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Utilizing the recently established connection between Palatini-like gravity and linear generalized
uncertainty principle (GUP) models, we have formulated an approach that facilitates the examination of
Bose gases. Our primary focus is on the ideal Bose-Einstein condensate and liquid helium, chosen as
illustrative examples to underscore the feasibility of tabletop experiments in assessing gravity models. The
noninteracting Bose-Einstein condensate imposes constraints on linear GUP and Palatini fðRÞ gravity
(Eddington-inspired Born-Infeld gravity) within the ranges of −1012 ≲ σ ≲ 3 × 1024 s=kgm and −10−1 ≲
β̄ ≲ 1011 m2 (−4 × 10−1 ≲ ϵ ≲ 4 × 1011 m2), respectively. In contrast, the properties of liquid helium
suggest more realistic bounds, specifically −1023 ≲ σ ≲ 1023 s=kgm and −109 ≲ β̄ ≲ 109 m2. Addition-
ally, we argue that the newly developed method employing Earth seismic waves provides improved
constraints for quantum and modified gravity by approximately one order of magnitude.
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I. INTRODUCTION

Exploring theories beyond general relativity (GR)
becomes imperative despite its success in explaining
phenomena, from Solar System dynamics to gravitational
waves’ detection [1,2]. GR faces challenges in accounting
for dark matter [3], dark energy [4], and early cosmological
inflation [5,6]. To address these, modified gravity (MG)
theories seem to be crucial, offering insights into funda-
mental cosmic phenomena and uncovering untested regions
in the gravitational parameter space [7].
MG introduces alterations impacting various micro-

physical aspects. Theories suggest changes in chemical
potential [8], geodesic deviation equations on stars’ surfaces
with a clear microphysical interpretation [9], and micro-
scopic quantities like opacity or specific heat [10,11].
Gravitational proposals affect laws governing thermody-
namics, stellar stability, heat transport, and Fermi gas
properties [12–18]. Theoretical descriptions of stellar
thermonuclear processes, elementary particle interactions,
and chemical reaction rates are influenced by gravity
modifications [19–24]. Neglecting relativistic effects in
equations of state leads to underestimation of compact star
limiting masses, with additional changes when (pseudo-)
scalar fields are considered [25–29].
Generalized uncertainty principle (GUP) models, involv-

ing constants representing the speed of light and gravity,
introduce corrections in equations of state and microscopic
variables [30–35]. Integrating the quantum structure of

space-time with GUP emphasizes the generalization of
the Heisenberg uncertainty principle, offering potential
measurable effects [36–38]. GUP has proven valuable in
predicting quantum gravity effects [30,39–44], often fea-
turing a minimum length scale around the Planck length,

LP ∼
ffiffiffiffiffi
ℏG
c3

q
[45–47].

The recently established connection between MG and
GUP [48] paves the way for testing gravitational theories in
Earth laboratories.1 To illustrate how modified gravity can
undergo testing in tabletop experiments, our focus will be
on Bose gases. We will develop a general formalism for our
deformed phase space and subsequently delve into the
specifics of liquid helium, examining its portrayal as a two-
fluid model near absolute zero, as presented by Landau.
Before that, we will recall the basic notions related to the
Ricci-based gravity, its relativistic limit, and the mentioned
correspondence resulting as a deformed phase space. The
last part of the paper is devoted to our conclusions and
future plans.

II. DEFORMED PHASE SPACE
IN RICCI-BASED GRAVITY

In the subsequent discussion, we revisit the connection
between modified gravity and the GUP. Initially, we will
delve into fundamental concepts associated with Ricci-
based gravity. Subsequently, we will revisit the established
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1Simultaneously, methods developed by either of these com-
munities can be employed to assess MG or GUP proposals.
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relationship, exploring the deformation of the phase space
in Palatini-like proposals, along with its implications for
thermodynamics.

A. Ricci-based gravity

This specific class of metric-affine theories of gravity is
characterized by the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
LGðgμν; RμνÞ þ Smðgμν;ψmÞ: ð1Þ

Here, g is the determinant of the space-time metric gμν,
and Rμν is the symmetric Ricci tensor, independent of the
metric and constructed solely with the affine connection
Γ≡ Γλ

μν. The object Mμ
ν ≡ gμαRαν is introduced to for-

mulate the gravitational Lagrangian LG as a scalar function
using powers of traces of Mμ

ν.
The matter action is given by:

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lmðgμν;ψmÞ: ð2Þ

In this framework, the matter action is minimally
coupled to the metric, disregarding the antisymmetric part
of the connection (torsion), similar to the treatment of
minimally coupled bosonic fields. This simplification
extends to fermionic particles, such as degenerate matter,
described effectively by a fluid approach exemplified by
the perfect fluid energy-momentum tensor [49]. By focus-
ing on the symmetric part of the Ricci tensor, potential
ghostlike instabilities are avoided [50–53]. This approach
accommodates various gravity theories, including GR,
Palatini fðRÞ gravity, Eddington-inspired Born-Infeld
(EiBI) gravity [54], and its extensions [55].
The gravitational action encompasses theories that,

despite intricate field equations, can be conveniently
reformulated, as shown in [55]:

Gμ
νðqÞ ¼

κ

jΩ̂j1=2
�
Tμ

ν − δμν

�
LG þ T

2

��
: ð3Þ

Here, jΩ̂j is the determinant of the deformation matrix, and
T is the trace of the energy-momentum tensor of matter
fields. The Einstein tensor Gμ

νðqÞ is associated with a
tensor qμν, where the connection Γ assumes the Levi-Civita
connection of qμν:

∇Γ
μð ffiffiffiffiffiffi

−q
p

qαβÞ ¼ 0: ð4Þ

For this formalism, the tensor qμν is related to the space-
time metric gμν through:

qμν ¼ gμαΩα
ν; ð5Þ

The deformation matrix Ωα
ν is theory-dependent, deter-

mined by the gravitational Lagrangian LG. Importantly,
these theories yield second-order field equations, reducing
to GR counterparts in vacuum (Tμ

ν ¼ 0), implying no extra
degrees of freedom propagate in these theories beyond the
usual two polarizations of the gravitational field.
In what follows, we will focus on two particular theories

of modified gravity: Palatini fðRÞ and EiBI, being at the
same time the most studied in the context of the Ricci-based
family. Let us compare them on the gravitational action and
then field equations levels. Their actions are, respectively

SPal½g;Γ;ψm� ¼
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Sm½gμν;ψm� ð6Þ

SEiBI½g;Γ;ψm� ¼
1

κ2ϵ

Z
d4x½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ ϵRðμνÞðΓÞj

q
− λ

ffiffiffiffiffiffi
−g

p � þ Sm½g;ψm�; ð7Þ

for which we are interested in the analytic functional in the
case of the Palatini fðRÞ gravity

fðRÞ ¼
X
i¼0

αiRi: ð8Þ

Note that expanding the action (7) for fields jRμνj ≪ ϵ−1

yields [56],

SEiBI ¼
1

κ2

Z
d4x

ffiffiffi
g

p �
R− 2Λþ ϵ

4
ðR2 − 2RμνRμνÞ þOðϵ2Þ

�
þ Sm ð9Þ

which essentially describes GR with an effective cosmo-
logical constant term Λ ¼ λ−1

ϵ and supplemented by quad-
ratic curvature corrections (in the Palatini sense). The field
equations are, respectively

f0ðRÞRμν −
1

2
fðRÞgμν ¼ κ2Tμν; ð10Þ

∇Γ
μð

ffiffiffiffiffiffi
−q

p
qαβÞ ¼ 0 ð11Þ

for Palatini fðRÞ gravity with qμν ¼ f0ðRÞgμν, andffiffiffiffiffiffijqjp
ffiffiffiffiffijgjp qμν − λgμν ¼ −ϵκ2Tμν; ð12Þ

∇Γ
μð ffiffiffiffiffiffi

−q
p

qαβÞ ¼ 0; ð13Þ

for EIBI one with qμν ¼ gμν þ ϵRμν. Therefore, the field
equations of both theories can be rewritten in the form of
(3) which significantly simplify the computational studies.
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Among other things, this formalism is used to obtain the
nonrelativistic limit of those theories. As it can be shown, in
Palatini fðRÞ [57] and EiBI [58,59] gravities, the Poisson
equation takes the form:

∇2ϕ ¼ κ

2
ðρþ ᾱ∇2ρÞ ð14Þ

Here, ϕ is the gravitational potential, κ ¼ 8πG, and ᾱ is a
theory parameter. The expressions for ᾱ are ᾱ ¼ 2β̄ for
Palatini fðRÞ, with β̄ accompanying the quadratic term, and
ᾱ ¼ ϵ=2 for EiBI, where ϵ ¼ 1=MBI and MBI is the Born-
Infeld mass. The similarity in the Poisson equation between
these two gravity proposals is not coincidental; the EiBI
gravity in the first-order approximation reduces to Palatini
gravity with the quadratic term [56] as recalled above.
Furthermore, only the quadratic term R2 influences the
nonrelativistic equations, as higher curvature scalar terms
enter the equations at the sixth order [57].

B. Deformed phase space and resulting
thermodynamics

As demonstrated in [48], the additional term appearing
in the Poisson equation (14) can be treated as a modifi-
cation to the Fermi gas for a finite temperature. However,
such a modification can be obtained when we deal with a
deformation of the phase space

1

ð2πℏÞ3
Z

d3xd3p
ð1 − σpÞd ; ð15Þ

in which the subcase d ¼ 1 refers to the Palatini-like
theories of gravity. The relation between the deformation
parameter σ and Palatini parameter β̄ is given as follows:

σ ¼ 4πG
K2

β̄ and K2 ¼
3

π

h3N2
A

meμ
2
e
; ð16Þ

where me is the electron mass, μe is the mean molecular
weight per electron, and other constants have their usual
meaning.
This correspondence allows us to write a general

partition function in three dimensions in a large volume
as follows:

lnZ ¼ V
ð2πℏÞ3

g
a

Z
ln ½1 − aze−E=kBT � d3p

ð1 − σpÞd ; ð17Þ

where V ≔
R
d3x represents the volume of the cell in

configuration space while taking a ¼ 1 (a ¼ −1) one will
deal a system of fermionic (bosonic) particles with energy
states Ep. The fugacity is given by z ¼ eμ=kBT, the symbol μ
represents the chemical potential while g is a spin of a
particle.

In a manner akin to the GUP featuring linear
p-modifications [60–65], our methodology incorporates
a deformed phase space measure characterized by the
deformation parameter σ. In the context of GUP, this
parameter is deduced through the utilization of the
Liouville theorem [66]. Consequently, the effective ℏ is
contingent on the momentum p in the generalized uncer-
tainty relation, resulting in a momentum-dependent size of
the unit cell for each quantum state in phase space.
With such a modified partition function, one can easily

obtained thermodynamic variables for the required statistics.
We will mainly focus on pressure, number of particles,
internal energy, and specific volumewhich are, respectively:

P ¼ kBT
∂

∂V
lnZ; ð18Þ

n ¼ kBT
∂

∂μ
lnZjT;V; ð19Þ

U ¼ kBT2
∂

∂T
lnZjz;V ð20Þ

CV ¼ ∂U
∂T

����
V
: ð21Þ

In what follows, we will predominantly center our
attention on bosons, as some properties of Fermi particles
in Palatini-like theories of gravity were studied in [18,48].

III. IDEAL BOSE GAS IN THE GRAND
CANONICAL ENSEMBLE

Let us consider a simple system withN identical spinless
particles described by the noninteracting Hamiltonian

H ¼
XN
i¼1

p2
i

2m
; ð22Þ

where p2
i ¼ pi · pi and pi is the momentum operator of the

single-particle with energy Ep ¼ p2=2m. The grand parti-
tion function of an ideal Bose gas in the grand canonical
ensemble for such a system is then given by [67]:

Z ¼
Y
p

1

1 − ze−βEp
; ð23Þ

where β≕ ðkBTÞ−1. The equation of state is then expressed
as

βPV ¼ −
X
p

lnð1 − ze−βEpÞ; ð24Þ

while the total number of particles

N ¼ z
∂

∂z
lnZ ¼

X
p

ze−βEp

1 − ze−βEp
: ð25Þ
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Since N ¼ P
phnpi, an average occupation number for

state p is

hnpi ¼ −
1

β

∂

∂Ep
lnZ ¼ ze−βEp

1 − ze−βEp
: ð26Þ

The above series (24) and (25) are divergent for z → 1
because the term with p ¼ 0 diverges. Since the contri-
bution of term with p ¼ 0 is important, let us then extract it
while the rest of the series will be replaced by (15) as we
consider V → ∞:

βP ¼ −
4π

ð2πℏÞ3
Z

∞

0

dpp2

1 − σp
ln ½1 − ze−β

p
2m� − lnð1 − zÞ

V
;

ð27Þ

1

v
¼ 4π

ð2πℏÞ3
Z

∞

0

dpp2

1 − σp
1

z−1eβ
p
2m − 1

þ 1

V
z

1 − z
; ð28Þ

where we have defined the specific volume v ¼ V=N.

Introducing a new variable x ¼
ffiffiffiffiffi
β
2m

q
p with the thermal

wavelength

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2

mkBT

s
; ð29Þ

and considering a case when jαj≕ jσj ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
< 1

jxj in the

series expansion of the functions under the integrals to
ensure that the results converge, the above expressions can
be written as:

βP ¼ −
4

π

1

λ3

Z
∞

0

X∞
n¼0

αn½x2þn lnð1 − ze−x
2Þ�dx − lnð1 − zÞ

V
;

ð30Þ

1

v
¼ 4

π

1

λ3

Z
∞

0

X∞
n¼0

αnzx2þn

ex
2 − z

dxþ 1

V
z

1 − z
; ð31Þ

Since we are interested in the terms which are linear in α,
we can write

βP ¼ 1

λ3

�
g5=2ðzÞ −

4α

π

Z
∞

0

ðx3 lnð1 − ze−x
2ÞÞdx

�

−
lnð1 − zÞ

V
þOðα2Þ; ð32Þ

1

v
¼ 1

λ3

�
g3=2ðzÞ þ

4α

π

Z
∞

0

�
x3z

ex
2 − z

�
dx

�

þ 1

V
z

1 − z
þOðα2Þ; ð33Þ

where

g5=2ðzÞ ¼ −
4

π

Z
∞

0

dx x2 lnð1 − ze−x
2Þ ¼

X∞
n¼1

zn

n5=2
; ð34Þ

g3=2ðzÞ ¼ z
∂

∂z
g5=2ðzÞ ¼

X∞
n¼1

zn

n3=2
: ð35Þ

The above expressions can be further written in more
compact forms as

βP ¼ 1

λ3

�
g5=2ðzÞ þ

2α

π
Li3ðzÞ

�
−
lnð1 − zÞ

V
; ð36Þ

1

v
¼ 1

λ3

�
g3=2ðzÞ þ

2α

π
Li2ðzÞ

�
þ 1

V
z

1 − z
; ð37Þ

where LinðzÞ is the polylogarithm function and can be
represented by a series of the form for jzj < 1

LinðzÞ ¼
X∞
k¼1

zk

kn
: ð38Þ

Note that the last term in (37)

z
1 − z

¼ hn0i ð39Þ

is an occupation number for state p ¼ 0 and its contribution
is large if hn0i=V is a finite number. We will discuss the
consequences of that in the next section.
The internal energy, since lnZ ¼ βPV, is also modified,

taking the form

U
V

¼ −
1

V
∂

∂β
lnZ ¼ 3kBT

2λ3

�
g5=2ðzÞ þ

2α

π
Li3ðzÞ

�
: ð40Þ

However, notice that comparing it with (36) with the
assumption that its last term can be neglected, we have
a simple relation between the internal energy and temper-
ature:

U ¼ 3

2
PV: ð41Þ

Therefore, we have an equation of state given by (36)
and (37) for the ideal Bose gas consisting of N particles
with mass m contained in a vessel with a volume of V in a
framework of modified gravity and linear GUP models. To
study its properties, we need to know the fugacity z
dependence on the temperature and specific volume v.
To do so, let us now consider particular cases of the Bose
gas in the framework of modified gravity and GUP.
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IV. BOSE-EINSTEIN CONDENSATE

To examine the Bose-Einstein condensate in Ricci-based
gravity, let us firstly analyze the behavior of the fugacity z.
To do so, we will focus on the Eq. (37). It depends on the
properties of the functions g3=2ðzÞ and Li2ðzÞ. It results that
the Eq. (37) has a solution only for 0 ≤ z ≤ 1. For z ¼ 1,

g3=2ð1Þ ¼ ζð3=2Þ ≈ 2.612; Li2ð1Þ ¼ ζð2Þ ¼ π2

6
: ð42Þ

Let us write (37) as

λ3
hn0i
V

¼ λ3

v
−
�
g3=2ðzÞ þ

2α

π
Li2ðzÞ

�
: ð43Þ

We recognize the modified condition for the Bose-Einstein
condensate: if temperature and specific volume satisfy (let
us recall that α also depends on the temperature via its
definition: α≕ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
):

λ3

v
−
πα

3
> g3=2ð1Þ; ð44Þ

then hn0i
V is a finite number of all particles at the state with

p ¼ 0. This condition defines a modified (with respect to
the standard case with α ¼ 0) subspace of thermodynamic
parameters p, v, T of the ideal Bose gas where the Bose-
Einstein condensate occurs. This region is separated from
the rest of the p-v-T space by the surface

λ3

v
−
2α

π
ζð2Þ ¼ g3=2ð1Þ; ð45Þ

providing the critical value for the specific volume (or
critical density nc ¼ 1=vcr) which clearly is modified by
the gravity models:

nc ¼
�

1

4πℏ2

�3
2

�
ζð3=2Þð2mkBTÞ32 þ σ

π

3
ð2mkBTÞ2

�
: ð46Þ

In the nondeformed case σ ¼ 0 one can also easily
determine the critical temperature as a function of vcr.
However, in modified gravity, one needs to deal with
numerical solutions. However, similarly to the σ ¼ 0 case
we can say that we are dealing with a condensate when
T < Tcr (or v < vcr) with slightly modified values. As we
will see later, we can use that fact to put a bound on the
theories’ parameters. The plot of dependence of critical
density (46) on temperature and parameter σ is given
in Fig. 1.
The fugacity dependence on T and v is then

z¼
�
1 for λ3

v −
πα
3
≥ g3=2ð1Þ

solution of λ3

v ¼ ½g3=2ðzÞþ 2α
π Li2ðzÞ� otherwise:

Therefore, the fugacity is stuck at 1 during the Einstein-
Bose condensate, that is, the chemical potential is zero (that
is, for λ3

v −
πα
3
≤ g3=2ð1Þ region we deal with the gas phase).

Let us now write the equation of state and other
thermodynamic functions in both regions:

βP ¼
(

1
λ3
½g5=2ðzÞ þ 2α

π Li3ðzÞ� if v > vcr;
1
λ3
½g5=2ð1Þ þ 2α

π ζð3Þ� if v < vcr;

U
N

¼ 3

2
Pv ¼

(
3
2
kBTv
λ3

½g5=2ðzÞ þ 2α
π Li3ðzÞ� if v > vcr;

3
2
kBTv
λ3

½g5=2ð1Þ þ 2α
π ζð3Þ� if v < vcr;

CV

NkB
¼

(
15
4

v
λ3
h1ðTÞ þ 3

2
Tv
λ3
h2ðTÞ dz

dT if v > vcr;
15
4

v
λ3
g5=2ð1Þ þ σf1ðTÞ if v < vcr;

FIG. 1. Critical density (in m−3), as described by Eq. (46), varies with temperature (in K) for several values of the parameter σ. It is
crucial to observe that, to ensure a reasonable curve behavior, the parameter’s value had to be reduced by approximately 2 orders of
magnitude compared to the most recent bounds derived from seismic data [48,68,69].
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where

h1ðTÞ ¼ g5=2ðzÞ þ
14σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
π

Li3ðzÞ; ð47Þ

h2ðTÞ ¼
g3=2ðzÞ

z
þ 2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
π

Li2ðzÞ
z

; ð48Þ

f1ðTÞ ¼
3v
4λ3

�
10ζð3Þ

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
þmkBT

λ

ζð3Þ
π3ℏ4

�
: ð49Þ

The derivative ðdz=dTÞV is also modified and is given as

dz
dT

¼ −
�
3λ3

2vT
þ σ

π

ffiffiffiffiffiffiffiffiffiffiffi
2mkB
T

r
Li2ðzÞ

�

×

�
g1=2ðzÞ

z
þ 2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
π

Li1ðzÞ
z

:

�−1
ð50Þ

The vapor pressure is then given by the expression

P0ðTÞ ¼
kBT
λ3

�
g5=2ð1Þ þ

2σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

p
π

ζð3Þ
�

ð51Þ

while its plot is given in Fig. 2. The derivative of the vapor
pressure with respect to the temperature is

dP0ðTÞ
dT

¼ 5

2

kBg5=2ð1Þ
g3=2ð1Þvcr

�
1þ σ

π
f2ðTÞ

�
; ð52Þ

where

f2ðTÞ ¼
48

ffiffiffiffiffiffi
ℏ2π
kB

q
5g5=2ð1Þðg3=2ð1ÞvcrÞ1=3

ζð3Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBmT

p
ζð2Þ

g3=2ð1Þ
:

ð53Þ

Writing (52) as

dP0ðTÞ
dT

¼ 1

Tvcr

�
5

2

kBTg5=2ð1Þ
g3=2ð1Þ

�
1þ σ

π
f2ðTÞ

��
ð54Þ

we see that we deal with the Clapeyron equation with a
modified latent heat having the following form

L ¼ 5

2

kBTg5=2ð1Þ
g3=2ð1Þ

�
1þ σ

π
f2ðTÞ

�
: ð55Þ

Therefore, in GUP models and modified gravity, the Bose-
Einstein condensation is also a first-order phase transition if
L ≠ 0. We will come back to that issue in the end of this
section.
Let us now come back to the critical density (46).

Assuming that He4 is an ideal Bose gas in the condensate
state and applying the experimental data related to the
transition point

Tc ¼ 2.172 K; nc ¼ 2.16 × 1028 m−3; ð56Þ

we can find the deformed parameter corresponding to those
values:

σ ≈ 2.837 × 1024
s

kgm
; ð57Þ

providing, that the Palatini parameter is

β̄ ≈ 9.352 × 1010 m2: ð58Þ

On the other hand, inserting the same critical values for the
temperature and specific volume (vcr ¼ n−1c ) in the bracket
expression in (55) we obtain that the latent heat vanishes for
σ ≈ −3.6 × 1012. It also explain the nonphysical vapor

FIG. 2. Vapor pressure (in Pa), expressed by Eq. (51), varies with temperature (in K) for several σ values. It is important to highlight
that to ensure a sensible curve behavior, we had to reduce the parameter’s value by approximately 10 orders of magnitude compared to
the latest bounds derived from seismic data [48,68,69].
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pressure’s behavior in the Fig. 2 for higher orders of
magnitude for the negative values of the deformation
parameter.
Nevertheless, using the idealization such as the non-

interacting Bose gas for explaining the behavior of the
liquid helium in low temperature does not provide us
improved bounds for the parameters introduced by quan-
tum and modified gravity. The order or magnitude for
the upper bound is about 2 times worse than in the case of
the recently developed methodology in which one uses the
Earth’s seismic data [48,68,69]. However, we are aware that
in the case of He4 one deals with a second order phase
transition which is interpreted as Bose-Einstein condensate
with the strong interatomic interactions taken into account.
Considering more realistic models one expects to obtain
better constraints. Because of that fact, we will now focus
on the Landau model for liquid helium which was proved to
provide a reasonable description of the He4 behavior in low
temperatures.

V. LIQUID HELIUM

The Landau model [70,71] provides a comprehensive
microscopic description of a two-fluid model near absolute
zero. The specific heat of liquid helium as T → 0 behaves
as T3 (note that in the ideal Bose gas, we have Cv ∼ T3=2, as
discussed in the previous section), which is characteristic of
a phonon gas and has been experimentally confirmed. On
the other hand, in the finite-temperature regime, an addi-
tional term comes into play. Thus, the energy (dispersion
relation) of quasiparticles as a function of wave number k
for He4 can be expressed as:

ℏω ¼
(
ℏck if k ≪ k0;

Δþ ℏ2ðk−k0Þ2
2γ if k ≈ k0;

where c is the sound velocity while Δ, k0, γ are exper-
imental constants. In the Landau theory, one assumes that
the quantum states of He4 close to the ground state can be
considered as the states of a noninteracting gas with energy
levels

U ¼ E0 þ
X
k

ℏωkhnki

¼ E0 þ
V
2π2

Z
∞

0

k2ℏωk

eβℏωk − 1

dk
ð1 − σℏkÞ : ð59Þ

Here, ℏωk represents the elementary excitation energy with
the wave vector k and occupation number hnki. In the
second equality, we have already considered the deforma-
tion of the phase space. Now, let us calculate the internal
energy and its GUP corrections at low temperatures. In this
scenario, only the contributions from the phonon and
roton parts [72,73] contribute to the energy in Eq. (59).
The phonon part is expressed as:

Ephonon ¼
V
2π2

�
π4ðkBTÞ4
15ℏ3c3

þ 24σ
ðkBTÞ5ζð5Þ

c4ℏ3

�
: ð60Þ

Therefore, the phonon specific heat is given by

Cphonon
V

kBN
¼ 2π2vðkBTÞ3

15ℏ3c3
þ 60σ

ζð5ÞðkBTÞ4v
c4ℏ3π2

: ð61Þ

We can calculate the roton part assuming that βΔ is small.
This provides that the energy is

Eroton

V
≈
k20Δ
π

ffiffiffiffiffiffiffiffiffiffi
γkBT
2πℏ2

r
e−

Δ
kBTð1þ σℏk0Þ; ð62Þ

providing that the roton specific heat

Croton
V

kBN
¼ k20vΔ2

π

ffiffiffiffiffiffiffiffiffiffi
γkBT
2πℏ2

r
e−

Δ
kBT

ðkBTÞ2
ð1þ σℏk0Þ: ð63Þ

Note that we can also obtain values of the parameter σ
for which phonon (60) and roton (62) energies vanishes.
This happens for σ ≈ −1024 (β̄ ≈ −5 × 1010) and σ ≈ −1023
(β̄ ≈ −1010), respectively.
The specific heat for liquid helium in low temperature is

then a sum of those two specific heats. Applying the
numerical values for the experimental data [73] (note that
Nv ¼ ρ−1)

c¼ 239 ms−1; ρ¼ 144 kgm−3; Δ=kB ¼ 8.65 K;

k0 ¼ 1.92× 1010 m−1; γ ¼ 1.07× 10−27 kg

we have (in Jkg−1 K−1)

CHe4 ¼ 20.7T3 þ 387 × 103

T3=2 e−8.85=T

þ σ

�
5.73 × 10−24T4 þ 7.83 × 10−19

T3=2 e−8.85=T
�
:

ð64Þ

The plot of specific heat of He4 as a function of temperature
is given in Fig. 3. We have also plotted the data points
from [74]. The discrepancy for σ ¼ 0 when T → 1 K is
believed to arise due to the approximation taken in the roton
part of the specific heat, while one has a good fit up to
T ≈ 0.8 K. We see that quantum and modified gravity
corrections to both heats (with a similar approximation
performed as for the case σ ¼ 0) provide better fit to the
data for the parameter σ of the order 1023. To be more
specific, if we consider for instance, the data point
ðT ¼ 0.6; CHe4 ¼ 5.1Þ, we obtain the value of the defor-
mation parameter σ ¼ 1.04 × 1023 (β̄ ¼ 9.4 × 1010).
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VI. CONCLUSIONS

The aim of this paper was to study the effects of Ricci-
based gravity, such as Palatini fðRÞ and Eddington-inspired
Born-Infel models, and linear generalized uncertainty prin-
ciple, on the systems described by the Bose statistics. Using
the recently derived correspondence between modified gra-
vity andGUPmodels, wewere able to provide the formalism
allowing to study the ideal Bose gases. As expected, modi-
fied gravity (or linearGUP) introduces additional terms to the
well-known expressions, allowing us to constrain the gravi-
tational models with the tabletop experiments.
As working examples, we firstly analyzed the Bose-

Einstein condensate. The effects of the phase space
deformation modifies slightly the critical values which
are the boundary values for the condensate to happen. For
instant, in order not to differ too much from the non-
deformed case, the deformation parameter σ would have to
be about 2 orders of magnitude smaller than the bounds
given by the methodology in which the Earth seismic data
were used [48,68,69]. On the other hand, using the similar
arguments, the derivation of the vapor pressure (which also
depicts the transition line) reveals that the order of the
bounds should be about 10 order less in order not to change
the microscopic behavior of the gas too much.
We have also obtained that the Bose-Einstein condensate

is the first-order transition with a modified latent heat.
Interestingly, there exists such a value of the deformation
parameter σ (or the Palatini parameter β̄) for which the latent
heat vanishes. Such a singular value (that is, it is related to the
spacetime curvature or/and minimal length), depends on the
temperature and specific volume, and can be responsible for a
kind of the phase transition which we deal with. For the
critical temperature and density its value is

σ ≈ −3.6 × 1012
s

kgm
;

for the deformation parameter of the linear GUP, while the
Palatini parameter is

β̄ ≈ −0.12 m2;

whichwe can consider as lower bounds arising from the ideal
Bose-Einstein condensate.
However, assuming that the liquid helium He4 is the

ideal Bose gas with the temperature and critical density
provided by the experiments, we obtained worse bounds
that the ones provided by seismology, that is,

σ ≈ 2.837 × 1024
s

kgm
;

for the deformation parameter of the linear GUP, while the
Palatini parameter is

β̄ ≈ 9.352 × 1010 m2:

Those are the upper bounds resulting from the analysis of
the ideal Bose-Einstein condensate.
In order to have an inside into a more realistic description

of the behavior of liquid helium in low temperatures, we
have also analyzed the Landau model. Deriving the
curvature corrections to the specific heat of phonons and
rotons, we could compare our theoretical results with the
experimental ones and get an idea about the order of
magnitude of the acceptable values of the deformation
parameter. It is

σ ≈ 1023
s

kgm

for the linear GUP models and

β̄ ≈ 3 × 109 m2

FIG. 3. Specific heat of He4 as a function of temperature and deformation parameter σ given by the Eq. (64). Therefore, the resulting
constraints (see the text) allows us to constrain linear GUP and Ricci-based gravities models. The data points are taken from [74].
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for Palatini gravity (ϵ ≈ 1.2 × 1010 m2 for EiBI). We regard
it as an upper bound for the parameters, albeit less stringent
than the one derived from seismic data. However, by
incorporating a more accurate depiction of interatomic
interactions and the nature of excited states, such as in
the Feynman model of He4 [72], alongside the latest data,
we anticipate enhancing the current constraints on quantum
and modified gravity parameters.
Furthermore, similar to the ideal Bose gas, we can

identify specific values of this parameter where the phonon
and roton specific heats vanish in the low-temperature
regime. This occurs around σ ≈ −1024 for the phonon part
and σ ≈ −1023 for the roton part. This order of magnitude is
more realistic compared to the ideal Bose-Einstein con-
densate case, as it pertains to a physical system whose
behavior is validated by tabletop experiments (with very
low but not zero temperature the specific heats are not
zeros). Consequently, we view this as a lower bound for the
deformation parameter.
Upon comparing our results, derived from tabletop

experiments, with those obtained using a novel method

employing Earth’s seismic data, the latter case yields a
more constrained range for the parameters.
In this paper, an examination of an idealized case

involving Bose-Einstein condensate and a realistic descrip-
tion of the behavior of liquid helium at low temperatures
illustrates the invaluable utility of the connection between
modified gravity and generalized uncertainty principle
models. This correspondence serves as extremely useful
tools for studying various physical systems at different
scales. This not only facilitates constraining different
proposals related to quantum and modified gravity but
also enables the analysis of gravitational effects through
tabletop experiments. Ongoing research along these lines
seeks to delve deeper into and validate the implications of
modified gravity on the microscopic properties of matter.
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