falls within the 3-σ range.
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amounts to approximately 500 core hours. In this grid,
94 best-fit grid points, each contains 12 phenomenological
parameters that fall within the 3-σ range, are shown in
the center graph of Fig. 6. These phenomenological param-
eters correspond to the range of physical parameters
log10ðM=M⊙Þ∈ ½5.98;6.04�, p0 ∈ ½7.9; 8.9�M, e0 ∈ ½0; 0.4�,
and μ∈ ½8; 13�M⊙ and are shown as gray stars in Fig. 7.
For the fine grid, the grid parameters’ range is based on

the results of the coarse grid. Similarly to the previous
search, we uniformly sample 100 points for the parameters
M and p0, and 10 points for e0 but 50 points for μ. For each
parameter point, we find the best fit phenomenological
parameters to its physical waveforms in all 3 segments, and
count how many of these parameters fall within the 3-σ
range of the recovered parameters. Among all grid points,
807 of them (yellow points in Fig. 7) have 13 close enough
phenomenological parameters, however, those parameters
that do not match could be significantly biased. Upon
closer examination, we determined if we assign different
weights among parameters, or more specifically, if we
focus on the nine high-accuracy parameters discussed in
Section III C 1, we can obtain better fitting. We then add an
additional requirement, that all nine high-accuracy param-
eters have to be located within the 3-σ region. With this new
condition, we show in Fig. 7 the points that contain 12 or 13
parameters located close enough to the recovered param-
eters, nine of them being the high-accuracy parameters.
We can observe that this best-fit region is narrow, and it
contains the injected physical parameter.
This is due to the presence of different harmonics and

segmented phase evolution information, which inherently
imposes strong constraints on the physical parameters
themselves. In the end, we constrain the range of physical
parameters to [5.980, 6.018] for log10ðM=M⊙Þ, ½8.455;
8.535�M for p0, [0, 0.284] for e0, and ½8.158; 11.842�M⊙
for μ.
Based on high-precision measurements of the phenom-

enological parameters and the physical parameter ranges
obtained from the search results of the physical waveforms,
we achieve the relative error in the measurement ofM to be
within 4% while the smallest errors for the other parameters
can bewithin 0.5%. This parameter accuracy is sufficient for
the requirement of future EMRI parameter inference [48].

IV. CONCLUSIONS AND DISCUSSION

Accomplishing the identification of EMRI signals and
providing ranges for the physical parameters for subsequent
parameter inference is challenging. On the one hand,
performing searches using only physical waveforms
encounters difficulties due to the multipeak structure of
the posterior distribution of physical parameters which
makes it difficult for stochastic sampling algorithms to
navigate between peaks. Even employing something like the
“one-step” likelihood function approach does not provide
global guidance for the region of the high posterior regions.

On the other hand, when only employing phenomenological
waveforms for the searches, the lack of prior information
about phenomenological and physical parameters makes
signal searching and the inference of physical parameters
difficult. Therefore, we adopt in this work a combined
approach of both methods. Phenomenological waveform
searches effectively avoid the multipeak structure of the
posterior distribution of physical parameters, while physical
parameter searches provide prior information to narrow
down the search space of parameters.
We have achieved for the first time the identification of

EMRI signals without any additional prior information
on physical parameters. High-precision measurements of
EMRI signals have been achieved using a hierarchical
search that combines the search for physical parameters
that guides subsequent parameter inference and a semi-
coherent search with phenomenological waveforms that
reaches precision levels down to 10−4 for the phenomeno-
logical waveform parameters ω0, ω̇0, and ω̈0. As a result,
we obtain measurement relative errors of less than 4% for
the mass of the MBH, while keeping the relative errors of
the other parameters within as small as 0.5%.
Although we only search for an EMRI signal assuming

a Schwarzschild eccentric background, we believe the
method presented can be used universally for the search
of EMRI signals for several reasons:
(1) In Ref. [63] the applicability of the harmonic

detection in AK waveforms under the Kerr eccentric
background was demonstrated. Once a sufficient
number of harmonic templates match the signal, a
physical parameter range can be established. Our
objective in this step is not only to obtain the range of
physical parameters but also to precisely extract the
phase evolution information. Furthermore, we em-
ploy the more accurate fully relativistic FEW wave-
forms to obtain a more realistic phase evolution.

(2) In Ref. [64], the amplitude evolution was also
neglected, and an expansion of the phase as a Taylor
series of third order was also used. Our goal in this
step was not only to achieve the matching for phase
of the signal but, more importantly, to achieve high-
precision measurements of phenomenological para-
meters which is crucial for the hierarchical search of
the physical parameters.

(3) The difference between the Schwarzschild back-
ground and the Kerr background induces a relatively
slow difference in the frequency evolution in the
early inspiral phase of the EMRI signal. In Fig. 4, the
mismatch between the phenomenological and physi-
cal waveforms implies that there can be a high level
of correlation during the early inspiral phase of the
EMRI signal. Therefore, within a short time seg-
ment, the signal can be well-matched using the
phenomenological waveform. In addition, FEW
interpolates cubic splines of sparse phases to obtain
complete phase evolution [33,34]. The farther away
from the plunge in time, the sparser the phase
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evolution is calculated. Hence, fitting the phase
within shorter time segments at earlier stages yields
improved fitting outcomes.

For the example event, ∼45 hours, ∼40 hours, and
∼15 hours are consumed used on a 100 core cluster for
the harmonic mode search stage, the semicoherent search
stage, and the hierarchical search stage. We remind the
readers that we did not consider the TDI response in the
calculation, however, including the first-generation TDI
should not induce a significant computational burden, since
the generation speed of the latest frequency-domain wave-
forms is faster than time-domainwaveforms,making the use
of a full TDI response more computationally efficient [69].
However, the second-generation TDI response which can
not be easily computed in the frequency domain would
be more challenging. In the future, we wish to extend the
analysis to realistic caseswheremultiple EMRI eventsmight
exist simultaneously. In the simplest case, we can perform
the search-and-remove to identify EMRI signals one by one.
In this case, the computational cost would be linear to the
event number. A more desirable pipeline, known as the
global analysis method, which can simultaneously process
multiple signals might be more complicated and computa-
tionally more demanding [70,71] However, the advance of
searching algorithms together with the upgrading of the
computing hardware make it possible to solve the EMRI
identification problem in the future.
For this proof-of-principle study, we implement the

analysis in different stages separately, and human inter-
vention is needed at the end of each stage, to extract the
parameter range and to set the initial conditions in the

following stages. Once the process is fixed, it is possible to
automate the whole process and no human intervention
would be mandatory.
In the future, more complex scenarios to approach the

final EMRI signal processing pipeline should be studied. For
example, the application of fully relativistic Kerr waveforms
for the identification should be explored as well as inves-
tigating the more intricate time delay interference response
(TDI).Moreover, the high-precision measurements based
on phenomenological parameters could also be used for
the spatial localization of EMRI events. The effectivity of
converting the phenomenological waveformparameters into
physical parameters in this case should be studied in more
detail. To better achieve these objectives and reproduce this
work, the entire pipeline can be found at [72].

ACKNOWLEDGMENTS

The authors thank En-Kun Li, Jianwei Mei, Zheng Wu,
Han Wang, and Shuo Sun for helpful discussions. This work
has been supported byGuangdongMajor Project of Basic and
Applied Basic Research (Grant No. 2019B030302001), the
Natural Science Foundation of China (Grants No. 12173104
and No. 12261131504), Hebei Natural Science Foundation
with Grant No. A2023201041, Guangdong Basic and
Applied Basic Research Foundation (Grant
No. 2023A1515030116), A. T. O. acknowledges support
from the China Postdoctoral Science Foundation (Grant
No. 2022M723676). The authors acknowledge the uses of
the calculating utilities of NUMPY [73], SCIPY [74], and the
plotting utilities of MATPLOTLIB [75].

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. X 9, 031040 (2019).

[2] R. Abbott, T. Abbott, S. Abraham, F. Acernese, K. Ackley,
A. Adams, C. Adams, R. Adhikari, V. Adya, C. Affeldt
et al., Phys. Rev. X 11, 021053 (2021).

[3] R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, N.
Adhikari, R. Adhikari, V. Adya, C. Affeldt, D. Agarwal
et al., Phys. Rev. X 13, 041039 (2023).

[4] K. Danzmann and A. Rüdiger, Classical Quantum Gravity
20, S1 (2003).

[5] P. Amaro-Seoane et al., GW Notes 6, 4 (2013),
arXiv.1201.3621.

[6] P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E.
Barausse, P. Bender, E. Berti, P. Binetruy, M. Born, D.
Bortoluzzi et al., arXiv:1702.00786.

[7] J. Mei, Y.-Z. Bai, J. Bao, E. Barausse, L. Cai, E. Canuto, B.
Cao, W.-M. Chen, Y. Chen, Y.-W. Ding et al., Prog. Theor.
Exp. Phys. 2021, 05A107 (2021).

[8] A. Torres-Orjuela, S.-J. Huang, Z.-C. Liang, S. Liu, H.-T.
Wang, C.-Q. Ye, Y.-M. Hu, and J. Mei, arXiv:2307.16628.

[9] P. Amaro-Seoane, J. R. Gair, M. Freitag, M. Coleman
Miller, I. Mandel, C. J. Cutler, and S. Babak, Classical
Quantum Gravity 24, R113 (2007).

[10] P. Amaro-Seoane, Living Rev. Relativity 21, 4 (2018).
[11] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta,

C. P. Berry, E. Berti, P. Amaro-Seoane, A. Petiteau, and A.
Klein, Phys. Rev. D 95, 103012 (2017).

[12] J. R. Gair, S. Babak, A. Sesana, P. Amaro-Seoane, E.
Barausse, C. P. Berry, E. Berti, and C. Sopuerta, J. Phys.
Conf. Ser. 840, 012021 (2017).

[13] H.-M. Fan, Y.-M. Hu, E. Barausse, A. Sesana, J.-d. Zhang,
X. Zhang, T.-G. Zi, and J. Mei et al., Phys. Rev. D 102,
063016 (2020).

[14] T.-G. Zi, J.-D. Zhang, H.-M. Fan, X.-T. Zhang, Y.-M.
Hu, C. Shi, and J. Mei, Phys. Rev. D 104, 064008
(2021).

[15] A. Maselli, N. Franchini, L. Gualtieri, T. P. Sotiriou, S.
Barsanti, and P. Pani, Nat. Astron. 6, 464 (2022).

[16] S. Barsanti, N. Franchini, L. Gualtieri, A. Maselli, and T. P.
Sotiriou, Phys. Rev. D 106, 044029 (2022).

IDENTIFICATION OF GRAVITATIONAL WAVES FROM … PHYS. REV. D 109, 124034 (2024)

124034-13

https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1088/0264-9381/20/10/301
https://doi.org/10.1088/0264-9381/20/10/301
https://arXiv.org/abs/arXiv.1201.3621
https://arXiv.org/abs/1702.00786
https://doi.org/10.1093/ptep/ptaa114
https://doi.org/10.1093/ptep/ptaa114
https://arXiv.org/abs/2307.16628
https://doi.org/10.1088/0264-9381/24/17/R01
https://doi.org/10.1088/0264-9381/24/17/R01
https://doi.org/10.1007/s41114-018-0013-8
https://doi.org/10.1103/PhysRevD.95.103012
https://doi.org/10.1088/1742-6596/840/1/012021
https://doi.org/10.1088/1742-6596/840/1/012021
https://doi.org/10.1103/PhysRevD.102.063016
https://doi.org/10.1103/PhysRevD.102.063016
https://doi.org/10.1103/PhysRevD.104.064008
https://doi.org/10.1103/PhysRevD.104.064008
https://doi.org/10.1038/s41550-021-01589-5
https://doi.org/10.1103/PhysRevD.106.044029


[17] A. Torres-Orjuela, P. A. Seoane, Z. Xuan, A. J. Chua, M. J.
Rosell, and X. Chen, Phys. Rev. Lett. 127, 041102 (2021).

[18] E. Barausse and L. Rezzolla, Phys. Rev. D 77, 104027 (2008).
[19] Z. Pan, Z. Lyu, and H. Yang, Phys. Rev. D 104, 063007

(2021).
[20] H.-M. Fan, S. Zhong, Z.-C. Liang, Z. Wu, J.-d. Zhang, and

Y.-M. Hu, Phys. Rev. D 106, 124028 (2022).
[21] N. Yunes, B. Kocsis, A. Loeb, and Z. Haiman, Phys. Rev.

Lett. 107, 171103 (2011).
[22] E. Barausse, V. Cardoso, and P. Pani, J. Phys. Conf. Ser.

610, 012044 (2015).
[23] V. Cardoso, K. Destounis, F. Duque, R. P. Macedo, and A.

Maselli, Phys. Rev. Lett. 129, 241103 (2022).
[24] J. R. Gair, C. Tang, and M. Volonteri, Phys. Rev. D 81,

104014 (2010).
[25] C. L. MacLeod and C. J. Hogan, Phys. Rev. D 77, 043512

(2008).
[26] D. Laghi, N. Tamanini, W. Del Pozzo, A. Sesana, J. Gair,

and S. Babak, Mon. Not. R. Astron. Soc. 508, 4512 (2021).
[27] S. A. Hughes, S. Drasco, E. E. Flanagan, and J. Franklin,

Phys. Rev. Lett. 94, 221101 (2005).
[28] M. van de Meent, Phys. Rev. D 97, 104033 (2018).
[29] L. Barack, Classical Quantum Gravity 26, 213001 (2009).
[30] L. Barack and C. Cutler, Phys. Rev. D 69, 082005 (2004).
[31] S. Babak, H. Fang, J. R. Gair, K. Glampedakis, and S. A.

Hughes, Phys. Rev. D 75, 024005 (2007).
[32] A. J. Chua, C. J. Moore, and J. R. Gair, Phys. Rev. D 96,

044005 (2017).
[33] A. J. Chua, M. L. Katz, N. Warburton, and S. A. Hughes,

Phys. Rev. Lett. 126, 051102 (2021).
[34] M. L. Katz, A. J. Chua, L. Speri, N. Warburton, and S. A.

Hughes, Phys. Rev. D 104, 064047 (2021).
[35] A. J. Chua and C. J. Cutler, Phys. Rev. D 106, 124046

(2022).
[36] J. R. Gair, L. Barack, T. Creighton, C. Cutler, S. L. Larson,

E. S. Phinney, and M. Vallisneri, Classical Quantum Gravity
21, S1595 (2004).

[37] A. J. Chua, Phys. Rev. D 106, 104051 (2022).
[38] X.-T. Zhang, C. Messenger, N. Korsakova, M. L. Chan,

Y.-M. Hu, and J.-d. Zhang, Phys. Rev. D 105, 123027
(2022).

[39] Y. Wang, Y. Shang, S. Babak, Y. Shang, and S. Babak, Phys.
Rev. D 86, 104050 (2012).

[40] S. Babak, J. R. Gair, and E. K. Porter, Classical Quantum
Gravity 26, 135004 (2009).

[41] Y. Wang, G. Heinzel, and K. Danzmann, Phys. Rev. D 92,
044037 (2015).

[42] J. Gair and L. Wen, Classical Quantum Gravity 22, S1359
(2005).

[43] L. Wen and J. R. Gair, Classical Quantum Gravity 22, S445
(2005).

[44] J. R. Gair, I. Mandel, and L. Wen, Classical Quantum
Gravity 25, 184031 (2008).

[45] J. R. Gair, E. Porter, S. Babak, and L. Barack, Classical
Quantum Gravity 25, 184030 (2008).

[46] A. J. K. Chua, J. Phys. Conf. Ser. 716, 012028 (2016).

[47] A. J. K. Chua, N. Korsakova, C. J. Moore, J. R. Gair, and S.
Babak, Phys. Rev. D 101, 044027 (2020).

[48] A. J. Chua and C. J. Cutler, Phys. Rev. D 106, 124046
(2022).

[49] K. A. Arnaud et al., Classical Quantum Gravity 24, S529
(2007).

[50] S. Babak et al., Classical Quantum Gravity 25, 184026
(2008).

[51] S. Babak et al. (Mock LISA Data Challenge Task Force
Collaboration), Classical Quantum Gravity 27, 084009
(2010).

[52] P. Amaro-Seoane, B. Schutz, and J. Thornburg, arXiv:
1102.3647.

[53] A. J. K. Chua and J. R. Gair, Classical Quantum Gravity 32,
232002 (2015).

[54] T. Osburn, N. Warburton, and C. R. Evans, Phys. Rev. D 93,
064024 (2016).

[55] M. Van De Meent, Phys. Rev. D 97, 104033 (2018).
[56] S. A. Hughes, N. Warburton, G. Khanna, A. J. Chua, and

M. L. Katz, Phys. Rev. D 103, 104014 (2021).
[57] A. J. Chua, C. R. Galley, and M. Vallisneri, Phys. Rev. Lett.

122, 211101 (2019).
[58] J. Luo, L.-S. Chen, H.-Z. Duan, Y.-G. Gong, S. Hu, J. Ji, Q.

Liu, J. Mei, V. Milyukov, M. Sazhin et al., Classical
Quantum Gravity 33, 035010 (2016).

[59] X.-C. Hu, X.-H. Li, Y. Wang, W.-F. Feng, M.-Y. Zhou,
Y.-M. Hu, S.-C. Hu, J.-W. Mei, and C.-G. Shao, Classical
Quantum Gravity 35, 095008 (2018).

[60] J. Luo et al. (TianQin Collaboration), Classical Quantum
Gravity 33, 035010 (2016).

[61] S. Liu, Y.-M. Hu, J.-d. Zhang, and J. Mei et al., Phys. Rev. D
101, 103027 (2020).

[62] S. Babak, Classical Quantum Gravity 25, 195011 (2008).
[63] S. Babak, J. R. Gair, and E. K. Porter, Classical Quantum

Gravity 26, 135004 (2009).
[64] Y. Wang, Y. Shang, and S. Babak, Phys. Rev. D 86, 104050

(2012).
[65] K. Riles, Living Rev. Relativity 26, 3 (2023).
[66] R. Prix and M. Shaltev, Phys. Rev. D 85, 084010 (2012).
[67] J. Skilling, in AIP Conference Proceedings (American

Institute of Physics, Garching, 2004), Vol. 735, pp. 395–405.
[68] J. S. Speagle, Mon. Not. R. Astron. Soc. 493, 3132 (2020).
[69] L. Speri, M. L. Katz, A. J. Chua, S. A. Hughes, N.

Warburton, J. E. Thompson, C. E. A. Chapman-Bird, and
J. R. Gair, Front. Appl. Math. Stat. 9 (2023).

[70] T. B. Littenberg and N. J. Cornish, Phys. Rev. D 107,
063004 (2023).

[71] N. J. Cornish, T. B. Littenberg, B. Bécsy, K. Chatziioannou,
J. A. Clark, S. Ghonge, and M. Millhouse, Phys. Rev. D
103, 044006 (2021).

[72] https://github.com/ChangQingYe-SYSU/
EMRI_identification.

[73] S. van der Walt, S. C. Colbert, and G. Varoquaux, Comput.
Sci. Eng. 13, 22 (2011).

[74] P. Virtanen et al., Nat. Methods 17, 261 (2020).
[75] J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).

YE, FAN, TORRES-ORJUELA, ZHANG, and HU PHYS. REV. D 109, 124034 (2024)

124034-14

https://doi.org/10.1103/PhysRevLett.127.041102
https://doi.org/10.1103/PhysRevD.77.104027
https://doi.org/10.1103/PhysRevD.104.063007
https://doi.org/10.1103/PhysRevD.104.063007
https://doi.org/10.1103/PhysRevD.106.124028
https://doi.org/10.1103/PhysRevLett.107.171103
https://doi.org/10.1103/PhysRevLett.107.171103
https://doi.org/10.1088/1742-6596/610/1/012044
https://doi.org/10.1088/1742-6596/610/1/012044
https://doi.org/10.1103/PhysRevLett.129.241103
https://doi.org/10.1103/PhysRevD.81.104014
https://doi.org/10.1103/PhysRevD.81.104014
https://doi.org/10.1103/PhysRevD.77.043512
https://doi.org/10.1103/PhysRevD.77.043512
https://doi.org/10.1093/mnras/stab2741
https://doi.org/10.1103/PhysRevLett.94.221101
https://doi.org/10.1103/PhysRevD.97.104033
https://doi.org/10.1088/0264-9381/26/21/213001
https://doi.org/10.1103/PhysRevD.69.082005
https://doi.org/10.1103/PhysRevD.75.024005
https://doi.org/10.1103/PhysRevD.96.044005
https://doi.org/10.1103/PhysRevD.96.044005
https://doi.org/10.1103/PhysRevLett.126.051102
https://doi.org/10.1103/PhysRevD.104.064047
https://doi.org/10.1103/PhysRevD.106.124046
https://doi.org/10.1103/PhysRevD.106.124046
https://doi.org/10.1088/0264-9381/21/20/003
https://doi.org/10.1088/0264-9381/21/20/003
https://doi.org/10.1103/PhysRevD.106.104051
https://doi.org/10.1103/PhysRevD.105.123027
https://doi.org/10.1103/PhysRevD.105.123027
https://doi.org/10.1103/PhysRevD.86.104050
https://doi.org/10.1103/PhysRevD.86.104050
https://doi.org/10.1088/0264-9381/26/13/135004
https://doi.org/10.1088/0264-9381/26/13/135004
https://doi.org/10.1103/PhysRevD.92.044037
https://doi.org/10.1103/PhysRevD.92.044037
https://doi.org/10.1088/0264-9381/22/18/S49
https://doi.org/10.1088/0264-9381/22/18/S49
https://doi.org/10.1088/0264-9381/22/10/041
https://doi.org/10.1088/0264-9381/22/10/041
https://doi.org/10.1088/0264-9381/25/18/184031
https://doi.org/10.1088/0264-9381/25/18/184031
https://doi.org/10.1088/0264-9381/25/18/184030
https://doi.org/10.1088/0264-9381/25/18/184030
https://doi.org/10.1088/1742-6596/716/1/012028
https://doi.org/10.1103/PhysRevD.101.044027
https://doi.org/10.1103/PhysRevD.106.124046
https://doi.org/10.1103/PhysRevD.106.124046
https://doi.org/10.1088/0264-9381/24/19/S16
https://doi.org/10.1088/0264-9381/24/19/S16
https://doi.org/10.1088/0264-9381/25/18/184026
https://doi.org/10.1088/0264-9381/25/18/184026
https://doi.org/10.1088/0264-9381/27/8/084009
https://doi.org/10.1088/0264-9381/27/8/084009
https://arXiv.org/abs/1102.3647
https://arXiv.org/abs/1102.3647
https://doi.org/10.1088/0264-9381/32/23/232002
https://doi.org/10.1088/0264-9381/32/23/232002
https://doi.org/10.1103/PhysRevD.93.064024
https://doi.org/10.1103/PhysRevD.93.064024
https://doi.org/10.1103/PhysRevD.97.104033
https://doi.org/10.1103/PhysRevD.103.104014
https://doi.org/10.1103/PhysRevLett.122.211101
https://doi.org/10.1103/PhysRevLett.122.211101
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/1361-6382/aab52f
https://doi.org/10.1088/1361-6382/aab52f
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1103/PhysRevD.101.103027
https://doi.org/10.1103/PhysRevD.101.103027
https://doi.org/10.1088/0264-9381/25/19/195011
https://doi.org/10.1088/0264-9381/26/13/135004
https://doi.org/10.1088/0264-9381/26/13/135004
https://doi.org/10.1103/PhysRevD.86.104050
https://doi.org/10.1103/PhysRevD.86.104050
https://doi.org/10.1007/s41114-023-00044-3
https://doi.org/10.1103/PhysRevD.85.084010
https://doi.org/10.1093/mnras/staa278
https://doi.org/10.3389/fams.2023.1266739
https://doi.org/10.1103/PhysRevD.107.063004
https://doi.org/10.1103/PhysRevD.107.063004
https://doi.org/10.1103/PhysRevD.103.044006
https://doi.org/10.1103/PhysRevD.103.044006
https://github.com/ChangQingYe-SYSU/EMRI_identification
https://github.com/ChangQingYe-SYSU/EMRI_identification
https://github.com/ChangQingYe-SYSU/EMRI_identification
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55

