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We study radiation from charged particles in circular motion around a Schwarzschild black hole
immersed in an asymptotically uniform magnetic field. In curved space, the radiation reaction force is
described by the DeWitt-Brehme equation, which includes a complicated, nonlocal tail term. We show that,
contrary to some claims in the literature, this term cannot, in general, be neglected. We account for self-
force effects directly by calculating the electromagnetic energy flux at infinity and on the horizon. The
radiative field is obtained using black hole perturbation theory. We solve the relevant equations analytically,
in the low-frequency and slow-motion approximation, as well as numerically in the general case. Our
results show that great care must be taken when neglecting the tail term, which is often fundamental to
capture the dynamics of the particle: in fact, it only seems to be negligible when the magnetic force greatly
dominates the gravitational force, so that the motion is well described by the Abraham–Lorentz–Dirac
equation. We also report a curious “horizon dominance effect” that occurs for a radiating particle in a
circular orbit around a black hole (emitting either scalar, electromagnetic or gravitational waves): for fixed
orbital radius, the fraction of energy that is absorbed by the black hole can be made arbitrarily large by
decreasing the particle velocity.
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I. INTRODUCTION

The self-force (or radiation reaction) problem concerns
the interaction of a particle with its own radiative field
[1–12]. Understanding the self-force problem in general
relativity, in particular in the context of a particle orbiting a
compact object like a black hole (BH), is instrumental for
next generation gravitational wave detectors [13], and is a
very active topic of research [14–24].
Particles in the vicinity of BHs can attain ultrarelativistic

velocities [25], and we can expect matter to be ionized, so it
makes sense to consider particles with electric charge.
These particles generate electromagnetic and gravitational
fields, both of which give rise to self-force effects. In this
work, we focus on electromagnetic radiation reaction,
which has been less studied than its gravitational counter-
part in the context of BH physics.
Astrophysical BHs are often surrounded by intense mag-

netic fields [26–30], which are supported by accretion disks
of ionized matter. As such, we also want to include the
interaction of the charged particle with a background mag-
netic field. We consider the simplest case of a Schwarzschild
BH surrounded by an asymptotically uniformmagnetic field.
This system has been amply studied in the absence of
radiation [31–36], with a few notable exceptions [16,37–39].

For simplicity, we opt to include the magnetic field as a
perturbative effect. In other words, we assume that its
backreaction on the geometry is negligible. Such a mag-
netic field can be computed using the results in Ref. [40].
Treating the magnetic field perturbatively means that we
must restrict ourselves to a region of the Schwarzschild
spacetime satisfying [41]

r
GM=c2

≪ 4.7 × 1019
�
1 Gauss

B0

��
M⊙

M

�
: ð1Þ

If we replace the typical values of magnetic field B0 ∼
104–108 Gauss [26–29], we find there is ample room to study
this system within the weak magnetic field approximation.
The equation of motion of a radiating charged particle in

a curved background is the De Witt–Brehme equation
[2,3,9]. This equation contains a particularly complicated,
nonlocal, tail term. Some of the reference works in the
literature concerning radiation reaction in weakly magnet-
ized BHs claim that the tail term can be neglected [39].
This results in the appearance of a counterintuitive “orbital
widening” effect [42,43].
In a previous publication, working under a weak field

approximation, we showed that the tail term must be
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included, unless the Newtonian gravitational force is
negligible in comparison with the Lorentz force [44].
We also showed that there can be no “orbital widening”
in this limit, consistently with previous studies [45]. A
generalization of the result to the strong field case was
however missing, and is provided here. We conclude that
the tail term must be included except when the motion is
dominated by magnetic effects. In all cases, there is no
orbital widening, at least for particles in circular orbit.
This work is not the first concerning radiation reaction in

weakly magnetized BHs. Still, we present for the first time
formulas describing the energy flux for arbitrary multipolar
modes, in the slow-motion and low-frequency approxima-
tion, for any value of orbital frequency of the particle.
Incidentally, we give a fully detailed description of the
method to find solutions of the Teukolsky equation in
that approximation, which seems to be missing in the
literature (see Appendix A). More importantly, we give a
full numerical solution to the Teukolsky equation. In the
low-frequency and slow motion regime our analytical and
numerical results show excellent agreement, and establish
without doubt that the tail term cannot be neglected.
Finally, we report a “horizon dominance effect” (already
encountered in [16,46]), which we characterize in detail
and show to also occur in flat space for appropriate
absorbing boundary conditions (see Appendix B).
This work is organized as follows: In Sec. II we give an

overview of the setup we are studying and of the DeWitt-
Brehme equation, namely the tail term. Then, in Sec. III, we
show how the radiation field of a charged particle in
circular orbit and the corresponding energy fluxes at
infinity and on the BH horizon can be calculated using
the Teukolsky equation. Using these results, we obtain in
Sec. IV analytical formulas for the slow-motion and low-
frequency approximation. Finally, in Sec. V we obtain
numerical results for the general case.
We use a system of units with G ¼ c ¼ 1, and use

Gaussian units for electromagnetism, meaning that we
have 4πε0 ¼ 1 and μ0 ¼ 4π. The metric signature is
ð−;þ;þ;þÞ, and Greek indices run from 0 to 3.

II. SETUP

A. Weakly magnetized Schwarzschild black hole

In this paper we focus on the circular motion of charged
particles in the equatorial plane of a weakly magnetized
Schwarzschild BH. The magnetic field is treated as a test
field throughout the calculation, inducing no backreaction
on the geometry; thus, using standard Schwarzschild
coordinates ft; r; θ;ϕg, we can write the line element as

ds2 ¼ −fdt2 þ f−1dr2 þ r2dθ2 þ r2 sin2 θdϕ2; ð2Þ

f ¼ fðrÞ ¼ 1 −
2M
r

; ð3Þ

where M is the BH mass. The Schwarzschild solution
admits the Killing vector fields

Xμ ¼ δμt and Yμ ¼ δμϕ; ð4Þ
where δμν is the identity operator. These vectors are
associated with conservation laws for energy and angular
momentum along ẑ, which we define below. In the back-
ground above, a stationary and asymptotically uniform
magnetic field along the ẑ direction corresponds to the
vector potential [40]

Aμ ¼
B0

2
Yμ ¼

B0

2
r2 sin2 θδϕμ ; ð5Þ

where Yμ is the axial Killing vector defined in Eq. (4) and
B ¼ B0ẑ is the asymptotic magnetic field. The test field
approximation implies that such a solution can only be
taken over a region of size (1).
Consider now a test particle of mass m, carrying an

electric charge q moving in this spacetime. Following
Ref. [34], we can write the Hamiltonian as

Hðπμ; xμÞ ¼ 1

2
fπ2r þ

1

2r2
π2θ −

1

2

m2

f
ðE2 − VeffÞ; ð6Þ

where xμ ¼ ft; r; θ;ϕg are the Schwarzschild coordinates
and πμ ¼ muμ þ qAμ are the conjugate momenta, with
uμ ¼ dxμ=dτ the particle’s 4-velocity and τ the proper time.
Moreover, we define E and L, the energy and angular
momentum along ẑ per unit mass,

E ¼ E
m

¼ −
πt
m

¼ fut;

L ¼ L
m

¼ πϕ
m

¼ r2 sin2 θ

�
uϕ þ ωc

2

�
ð7Þ

(both conserved quantities), and the effective potential

Veff ¼ f

�
1þ

�
L

r sin θ
− r sin θ

ωc

2

�
2
�
: ð8Þ

Note that throughout, instead of the magnetic field strength,
we use instead the (possibly negative) cyclotron frequency
of the particle,

ωc ≡ qB0

m
: ð9Þ

In our numerical analysis, we will be concerned with ratios
of fluxes, so results depend only on the cyclotron frequency
ωc.

1 For astrophysical magnetic fields [26–29], we find that
the cyclotron frequency can grow as large as Mωc ∼ 1011

for an electron orbiting a supermassive BH. We cannot
reach this order of magnitude in our simulations, and we

1Naturally, if we want to actually evolve the orbit of a particle,
the three parameters q, B0 and m all have to be specified.
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only studied values of cyclotron frequency up toMωc ∼ 10,
which already provides a good understanding of the
asymptotic regime of large ωc. Furthermore, our analytical
results are valid for arbitrary cyclotron frequency.
The effective potential governs the region of phase space

accessible to the particle, as well as the properties of circular
orbits. Circular orbits only exist in the equatorial plane
(θ ¼ π=2), and we can characterize them via the orbital
radius r0, the orbital frequencyΩ0, and the orbital velocityv0.
The symmetry of the effective potential, which is invariant
under the transformation ðL;ωcÞ → ð−L;−ωcÞ, motivates
the distinction of two different types of circular motion:
Minus configuration (MC), where L > 0 and ωc < 0.

This configuration exists in flat space, as the Lorentz force
is centripetal here.
Plus configuration (PC), where L > 0 and ωc > 0. This

configuration has no flat-space counterpart, as the Lorentz
force is centrifugal (see Fig. 1).
We choose to always consider positive orbital frequen-

cies and angular momenta Ω0;L > 0, so the sign of the
cyclotron frequency distinguishes minus (ωc < 0) and plus
(ωc > 0) configuration orbits. Thus, the orbital frequency
can be written as

Ω0 ¼
�

1

2þ 2r20ω
2
c

�
2ω2

K þ ω2
cð1 − 2M=r0Þ

− ωc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
cð1 − 2M=r0Þ2 þ 4ω2

Kð1 − 3M=r0Þ
q ��

1=2
;

ð10Þ

where we expressed our result in terms of the cyclotron
frequency ωc, Eq. (9), and the Keplerian frequency

ωK ¼
ffiffiffiffiffi
M
r30

s
: ð11Þ

There are two competing forces, each characterized by a
typical frequency: the gravitational force, characterized by
ωK , and the Lorentz force, characterized by ωc. For a given
circular orbit, the dominant effect should be associated with
the higher frequency; we expect there to be a change of
behavior around ωK ∼ ωc, that is, around a critical radius

rc ¼
�
M
ω2
c

�
1=3

: ð12Þ

The asymptotic behavior of the orbital frequency is as
follows: for small orbital radius, r0 ≪ rc, it approaches the
Keplerian frequency, Ω0 ∼ ωk; this limit is expected, since
gravitational effects are dominant in this regime. For large
orbital radius, r0 ≫ rc, the asymptotic behavior of the orbital
frequency for PCorbits is different from that ofMCorbits. For
PC orbits, where the Lorentz force points outward, we find

Ω0 ∼
ω2
K

ωc
¼ M

r30ωc
: ð13Þ

For MC orbits, the Lorentz force points inward, and so for
orbital radius in the range rc ≪ r0 ≪ 1=Mω2

c, we recover the
standard flat space cyclotron motion [47],

Ω0 ≈ Ωc ¼ −
ωcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðr0ωcÞ2
p : ð14Þ

FIG. 1. Schematic representation of the two configurations of circular orbits discussed in this work. They lie in the equatorial plane of
a BH immersed in an asymptotically uniform magnetic field orthogonal to the plane of this page. The positively-charged particle (gray
dot) is assumed to orbit the BH (black disk at the center) anticlockwise; the cyclotron frequency is ωc ¼ qB0=m, where B0 is the
magnetic field strength at infinity, q is the charge of the particle, andm is its mass. The configurations are invariant under inversion of the
direction of the orbit and of the sign of ωc. We also include a Newtonian interpretation of the difference between the two configurations:
FN and FL represent the gravitational and Lorentz forces, respectively, with the latter being centripetal (centrifugal) in MC (PC) orbits.
(a) Minus configuration (MC): ωc < 0. (b) Plus configuration (PC): ωc > 0.

RADIATION REACTION IN WEAKLY MAGNETIZED BLACK … PHYS. REV. D 109, 124032 (2024)

124032-3



As r0 increases even further, however, curved space effects
become dominant: in fact, expanding r20Ω2

0 in powers of
1=r0 gives

r20Ω2
0 ∼ 1 −

2M
r0

−
1

r20ω
2
c
; ð15Þ

as opposed to the flat space expansion r20Ω2
c ∼ 1 − 1=r20ω

2
c.

Consequently, for r0 ≳ 1=Mω2
c the flat space cyclotron

frequency (14) stops being a good approximation,2 and we
must use formula (15) instead. This happens for ultrarelativ-
istic MC orbits, and can be seen as a manifestation of the
redshift effect, since we are using the Schwarzschild time
coordinate to define Ω0.
Finally, all orbits are stable up to the innermost stable

circular orbit (ISCO). We find that taking the limit
jMωcj → ∞ leads to

rISCO0 → 2M; PC orbits; ð16Þ

rISCO0 →
ð5þ ffiffiffiffiffi

13
p ÞM
2

; MC orbits: ð17Þ

Regarding the orbital velocity v0 ¼ r0Ω0 of the particles at
the ISCO, as measured by stationary observers at infinity, it
tends to zero for PC orbits (essentially due to gravitational

time dilation), and to a finite value for MC orbits, where
we get

vISCO0 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ ð3þ ffiffiffiffiffi

13
p Þ

q
5þ ffiffiffiffiffi

13
p ≈ 0.732 ðjMωcj → ∞Þ: ð18Þ

These results are compatible with those presented in
Refs. [31–37].
For completeness, we also look at the velocity profiles in

MC and PC orbits (see Fig. 2). Changing ωc implies a shift
in rc and a subsequent shift of the velocity profile. In MC
orbits, the velocity increases for large radius and asymp-
totic orbits are relativistic; this happens because the Lorentz
force is attractive and dominant in this region and so, just
like in flat space cyclotron motion, the particle must move
faster in wider orbits. In PC orbits, the velocity decreases
for all orbital radii; the Lorentz force is now repulsive so it
decreases the centripetal force.
It is easy to show from Eqs. (7)–(10) that circular orbits

with larger radius have larger energy. Thus, if the particle is
in a circular orbit and radiates positive energy, then its
energy decreases and the orbital radius must decrease.
Conversely, if the particle gains energy, the orbital radius
must increase.

B. Radiation reaction force in curved space

The generalization to curved space of the dynamics of a
radiating charged particle of mass m and charge q in the
presence of an EM field yields the DeWitt-Brehme equa-
tion [2,3,9]. This is a third order differential equation, and

FIG. 2. Velocity profiles, as measured by a stationary observer at infinity, of circular orbits with radius r0. Blue and red curves
correspond to the velocity profiles for MC and PC orbits, respectively. Left: MC orbits for Mjωcj ¼ 10−3. Right: PC orbits for
Mjωcj ¼ 10−2. The solid blue and red curves are calculated using Eq. (10); the black dashed curves are obtained by taking the orbital
frequency to be the Keplerian frequency [Eq. (11)]; the black dashed curves are obtained using Eq. (14) in MC orbits and Eq. (13) in PC
orbits. Finally, the black solid thin vertical line indicates the critical radius [Eq. (12)]. We show different values of jMωcj in the two
panels because these appropriate to study each configuration and are thus used further ahead in Sec. V. In the right panel, the Keplerian
frequency is only a good approximation very close to the ISCO because jMωcj is large enough to change the velocity profile for smaller
orbital radius than in the left panel (as seen by the position of rc).

2The scale set by 1=Mω2
c is much larger than the scale set by rc

if we assume thatMωc ≪ 1, i.e., that the characteristic velocity of
cyclotron motion at the horizon radius is much smaller than the
speed of light.
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so a reduction of order must be performed to avoid runaway
solutions [8,48–50]; doing so, and taking the metric to be a
vacuum solution of the Einstein equations (Rμν ¼ 0), yields

Duμ

dτ
¼ q

m
Fμ

νuν þ 2q2

3m

�
q
m
∇αF

μ
νuαuν

�

þ 2q2

3m

�
q2

m2
ðFμνFνρ þ FναFαρuνuμÞuρ

�

þ 2q2

m
fμνtailuν: ð19Þ

Here, the only difference with respect to the reduced
Abraham-Lorentz-Dirac equation in flat space is the tail
term,

fμνtail ¼
Z

τ−

−∞
∇½μGν�

λ0 ðzðτÞ; zðτ0ÞÞuλ
0
dτ0; ð20Þ

where square brackets denote antisymmetrization, zðτÞ is
the particle’s worldline, Gν

λ0 ðx; x0Þ is the retarded Green’s
function for the vector wave equation in curved space, and
the integral is taken over the entire history of the particle. A
modern derivation of this formula is given by Poisson [9].
The nonlocal tail term is very complicated to calculate

[4,51]. Previous analysis estimated its magnitude based on a
static-charge approximation, and concluded that it can be
neglected [39]. Unfortunately, we are precisely interested in
moving charges where such an argument does not hold [44].
To make the point clear, let us assume that the tail term

can be neglected. The inclusion of radiation force in
Eq. (19) without the tail term causes the particle energy
to change with time according to

dE
dt

¼ −
2q2

3
ωcf

�
ωcE2 −

�
ωcf þM

r
uϕ

��
; ð21Þ

which allows the particle to gain energy, that is, dE=dt > 0.
Indeed, for circular orbits of radius r0, the condition
dE=dt > 0 can be written as

ωc > 0 and 0 < fðr0Þuϕ < ω2
K=ωc: ð22Þ

This condition is satisfied for all PC orbits outside the light
ring (r0 > 3M). Since the energy of circular orbits
increases with the radius of the orbit, we expect the orbital
radius of a particle in a PC orbit to increase as it gains
energy according to Eq. (21). This “orbital widening” was
reported in Refs. [39,42].
This result is counterintuitive (and wrong): there is no

energy conservation, since there is no source of energy in
the system that could be feeding the orbital widening. In the
upcoming sections we will show that orbital widening does
not take place. Wewill also show that the tail can be neglect
in some circumstances, but never in PC orbits, hence orbital

widening is not possible. We will employ BH perturbation
theory [52–54]. This will allow us to calculate the radiation
field of a particle in circular orbit and the corresponding
energy flux at infinity and on the BH horizon, which will be
compared with Eq. (21), allowing us to evolve the circular
orbit in the adiabatic approximation. Notice that this
formalism is fully relativistic, and so the results are valid
in the strong field regime.

III. ELECTROMAGNETIC FIELDS
ON A SCHWARZSCHILD GEOMETRY

A. The Teukolsky equation

The Teukolsky equation [52] is derived within the
Newman-Penrose formalism [55], and describes the radi-
ative degrees of freedom of massless fields of spin-weight s
(s ¼ 0;−1;−2 for scalars, vectors and tensors, respec-
tively) in the background of a rotating Kerr BH. Setting
the BH angular momentum to zero yields the Bardeen-
Press equation [54], which in Schwarzschild coordinates
can be written as

�
r2

f

�
∂
2
tψ −

1

sin2 θ
∂
2
ϕψ −

�
1

r2f

�
s
∂rððr2fÞsþ1

∂rψÞ

−
1

sin θ
∂θðsin θ∂θψÞ − 2is

�
cos θ
sin2 θ

�
∂ϕψ

− 2s

�
M
f
− r

�
∂tψ þ ðs2 cot2 θ − sÞψ ¼ 4πr2T; ð23Þ

where ψ is the perturbation field and T is a source term. The
t and ϕ dependencies are trivial, while the radial and
angular parts are separable if the fields are expanded in
terms of spin-weighted spherical harmonics sYlmðθ;ϕÞ
[56]. Therefore, we start by expanding the fields and
sources in their Fourier-harmonic components

ψ ¼
Z

∞

−∞
dω

X∞
l;m

RωlmðrÞsYlmðθ;ϕÞe−iωt; ð24Þ

T ¼
Z

∞

−∞
dω

X∞
l;m

TωlmðrÞsYlmðθ;ϕÞe−iωt; ð25Þ

and obtain the equation for the radial functions Rωlm (we
will drop the ωlm subscripts from now onward, for
simplicity):

�
r2f

d2

dr2
þ2ðsþ1Þðr−MÞ d

dr
−Vs

�
R¼ 4πr2T;

VsðrÞ¼ ðl− sÞðlþ sþ1Þ− ðrωÞ2
f

þ2iωs

�
M
f
− r

�
: ð26Þ

This equation can be solved by taking two linearly
independent solutions of the homogeneous radial
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equation (26). We label these solutions RH and R∞ because
we will see that they correspond to the boundary conditions
on the horizon and at infinity, respectively. From these two
solutions of the homogeneous equations we can define a
rescaled Wronskian

W ¼ ðr2fÞsþ1

�
R∞ dRH

dr
− RH dR∞

dr

�
; ð27Þ

which is constant. We can then find the solution of the
radial equation with a source with the appropriate asymp-
totic behavior on the horizon and at infinity in the form

RðrÞ ¼ R∞ðrÞ
W

Z
r

2M
RHðr0ÞTðr0Þðr02fðr0ÞÞsdr0

þ RHðrÞ
W

Z
∞

r
R∞ðr0ÞTðr0Þðr02fðr0ÞÞsdr0: ð28Þ

B. Electromagnetic perturbations
of Schwarzschild spacetime

We are interested in studying EM perturbations on
a Schwarzschild background. To use the Teukolsky
equation (23) we must first decompose the EM field into
components with a well-defined spin weight s. It turns out
that all the relevant quantities (energy flux at infinity and
on the horizon) can be expressed in terms of a single
component, so that in the end we just have to solve Eq. (23)
with the substitutions

ψ ¼ r2ϕ2; s ¼ −1; T ¼ r2J2; ð29Þ

where ϕ2 and J2 are s ¼ −1 quantities built from the
Faraday tensor and the charge 4-current, respectively [53].
On physical grounds, the radiation field is expected to

correspond to purely outgoing waves at infinity and purely
ingoing waves on the horizon. This must be imposed at the

level of the solutions of the homogeneous radial equation
RH and R∞, as seen in Eq. (28). The asymptotic behavior
of the solutions of the homogeneous radial equation for
s ¼ −1 is [53]

RH ∼
Ain

r
e−iωr⋆ þ Aoutreiωr⋆ ;

R∞ ∼ reiωr⋆ ; r → ∞ ð30Þ

and

R∞ ∼ Binr2fe−iωr⋆ þ Bouteiωr⋆ ;

RH ∼ r2fe−iωr⋆ ; r → 2M; ð31Þ

where r⋆ is the usual tortoise coordinate. Next, we must
take care of the source term.

C. Energy radiated by a charged particle
in a circular orbit

The 4-current Jμ of a single particle of charge q is

JμðxÞ ¼ q
Z

dτuμðτÞδð4Þðx − zðτÞÞ; ð32Þ

where zðτÞ is the particle’s trajectory, τ is the proper time
and uμ ¼ dzμ=dτ is the 4-velocity. In our particular case,
these should correspond to a particle in a circular orbit in
the equatorial plane with radius r0 and orbital velocity
Ω0 ¼ dϕ=dt. We then find

JμðxÞ ¼ q
uμ
ut

δðr − r0Þ
r2

δðcos θÞ
sin θ

δðϕ −Ω0tÞ: ð33Þ

This result must be replaced into the expression for the
source term T ¼ r2J2, which we then Fourier-expand as
indicated in Eq. (25). One gets

ϕ2 ¼
1

r2
X
l;m

½R∞ðrÞZ∞Θðr − r0Þ þ RHðrÞZHΘðr0 − rÞ�Ylmðθ;ϕÞe−imΩ0t; ð34Þ

Z∞;H ≡ iπqffiffiffi
2

p
mΩ0Ain

�
RH;∞ðr0Þ
fðr0Þ

��
imΩ0 þ

3fðr0Þ
r0

�
iv0−1Ȳlmðπ=2; 0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
r0

fðr0Þ0Ȳlmðπ=2; 0Þ
�

− iv0
1

r2
d
dr

ðr2RH;∞Þr¼r0−1Ȳlmðπ=2; 0Þ
�
; ð35Þ

where ΘðxÞ is the Heaviside step function, and the
frequency is ω ¼ mΩ0 (we remind the reader that the
homogeneous functions RH;∞ carry ωlm subscripts).
Once the field is determined, we can use it to compute

energy fluxes [57],

Ė∞ ≡ dE
dt

����
∞
¼ 1

2π

X
l;m

jZ∞
lmj2 ð36Þ

and
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ĖH ¼
X
l;m

32ðmΩ0Þ2M6ð16ðmΩ0Þ2 þ 1=M2Þ
π½lðlþ 1Þ�2 jZH

lmj2; ð37Þ

respectively. Despite their complicated appearance, the
only difficult task is actually finding the solutions RH;∞

of the homogeneous radial equation, Eq. (26), with
physical boundary conditions. In the following we will
employ both analytical and numerical methods to accom-
plish this task, and to obtain the energy fluxes.
We recall that we calculate these energy fluxes for a

particle in a circular orbit with the aim of studying particle
motion using the adiabatic approximation, that is, assuming
the particle is always in a circular orbit. However, for this to
be true, energy and angular momentum losses must be such
that they continue driving the particle on a circular path. It
turns out, the energy and angular momentum carried out by
a mode with azimuthal number m and frequency ω are
related by [57–59]

L̇ ¼ m
ω
Ė: ð38Þ

In our case we have ω ¼ mΩ0 and we find indeed that the
particle will remain in (quasi)circular motion upon adia-
batic backreaction from electromagnetic radiation [59].

IV. ANALYTICAL RESULTS

We have established that a particle in a circular orbit
around a SchwarzschildBH loses energy through radiation to
infinity and into the BH, given by Eqs. (35)–(37). The

problem of actually finding the value of the energy flux for a
given set of parameters really boils down to finding RHðr0Þ,
R∞ðr0Þ and Ain, that is, it reduces to solving the homo-
geneous Teukolsky equation with physical boundary con-
ditions. This can be done analytically in the small frequency
limit, Mω≪1, for slow motion, v0 ¼ r0Ω0 ≪ 1. The cor-
responding calculations are presented in Appendix A; here
we simply use these results to compute the energy fluxes.

A. Energy flux at infinity

Consider first the low-frequency, closed-form solution
for the energy flux at infinity from the dipole mode
l ¼ jmj ¼ 1 term, obtained from Eqs. (35) and (36).
This is the dominant contribution at low velocities, and
yields a generalized Larmor formula (GLF):

Ė∞
11 þ Ė∞

1−1 ¼
1

π
jZ∞

11j2 ≈
2

3
q2ðr0 − 2MÞ2Ω4

0: ð39Þ

Note that Ė∞
lm ¼ Ė∞

l−m [60]. We call (39) a GLF because it
reduces to the Larmor formula for large r0, the only
difference between them being the scaling ∝ ðr0 − 2Þ2,
which implies the energy flux at infinity goes to zero as the
orbit approaches the BH event horizon.
We can also obtain expressions for the energy flux at

infinity in a generic mode ðl; mÞ. It turns out we must treat
modes with even and odd values of lþm separately [61].
This is because the dominant term in the low-frequency and
slow orbit approximation is different for the two cases.
We find

Ė∞
lm ¼ 24l−4

q2

M2
ðr0=M − 2Þ2ðmMΩ0Þ2ðlþ1Þ ðlþ 1Þð2lþ 1ÞΓðlÞ2Γðlþ 1Þ2Γðlþ 2Þ2ðl −mÞ!ðlþmÞ!

lΓð2lÞ2Γð2lþ 2Þ2ððl −mÞ!!Þ2ððlþmÞ!!Þ2

× 2F1

�
1 − l;lþ 2; 2; 1 −

r0
2M

�
2

; ð40Þ

Ė∞
lm ¼ 24l−8

q2

M2
m2v40ðmMΩ0Þ2l

ð2lþ 1ÞΓðlÞ2Γðlþ 1Þ2Γðlþ 2Þ2ððl −mÞ!!Þ2ððlþmÞ!!Þ2
l3ðlþ 1ÞΓð2lÞ2Γð2lþ 2Þ2ðl −mÞ!ðlþmÞ!

×

�
ðl2 þ l − 2Þðr0=M − 2Þ2F1

�
2 − l;lþ 3; 3; 1 −

r0
2M

�
þ 42F1

�
1 − l;lþ 2; 2; 1 −

r0
2M

��
2

ð41Þ

for even and odd values of lþm, respectively, where F is
a standard hypergeometric function of the second kind.
We have performed a detailed comparison of the relative

importance of different multipolar modes and concluded
that, within the domain of validity of the slow-motion and
low-frequency approximation, the dipole term dominates

the energy flux at infinity, even in the strong field regime,
up to about r0 ≈ 2.1. Beyond that value, higher multipoles
must be included to get an accurate estimate of the energy
flux at infinity. This dominance is very clear if we take
r0 → ∞ and compare the flux in a given mode to the
dipolar flux,
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Ė∞
lm

Ė∞
11

∼ 3 × 4lm2lþ2
lðlþ 1Þð2lþ 1ÞΓðlÞ2Γðl −mþ 1ÞΓðlþmþ 1Þ

ððl −mÞ!!Þ2ððlþmÞ!!Þ2Γð2lþ 2Þ2 ðv0Þ2l−2; r0 → ∞; ð42Þ

Ė∞
lm

Ė∞
11

∼ 3 × 4lþ1m2lþ2
lðlþ 1Þð2lþ 1ÞΓðlÞ2ððl −mÞ!!Þ2ððlþmÞ!!Þ2

Γð2lþ 3Þ2Γðl −mþ 1ÞΓðlþmþ 1Þ ðv0Þ2l; r0 → ∞; ð43Þ

for even and odd values of lþm, respectively. The scaling with v0 coincides with that for gravitational radiation [61].

B. Energy flux across the horizon

We now turn to the energy flux across the BH horizon, Eqs. (35)–(37). We find the general (small-frequency, small orbital
velocity) result

ĖH
lm ¼ 22lþ2

q2

M2
ðr0=M − 2Þ−2ðlþ1ÞðmMΩ0Þ2

ð2lþ 1ÞΓðlþ 1Þ2Γðlþ 2Þ2ðl −mÞ!ðlþmÞ!
lðlþ 1ÞΓð2lþ 2Þ2ððl −mÞ!!Þ2ððlþmÞ!!Þ2

× 2F1

�
lþ 1;lþ 2; 2ðlþ 1Þ;− 2M

r0 − 2M

�
2

; ð44Þ

ĖH
lm ¼ 22lþ2

q2

M2
ðr0=M − 2Þ−2ðlþ3Þm2v40

ð2lþ 1ÞΓðlþ 1Þ2Γðlþ 2Þ2ððl−mÞ!!Þ2ððlþmÞ!!Þ2
l3ðlþ 1Þ3Γð2lþ 2Þ2ðl−mÞ!ðlþmÞ!

×

�
ðlþ 1Þðr0=M − 2Þ2F1

�
lþ 1;lþ 2;2ðlþ 1Þ;− 2M

r0 − 2M

�
− ðlþ 2Þ2F1

�
lþ 2;lþ 3;2lþ 3;−

2M
r0 − 2M

��
2

ð45Þ

for even and odd values of lþm, respectively. Then, it is
easy to show that for r0 > 2.1M, the first few modes with
m ¼ l are enough to capture the radiation absorbed by
the BH (provided, of course, that the orbits are slow). On
the contrary, very close to the BH (r0 < 2.1M), even if the
orbits are slow, we must include more and more modes to
obtain the total energy flux on the horizon, eventually
leading to ω ¼ mΩ0 ∼ 1, thus breaking our approximation.
Taking l ¼ m ¼ 1 above, that is, looking just at the energy
flux in the dipole, mode yields

ĖH
11 ¼ 3q2Ω2

0

ð2MðM − r0Þ þ r0ðr0 − 2MÞ logð r0
r0−2M

ÞÞ2
4M2r20

:

ð46Þ

Note that now, in contrast to what we discussed for the flux
at infinity in Eq. (39), the flux on the horizon goes to a finite
value when r0 → 2M.

C. The horizon dominance effect

Hand-waving arguments suggest that fluxes at the
horizon are in general much smaller than those at infinity.
This is especially true when the objects are far apart, since
then each occupies but a small fraction of the other’s sky.
Surprisingly, this argument fails in some circumstances.

Consider the ratio of fluxes, when r0 → ∞,

ĖH
lm

Ė∞
lm

∼ 4

�
r0
M

�
−4l−2

ðmMΩ0Þ−2lðlΓðlÞÞ2; ð47Þ

ĖH
lm

Ė∞
lm

∼ 4

�
r0
M

�
−4l−2

ðmMΩ0Þ−2lððlþ 1ÞΓðlÞÞ2 ð48Þ

for even and odd values of lþm, respectively. Together
with Eqs. (42) and (43), these show that, when r0 → ∞, the
dipolar mode dominates energy emission both at infinity
and at the BH horizon. For Keplerian orbits, these results
coincide with those of Poisson and Sasaki [61]. In
particular, when the particle is in free fall (ωc ¼ 0) and
the angular frequency is Ω0 ¼ ωK , we have

ĖH
11

Ė∞
11

∼
4M4

r60Ω2
0

⟶
Ω0¼ωK 4M3

r30
; r0 → ∞: ð49Þ

For this type of orbit, the flux at infinity greatly dominates
over horizon fluxes.
However, Eq. (49) shows that if the angular frequency

decays faster than 1=r30, then the horizon flux can dominate.
The bordering case Ω0 ∝ r−30 is precisely what we got for
charged particles in PC orbits in the region r0 ≫ rc,
Eqs. (12) and (13). Thus, for PC orbits,
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ĖH
11

Ė∞
11

∼
4M4

r60Ω2
0

⟶
Ω0¼ω2

K=ωc
4M2ω2

c; r0 → ∞: ð50Þ

The ratio asymptotes to a constant as the particle orbits
farther and farther away. The validity of the result above
relies on orbits being slow and radiation having a small
frequency, both of which hold. For higher order multipoles,
Eqs. (47) and (48) show that the flux on the horizon always
becomes dominant for very wide PC orbits.
The “horizon dominance effect” we are reporting is not

attached specifically to the magnetic field: it is rather a
general statement. For a given value orbital radius, by
decreasing the velocity one increases the fraction of the
total energy absorbed by the BH. In fact, this phenomenon
had already been partly noticed in [16,46].
We show in Appendix C (which uses results from

Appendix A) that these conclusions apply to other massless
fields, such as scalar and gravitational radiation. Notice that
horizon dominance may occur when the orbiting object is
arbitrarily far away from the BH, in a region where
spacetime is essentially flat. These results motivate the
study of a simpler system sharing the same features. We
consider in Appendix B an absorbing sphere in flat space,
and show that it behaves, essentially, in the sameway. Fluxes
across its surface can vastly dominate over fluxes at infinity.

D. Importance of the tail term

In a previous work we had studied the same system but
restricted to the Newtonian limit: weak gravitational and
magnetic field and slow motion [44]. The results above
reduce to those of Ref. [44], in their regime of validity.
In this work, we extended the domain of validity of our

previous results. We can now strengthen the claim that the
tail term must, in general, be included. In particular, the
orbital widening reported in Ref. [39] cannot take place.
This can be seen, for example, from Eqs. (36) and (37),
which are manifestly non negative; thus, energy conserva-
tion requires that the particle must be losing energy. Since
the energy of the particle increases with the orbital radius
[see Eq. (8)], we conclude the orbit must be shrinking.
Orbital widening cannot take place.

V. NUMERICAL RESULTS

We now proceed to study the EM radiation using
numerical methods, therefore valid for generic frequencies
and orbital motion. Our numerical procedure has been
reported elsewhere and matches well other results in the
literature [62–64].

A. Minus configuration orbits: ωc < 0

Our numerical results are summarized in Figs. 3–6.
Results for MC orbits are shown in Figs. 3 and 4. We take
Mωc ¼ −10−3 (velocity profile in Fig. 2) and calculate
fluxes in the dipole, quadrupole, and octupole modes.

We will compare our results against relativistic Larmor
formula RLF) [47],

ĖRLF ¼ 2

3
q2

r20Ω4
0

ð1 − r20Ω2
0Þ2

: ð51Þ

FIG. 4. Ratio between the energy flux of EM radiation on the
horizon and at infinity, for a charged particle in a MC circular orbit
of radius r0 around a Schwarzschild BH withMωc ¼ −10−3. The
solid black, red and orange curves correspond to the dipole,
quadrupole, and octupole modes. The dashed lines are the
predictions for the three modes obtained analytically using (44)
and (40). Lowest orbital radius r0 corresponds to the ISCO.We find
good agreement between numerical and analytical results. The
dipole term is dominant, and we find that the energy flux on the
horizon is non-negligible only for r0=M ≲ 10.

FIG. 3. Energy flux of EM radiation at infinity normalized to
the RLF value (51), for a charged particle in an MC circular orbit
of radius r0 around a BH with Mωc ¼ −10−3. Solid black curve
gives dipolar l ¼ 1 flux, solid red curve includes also the sum of
the quadrupole l ¼ 2 and octupole l ¼ 3, where we sum the
modes with symmetric values of m. Dashed lines represent
analytical predictions (40), both for the dipole and for the sum
up to the octupole. Lowest orbital radius r0 corresponds to the
ISCO. The sum of modes allows us to recover the RLF with very
good accuracy in a wide range of orbits. Blue curve is prediction
(21), which neglects the tail term. For small r0, one cannot
recover the correct results if the tail is neglected.
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It is important to recall that this is a flat-space expression,
and we will be feeding it with the curved-space result (10)
for Ω0, thus the comparison should be taken with a grain of
salt. For large enough orbital radius r0, MC orbits are
relativistic, Sec. II A. Therefore, we expect higher order
multipoles to be excited as a result of beaming [47]. This
effect is already taken into account in the RLF (51), which
includes the contributions from all modes.
As we showed in Fig. 2, the charge velocity r0Ω0 is lowest

for r0 ∼ 100M. At this location, one could expect a

nonrelativistic approximation to describe the problem well.
Thus, one would expect the dipolar fluxes to get closer to the
total flux, an expectation that is apparent in our numerics. The
analytical predictions (40) were derived on the assumption of
slowmotion, hence they agree bestwith our numerics also in a
similar range of orbital radii. Nevertheless, the total flux
predicted by the RLF (51) is never well approximated (to
better than 10% or so) by dipolar fluxes, and the discrepancy
is largest for relativistic orbits, as expected.
Figure 3 also shows the total flux, in this case approxi-

mated by the sum of fluxes in the first three modes. As one
can see, the sum of fluxes in the first three modes is in very
good agreement with the RLF result (51) for a wide range
of orbits, up to about r0 ≈ 350M, at which point the orbits
become even more relativistic and so modes with l > 3
would have to he included.
Finally, we also include a comparison with the energy

flux one would get by neglecting the tail (21). We see that
for small orbital radius it cannot be neglected, as this results
in a very large underestimation of the energy radiated; by
contrast, for very large orbital radius, when orbits are
dominated by magnetic effects, this expression recovers the
RLF result, meaning the tail can be neglected in this case.3

In Fig. 4 we look at energy fluxes into the horizon for
particles in MC orbits, normalized by radiation flux at large
distances. The first clear result is that radiation going into the
horizon is in general highly suppressed, unless the charged
particle is orbiting close to the BH. The dipolar flux
dominates over all others, reaching about 10% of the flux
at infinity when the particle is at the ISCO. Our analytical
predictions (44) and (40) show very good agreement with
the numerical results, in this range of orbital radii.
We find that MC orbits can be subdivided in three

regimes, defined with respect to the critical radius. These
are, for Mωc ¼ −10−3 and rc ¼ 100M:
“Kepler” region r0 < 30M: orbits are highly relativistic

and dominated by gravitational effects (Fig. 2). Our
analytical predictions (44) and (40) fail, as does the “no
tail” expression (21), and not even the RLF is valid in this
region. Adding the contributions from different modes
calculated numerically, taking into account both the flux
at infinity and on the horizon, we can still obtain an
accurate value for the total energy flux. We confirm this for
the first ðl; mÞ modes at r0 ¼ rISCO in Table I.
“Slow orbit” region 30M < r0 < 180M: these are the

slowest orbits, with v0 < 0.2, located around the critical
radius rc ¼ 100M (see Fig. 2), where both gravitational
and magnetic effects can be important. Here the dipole
mode is dominant, but adding the energy flux in the first
three l modes visibly improves the agreement with the
RLF (51). Our analytical formulas (44) and (40) give
accurate predictions, while the “no tail” expression (21)
still underestimates the energy flux. For smallerMωc orbits

FIG. 5. Energy flux of EM radiation at infinity, normalized to
the GLF, for a charged particle in a PC circular orbit of radius r0
around a BH with Mωc ¼ 10−2. Solid curves correspond to
numerical results, dashed lines represent the predictions obtained
analytically (40). Lowest orbital radius r0 corresponds to the
ISCO. We find good agreement between numerical and analytical
results in the region r0 > 15M, where the dipole is dominant.

FIG. 6. Ratio between the energy flux of EM radiation on the
horizon and at infinity, for a charged particle in a PC circular orbit
of radius r0 around a Schwarzschild BH withMωc ¼ 10−2. Solid
curves correspond to numerical results, dashed lines represent the
predictions obtained analytically using (44) and (40). Lowest
orbital radius r0 corresponds to the ISCO. We find good agree-
ment between numerical and analytical results. The dipole term
still dominates, as does the energy flux on the horizon; however,
for r0=M > 40 we see the ratio going to a constant for the dipole,
and starting to grow for the higher multipoles.

3To insist: even in this case, there is no orbital widening.
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in this region can be slower, and we can even have slow
orbits dominated by magnetic effects. In that case, the tail
term is negligible.
“Magnetic” region r0 > 180M: these are highly relativ-

istic orbits, dominated by magnetic effects. The dipolar flux
alone cannot adequately describe the energy flux at infinity,
meaning higher order multipoles are needed. We were able
to get good agreement with the RLF (51) for a wide range
of orbits with r0 ≲ 350M using only the first three multi-
poles. However, beyond r0 ≈ 350M, orbits are too relativ-
istic and higher order modes need to be included. The
energy flux on the horizon is always negligible in this
region. Our analytical predictions (44) and (40) are not
valid. Again, the tail term can be neglected, leading to very
good agreement with the RLF.4

As was mentioned above, changing Mωc leads to a
quantitative change in the boundaries of these regions, but
without any new qualitative feature.

B. Plus configuration orbits: ωc > 0

We now turn to PC orbits. The velocity profile is shown
in Fig. 2 for Mωc ¼ 10−2, and the energy flux at infinity is
shown in Fig. 5.
In PC configurations, asymptotic orbits are slow and so

the dipole dominates the emission, as is clear in figure. This
also means that our analytical results are valid, in particular
the GLF expression (39). Very close to the BH, however,
the velocity is larger, and these approximations cease to be
good descriptions.
The “no tail” expression of Eq. (21) predicts that all

particles in orbits beyond the light ring, r0 > 3M, gain
energy (Ė < 0). As we already pointed out, this is wrong,
and not borne out of our calculations.

The ratio of the energy flux at the horizon to that at
infinity is shown in Fig. 6. Our numerics show very good
agreement with the slow-motion analytical results for
r0 ≳ 15M. The dipole mode dominates emission.
As can be seen, the flux into the horizon is suppressed

relative to radiation far away from the BH. Nevertheless, to
our surprise, the ratio ĖH=Ė∞ does not decrease when the
orbital radius increases: instead, it asymptotes to a constant.
According to the analytical result of Eq. (50), the constant
is 4M2ω2

c ¼ 4 × 10−4, which is consistent with the numeri-
cal results. In fact, if we focus on a single multipole l > 1,
the ratio actually grows for larger orbital radius. This
counterintuitive finding (a radiating object gets farther
from the BH, yet fluxes o into the BH become more
and more important) was already discussed in the context
of our analytical, low-frequency approximations, Eq. (50).
We dubbed it the “horizon dominance effect,” and as
mentioned before, it is not a peculiarity of BH spacetimes:
a flat calculation yields the same features (see Appendix B).

VI. CONCLUSIONS

In this work we studied a radiating charged particle in a
circular orbit around a weakly magnetized Schwarzschild
BH. The equation of motion governing the charge is the
De Witt–Brehme equation (19), which contains a compli-
cated nonlocal tail term. Some literature [39,42,43] claims
that this term can be neglected in most cases for this system.
In a previous work, we had shown that the tail term must be
included in a description of radiation in the Newtonian
limit, unless the gravitational force is negligible in com-
parison to the Lorentz force [44].
The results presented here, both numerical and analyti-

cal, show that an identical conclusion holds true in the
strong field regime, that is: in general, the tail term can
only be neglected if the orbit is dominated by magnetic
effects. This dominance of magnetic effects can only
happen for MC orbits, where the magnetic force is
centripetal; for these orbits, the tail term can indeed be
neglected if the orbital radius is much larger than the critical
radius rc, Eq. (12). For PC orbits, where the magnetic force
is centrifugal, the gravitational force is non-negligible for
all orbital radii, and the tail term can never be neglected. By
including the tail term in the study of PC orbits, we find that
the orbital widening effect cannot occur.
In the context of PC orbits, we found a surprising and

counterintuitive “horizon dominance effect”: the energy
flux going into the horizon is a sizable fraction of that
radiated to infinity. In fact, it approaches the nonzero
constant 4M2ω2

c as the orbital radius goes to infinity (and
the particle velocity goes to zero), which can even be larger
than unit: one can find a vast region of parameter space for
which the fluxes into the horizon are larger than those at
infinity. It is only natural to speculate that, once BH spin is
included, the horizons fluxes can become negative, giving
rise to outspiralling or to floating orbits [65].

TABLE I. Energy flux Ė∞
lm at infinity and at the horizon, ĖH

lm,
for a particle orbiting the ISCO of a magnetized BH, such that
Mωc ¼ −10−3 in an MC configuration. We normalize these
quantities by the dipolar flux Ė∞

11. It is apparent that we can
approximate the total energy flux with arbitrary precision using
only finitely many modes.

l m Ė∞
lm=Ė

∞
11 (%) ĖH

lm=Ė
∞
11 (%)

1 1 100 4.50
2 2 38.4 0.19
2 1 <10−1 <10−2

3 3 13.1 <10−2

3 2 <10−1 <10−3

4 4 4.31 <10−3

5 5 1.39 <10−5

6 6 0.44 <10−6

7 7 0.14 <10−8

8 8 <10−1 <10−9

4This agreement is eventually spoiled by the redshift correction
apparent in Eq. (15).
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APPENDIX A: MATCHED
ASYMPTOTIC EXPANSIONS

To obtain the analytical results presented in Sec. IV, the
main challenge is to solve the homogeneous Teukolsky
radial equation [Eq. (26)] with physical boundary con-
ditions. This remains true for other values of s, correspond-
ing to scalar (s ¼ 0), gravitational (s ¼ −2), or other
types of radiation: the flux formulas do change, only the
homogeneous equation to be solved. The boundary con-
ditions are different for the two solutions RH

ωlmðrÞ (purely
ingoing waves at the horizon) and R∞

ωlmðrÞ (purely out-
going waves at infinity), which have the following asymp-
totic behavior [53]:

RH
ωlm ∼ Ain

e−iωr⋆

r
þ Aout

eiωr⋆

r2sþ1
; ðr → ∞Þ; ðA1Þ

R∞
ωlm ∼

eiωr⋆

r2sþ1
; ðr → ∞Þ; ðA2Þ

RH
ωlm ∼

e−iωr⋆

ðr2fÞs ; ðr → 2MÞ; ðA3Þ

R∞
ωlm ∼ Bin

e−iωr⋆

ðr2fÞs þ Bouteiωr⋆ ; ðr → 2MÞ: ðA4Þ

If we take s ¼ −1 in the equations above, we recover
Eqs. (30) and (31). The problem of finding analytical
solutions to Teukolsky’s equation is as old as the equation
itself, starting with the work of Starobinsky and Churilov in
1974 [66], but with developments in the following years
[67–69]. Here we will focus mainly on the procedure
outlined in [66,67] to solve the homogeneous Teukolsky
equation in the small frequency limit, Mjωj ≪ 1, where ω

is the mode frequency and M is the BH mass. We will
calculate everything for generic l and s, and then use these
results in the main text to study the EM case (s ¼ −1), as
well and to briefly comment on the scalar (s ¼ 0) and
gravitational (s ¼ −2) cases in Appendix C.

1. The low-frequency limit of the homogeneous
Teukolsky equation

Proceeding to the actual calculation, the first thing to do
is solve the homogeneous Teukolsky equation, Eq. (26)
with the right hand side set to zero, in the relevant limit. To
do so, we start by defining

x≡ r
2M

− 1 and ϖ ≡ 2Mω: ðA5Þ

In the jϖj ≪ 1 regime, the radial homogeneous equation
can be approximated by

x2ðxþ 1Þ2 d
2Rωlm

dx2
þ ðsþ 1Þxðxþ 1Þð2xþ 1ÞdRωlm

dx
þ ½ϖ2x4 þ 2isϖx3 − ðl− sÞðlþ sþ 1Þxðxþ 1Þ− isϖ�
×Rωlm ¼ 0: ðA6Þ

The idea now is to solve this equation for small and large x
and then match the two solutions. Starobinsky [66] dis-
covered that there is a similar equation, which differs from
Eq. (A6) only by subdominant terms, and which is much
easier to solve near the BH horizon.5 Therefore, the
equation we will be using from now on is (dropping the
subscripts in Rωlm):

x2ðxþ 1Þ2 d
2R
dx2

þ ðsþ 1Þxðxþ 1Þð2xþ 1Þ dR
dx

þ ½ϖ2x4 þ 2isϖx3 − ðl − sÞðlþ sþ 1Þxðxþ 1Þ
− isϖð2xþ 1Þ þϖ2�R ¼ 0: ðA7Þ

a. Near region

To look at the region closer to the BH we consider the
limit jϖjx ≪ lðlþ 1Þ. That means that we can neglect the
first two terms inside the square brackets in (A7), yielding

x2ðxþ 1Þ2 d
2R
dx2

þ ðsþ 1Þxðxþ 1Þð2xþ 1Þ dR
dx

þ ½−ðl − sÞðlþ sþ 1Þxðxþ 1Þ
− isϖð2xþ 1Þ þϖ2�R ¼ 0: ðA8Þ

Considering the ansatz

RðxÞ ¼ x−s−iϖð1þ xÞ−sþiϖFðxÞ ðA9Þ

5We compared the two solutions numerically and found their
behavior to be indeed very similar.
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we obtain the solution

RnearðxÞ ¼ Cin
x−iϖð1þ xÞiϖ
4s½xð1þ xÞ�s 2F1ð−l − s; 1þ l − s; 1 − 2iϖ − s;−xÞ

þ Cout
xiϖðxþ 1Þiϖ
ðxþ 1Þs 2F1ð−lþ 2iϖ; 1þ lþ 2iϖ; 1þ 2iϖ þ s;−xÞ; ðA10Þ

where F is the hypergeometric function of the second kind.
In this form, taking Cin ¼ 1 and Cout ¼ 0 yields the
asymptotic behavior of RH at the horizon; for R∞, on
the other hand, we can identify Cin and Cout with Bin and
Bout, respectively.

b. Far region

To look at the region far away from the BH we must take
x ≫ lðlþ 1Þ. This means that we can replace ðxþ 1Þ → x
and neglect the last two terms inside the square brackets in
(A7) altogether, obtaining

x4
d2R
dx2

þ2ðsþ1Þx3dR
dx

þ½ϖ2x4þ2isϖx3−ðl−sÞðlþsþ1Þx2�R¼0: ðA11Þ

The solution to this equation is a combination of confluent
hypergeometric functions. After some manipulation, we
can write it as

RfarðxÞ¼C3xl−se−iϖxUðl−sþ1;2lþ2;2iϖxÞ
þC4xl−se−iϖxMðl−sþ1;2lþ2;2iϖxÞ; ðA12Þ

where M and U are confluent hypergeometric functions of
the first and second kinds, respectively. Next, we focus on
matching the solutions of (A10) and (A12) in the region
where lðlþ 1Þ ≪ x ≪ lðlþ 1Þ=jϖj. We will do this
separately for the two relevant boundary conditions, purely
ingoing waves at the horizon and purely outgoing waves at
infinity.
Before doing so, however, we recall that our goal is

to compute the result of Eq. (35). Thus we must find Ain

and RH;∞ðx0Þ, where x0 ¼ r0=2M − 1. Finding Ain is
straightforward and is done in the next subsection, but
to find RH;∞ðx0Þ we must determine which branch of the
analytical solution is valid at x0. Since we are interested in
studying circular orbits and we are working in the jϖj ≪ 1
limit, we choose to use the near region branch, which is

valid for studying slow orbits, as ω ¼ mΩ0, and thus

jv0j ≪ 1 <
lðlþ 1Þ

jmj ⇒ jϖjx0 ≪ lðlþ 1Þ; ðA13Þ

where Ω0 and v0 ¼ r0Ω0 are the angular and linear
velocities measured by a stationary observer at infinity,
respectively.

2. Matching: Purely ingoing waves at the horizon

The solution with purely ingoing boundary conditions at
the horizon is RH, and we want it to exhibit the asymptotic
behavior given in Eqs. (A1) and (A3). Solving for RH will
allow us to obtain two of the quantities we are looking for:
Ain and RHðx0Þ ¼ RH

nearðx0Þ. The first step is to impose the
behavior at the horizon, which is done by setting Cin ¼ 1
and Cout ¼ 0 in (A10), so that

RH
near ¼

x−iϖð1þxÞiϖ
4s½xð1þxÞ�s

× 2F1ð−l− s;1þl− s;1−2iϖ− s;−xÞ: ðA14Þ

Proceeding to larger values of r, the matching of the two
solutions is done in the region where lðlþ 1Þ ≪
x ≪ lðlþ 1Þ=jϖj. With that in mind, we start by looking
at the x ≫ lðlþ 1Þ limit of (A14). After some manipu-
lation we find Eq. (A15).
Now, turning to the behavior of (A12) in the matching

region where x ≪ lðlþ 1Þ=jϖj, we must simply take the
ϖx → 0 limit of this expression, which yields Eq. (A16).
It is easy to see that both expressions have the same
dependency on x, and so the matching is done by looking at
the coefficients. Thus, to match the solutions we must have
C3 and C4 given by Eqs. (A17) and (A18), respectively.
Besides determining the value of RH at the particle’s

orbit, we also want to find the coefficient for the ingoing
mode at infinity, Ain [see Eq. (A1)]. This is done by looking
at the x → ∞ limit of RH

far, yielding the result in Eq. (A19).

RH
near ∼ iϖð−1Þs21−2sΓð1 − s − 2iϖÞl!ðlþ sÞ!

ð2lþ 1Þ! x
−1−l−s þ 4−sΓð2lþ 1ÞΓð1 − s − 2iϖÞ

Γðl − 2iϖ þ 1ÞΓðl − sþ 1Þ x
l−s ðx ≫ lðlþ 1ÞÞ; ðA15Þ
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RH
far ≈

�
Γð−1 − 2lÞ
Γð−l − sÞ C3 þ C4

�
xl−s −

�
ile−iπl

4lϖ2lþ1

Γð2lÞ
Γðl − sþ 1ÞC3

�
x−l−s−1 ðjϖjx ≪ lðlþ 1ÞÞ; ðA16Þ

C3 ¼
eiπlð−1Þsþ1ϖ2lþ222l−2sþ1Γðl − sþ 1ÞΓð−2iϖ − sþ 1Þl!ðlþ sÞ!

lΓð2lÞð2lþ 1Þ! ; ðA17Þ

C4¼
ð−1Þ−l2−2sΓð−2iϖ− sþ1Þ

lðð2lþ1Þ!Þ2Γð2lÞΓðl−2iϖþ1ÞΓðl− sþ1Þ
× ðð−1ÞlΓð2lÞΓð2lþ1Þlðð2lþ1Þ!Þ2þ22lþ1eiπlð−1Þ2sþ1ϖ2lþ2Γðl−2iϖþ1ÞΓðl− sþ1Þ2l!ððlþ sÞ!Þ2Þ: ðA18Þ

Ain ¼ −
2−l−seiπðl−sÞΓð2lþ 1ÞΓð2lþ 2ÞðiϖÞ−lþs−1Γð−2iϖ − sþ 1Þ

Γðl − 2iϖ þ 1ÞΓðl − sþ 1ÞΓðlþ sþ 1Þ ðA19Þ

Thus, to compute the energy flux to infinity, we already have
everything we need in Ain and RH

nearðxÞ; however, to obtain
the energy flux into the horizon,we still need to findR∞

nearðxÞ.

3. Matching: Purely outgoing waves at infinity

The procedure to perform the matching and find R∞ðxÞ
is similar to that of the previous subsection, except that now
the boundary conditions are given by Eqs. (A2) and (A4).

That sets C3 and C4, and once we have the far region
solution we can match it to the near region one to obtain
R∞
nearðxÞ, which is precisely what we need for Eq. (35), as

R∞ðr0Þ ¼ R∞
nearðx0Þ. The matching itself is done in an

identical manner to the previous subsection.
With that in mind, for conciseness, we only show the

relevant coefficients Cin and Cout, which go into the near
solution:

Cin ¼ −
2−lþs−2ϖ−2ðlþ1ÞðiϖÞlþsþ1Γðl − 2iϖ þ 1ÞΓðl − sþ 1Þ

Γð2lþ 1ÞΓð2lþ 2Þjlj!j2lþ 1j!Γðlþ sþ 1ÞΓð−2iϖ − sþ 1Þ
×

1

ð−1Þ2sΓðl − 2iϖ þ 1ÞΓðl − sþ 1Þjlþ sj!þ Γðlþ 2iϖ þ 1ÞΓðlþ sþ 1Þjl − sj!
× ðΓð2lþ 1Þ2Γð2lþ 2Þðj2lþ 1j!Þ2 þ 4lþ1ϖ2lþ2jlj!Γðlþ 2iϖ þ 1ÞΓðl − sþ 1ÞΓðlþ sþ 1Þjl
− sj!ðΓð2lþ 2Þjlþ sj! − j2lþ 1j!Γðlþ sþ 1ÞÞÞ; ðA20Þ

Cout ¼
ϖ−2ðlþ1Þ2−l−s−2ðiϖÞlþsþ1Γðlþ 2iϖ þ 1Þ

Γð2lþ 1ÞΓð2lþ 2Þjlj!j2lþ 1j!Γð2iϖ þ sþ 1Þ
×

1

e2iπsΓðl − 2iϖ þ 1ÞΓðl − sþ 1Þjlþ sj!þ Γðlþ 2iϖ þ 1ÞΓðlþ sþ 1Þjl − sj!
× ðΓð2lþ 1Þ2Γð2lþ 2Þðj2lþ 1j!Þ2 − j2lþ 1j!Γðlþ sþ 1ÞÞ
− 4lþ1e2iπsϖ2lþ2jlj!Γðl − 2iϖ þ 1ÞΓðl − sþ 1Þ2jlþ sj!ðΓð2lþ 2Þjlþ sj!Þ: ðA21Þ

We now know R∞
nearðxÞ, and so we have completed our task.

To obtain an analytic expression for the solution of the
homogeneous Teukolsky equation with the boundary con-
ditions discussed in the beginning of this Appendix, we just
have to replace the desired values of s, l and m, provided,
of course, that the orbit in question satisfies Mjωj ≪ 1 as
well as jv0j ≪ 1.

APPENDIX B: ABSORBING SPHERE
IN FLAT SPACE

In this Appendix we study the flat space analogue of a
particle orbiting a BH and radiating scalar waves. By this
we mean a particle with scalar charge γ which is in a
circular orbit, in flat space, around an absorbing sphere of
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radius r1. The equation we need to solve is just the Klein–
Gordon equation with a source,

□Φ ¼ γTM; ðB1Þ
where □ is the D’Alembertian operator in flat space, Φ is
the scalar field, and TM is the trace of the particle’s energy-
momentum tensor. In the case of the particle in a circular
orbit, the energy-momentum tensor is

TM
μν ¼

Z
dτuμðτÞuνðτÞδ4ðx− zðτÞÞ

¼ 1

ut
uμðtÞuνðtÞ

δðr− r0Þ
r2

δðθ−π=2Þ
sinθ

δðϕ−Ω0tÞ; ðB2Þ

where the notation is the same as in Eq. (32).
Just as before, we want to study the energy flux of scalar

waves at infinity and on the surface of the absorbing sphere.
The method is identical to what was done in the main text
for electromagnetic waves in the Schwarzschild geometry.
We start by decomposing the field and sources in Fourier
harmonic components,

Φ ¼
Z

dω
X
lm

RωlmðrÞYlmðθ;ϕÞe−iωt; ðB3Þ

TM ¼
Z

dω
X
lm

TωlmðrÞYlmðθ;ϕÞe−iωt; ðB4Þ

thus obtaining a decoupled radial equation�
d2

dr2
þ 2

r
d
dr

þ ω2 −
lðlþ 1Þ

r2

�
Rωlm ¼ γTωlm: ðB5Þ

The solution of this equation can again be written in the
form of Eq. (28), with s ¼ 0. The homogeneous equation
(put Tωlm ¼ 0 above) is just the spherical Bessel equation,
so the solutions can be expressed as a combination of
spherical Hankel functions,

hð1;2Þl ðxÞ ¼ ∓ið−xÞl
�
1

x
d
dx

�
l
�
e�ix

x

�
; ðB6Þ

wherex ¼ ωr.Wenowmust defineRH andR∞, the solutions
of the homogeneous equation corresponding to ingoing
waves at r1 and outgoing waves at infinity, respectively.

By looking at the behavior of hð1;2Þl ðωrÞ for large r, we find

hð1;2Þl ðωrÞ ∼ e�iωr

r
; ðωr ≫ 1Þ: ðB7Þ

Thus, for the solution corresponding to purely outgoing
waves at infinity we have simply

R∞
ωlmðrÞ ¼ hð1Þl ðωrÞ: ðB8Þ

As for the absorbing condition at r1, the situation is a bitmore
complicated. In the BH case, the horizon is a null

hypersurface, where it is possible to define ingoing waves
in an unambiguous manner. A spherical surface in flat space
does not define a null hypersurface, and it is not easy to tell
wether a given function corresponds to an ingoing or out-
going wave for any finite radius r1. The only reasonable
alternative is to look directly at the energy flux, and force it to
be ingoing on the absorbing surface. The energy-momentum
tensor of the scalar field is

TSF
μν ¼ 1

2
ð∂μΦ∂νΦ̄þ ∂μΦ̄∂νΦ − ημνη

αβ
∂αΦ∂βΦ̄Þ; ðB9Þ

where ημν is the Minkowski metric. The ingoing energy flux
on a spherical surface of radius R is

dE
dt

¼ −
Z

dΩR2TSF
rt ; ðB10Þ

From Eq. (B9) we find that we can impose the energy flux to
be negative if we require

∂rΦðr1Þ ¼ k∂tΦðr1Þ; k∈Rþ: ðB11Þ
For simplicity, and also by analogy with the absorbing
boundary conditions in numerical relativity [70,71], we
choose k ¼ 1, which yields

RH
ωlmðrÞ ¼ hð1Þl ðωrÞ þ αωlmhð2ÞðωrÞ ðB12Þ

with

αωlm ¼ ωr1h
ð1Þ
lþ1ðωr1Þ − ðlþ iωr1Þhð1Þl ðωr1Þ

−ωr1h
ð2Þ
lþ1ðωr1Þ þ ðlþ iωr1Þhð2Þl ðωr1Þ

: ðB13Þ

Replacing these functions RH;∞
ωlm, as well as the Fourier

harmonic decomposition Tωlm of the source term in
Eq. (B2), in the solution given in Eq. (28), and then plugging
that into (B3), yields

ΦðxÞ ¼
X
lm

½R∞
mΩ0lm

ðrÞZ∞
lmΘðr − r0Þ

þ RH
mΩ0lm

ðrÞZH
lmΘðr0 − rÞ�Ylme−imΩ0t; ðB14Þ

where ΘðxÞ denotes the Heaviside step function and

Z∞;H
lm ¼ imγΩ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr0Ω0Þ2

q
RH;∞
mΩ0lm

ðr0ÞȲlmðπ=2; 0Þ:
ðB15Þ

Finally, this must be replaced in Eq. (B10) to find the energy
flux at R ¼ ∞,

Ė∞ ¼
X
lm

jZ∞
lmj2; ðB16Þ

and at R ¼ r1,

Ėr1 ¼
X
lm

AlmjZH
lmj2; ðB17Þ
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where

Alm ¼ −
4

ð−mΩ0r1h
ð1Þ
lþ1ðmr1Ω0Þ þ ðl − imΩ0r1Þhð1Þl ðmr1Ω0ÞÞð−mΩ0r1h

ð2Þ
lþ1ðmΩ0r1Þ þ ðlþ imr1Ω0Þhð2Þl ðmΩ0r1ÞÞ

:

ðB18Þ

In particular, we can look at the result for small velocity,
r0Ω0 ≪ 1. We find that in this limit, as expected, the
dominant mode is the dipole mode, and we have, for the
fluxes at infinity and r1

Ė∞
11 ≈

γ2ð2r20 þ r21Þ3Ω4
0

48πr40
; ðB19Þ

Ėr1
11 ≈ −

3γ2r41Ω2
0

16πr40
; ðB20Þ

respectively. Looking at the ratio of these two quantities
and taking also the limit of large orbital radius yields

Ėr1
11

Ė∞
11

¼ −
9r41

4r60Ω2
0

: ðB21Þ

This result recovers the scaling we had obtained for the
ratio of energy flux on the horizon and at infinity for a
particle orbiting a Schwarzschild BH in Eq. (49). The
numerical factor is different, but this may be attributable to
the fact that the absorbing boundary condition at r1 does
not imply perfect absorption.
In general, this simple model for an absorbing sphere in

flat space, which aims to replicate the boundary conditions
on the horizon of a BH, recovers the horizon dominance
effect we reported in Sec. IV: for a given value of orbital
radius, decreasing the orbital velocity causes the energy
absorbed by the BH (or absorbing sphere in flat space) to
become arbitrarily larger than the energy escaping to
infinity (although, of course, the total energy radiated does
go to zero).

APPENDIX C: THE SCALAR AND
GRAVITATIONAL CASES

As stated above, the analytical methods we developed
can be used for any value of spin parameter. To do so,
we just have to find the corresponding equivalent of
Eqs. (35)–(37), which is done in Refs. [17,57,60,61,72].
This allows us to do an analysis as complete as was done in
the EM case, but here we only show the dominant modes
for conciseness.

1. Scalar radiation

For the case of a particle coupling to a massless complex
scalar field, we consider the action [60]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− gμν∂μΦ∂νΦ̄ − 2γΦTM

�
; ðC1Þ

where Φ is the scalar field, gμν is the metric, g is the
determinant of the metric, R is the Ricci scalar, γ is a
coupling constant and TM is the trace of the stress energy
tensor of the particle, which is taken to have massm0. If we
treat the scalar field as a test field then its equation of
motion is just the massless Klein-Gordon equation in the
background geometry; if moreover we fix the later to be
given by the Schwarzschild metric, we simply obtain
Eq. (23) with s ¼ 0. Thus, we can solve this problem in
an almost identical manner to what we did for the
electromagnetic case, keeping in mind that the expressions
for the energy flux in terms of the fields are different [57].
We find that the energy fluxes, in the dipole mode, at
infinity and on the horizon are given by

0Ė
∞
11 þ 0Ė

∞
1−1 ¼

γ2m2
0

12π

ðr0 − 2MÞðr0 −MÞ2
r0

Ω4
0; ðC2Þ

0Ė
H
11 ¼

3γ2m2
0ðr0 − 2MÞΩ2

0

8πM2r0

×
�
ðr0 −MÞ log

�
r0

r0 − 2M

�
− 2M

�
2

; ðC3Þ

respectively (these expressions are valid only for slow
orbits r0Ω0 ≪ 1). If we compare the two for large orbital
radius, as we did in Eq. (46), we find

0Ė
H
11

˙
0E

∞
11

∼
4M4

r60Ω2
0

ðr0 → ∞Þ; ðC4Þ

which exactly recovers the behavior we had found for EM
radiation.

2. Gravitational radiation

As for the more studied case of gravitational waves, we
can once again follow Ref. [60]. Now the equation of
motion is Eq. (23) with s ¼ −2, but the method is almost
the same, although the calculations and final expressions
are more cumbersome. For a particle of mass m0, we find
the energy fluxes, in the quadrupole mode, at infinity and
on the horizon, to be
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−2Ė∞
22 þ−2 Ė∞

2−2 ¼
32m2

0ðr0 − 2MÞ2r0ðr0ð9r0 − 20MÞ þ 36M2ÞΩ6
0

45ðr0 − 3MÞ ; ðC5Þ

−2ĖH
22¼

5m2
0Ω2

0

144ðr0−3MÞr40

�
4

M2
ð81r70−342r60Mþ657r50M

2−588r40M
3−180r30M

4þ400r20M
5þ164r0M6þ64M7Þ

−
12r30
M3

ð27r50−141r40Mþ324r30M
2−386r20M

3þ104r0M4þ136M5Þ log
�

r0
r0−2M

�

þ9r50
M4

ðr0−2MÞ2ð9r20−20r0Mþ36M2Þlog2
�

r0
r0−2M

��
; ðC6Þ

respectively. If we compare the two for large orbital radius
(r0 → ∞), we find

−2ĖH
22

−2Ė∞
22

∼
M6

r100 Ω4
0

ðr0 → ∞Þ; ðC7Þ

which recovers standard literature results forKeplerian orbits
[61]. Moreover, even though the result is different from the
scalar and electromagnetic cases, because the dominant
mode is now the quadrupole rather than the dipole, we still
find that the horizon dominance effect can occur.
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