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We delve into the first-order thermodynamics of Horndeski gravity, focusing on spatially flat,
homogeneous, and isotropic cosmologies. Our exploration begins with a comprehensive review of the
effective fluid representation within viable Horndeski gravity. Notably, we uncover a surprising alignment
between the constitutive relations governing the “Horndeski fluid” and those of Eckart’s thermodynamics.
Narrowing our focus, we specialize our discussion to spatially flat Friedmann-Lemaître-Robertson-Walker
spacetimes. Within this specific cosmological framework, we systematically analyze two classes of
theories: shift symmetric and asymptotically shift symmetric. These theories are characterized by a
nonvanishing braiding parameter, adding a nuanced dimension to our investigation. On the one hand,
unlike the case of the “traditional” scalar-tensor gravity, these peculiar subclasses of viable Horndeski
gravity never relax to General Relativity (seen within this formalism as an equilibrium state at zero
temperature), but give rise to additional equilibrium states with nonvanishing viscosity. On the other hand,
this analysis further confirms previous findings according to which curvature singularities are “hot” and
exhibit a diverging temperature, which suggests that deviations of scalar-tensor theories from General
Relativity become extreme at spacetime singularities. Furthermore, we provide a novel exact cosmological
solution for an asymptotically shift-symmetric theory as a toy model for our thermodynamic analysis.
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I. INTRODUCTION

Scalar fields are of fundamental importance in cosmol-
ogy, since they are used to address various puzzles in our
understanding of the cosmic evolution, from early to late
times. In the early Universe, a minimally coupled scalar
field rolling down a potential is the essence of the infla-
tionary mechanism, although scalars are also widely
employed in alternative scenarios such as genesis and
bouncing cosmologies [1]. At late times, modified gravity
theories adding a scalar field to the tensorial degrees of
freedom of General Relativity (GR), and quintessence,
namely, a canonical scalar field endowed with a potential,
are among the most promising alternatives to a fine-tuned
cosmological constant as dark energy [2]. Other than their
versatility, a practical reason for this ubiquity of scalar
fields in cosmological settings is that they can yield

accelerated expansion without breaking isotropy, with a
background field configuration ϕ ¼ ϕðtÞ. In order to be
viable as dark energy candidates, scalars need to be very
light, with a mass of the order of m ≃ 10−33 eV, so that
modifications to GR would appear only on very large
cosmological scales. At these scales, GR is not as well
tested as within the Solar System, and therefore there is still
room for modifying our theory of gravity [3].
The Horndeski class of scalar-tensor theories is the

most general class exhibiting second-order equations of
motion, irrespective of the specific background con-
sidered, therefore avoiding Ostrogradski instabilities [4,5]
(although some higher-order scalar-tensor theories beyond
Horndeski, like DHOST, still admit second-order equations
when a degeneracy condition is satisfied [6–8]). Given their
generality, Horndeski’s theories encompass a plethora of
scalar-tensor models that have been explored since the first
attempt by Brans and Dicke [9], and all have impactful
cosmological implications. A nonexhaustive list includes
“traditional” scalar-tensor theories [10–12] [which contain
fðRÞ gravity as a subclass [13,14] ], quintessence [15],
k-essence [16], Galileon models endowed with shift and
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Galilean symmetries [17,18], and even a proxy theory to
massive gravity [19,20]. Interesting cosmological conse-
quences of such scalar-tensor theories include, for example,
de Sitter attractors for shift-symmetric Lagrangians [17],
the presence of scaling solutions in some Horndeski
subclasses [21], and multifaceted applications of the
Galileons, such as inflation [22] and dark energy [23].
Given the rich landscape of cosmological implications of
Horndeski theories, any approach to such models finds its
natural arena in a Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetime.
A recent formalism with intriguing applications to

Horndeski theories is the so-called first-order thermodynam-
ics of modified gravity, devised in [24,25] and briefly
reviewed in [26], which provides a concrete realization of
the ideas in [27,28], albeit in a different setting. Its goal is the
construction of a unifying perspective on the landscape of
gravity theories, comprised of GR and its generalizations.
The essence of first-order thermodynamics, originally con-
ceived for “traditional” scalar-tensor theories [25], involves
isolating the contribution of the scalar ϕ to the effective
stress-energy tensor in the Einstein equations, which is
known to take the form of an imperfect fluid [29–32]. The
novelty of the formalism comes in when we apply Eckart’s
nonequilibrium thermodynamics to this fluid, which entails
first-order constitutive relations in the dissipative variables.
This leads to the identification of the fluid’s effective
temperature, a sort of “temperature of scalar-tensor gravity,”
which is nothing but a temperature relative to GR (the
equilibrium state at zero temperature). This effective temper-
ature is positive definite for theories containing an additional
scalar degree of freedom with respect to GR, characterizing
these scalar-tensor theories as nonequilibrium states, in a sort
of thermodynamics of gravitational theories. Moreover, the
temperature is the order parameter ruling the dissipative
approach to equilibrium, described by an effective heat
equation, which often entails a relaxation to the GR equi-
librium, especially in cosmological settings [33].
The formalism has been extended to various situa-

tions [33–36], but it was for Horndeski theories that
it showed the most interesting consequences [37].
Namely, the thermodynamical analogy described above
irreparably breaks down for the most general Horndeski
theories, and only holds in the “viable” Horndeski sub-
class that predicts gravitational-wave propagation at the
speed of light. This connects the formalism, so far purely
theoretical, with the observational constraints placed
on Horndeski theories by the multimessenger event
GW170817/GRB170817A [38,39].
Motivated by this development, the goal of the present

work is to extend the first-order thermodynamics of
Horndeski theories [37] to the fruitful setting of FLRW
spacetime, in order to test the physical intuition provided
by the formalism. The paper is organized as follows:
in Sec. II, we review Horndeski theories and the effective
fluid approach, which makes it possible to formulate a

thermodynamical description. In Sec. III we discuss the
salient features of the first-order thermodynamics of viable
Horndeski and specify to a cosmological background to
explore its physical implications. In Sec. IV we apply the
formalism to some exact cosmological solutions of viable
Horndeski gravity (or subclasses thereof), which exhibit
particularly intriguing properties.

II. HORNDESKI THEORIES AND EFFECTIVE
FLUID APPROACH

The full Horndeski action is given by

S½gab;ϕ� ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðL2 þL3 þL4 þL5Þ þ SðmÞ; ð1Þ

where

L2 ¼ G2ðϕ; XÞ; ð2Þ
L3 ¼ −G3ðϕ; XÞ□ϕ; ð3Þ

L4 ¼ G4ðϕ; XÞRþ G4Xðϕ; XÞ½ð□ϕÞ2 − ð∇∇ϕÞ2�; ð4Þ

L5 ¼ G5ðϕ; XÞGab∇a∇bϕ −
G5X

6
½ð□ϕÞ3 − 3□ϕð∇∇ϕÞ2

þ 2ð∇∇ϕÞ3�: ð5Þ

With∇awe indicate the covariant derivative associated to the
Levi-Civita connection of the metric, Gab ¼ Rab − 1

2
Rgab

is the Einstein tensor, with Rab and R the Ricci tensor and
the Ricci scalar, respectively, SðmÞ is the matter action.
The functions Giðϕ; XÞ (i ¼ 2; 3; 4; 5) are arbitrary regular
functions of the theory, where X ≡ − 1

2
∇aϕ∇aϕ is the

canonical kinetic term of the scalar ϕ. Their partial deriv-
atives are denoted as Giϕ ≡ ∂Gi=∂ϕ and GiX ≡ ∂Gi=∂X.
Note the compact notation adopted to indicate ð∇∇ϕÞ2 ≡
∇a∇bϕ∇a∇bϕ and ð∇∇ϕÞ3 ≡∇a∇cϕ∇c∇dϕ∇d∇aϕ.
Throughout this work, 8πG ¼ c ¼ ℏ ¼ 1 and the metric
signature is ð−þþþÞ.
The multimessenger event GW170817/GRB170817A

[38] confirmed with remarkable precision that gravitational
waves travel at the speed of light, therefore imposing strong
constraints on those sectors of Horndeski theories that do
not fulfil this requirement [3,40–42]. The class of viable
Horndeski theories that exactly respects this constraint is
characterized by1

G4X ¼ G5 ¼ 0: ð6Þ

1Note that the LIGO/Virgo constraint on the speed of gravi-
tational waves is restricted to frequencies 10–100 Hz. This is at
the edge of the strong coupling scale of Horndeski theories,
where the regime of validity of the effective field theory breaks
down, and, potentially, new operators at this cutoff scale could
affect the propagation speed [43].
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In the following, we will focus on such viable Horndeski
theories, where first-order thermodynamics holds, which
also greatly simplifies the analysis.

A. Effective stress-energy tensor

Performing the variation of the action (1) with respect to
the metric tensor gab and the scalar field ϕ, we obtain the
corresponding field equations,

G4Gab −∇a∇bG4 þ
�
□G4 −

G2

2
−
1

2
∇cϕ∇cG3

�
gab

þ 1

2
½G3X□ϕ−G2X�∇aϕ∇bϕþ∇ðaϕ∇bÞG3 ¼ TðmÞ

ab ð7Þ

and

G4ϕRþ G2ϕ þ G2X□ϕþ∇cϕ∇cG2X

−G3Xð□ϕÞ2 −∇cϕ∇cG3X□ϕ − G3X∇cϕ□∇cϕ

þ G3XRab∇aϕ∇bϕ −□G3 −G3ϕ□ϕ ¼ 0; ð8Þ

where TðmÞ
ab ≡ − 2ffiffiffiffi−gp δSðmÞ

δgab
is the matter stress-energy

tensor. The presence of indices encompassed by paren-
theses indicates the symmetrization of the indices,
while square brackets indicate the antisymmetrization,
defined as VðabÞ ¼ 1

2
ðVabþVbaÞ and V ½ab� ¼ 1

2
ðVab−VbaÞ,

respectively.
The Horndeski field equations (7) can be recast in the

form of Einstein equations,

Gab ¼ TðeffÞ
ab ; ð9Þ

where

TðeffÞ
ab ¼ TðmÞ

ab

G4

þ TðϕÞ
ab ; ð10Þ

TðϕÞ
ab ¼ Tð2Þ

ab þ Tð3Þ
ab þ Tð4Þ

ab ; ð11Þ

and the individual contributions are

Tð2Þ
ab ¼ 1

2G4

ðG2X∇aϕ∇bϕþG2gabÞ; ð12Þ

Tð3Þ
ab ¼ 1

2G4

ðG3X∇cX∇cϕ− 2XG3ϕÞgab

−
1

2G4

ð2G3ϕ þG3X□ϕÞ∇aϕ∇bϕ−
G3X

G4

∇ðaX∇bÞϕ;

ð13Þ

Tð4Þ
ab ¼G4ϕ

G4

ð∇a∇bϕ− gab□ϕÞþG4ϕϕ

G4

ð∇aϕ∇bϕþ 2XgabÞ:

ð14Þ

The equation of motion for the scalar field can be written as

S2 þ S3 þ S4 ¼ 0; ð15Þ

where

S2 ¼ ðG2Xgab −G2XX∇aϕ∇bϕÞ∇a∇bϕþ G2ϕ − 2XG2ϕX;

ð16Þ
S3 ¼ G3XRab∇aϕ∇bϕ − 2ðG3Xgabgcd

−G3XX∇aϕ∇bϕgcdÞ∇½aj∇bϕ∇jc�∇dϕ

− 2½ðG3ϕ − XG3ϕXÞgab − G3ϕX∇aϕ∇bϕ�∇a∇bϕ

þ 2XG3XX; ð17Þ
S4 ¼ G4ϕR: ð18Þ

It is well known (see Ref. [29]) that the scalar contri-

bution TðϕÞ
ab to the effective stress-energy tensor TðeffÞ

ab can be
recast in the imperfect fluid form

Tab ¼ ρuaub þ Phab þ 2qðaubÞ þ πab; ð19Þ

where the 4-vector ua is the fluid’s 4-velocity (uaua ¼ −1),
hab ¼ gab þ uaub is the projector onto the 3-space
orthogonal to uc, ρ ¼ Tabuaub is the energy density,
P ¼ 1

3
Tabhab is the isotropic pressure, qa ¼ −Tcduchda

is the heat flux density, πab ¼ ðhachbd − 1
3
hcdhabÞTcd is the

traceless part of the stress tensor, describing the anisotropic
stresses. Assuming that the scalar field gradient is timelike,
∇aϕ∇aϕ < 0, it is possible to define the 4-velocity of the
effective fluid as follows

ua ≡ ϵ
∇aϕffiffiffiffiffiffi
2X

p ; ð20Þ

where ϵ ¼ �1 is used to ensure a future-oriented
4-velocity. Then, the derivatives on the scalar field can
be written as

∇aϕ ¼ ϵ
ffiffiffiffiffiffi
2X

p
ua; ∇aX ¼ −Ẋua − 2Xu̇a; ð21Þ

∇a∇bϕ ¼ ϵ
ffiffiffiffiffiffi
2X

p
ð∇aub − u̇aubÞ − ϵ

Ẋffiffiffiffiffiffi
2X

p uaub;

□ϕ ¼ ϵ

� ffiffiffiffiffiffi
2X

p
Θþ Ẋffiffiffiffiffiffi

2X
p

�
; ð22Þ

where Θ≡∇aua is the expansion scalar and u̇a ≡ ub∇bua

is the 4-acceleration of the fluid.
In the following, we adopt the decomposition

∇bua ¼ σab þ 1
3
Θhab þ ωab − u̇aub, where σab ≡

ðhachbd − 1
3
hcdhabÞ∇ðcudÞ is the shear tensor and ωab ≡

hachbd∇½duc� is the vorticity tensor. The latter vanishes
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since the effective fluid is derived from the scalar field
gradient. One can easily check it from the torsionless
property of the covariant derivative,

∇a∇bϕ ¼ ∇b∇aϕ ⇒ ωba ¼ ωab; ð23Þ

which implies that the vorticity tensor vanishes identically
because of the antisymmetry of ωab.

Equation (21) is obtained by rewriting ∇a ¼ hab∇b −
uaub∇b and using the following relation

hab∇bX ¼ −∇bϕ∇b∇aϕ −
1

2X
∇bϕ∇aϕ∇cϕ∇b∇cϕ;

¼ −2Xu̇a: ð24Þ
In this framework, the effective stress-energy tensor of

the ϕ fluid reads

TðϕÞ
ab ¼

�
2XG2X −G2 − 2XG3ϕ

2G4

þ ϵ

ffiffiffiffiffiffi
2X

p ðG4ϕ − XG3XÞ
G4

Θ
�
uaub

þ
�
G2 þ 4XG4ϕϕ − 2XG3ϕ

2G4

− ϵ
ðG4ϕ − XG3XÞffiffiffiffiffiffi

2X
p

G4

Ẋ − ϵ
2

ffiffiffiffiffiffi
2X

p
G4ϕΘ

3G4

�
hab

− ϵ
2

ffiffiffiffiffiffi
2X

p ðG4ϕ − XG3XÞ
G4

u̇ðaubÞ þ ϵ

ffiffiffiffiffiffi
2X

p
G4ϕ

G4

σab: ð25Þ

Comparing Eq. (25) with the generic imperfect fluid stress-energy tensor in Eq. (19), we can now extract the
characteristic quantities of the scalar effective fluid:

ρðϕÞ ¼ 1

2G4

ð2XG2X −G2 − 2XG3ϕÞ þ ϵ

ffiffiffiffiffiffi
2X

p

G4

ðG4ϕ − XG3XÞΘ; ð26Þ

PðϕÞ ¼ 1

2G4

ðG2 − 2XG3ϕ þ 4XG4ϕϕÞ − ϵ
ðG4ϕ − XG3XÞ

G4

ffiffiffiffiffiffi
2X

p Ẋ − ϵ
2G4ϕ

3G4

ffiffiffiffiffiffi
2X

p
Θ;

¼ 1

2G4

ðG2 − 2XG3ϕ þ 4XG4ϕϕÞ −
ðG4ϕ − XG3XÞ

G4

□ϕþ ϵ
ðG4ϕ − 3XG3XÞ

3G4

ffiffiffiffiffiffi
2X

p
Θ; ð27Þ

qðϕÞa ¼ −ϵ
ffiffiffiffiffiffi
2X

p ðG4ϕ − XG3XÞ
G4

u̇a; ð28Þ

πðϕÞab ¼ ϵ

ffiffiffiffiffiffi
2X

p
G4ϕ

G4

σab: ð29Þ

This formal rewriting of TðϕÞ
ab takes a deeper meaning in the

context of dissipative fluids. Such fluids are classified
according to their constitutive relations. As compellingly
shown in [44], exploring the properties of the imperfect
fluid behind modified theories of gravity allows one to
obtain an intuitive picture of their physical meaning, often
obfuscated by cumbersome expressions. The effective
fluid approach provides a promising way to classify
different Horndeski subclasses based on the nature of
this fluid. In particular, in [45], the requirement that such
a fluid be Newtonian (i.e., with the viscous stresses
depending only on the first derivatives of the fluid’s
4-velocity) was explored. This requirement is relevant
since, as will become clear in the following section, the
simplest nonequilibrium thermodynamical treatment that

we are interested in restricts to first-order derivatives in the
fluid quantities. In order to understand the dissipative
properties of the effective scalar fluid we are dealing with,
we need to write the derivatives of the scalar field in terms
of 4-velocity gradients. The only problem in this task arises
when considering the pressure. Indeed, inside Eq. (27) a
□ϕ contribution is present [or, equivalently, a term con-
taining Ẋ, because of the linearity of Eq. (21)]. Therefore,
the only way to completely translate □ϕ into the effective
fluid formalism is by taking into account the equation of
motion of the scalar field (15).
Using the metric field equation (9) to rewrite the

curvature contributions inside Eq. (15) in terms of the
total effective stress-energy tensor (10) throughR ¼ −TðeffÞ

and Rab ¼ ðTðeffÞ
ab − 1

2
TðeffÞgabÞ, it is possible to algebrai-

cally solve the scalar field equation of motion and obtain
□ϕ. This yields

□ϕ ¼ Aþ BΘþ CΘ2 þDσabσ
ab þ Eu̇cu̇c

J þ KΘ
; ð30Þ
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where

A ¼ TðmÞðG4ϕ − XG3XÞ − 2ðTðmÞ
ab uaubÞXG3X

þ G2ð2G4ϕ − XG3XÞ −G4G2ϕ

X½ðG4ϕ − XG3XÞð6G4ϕϕ þG2X − 4G3ϕÞ
þ 2G4ϕG3ϕ þ 2G4ðG2ϕX −G3ϕϕÞ�; ð31Þ

B ¼ ϵð2XÞ3=2½2XG2
3X − 2G4ϕG3X þG4ðG2XX − 2G3ϕXÞ�;

ð32Þ

C ¼ −
4

3
XG4ð2G3X þ 3XG3XXÞ; ð33Þ

D ¼ −2XG4G3X; ð34Þ

E ¼ 4XG4ðG3X þ XG3XXÞ; ð35Þ

J ¼ 3ðG4ϕ − XG3XÞ2 þG4½G2X þ 2XG2XX

− 2ðG3ϕ þ XG3ϕXÞ�; ð36Þ

K ¼ −2ϵ
ffiffiffiffiffiffi
2X

p
G4ðG3X þ XG3XXÞ: ð37Þ

Equation (30) casts the □ϕ in terms of the kinematic
quantities of the effective fluid identified above. It is of
course valid as long as the denominator J þ KΘ is not
vanishing.2 In particular, theories for which the denomi-
nator of Eq. (30) identically vanishes correspond to the
nondynamical class of Horndeski theories, which includes
the extended cuscuton model [46]. Indeed, J þ KΘ ¼ 0
entails K ¼ 0 and J ¼ 0, separately [45]. On the one
hand, given Eq. (37), K ¼ 0 implies G3X þ XG3XX ¼ 0,
which has

G3ðϕ; XÞ ¼ FðϕÞ lnðX=X�Þ þ VðϕÞ; ð38Þ

as a general solution, with X� constant. On the other hand,
J ¼ 0 provides the functional form of G2,

G2ðϕ;XÞ ¼ μðϕÞ
ffiffiffiffiffiffi
2X

p
þ νðϕÞ

− 4X

�
FϕðϕÞ þ

3½FðϕÞ−G4ϕðϕÞ�2
4G4ðϕÞ

þ 1

2
VϕðϕÞ

�

þ 2FϕðϕÞX lnðX=X�Þ; ð39Þ

where FðϕÞ, μðϕÞ, and νðϕÞ are generic functions. It is
straightforward to verify that the potential VðϕÞ does not
play any role since it can be eliminated by performing an
integration by parts, namely −VðϕÞ□ϕ ≃ 2XVϕðϕÞ up to a
total derivative. Therefore, G3 ¼ VðϕÞ is equivalent to

considering G̃3 ¼ 0 and G̃2 ¼ G2 þ 2XVϕ. Redefining
F → G4ϕ þ 1

2
F, Eq. (39) [and Eq. (54) in the following]

turn into the well-known form used in [46–48].
It is worth stressing that we need Eq. (30) only in the

case of G4ϕ ≠ XG3X. Indeed, when G4ϕ ¼ XG3X (i.e.,
F ¼ G4ϕ), □ϕ disappears from Eq. (27) thus making
Eq. (30) no longer necessary for carrying out the thermo-
dynamic analogy, and the fluid behaves as a Newtonian
fluid [45]. An example of such a scenario is given by
k-essence, for which one has G4ϕ ¼ G3X ¼ 0.
After substituting Eq. (30) into Eq. (27) to obtain an

expression for the pressure, we can also rewrite Eqs. (26),
(28), and (29) in a compact way, making the dependence on
the 4-velocity gradients apparent:

ρðϕÞ ¼ ρ0 − ξΘ; ð40Þ

PðϕÞ ¼ P0 þ ξ

�
Aþ BΘþ CΘ2 þDσ2 þ Eu̇2

J0 þ K0Θ

�

−
�
ξ −

4

3
η

�
Θ; ð41Þ

qðϕÞa ¼ ξu̇a; ð42Þ

πðϕÞab ¼ −2ησab; ð43Þ

where J0 ¼ ϵ
ffiffiffiffiffiffi
2X

p
J, K0 ¼ ϵ

ffiffiffiffiffiffi
2X

p
K, ρ0 ¼ ð2XG2X −

G2 − 2XG3ϕÞ=2G4, P0 ¼ ðG2 − 2XG3ϕ þ 4XG4ϕϕÞ=2G4,

ξ ¼ −ϵ
ffiffiffiffiffiffi
2X

p ðG4ϕ − XG3XÞ=G4, η¼ −
ffiffiffiffiffiffi
2X

p
G4ϕ=2G4, σ2 ¼

σabσ
ab, and u̇2 ¼ u̇cu̇c.

Note that this is still a formal rewriting, and only in the
next section it will be connected to a dissipative thermo-
dynamical description that provides the physical interpre-
tation behind the coefficients.
The viable Horndeski effective fluid is then characterized

by linear constitutive relations for the energy density (40),
the heat flux density (42), and the anisotropic stress (43).
The non-Newtonian behavior of the fluid arises from the
pressure (41). The requirement of a Newtonian fluid is
quite stringent and selects two specific subclasses of viable
Horndeski: one is characterized by G3 ¼ G4ϕ lnðX=X�Þ
(associated to ξ ¼ 0), and the other is identified with
G3 ¼ 0 [45]. This way, all the nonlinear contributions in
the dissipative quantities due to the presence of □ϕ in
Eq. (41) disappear. These classes are disconnected with
respect to conformal transformations of the metric tensor,
and the second one exists only for a dynamical scalar field.
More general theories correspond to effective fluids that are
non-Newtonian, and therefore exotic and less easily inter-
pretable from the physical point of view.
However, here we are interested in applying Eckart’s

thermodynamics in the context of cosmology, i.e.,
with a particular fixed background. For some particular

2Here we are just treating Eq. (30) as an algebraic equation for
□ϕ, intending to rewrite it in terms of the kinematic quantities.
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geometries, it is possible to realize an Eckart-like effective
fluid in a bigger subclass of viable Horndeski, containing
the previous classes as subcases. That is the case of FLRW
universes with a homogeneous scalar field.

III. FIRST-ORDER THERMODYNAMICS
OF HORNDESKI THEORIES

The nonequilibrium thermodynamics developed by
Eckart allows us to obtain a “thermodynamics of gravity
theories” in which GR represents the equilibrium state and
scalar-tensor theories are nonequilibrium states, providing
a concrete realization of the ideas in [27,28]. Eckart’s
thermodynamics is distilled in three constitutive relations3

that connect the viscous pressure Pvis with the fluid
expansion Θ, the heat current density qa with the temper-
ature T , and the anisotropic stresses πab with the shear
tensor σab:

Ptot ¼ Pnonvisc þ Pvisc; ð44Þ

Pvisc ¼ −ζΘ; ð45Þ

qa ¼ −Kðhab∇bT þ T u̇aÞ; ð46Þ

πab ¼ −2ησab; ð47Þ

where K, ζ, and η are the thermal conductivity, bulk
viscosity, and shear viscosity, respectively, and we gen-
erally assume hab∇bT ¼ 0. The temperature of Horndeski
gravity (inextricably linked to the thermal conductivity)
reads [37]

KT ¼ ϵ

ffiffiffiffiffiffi
2X

p ðG4ϕ − XG3XÞ
G4

; ð48Þ

and reduces to GR equilibrium state characterized by
KT ¼ 0 if ϕ ¼ const.
The most interesting finding is that this formalism does

not work for the most general Horndeski theories, because
some terms in their field equations explicitly break the
proportionality required by the constitutive equations [37].
These terms are precisely those that violate the equality
between the propagation speeds of gravitational and
electromagnetic waves. Therefore, the validity of first-order
thermodynamics seems to be related to the physical
viability of Horndeski theories, which is a very intriguing
result. The breaking of the thermodynamic analogy is also
interesting from the purely theoretical point of view: it
happens for the operators which contain derivative non-
minimal couplings and nonlinear contributions in the

connection. This relates to the well-known and long-
standing problem of separating matter and gravity degrees
of freedom in a local description.
More specifically, in [37] it is shown that, whenever we

try to apply the thermodynamic formalism to theories
beyond the viable class, the effective stress-energy tensor
contains the term

TðϕÞ
ab ⊃ αðϕ; XÞRacbd∇cϕ∇dϕ; ð49Þ

where αðϕ; XÞ is a generic function. It is precisely the
Riemann tensor Racbd which ends up breaking the pro-
portionality between the traceless shear tensor σab and the
anisotropic stress tensor πab, and thus Eckart’s constitutive
equations (45)–(47) no longer hold.

A. First-order thermodynamics in FLRW background

In [33], the first-order thermodynamics of “traditional”
scalar-tensor theories was studied in an FLRW background,
with the goal of testing the physical intuition behind the
formalism on some well-known exact solutions. The main
result is that the GR equilibrium state of zero tempera-
ture is almost always approached at late times t → þ∞
throughout the cosmic expansion, while the behavior
expected for singularities (namely KT → þ∞, indicating
an extreme deviation of the theory from GR equilibrium) is
confirmed for solutions endowed with an initial singularity.
Compellingly, this result about scalar-tensor theories
“relaxing” to GR in a cosmological setting echoes those
of [52,53], albeit in a very different context. We are now in
a position to perform the same feat as [33] with the more
general class of viable Horndeski theories.
The FLRW line element reads

ds2 ¼ −dt2 þ a2
�

dr2

1 − kr2
þ r2dΩ2

�
; ð50Þ

where, a ¼ aðtÞ is the scale factor of the FLRW universe,
k ¼ 0;�1 is a parameter identifying the curvature of the
3-space, and dΩ2 ≡ dϑ2 þ sin2 ϑdφ2 is the line element on
the unit 2-sphere. In particular, we restrict our discussion to
the spatially flat case, i.e., k ¼ 0.
The 4-velocity of the effective fluid in a FLRW setting

becomes

ua ≡ ϵ
∇aϕffiffiffiffiffiffi
2X

p ¼ ð−ϵSignðϕ̇Þ; 0; 0; 0Þ; ð51Þ

where we assume that ϕ is strictly monotonic in t. Then
(51) is future-oriented only if ϵ ¼ −Signðϕ̇Þ. As a conse-
quence, the equation ϕ̇ ¼ −ϵ

ffiffiffiffiffiffi
2X

p
holds, since X ¼ 1

2
ϕ̇2.

As mentioned in the previous section, once we work with
a fixed background, the constraint that an effective fluid is
linear in ∇bua is less stringent than in the general case with
any geometry. The features of the FLRWmetric allow us to
find a larger subclass of viable Horndeskis containing the

3In a more recent formulation of the first-order thermodynam-
ics of real fluids [49–51], linear viscous contributions are present
also in the expression of the energy density, similarly to Eq. (42).
Notice that here we work in the Eckart (or particle) frame.
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previous classes as subcases. This is the case of FLRW
universes with a homogeneous scalar field.
The expansion scalar in FLRW reads Θ ¼ 3H, and the

shear tensor and the 4-acceleration vanish (σ2 ¼ 0, u̇2 ¼ 0).
Moreover, the Friedmann constraint reads

H2 ¼ 1

3

�
ρðmÞ

G4

þ ρðϕÞ
�

¼ 1

3

�
ρðmÞ

G4

þ ρ0 − 3Hξ

�
: ð52Þ

Therefore, since ρðϕÞ is always linear in H, i.e., linear in the
expansion scalar, we can rewrite the Θ2 ¼ 9H2 term in
Eqs. (30) and (41) as a linear expression in terms of
Θ ¼ 3H. Then, the general expression for the pressure
takes the form

PðϕÞ ¼ P0 þ ξ

�
A0 þ B0Θ
J0 þ K0Θ

�
−
�
ξ −

4

3
η

�
Θ: ð53Þ

At this point, Eckart’s constitutive relation (45) can
be realized by imposing K0 ¼ 0, which corresponds to
assuming

G3ðϕ; XÞ ¼ FðϕÞ lnðX=X�Þ: ð54Þ

This functional form is a solution of the partial differential
equation G3X þ XG3XX ¼ 0 [see Eq. (37)], which elimi-
nates the nonlinear contribution due to the denominator in

Eq. (41). As mentioned above, an additional function of
the scalar field, VðϕÞ, in G3 is neglected since it can be
reabsorbed through a redefinition ofG2. Therefore, in order
to deal with a linear effective fluid and apply the Eckart’s
thermodynamics, in the following we assume the above
functional form of G3. This particular choice is not just
attractive for its simplicity, but also includes interesting
applications like shift-symmetric theories exhibiting hairy
black holes [8,54], vanishing braiding theories [55], and the
case XG3X ∝ G4ϕ which appears favored by observational
data [56].
Recalling that, in a homogeneous and isotropic

background, the matter stress-energy tensor is TðmÞ
ab ¼

ρðmÞuaub þ PðmÞhab, the pressure in the effective ϕ
fluid (41) is comprised of three contributions,

PðϕÞ ¼ Pint þ Pnon−visc þ Pvisc; ð55Þ
the interaction,4 nonviscous and viscous pressure, respec-
tively. The viscous pressure, similarly to the case in [33],
is proportional to H.5 Taking into account Eq. (54), the
explicit expressions of the pressures are

Pint ¼
ðG4ϕ − FÞ

G4Δ
½G4ϕðρðmÞ − 3PðmÞÞ − 3FðρðmÞ − PðmÞÞ�;

ð56Þ

Pnon−visc ¼
1

G4Δ
f2XG4ðG2X þ 2XG2XXÞð2G4ϕϕ − Fϕ lnðX=X�ÞÞ

þ G2½G4ðG2X þ 2XG2XXÞ − 2G4ð1þ lnðX=X�ÞÞFϕ þ 4FG4ϕ − 3F2 −G2
4ϕ�

þ 2XG2Xð3F2 − 4FG4ϕ þ G2
4ϕÞ − 2G4ðG2ϕ − 2XG2ϕXÞðF −G4ϕÞ

− 2X½lnðX=X�Þð2G4FϕϕðF − G4ϕÞ þ Fϕð−2G4ðFϕ − 2G4ϕϕÞ − 4FG4ϕ þ 3F2 þ G2
4ϕÞÞ

þ 4G4FϕG4ϕϕ − 2G4ln2ðX=X�ÞF2
ϕ�g; ð57Þ

Pvisc ¼ −
ϵ

ffiffiffiffiffiffi
2X

p
H

G4Δ
fG4ϕ½G4ðG2X − 4XG2XX þ 2ð5 − lnðX=X�ÞÞFϕÞ þ 21F2�

− 3FG4½2ð1 − lnðX=X�ÞÞFϕ þ G2X� − 3ð5FG2
4ϕ þ 3F3 −G3

4ϕÞg; ð58Þ

where

Δ ¼ G4½G2X þ 2XG2XX − 2ð1þ lnðX=X�ÞÞFϕ� þ 3ðF −G4ϕÞ2: ð59Þ

From the viscous component Pvisc of the pressure, we can extract the bulk viscosity coefficient ζ as defined in Eq. (45),
which is proportional to ϕ̇ similarly to scalar-tensor theories in [33] and reads

4The nonminimal coupling of the scalar field with the metric tensor can be translated into an interaction contribution between standard
matter and scalar field at the level of field equations.

5For a detailed discussion on the splitting of viscous and nonviscous terms within this thermodynamic analogy for maximally
symmetric spaces we refer the reader to [33].
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ζ ¼ ϵ
ffiffiffiffiffiffi
2X

p

3G4Δ
fG4ϕ½G4ðG2X − 4XG2XX þ 2ð5− lnðX=X�ÞÞFϕÞ

þ 21F2�− 3FG4½2ð1− lnðX=X�ÞÞFϕ þG2X�
− 3ð5FG2

4ϕ þ 3F3 −G3
4ϕÞg: ð60Þ

Focusing only on dynamical scalar fields, we can have
either a vanishing bulk viscosity, corresponding to

G2ðϕ;XÞ ¼ μðϕÞ
�
5G4ϕðϕÞ− 3FðϕÞ

4G4ϕðϕÞ
�−1

X
5G4ϕðϕÞ−3FðϕÞ

4G4ϕðϕÞ þ νðϕÞ

− 4X

�
FϕðϕÞ þ

3½FðϕÞ−G4ϕðϕÞ�2
4G4ðϕÞ

�

þ 2FϕðϕÞX lnðX=X�Þ; ð61Þ

or a vanishing interaction term, associated with
FðϕÞ ¼ G4ϕðϕÞ. If one imposes both vanishing Pint and
Pvisc, the scalar field becomes nondynamical.
Following the argument in [33], we can still find the KT

of Horndeski gravity in FLRW, despite the fact that the heat
flux density qa vanishes identically due to homogeneity.
Indeed, the general expression for KT (48) is found in [37]
for Horndeski theories without specifying to particular
geometries. Then, substituting XG3X ¼ F from Eq. (54)
into Eq. (48), we find

KT ¼ ϵ
ffiffiffiffiffiffi
2X

p ðG4ϕ − FÞ
G4

: ð62Þ

The above quantity is strictly related to the braiding that
measures the strength of kinetic mixing between tensor and
scalar perturbations [57,58]. We notice that the relationship
ζ ¼ KT =3, valid for “traditional” scalar-tensor theories
[33] is not valid for Horndeski theories.
However, Eq. (62) leads to an intriguing observation:

KT ¼ 0 both for ϕ̇ ¼ 0 (which is the usual GR equilib-
rium) and F ¼ G4ϕ. The latter is a novel feature of
Horndeski gravity in first-order thermodynamics that went
unnoticed in [37]. It is interesting because it means there are
equilibrium states atKT ¼ 0 in the theory that are different
than GR. In general, such alternative equilibrium states are
found to be unstable [34] and are therefore unable to
compete with the special role of GR in the landscape of
gravity theories seen through the lens of the first-order
thermodynamics. The stability of such states is assessed
(generally after reducing to an exact solution of the theory)
through the effective heat equation that provides the precise
description of the dissipative process leading from non-
equilibrium to equilibrium. For Horndeski theories this
equation reads [37]

dðKT Þ
dτ

¼
�
ϵ
□ϕffiffiffiffiffiffi
2X

p − Θ
�
KT þ∇cϕ∇c

�
G4ϕ − XG3X

G4

�
;

ð63Þ

where d
dτ ≡ ua∇a ¼ ϵ ∇aϕffiffiffiffi

2X
p ∇a.

IV. EXACT SOLUTIONS

In order to test the thermodynamic formulation detailed
in the previous sections, we now turn to studying some
exact FLRW solutions. In particular, we focus on back-
ground cosmologies in cubic shift-symmetric Horndeski
theories with a vanishing scalar current. Since Galileons
possess shift symmetry (in addition to Galileian symmetry),
this class of theories has some of the most interesting and
well-explored cosmological consequences, as mentioned
in Sec. I. We start in Sec. IVA from the shift-symmetric
solution and follow the strategy in [8] to find a cosmo-
logical solution with the desired expansion behavior. From
this, we are able to obtain a new, shift-symmetric-inspired
solution with explicit scalar field dependence in Sec. IV B.
This can be interpreted as a theory that asymptotically
approaches its shift-symmetric formulation.

A. Shift-symmetric gravity

The shift symmetry refers to the theory being invariant
under ϕ → ϕþ ϕ0, where ϕ0 is a constant. The shift-
symmetric subclass of the Horndeski theory corresponds to
the choice Gi ¼ GiðXÞ, i.e., the Lagrangian does not
explicitly depend on ϕ. In this case, the theory is charac-
terized by the presence of a Noether conserved current, Ja,
and the scalar field equation of motion assumes the form of
∇aJa ¼ 0. The shift-symmetric viable Horndeski scalar
current is

Ja ¼ ðG3X□ϕ − G2XÞ∇aϕþ G3X∇aX: ð64Þ

In the spatially flat FLRW, the scalar current has only the
time component, and it reads as follows:

Ja ¼ δa0ϕ̇ðG2X þ 3HG3Xϕ̇Þ: ð65Þ

If we restrict the class of “viable” shift-symmetric
Horndeski theories, we have that the shift-symmetry sets
Gi ¼ GiðXÞ while the “viability” requires the conditions
G4X ¼ G5 ¼ 0. Combining the two, one finds that
G4 ¼ constant and all non-minimal couplings disappear.
Then, taking the covariant divergence of Eq. (9), recalling
Eq. (10) and the contracted Bianchi identity, one finds

∇aTðϕÞ
ab ¼ G−1

4 ∇aTðmÞ
ab :

Thus, at the level of the field equations for the metric
tensor, the conservation of the stress-energy tensor of matter

implies that of TðϕÞ
ab in this specific scenario. Another way

of understanding this point consists in observing that for

this class of models ∇aTðϕÞ
ab ¼−1

2
ðδL=δϕÞ∇bϕjon shell¼0.

Hence, since G4 ¼ constant and TðeffÞ
ab ¼ G−1

4 TðmÞ
ab þ TðϕÞ

ab ,

MIRANDA, GIARDINO, GIUSTI, and HEISENBERG PHYS. REV. D 109, 124033 (2024)

124033-8



then ∇aTðeffÞ
ab ¼ 0 comes from the independent covariant

conservation of both TðmÞ
ab and TðϕÞ

ab .
The following gravitational action describes the shift-

symmetric sector of the linear model selected in the
previous section

Sg ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½RþG2ðXÞ − λ ln ðX=X�Þ□ϕ�; ð66Þ

so that G2 ¼ G2ðXÞ, G3 ¼ λ ln ðX=X�Þ, and G4 ¼ 1. The
study of this choice of couplings is also motivated from a
phenomenological point of view, since it provides a good fit
to cosmological data from standard probes [56,59].
Then, the associated scalar current reduces to

Ja ¼ δa0ðϕ̇G2X þ 6λHÞ: ð67Þ

In this work, we just restrict to the solutions associated
with vanishing scalar current, in order to provide some
concrete examples, similarly to [8]. Excluding the trivial
case of ϕ̇ ¼ 0 which is equivalent to GR, the vanishing
scalar current entails

ϕ̇G2X þ 6λH ¼ 0: ð68Þ

Using the above equation, and assuming that the
standard matter content is described by the linear barotropic
equation of state PðmÞ ¼ wρðmÞ, we obtain the following
expressions for the scalar field energy density and pressure,
respectively,

ρðϕÞ ¼ −
1

2
G2; ð69Þ

PðϕÞ ¼ 1

2
G2 −

XG2
2X þ 3λ2G2

G2X þ 2XG2XX þ 3λ2

−
3λ2ðw − 1ÞρðmÞ

G2X þ 2XG2XX þ 3λ2
: ð70Þ

The effective scalar fluid temperature of shift-symmetric
viable Horndeski then reads

KT ¼ −λϵ
ffiffiffiffiffiffi
2X

p
: ð71Þ

If we want a positive definedKT , then λϵmust be negative,
i.e., λSignðϕ̇Þ > 0. Since X must be strictly positive, the
above temperature will not reach the zero temperature
equilibrium state associated to GR. This shows that the
approach to equilibrium is not always granted, as it was
also found in [33].
In order to find exact analytical solutions, we assume

PðmÞ ¼ wρðmÞ, H strictly monotonic [i.e., we can write t as
t ¼ tðHÞ], so that Eq. (52) and the scalar equations of
motion (68), respectively, read as follows:

G2½H� ¼ 2ρðmÞ½H� − 6H2; ð72Þ

G2X½H� ¼ −
6λH

ϕ̇½H� ¼
6λϵHffiffiffiffiffiffiffiffiffiffiffiffiffi
2X½H�p ; ð73Þ

where ϵ ¼ −Signðϕ̇Þ. Differentiating G2 with respect to H
one gets

dG2

dH
¼ G2X

dX
dH

;

and differentiating Eq. (72) with respect to H one obtains

dG2

dH
¼ 2

dρðmÞ

dH
− 12H:

Combining the last two equations yields

2
dρðmÞ

dH
− 12H ¼ G2X

dX
dH

:

Then, taking advantage of Eq. (73), the latter can be
rewritten as

2
dρðmÞ

dH
− 12H ¼

�
6λH

ϵ
ffiffiffiffiffiffi
2X

p
�
dX
dH

:

The last equation can be formally integrated on both sides
in H as

Z �
2

H
dρðmÞ

dH
− 12

�
dH ¼ 6λϵ

Z
dXffiffiffiffiffiffi
2X

p ; ð74Þ

or, equivalently,

Z �
2

H
dρðmÞ

dH

�
dH − 12H ¼ 6λϵ

ffiffiffiffiffiffi
2X

p
: ð75Þ

Inspired by the strategy used in [8], our approach
consists of choosing a cosmological evolution, either
power-law expansion or exponential expansion, and then
solving the continuity equation for the matter perfect fluid
energy density, such that we can analytically obtain the
function G2X by inverting the relation X½H� (if possible)
and integrating the vanishing scalar current condition.
Let us start by considering a power-law expanding

universe,

aðtÞ ¼ a�

�
t
t�

�
n
; n > 0; t ≥ 0; ð76Þ

with a� constant. As a consequence, the following equa-
tions hold
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HðtÞ ¼ n
t
↔ tðHÞ ¼ n

H
; ð77Þ

ρðmÞðtÞ ¼ ρ�

�
t�
t

�
3nðwþ1Þ

↔ ρðmÞðHÞ ¼ ρ�

�
H
H�

�
3nðwþ1Þ

;

ð78Þ

where all the � quantities are constant. Using Eqs. (77)
and (78) in Eq. (75), and performing the integration, we
obtain

6λϵ
ffiffiffiffiffiffi
2X

p
¼ 6λϵcX − 12H

þ 6nρ�ðwþ 1Þ
H�½3nðwþ 1Þ − 1�

�
H
H�

�
3nðwþ1Þ−1

; ð79Þ

where cX is an integration constant, and it is associated with
the nonvanishing asymptotic value of

ffiffiffiffiffiffi
2X

p
reached in

correspondence with H ¼ 0 (in the limit t → ∞).
The simplest case admitting an analytical solution

corresponds to n ¼ 2=3ðwþ 1Þ, with w ≠ −1. Then, it
turns out that

6λϵ
ffiffiffiffiffiffi
2X

p
¼ 12H

�
ρ�
3H2�

− 1

�
þ 6λϵcX ⇒ H

¼ λϵ

2
ð

ffiffiffiffiffiffi
2X

p
− cXÞ

�
ρ�
3H2�

− 1

�
−1
: ð80Þ

Thus the system is analytically solvable, yielding

G2ðXÞ ¼
3λ2

2
ð

ffiffiffiffiffiffi
2X

p
− cXÞ2

�
ρ�
3H2�

− 1

�
−1
; ð81Þ

with the scalar field having the following form

ϕðtÞ ¼ ϕ� − ϵcXðt − t�Þ −
2n
3λ

�
ρ�
3H2�

− 1

�
lnðt=t�Þ; ð82Þ

where ϕ� is constant.
Therefore, the effective scalar fluid temperature reads

KT ¼ 2n
t

�
1 −

ρ�
3H2�

�
− λϵcX: ð83Þ

As expected for cosmological solutions with an initial
singularity [33], KT → þ∞ for t → 0, indicating an
extreme deviation of Horndeski theory from the GR
equilibrium state as the singularity is approached.
We can nowmake a sensible consideration about the sign

of the constants appearing in our solution. First, let us take
into account the caseKT > 0. This implies λϵ < 0 because
of Eq. (71). However, there is an additional condition to be
satisfied in order to have a positive definite KT for any
t > 0, namely ð1 − ρ�

3H2�
Þðwþ 1Þ > 0, which is associated

with the requirement of a nonvanishing kinetic term.

Then, assuming w > −1 (corresponding to n > 0), we
obtain ð1 − ρ�

3H2�
Þ > 0. Therefore, the term

ffiffiffiffiffiffi
2X

p
starts from

an infinite positive value, corresponding to the initial
singularity at t ¼ 0, and approaches cX for t → ∞. This
is consistent with Eqs. (77) and (80), where H ¼ n

t must
be positive. As a consequence, G2 is actually negative
definite, and this implies ρðϕÞ > 0 from (69). It is straight-
forward to verify that ρðϕÞ ¼ 3n2

t2 ð1− ρ�
3H2�

Þ and PðϕÞ ¼ wρðϕÞ.

Therefore, ρðϕÞ þ PðϕÞ ¼ ρðϕÞð1þ wÞ > 0 is satisfied. In
this sense, the definition of effective temperature obtained
by generalizing the one found for “traditional” scalar-tensor
first-order thermodynamics implies the weak energy con-
dition for the effective fluid. It is interesting to notice that
this consideration is independent of Signðϕ̇Þ, which is
involved only in the condition λϵ < 0. Lastly, the bulk
viscosity coefficient ζ [cf. Eq. (60)] yields

ζ ¼ λϵ

� ffiffiffiffiffiffi
2X

p
− cX

3H2�
ρ�

�

¼ −
2n
t

�
1 −

ρ�
3H2�

�
þ λϵcX

�
1 −

3H2�
ρ�

�
: ð84Þ

The above equation shows that the effective fluid starts off
with a negative (and diverging to −∞) bulk viscosity
approaching the initial singularity, then ζ vanishes as the

gradient of the scalar field approaches
ffiffiffiffiffiffi
2X

p ¼ cX
3H2�
ρ�
,

or, equivalently, as the cosmological time approaches
t ¼ − 1

λϵ
2nρ�
3cXH2�

, and finally it becomes positive as t increases

from that point.
Let us now take into account the case of a spatially flat de

Sitter spacetime,

aðtÞ ¼ a� expðH�tÞ: ð85Þ

The continuity equation gives

ρðmÞðtÞ ¼ ρ� exp ½−3H�ðwþ 1Þt�; ð86Þ

and, from Eq. (73), we obtain

G2ðXÞ ¼ 6λH�ðϵ
ffiffiffiffiffiffi
2X

p
þ cXÞ: ð87Þ

Then, from the temporal component of the field equa-
tions (72), we obtain

6λH�ðϵ
ffiffiffiffiffiffi
2X

p
þ cXÞ ¼ 2ρðmÞ − 6H2�; ð88Þ

which is equivalent to

ϕ̇ ¼ cX þH�
λ

�
1 −

ρ�
3H2�

exp ½−3H�ðwþ 1Þt�
�
: ð89Þ

Integrating the equation above, the scalar field reads
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ϕðtÞ ¼ ϕ� þ t

�
cX þH�

λ

�

þ 1

3ðwþ 1Þλ
ρ�
3H2�

exp ½−3H�ðwþ 1Þt�: ð90Þ

The effective scalar fluid temperature is

KT ¼ ðλϵcX þH�Þ −
ρ�
3H�

exp ½−3H�ðwþ 1Þt�: ð91Þ

Also in this case, the condition ð1 − ρ�
3H2�

Þ > 0 ensures the

positivity of ρðϕÞ and of KT , under the assumption of
ϵλ < 0 and cX < − H�

ϵλ ð1 − ρ�
3H2�

Þ. The constant cX can be

properly chosen so that the condition ρðϕÞ þ PðϕÞ > 0 is
satisfied as well. Therefore, the effective fluid can be
easily tuned to satisfy the weak energy condition, char-
acteristic of a real fluid. Also in this case, imposing the
positivity of KT goes in the direction of recovering the
weak energy condition.

B. New exact solution with asymptotic shift symmetry

Using a heuristic approach, we can generalize the
previous power-law solution, adding an explicit ϕ depend-
ence inside the action. In particular, we consider the case
described by Eqs. (76)–(78), within n ¼ 2=3ðwþ 1Þ, and,
inspired by Eq. (80), we assume the following equation

HðtÞ ¼ α
ffiffiffiffiffiffi
2X

p
þ β; ð92Þ

whereα and β are constants. The expression above provides a
differential equation for the scalar field, implying

ḢðtÞ ¼ −αϵϕ̈ðtÞ: ð93Þ

Sincewe already have fixed the scalar field time dependence,
once we use Eqs. (92) and (93), we must require the scalar
field equation of motion to be identically solved by the
functional form of the action,

Sg ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½G4ðϕÞRþ G2ðϕ; XÞ

− FðϕÞ lnðX=X�Þ□ϕ�: ð94Þ

Therefore, let us write down the equation of motion of the
scalar field

ϕ̈½2Fϕ ln ðX=X�Þ þ 2Fϕ þ 6αϵðF −G4ϕÞ − G2X − 2XGXX�
þ X½6αðϵG2X þ 2ϵFϕ − 6αF þ 4αG4ϕÞ − 2G2ϕX�
þ lnðX=X�Þ½2XðFϕϕ − 6αϵFϕÞ − 6βϵ

ffiffiffiffiffiffi
2X

p
Fϕ�

þ 3β
ffiffiffiffiffiffi
2X

p
½ϵG2X þ 2ϵFϕ − 12αF þ 8αG4ϕ�

þ G2ϕ þ 6β2½2G4ϕ − 3F� ¼ 0: ð95Þ

First, we need to impose that the coefficient of ϕ̈ vanishes,
i.e.,

2Fϕ ln ðX=X�Þ þ 2Fϕ þ 6αϵðF − G4ϕÞ −G2X

− 2XGXX ¼ 0; ð96Þ
which can be seen as a differential equation forG2, having as
solution the following functional form,

G2ðϕ; XÞ ¼ μ
ffiffiffiffiffiffi
2X

p
þ νþ 2XFϕ lnðX=X�Þ

− X½4Fϕ − 6αϵðF −G4ϕÞ�; ð97Þ

where μ ¼ μðϕÞ and ν ¼ νðϕÞ are integrating functions of
the scalar field. Substituting Eq. (97) into the field equations
of the scalar field and of the metric tensor yields

6α½ϵðG4ϕϕ−FϕÞ−2αG4ϕ�Xþ3α½2βðG4ϕ−3FÞþϵμ�
ffiffiffiffiffiffi
2X

p

þ6β2ð2G4ϕ−3FÞþ3βϵμþνϕ¼0; ð98Þ

3

�
ϵðF −G4ϕÞ þ 2α

�
G4 −

ρ�
3H2�

��
ðαX þ β

ffiffiffiffiffiffi
2X

p
Þ

þ 3β2
�
G4 −

ρ�
3H2�

�
þ 1

2
ν ¼ 0: ð99Þ

The above equations appear to have the same structure
with respect to the X-dependence, namely c1ðϕÞXþ
c2ðϕÞ

ffiffiffiffiffiffi
2X

p þ c3ðϕÞ ¼ 0. We can obtain the general solu-
tion associated with Eqs. (92) and (93), by requiring
all coefficients ciðϕÞ of the above equations to vanish.
This provides the following (unknown) functions of the
scalar field,

FðϕÞ ¼ 2αϵ

�
ρ�
3H2�

−G4

�
þ G4ϕ; ð100Þ

μðϕÞ ¼ 4βϵ

�
3αϵ

�
ρ�
3H2�

−G4

�
þG4ϕ

�
; ð101Þ

νðϕÞ ¼ 6β2
�

ρ�
3H2�

−G4

�
; ð102Þ

while the effective temperature reads

KT ¼ 2α
ffiffiffiffiffiffi
2X

p �
1 −

1

G4

ρ�
3H2�

�
: ð103Þ

Then, the only remaining free Horndeski function is G4.
When the nonminimal coupling function is equal to one, the
action (94) reduces to that of the shift-symmetric theory,
provided that

α¼ λϵ

2

�
ρ�
3H2�

− 1

�
−1
; β ¼ −

λϵ

2
cX

�
ρ�
3H2�

− 1

�
−1
: ð104Þ
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It is useful to understand the solution considered above
as asymptotically approaching its shift-symmetric for-
mulation. In this case, the remark about the positivity of
KT translates to G4 >

ρ�
3H2�

. This means that G4 cannot

be chosen such that the initial singularity is removed
and the original singularity of the shift-symmetric model
remains unchanged.

V. CONCLUSIONS

In this work, we have specialized the formalism for the
first-order thermodynamics of viable Horndeski gravity to
the case of spatially flat isotropic and homogeneous
spacetimes, with the goal of testing the physical intuition
behind the formalism in this class of theories with interest-
ing implications.
In general, the thermodynamics of scalar-tensor gravity

[24,25] relies on the effective fluid approach to modified
gravity theories [29,44]. According to this framework,
given an alternative theory of gravity, we can derive from
its field equations a generalized Einstein equation where
all the contributions of the additional scalar degree of
freedom—other than the matter fields—are collected in an

effective stress-energy tensor TðϕÞ
ab . Such an effective tensor

is symmetric by construction: thus, given a timelike vector

field ua, TðϕÞ
ab always admits an imperfect fluid decom-

position based on ua (this is a trivial algebraic result,
though for details we refer the reader to [60]). In other
words, we can always find effective energy density,
pressure, heat fluxes, and anisotropic stresses associated

to TðϕÞ
ab and ua. More importantly, if∇aϕ is timelike, we can

construct a 4-velocity field ua ∝ ∇aϕ, allowing us to

provide a fluid interpretation for TðϕÞ
ab . This fluid, with

4-velocity ua ∝ ∇aϕ, is the dubbed ϕ fluid. Studying
the kinematic quantities of such an effective fluid and
comparing them to the imperfect fluid decomposition of

TðϕÞ
ab one can then infer the constitutive relations of the ϕ

fluid. It was then shown in [37], generalized in [45],
and further expanded on in this work, that the effective
fluid representation for the viable subclass of Horndeski
gravity satisfies the constitutive laws of Eckart’s theory
of nonequilibrium thermodynamics. This allows us to
define an effective temperature for the ϕ fluid, which is
positive definite for scalar-tensor theories and represents
the order parameter characterizing the approach (or lack
thereof) to the GR equilibrium state at zero temperature.
Since Eckart’s constitutive relations are linear in the

velocity gradient∇bua, specializing the analysis for cosmo-
logical backgrounds further restricts the Horndeski theory
to the subclass characterized by G3 ¼ FðϕÞ lnðX=X�Þ.
Contrary to “traditional” scalar-tensor theories [33],

viable Horndeski gravity naturally admits zero tempera-
ture equilibrium states other than GR (which is charac-
terized by ϕ ¼ const) corresponding to the condition

ffiffiffiffiffiffi
2X

p ðG4ϕ − XG3XÞ ¼ 0, i.e. G3 ¼ G4 lnðX=X�Þ. This
class of zero-temperature equilibrium states alternative to
GR is characterized by nonvanishing viscosity coefficients,
thus suggesting that such equilibrium states are actually
unstable.
In flat FLRW cosmology, due to the symmetries of

the background, the heat flux and the anisotropic stress
vanish identically. However, the viscous contribution
remains and is visible through the isotropic pressure
giving rise to a nonvanishing bulk viscosity. We com-
puted the effective bulk viscosity for such models in this
scenario, while the temperature and thermal conductivity
are naturally inherited from the general (background-
independent) approach.
The general results for the thermodynamics of viable

Horndeski cosmology were then tested against exact
solutions for interesting subclasses of the general theory
that are also favored by cosmological observations. The
considered examples differ significantly from the results
obtained for “traditional” scalar-tensor cosmologies, since
they display a nonvanishing effective temperature at all
times in the cosmic evolution and asymptotically approach
a constant effective temperature at late times. These results
have been obtained, in particular, for classes of shift-
symmetric and asymptotically shift-symmetric theories
(the latter being shift symmetric as the nonminimal
coupling functionG4 approaches unity), both characterized
by a nonvanishing braiding parameter.
In addition to showing the existence of subclasses of

viable Horndeski gravity that never relax to the GR
equilibrium state, our analysis further confirms pre-
vious findings according to which curvature singulari-
ties are “hot” [25], exhibiting a diverging temperature.
This suggests that the deviations of these models from
GR become extreme at spacetime singularities. An
additional intriguing consequence of finding the effec-
tive temperature associated to these viable Horndeski
subclasses is that imposing its positivity recovers the
weak energy condition for the ϕ fluid, which is
characteristic of a real fluid and was not expected to
hold for an effective fluid.
Lastly, in this work we have also provided a novel

exact cosmological solution for an asymptotically shift-
symmetric theory as a toy model for our thermodynamic
analysis.
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