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The ringdown portion of a binary black hole merger consists of a sum of modes, each containing an
infinite number of tones that are exponentially damped sinusoids. In principle, these can be measured
as gravitational-waves with observatories like LIGO/Virgo/KAGRA, however in practice it is unclear
how many tones can be meaningfully resolved. We investigate the consistency and resolvability of the
overtones of the quadrupolar l ¼ m ¼ 2 mode by starting at late times when the gravitational
waveform is expected to be well approximated by the lmn ¼ 220 tone alone. We present a Bayesian
inference framework to measure the tones in numerical relativity data. We measure tones at different
start times, checking for consistency: we classify a tone as stably recovered if and only if the 95%
credible intervals for amplitude and phase at time t overlap with the credible intervals at all subsequent
times. We test a set of tones including the first four overtones of the fundamental mode and the
320 tone and find that the 220 and 221 tones can be measured consistently with the inclusion of
additional overtones. The 222 tone measurements can be stabilized when we include the 223 tone, but
only in a narrow time window, after which it is too weak to measure. The 223 tone recovery appears to
be unstable, and does not become stable with the introduction of the 224 tone. We find that N ¼ 3 tones
can be stably recovered simultaneously. However, when analyzing N ≥ 4 tones, the amplitude of one
tone is consistent with zero. Thus, within our framework, one can identify only N ¼ 3 tones with
nonzero amplitude that are simultaneously stable.

DOI: 10.1103/PhysRevD.109.124030

I. INTRODUCTION

The final stage of a binary black hole coalescence, called
the ringdown, consists of a perturbed remnant black hole
emitting gravitational waves. In general relativity, the
gravitational waves from the ringdown can be decomposed
using spin-weighted spheroidal harmonics into quasinor-
mal modes [QNMs, see [1–5]]. Each spheroidal harmonic
mode is labeled with indices l ≥ 2 and jmj ≤ l. There are
an infinite number of tones associated with each angular
mode, each denoted with n ≥ 0. The frequency and damp-
ing time of each tone depends only on the mass and spin of
the remnant black hole (assuming zero charge) according to
the no-hair theorem [e.g., [6]].
Understanding how to measure black hole tones can

allow us to undertake tests of general relativity and the

no-hair theorem for black holes [7–12]. However, the
start of the ringdown—defined as the time when the
signal can be described with black hole perturbation
theory—is ambiguous [e.g., [13–16]]. Understanding
how early the perturbative prescription can be applied
to the signal is key to correctly performing tests of
general relativity and the no-hair theorem. Beginning
the analysis too early could result in overfitting to
nonlinear features in the signal [e.g., [17–19]]. If one
waits too long to begin the analysis, the strain amplitude
will have decayed exponentially, making spectroscopic
tests impossible given the finite sensitivity of our instru-
ments [14,20]. While black hole spectroscopy is part of a
broader effort to test general relativity with gravitational
waves, along with e.g., inspiral-merger-ringdown tests
[e.g., [7,21–23]], the ringdown provides one of the most
direct ways to test the no-hair theorem. Binary parameter-
informed analyses of the ringdown provide an alternative*teagan.clarke@monash.edu
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approach to damped sinusoid models for QNM extraction
and tests of the no-hair theorem [e.g., [24,25]].
Numerical relativity simulations provide numerical

solutions to the field equations [26–28], and are the state
of the art for investigating the QNM decomposition of
the ringdown. However, the components contained in
these solutions remain unclear. Black hole perturbation
theory provides predictions for the frequency and damp-
ing times of each tone, but the optimal time to fit them
and how many tones can be meaningfully extracted
remains unclear due to, e.g., nonlinearities, nonorthog-
onal QNM decomposition, and error in the simulations
themselves. Much effort has been devoted to determining
how many tones measured at what time provide the
optimal fit of physically motivated tones to the numerical
simulations.
Many studies [e.g., [29–34]] find that several overtones

of the lm ¼ 22 mode can be extracted at early times
after the merger and that they are needed to infer the
correct mass and spin of the black hole. Reference [35]
suggests that the linear QNM model may be valid as early
as the strain peak time. They show that higher overtones
of the 22 mode up to n ¼ 7 improve fits to simulated
gravitational-waveforms from the strain peak time.
Reference [36] fit away these seven tones from the NR
data using frequency domain filters, uncovering evidence
for second-order effects and spherical-spheroidal mode
mixing.
References [37,38] find that seven tones of thel ¼ m ¼ 2

aswell asmany tones fromadditionalQNMscanbe included
to improve the fits. Tones up to n ¼ 9 have also been
explored for their potential to further improve fits at the
strain peak time [39]. The apparent linearity of the signal at
such early times could be explained if the nonlinear effects
are hidden behind the apparent horizon of the black hole
[e.g., [40,41]], unable to reach the observer at infinity.On the
other hand, nonlinear effects like second order QNMs, may
be required to accurately model the ringdown of higher
harmonics [e.g., [42,43]], although the magnitude of such
second-order contributions are by far subdominant for
existing detections.
While it seems clear that the early ringdown can be

modeled with a large number of overtones, there is
debate as to whether the associated fits are physical and
to which extent [e.g., [32,44]], i.e., are we overfitting
tones to produce what amounts to a phenomenologi-
cal model?
References [45,46] construct analytic fits for stable tones

as a function of binary parameters. They point out that in
the purely perturbative QNM regime, tone amplitudes and
phases should be measured consistently at different start
times. Reference [46] finds that the amplitudes for tones
with n > 0 are not consistent in time and omit these from
their analytic fits. However, [47] finds that analytic fits for
tones are biased when fitting at early times, possibly

indicating the presence of higher tones and nonlinearities
near the strain peak.
Reference [19] further explores whether or not the

ringdown tones are consistent when measured at
different start times. They argue: if the overtone param-
eters do not yield consistent fits at different start times,
they are not physical, but rather show evidence of over-
fitting. Reference [48] finds that overtones beyond 223 are
always inconsistent by this metric when fitting in the time
domain, while [49] uses analytic modeling to caution that
increasing the number of tones may end up overfitting to a
misspecified model. Reference [19] similarly finds that
adding tones improves the fits, even to unphysical hybrid
waveforms, which they point out as a sign of overfitting.
Reference [50] attempts to resolve this issue by measuring
the stability of the tones as they are being fitted, iteratively
removing inconsistent tones until only stably recovered
tones are left. For the 22 extraction of a numerical-
relativity waveform, they find that five tones are stably
recovered, with 221 being the highest stably measured
overtone. The other robust tones consist of retrograde
modes or modes with the same m but different l, due to
other angular QNMs mixing into the 22 spherical har-
monic. Reference [51] uses the Bayesian evidence to
algorithmically select tones to be included in their model,
and to search for nonlinear contributions. They find that
nonlinear contributions may be important for ringdown
analysis, although the importance decreases as the black
hole spin increases.
In parallel to the debate about the physicality of the linear

perturbation fits, a number of studies have attempted to
measure black hole overtones in gravitational-wave data
with mixed results. Assuming a QNM decomposition,
Refs. [17,52] search for overtones in the late-time ringdown
of GW150914, only finding evidence of the fundamental
220 tone. By studying at earlier times in the ringdown,
Refs. [9,16,53,54] find evidence for the 221 tone in
GW150914. References [55–57] find only weak support
for the 221 tone in GW150914. However, [11,58] do not
find evidence for any higher tones beyond the fundamental
in GW150914 (although see Refs. [59,60] for further
discussion on these results).
In this paper, we seek to arrive at a self-consistent,

perturbative model of the post-merger ringdown signal.
We present a Bayesian-inference, forward-modeling pro-
cedure as a method for extracting the ringdown QNMs
from numerical-relativity simulations. Using a numerical-
relativity waveform, we start at the end of the ringdown
when the strain should be dominated by the 220 (and 320)
tones and use this to fit the n ¼ 0 amplitude and phase.
We also fit a noise amplitude—a phenomenological tool,

which we introduce in order to account for various
unmodeled physics—to cover anything that causes the
late-time ringdown to deviate from a pure 220 tone, apart
from some small mode-mixing contribution from the
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320 tone. Having established the asymptotic behavior of
the ringdown signal, we work backward, carrying out
Bayesian inference to see if there is support for additional
tones at earlier times.
We assess whether each tone in a set is stably recovered

by checking whether the fits obtained from different times
are consistent. In doing so, we aim to determine if a
numerical-relativity waveform can be self-consistently
modeled using a superposition of tones, and how many
tones can be said to be present.
The remainder of this paper is organized as follows.

In Sec. II we describe our model and fitting procedure.
In Sec. III we present our results before discussing their
implications in Sec. IV.

II. FRAMEWORK

We model the ringdown strain as a sum of damped
sinusoids, writing each spin-weighted spherical harmonic
mode of the strain as a complex-valued time series:
h ¼ hþ − ih× as

hNtones
lm ðtÞ ¼

XNtones

n¼0

Almne−i½ωlmnðt−t0Þþϕlmn�; ð1Þ

where ωlmnðMf; χfÞ are the complex frequencies deter-
mined by the remnant mass and spin through the no-hair
theorem [61,62]. The negative imaginary component of
ωlmn is the inverse tone damping time τlmn. The tone
amplitudes Almn and phases, ϕlmn depend on the initial
conditions of the perturbations on the black hole. The
variable t0 is the reference time of the fit, which we take as
the peak time of the 22 mode strain, t ¼ 0M. We use
geometric units in this study and measure t in units of the
initial binary mass M, which is set to unity.
We fit the l ¼ m ¼ 2 mode alone and vary Ntones to

change the number of tones in the fit. We order the tones in
descending order of damping time: 220; 221; ...; 22Ntones.
We fit numerical relativity data that has been decomposed
into spin-weighted spherical-harmonics −2Ylm. However,
the basis for a perturbed black hole is actually described by
spin-weighted spheroidal harmonics −2Slm [e.g., [2,63]].
Because of this, mode-mixing occurs between QNMs with
the same m but different l. For the fundamental 22 mode,
the dominant source of mode-mixing comes from the 320
[e.g., [29]], which has a higher frequency than the 220 and
a comparable damping time. To account for this, we also
include the 320 in our fits.
The data for our fit is from the simulating extreme space-

times (SXS) catalog [64,65].Weuse theCauchycharacteristic
evolved (CCE) waveform simulation [66–68], which was
generated using the SpECTRE code’s CCEmodule [69]. The
waveform is mapped to the superrest frame of the remnant
black hole with Bondi-van der Burg-Metzner-Sachs

(BMS) frame fixing [38,70,71]. This is the correct frame
mapping for QNM extraction and eliminates unphysical
frame effects. The frame fixing is performed using the
SCRI Python module [72–75]. We use the SXS:0305
waveform, which corresponds to the most likely param-
eters for the GW150914 LIGO-Virgo observation [76].
The simulation produces a remnant mass Mf ¼ 0.952M
and dimensionless spin χf ¼ 0.692. We use the highest
available resolution for this study, which has a time
resolution of ≈0.1M around the strain peak time. We do
not interpolate to a uniform time grid for this study.
We use the MCMC sampler EMCEE [77] to fit a damped

sinusoid model according to Eq. (1), fitting the tone
amplitude and phase as a function of time. We fix the
frequency and damping time of each tone as a function of
the known asymptotic remnant mass and spin from the
numerical relativity simulation waveform metadata. It has
been pointed out [e.g., [29,44,78–80]] that the mass and
spin of the black hole may still evolve at early times in the
ringdown, potentially impacting QNM fits. We do not
consider this effect in this study. We calculate the frequency
and damping times using the QNM Python package for
Kerr black holes [81]. We parametrize the amplitude and
phase as x ¼ A cosðϕÞ and y ¼ A sinðϕÞ and sample in
normal distributions of x and y with mean 0 and standard
deviation 1.
In order to carry out Bayesian inference, we must

introduce some notion of uncertainty. One path forward
could be to set the noise at the level of estimated
numerical-relativity precision. However, this numerical
noise does not capture the systematic uncertainty in our
calculation. Our premise is that the very end of the
numerical-relativity waveform should be consistent with
a pure 220 tone with small contributions from the 320 tone
and late-time polynomial tails [e.g., [82,83]], although
the latter are yet to be seen in numerical simulations from
the SXS catalog. We use this late-time fit as a point of
reference for understanding the earlier part of the wave-
form. If the end of the waveform is inconsistent with a set
of tones comprising of only the 220 and 320 tones, this
additional structure represents a systematic error within
our framework.
In order to quantify this systematic uncertainty, we fit the

late waveform (starting from t ¼ 100M), allowing for a
mixture of the 220, 320 and 221 tones. We choose 100M as
the earliest time when the 221 is beginning to become
unresolved for an analytic waveform test consisting of three
tones with the same frequency and damping times of the
220, 320 and 221 in the numerical-relativity simulation and
amplitudes and phases consistent with our fits to the
numerical-relativity data.
Ideally one would wait longer than 100M. However, the

numerical-relativity error starts to increase from 100M,
suggesting the numerical relativity error starts to become
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more relevant from this point.1 We model the systematic
uncertainty so that the artificial noise on the strain is drawn
from a Gaussian distribution with width σsys. The artificial
noise is implemented by dividing the data by the expo-
nential term of the 220 tone, e−t=τ220 , before performing our
fits. τ220 is the damping time of the 220 tone ≈11.74M,
calculated using the simulation remnant mass and spin in
the QNM package [81].
We vary σsys until the posterior for the amplitude of the

221 tone A221 is consistent with zero at one-sigma
credibility. This enforces our requirement that the late-
time ringdown should not contain any contribution from
overtones higher than the 220. We obtain a value of
σsys ¼ 0.06, which is ≈70 times higher than the expected
numerical-relativity error at t ¼ 100M. This suggests that
our ability to understand the late-time behavior of the
ringdown is likely limited not by numerical-relativity
noise, but by theoretical uncertainty about the relative
contribution of various tones and/or nonlinearities.
Additional contributions from mode-mixing and power-
law tails may also be included in our measurement of
σsys.

2 The quantity σsys has no physical meaning; it is a
purely phenomenological tool that we introduce in order
to quantify our present theoretical uncertainty about the
behavior of the late-time ringdown. We find that the value
of σsys measured is not sensitive to the chosen time from
approximately t ¼ 70M with σsys changing by only ≈0.01
between 70M and 105M. The exact value of σsys and the
time at which it is measured is not important for our
investigation into the stability of sets of tones. Our
decision to model σsys with an artificial uncertainty (rather
than an absolute uncertainty) is motivated by experimen-
tation. We find that our fits are relatively consistent in size
and magnitude and that our sampling is better behaved
when we assume an artificial uncertainty as a function of
time, while they become difficult to compare assuming a
fixed absolute uncertainty. Our model for σsys is shown in
Fig. 1. The top panel shows the real part of the 22 mode
numerical-relativity waveform hþðtÞ and fit. We include a
gray band representing our choice for the artificial noise,
while the middle panel shows hþðtÞ multiplied by et=τ220 ;
the artificial noise σsys can be visualized as a horizontal
line at 0.06 on this panel. The bottom panel is a time series
showing the difference between the numerical-relativity
waveform and our fit. We provide more details on this
approach in Appendix A.

III. RESULTS

A. Consistency of tones with time

We seek to find a set of tones that can produce a self-
consistent measurement of the ringdown signal across time.
To this end, it is useful to introduce a criterion to determine
if each tone in a set is stably recovered. For a tone to be
recovered stably at time t0, we require that the 95% credible
intervals for the amplitude and phase of that tone overlap
with the 95% credible intervals of all subsequent fits
(corresponding to larger values of t0). Thus, e.g., the fit
at 10M must be consistent with all the fits between 10M
and 70M to be considered stable at 10M. We are interested
in tones that are both consistent and resolved. In order for a
tone to be considered stable and resolved at time t0, we

FIG. 1. Ringdown time series. The top panel shows the 22 mode
numerical-relativity datahþðtÞ, which is the real part of the 22mode
strain, in solid blue alongside a fit obtained using just the 220 and
320 tones predicted by perturbation theory. The dashed vertical line
represents the start time for this fit (50M). The gray band represents
the artificial noise σsys. The second panel shows the same time
series, butmultiplied by et=τ220 in order to counteract the exponential
decay of the 220 tone. The horizontal line represents our model for
the uncertainty σsys in this regime, which in this representation is
constant. The bottom panel shows the difference between the
numerical-relativity waveform and our fit as a function of time.

1The numerical relativity error is the difference between the
two highest resolution waveforms after they are mapped to the
same BMS frame.

2Presumably, if one could obtain a sufficiently long and
accurate numerical-relativity waveform, σsys would approach
the level of the numerical-relativity noise.
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further require that the 95% credible interval for the
amplitude excludes zero. This creates three possible
classifications:
(1) Stable recovery. The amplitude of the tone is non-

zero and the amplitude and phase of the tone are
consistent with subsequent fits.

(2) Unstable recovery. The amplitude of the tone is
nonzero, but the amplitude and/or phase are incon-
sistent with subsequent fits.

(3) Unresolved. The amplitude of the tone is consistent
with zero.

This classification method is illustrated in Fig. 2. Each
panel shows amplitude of a different tone as a function of
start time t0. There are five tones in our fit: 220, 320, 221,
222 and 223. This amounts to four tones of the l ¼ m ¼ 2
QNM plus a contribution from the 320 due to mode-
mixing. At regularly spaced values of t0, we plot the
posterior for each amplitude in teal. The amplitudes are all
measured at a reference time of t ¼ tpeak while the fit is
performed at different start times t0. The background is
shaded according to the stability of the tone. The light-gray
regions indicate that the tone is unstably recovered, the
white regions indicate it is stably recovered, and the dark-
gray regions indicate that the tone is unresolved. To avoid
clutter, we do not show the accompanying plots of phase,
although we also require phase consistency in order for a
tone to be classified as stable. We provide the correspond-
ing plot of the phase posteriors in Appendix B.
From the first two panels, we see that the 220

and 320 tones are stably recovered from t0 ¼ 0M. In
Appendix C we compare the 220 posteriors for the lowest
and highest n fits, demonstrating how the 220 stabilizes
with the inclusion of more tones. The 221 tone is initially
unstably recovered, stabilizes at 10M, and then becomes
unresolved at 30M. The 222 tone is stably recovered within
a narrow window around 5 − 15M while the 223 tone is
unresolved. With our framework, the l ¼ m ¼ 2 ringdown
signal is well described by four tones which are stable from
approximately 10M, when considering a model allowing
220, 320, 221, 222 and 223 contributions.
We investigate how the stability changes with the

number of tones in a set. First we investigate the 220
alone. We find that the 220 is not stably recovered until
approximately 30M unless other tones are included in the
fit. This is consistent with the expectation that the 220
should become dominant at late times. Adding the 320 does
not improve the stability of the recovery significantly.
When we add the 221, the 220 becomes stably recovered
at 15M. The earliest stable time for the 220 changes to 5M
when we add the 222 and 0M when we add the 223.3

This analysis suggests that the 22 mode ringdown signal
is well described by five tones. Adding the 224 tone may
slightly improve the recovery stability of the 222, but does
not improve that of the 223 and decays too quickly to be

FIG. 2. Posterior distributions for amplitude as a function of t0.
Each panel represents a different tone. We show the regimes
where each fit is stably recovered (white), unstably recovered
(light gray) and unresolved (dark gray). We also fit the phase of
each tone and require the phase to also be stable for that tone to be
considered stable. For simplicity we only show the amplitude
posteriors here. We show the corresponding phase posteriors in
Fig. 6. The 221, 222 and 223 tones are unstably recovered at early
times and become unresolved at late times, which implies that
they do not significantly improve the fit at late times. The
223 tone is not stably recovered at any time but may stabilize with
additional tones.

3The fits in Sec. III are all carried out assuming the frequency
and damping times for each tone predicted by perturbation
theory using the remnant mass and spin of the simulation. In
Appendix D, we provide the results of investigations where we
treat the tone frequency as a free parameter.
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stably recovered itself. The 221 behavior remains
unchanged with the inclusion of the 224. Additional tones
produce fits consistent with zero amplitude. Table I sum-
marizes the recovery stability of different tones as we vary
the number of tones N.
We test the impact of reducing the spacing in start times

t0 on our results. We test the set of five-tones fit using a
spacing of 2M between 0 and 20M and find the tones
behave consistently with the more coarsely spaced test.
However, the 221 recovery is slightly improved, stabilizing
at 6M, rather than 10M. The 222 recovery stabilizes at
8M—slightly later than the previous test—and becomes
unresolved at 14M. The 223 recovery remains unstable at
all times and becomes unresolved at 12M. We emphasize
that the qualitative results are not significantly changed by
the spacing of time steps.
We investigate the contribution of other potential sources

of mode-mixing: the counterrotating 220 tone and the 321
and 420 tones which were found to be visible in
Refs. [50,51]. We test the counterrotating 220 (r220) in

a set of tones with the 220 and 320 and find that the
r220 tone is resolved only until 15M and its amplitude is
smaller than the 320 (<0.003). We test a set of tones
including the five tones measured in Fig. 2 and the
321 tone. The 321 can be resolved until 20M with an
amplitude of ≈0.1 in the stable region of 5 − 15M. The
qualitative results of the other tones in this set remain
unchanged, although the posteriors are in general broad-
ened due to increased statistical uncertainty from intro-
ducing another parameter. We find that the 420 amplitude
is consistent with 0 from t ¼ 0M in a set of four tones
(220, 320, 420, 221).
As a consistency check, we assess the goodness-of-fit for

each of our models by comparing the maximum log
likelihood of each model as a function of time. Figure 3
shows the log likelihood of each model as a function of start
time t0. The likelihood increases as the number of tones is
increased, suggesting that the addition of tones serves to
improve the fit, although the improvements are minimal
from 30 − 40M after the strain peak.

B. How many tones can be resolved at
he waveform peak?

Reference [35] suggests that the perturbative regime can
be applied as early as the waveform peak (t0 ¼ 0M), and
that seven tones produce the best fit at this time. We
investigate the number of tones that can be resolved at 0M,
when the strain amplitude is maximal. We fit our numeri-
cal-relativity data with a set of eight tones, consisting of the
first seven tones of the 22 mode and the 320 tone. We find
that overtones higher than 224 are not resolved because
their amplitude posteriors are consistent with zero. This
appears to be consistent with Fig. 9 in [35].

TABLE I. Summary of when each tone is stably recovered for
different values of Ntones in a given set. The variable tstable
indicates the time at which the amplitude and phase of each tone
become consistent with subsequent fits using later parts of the
waveform (and which the amplitude of the tone is inconsistent
with zero). This time (and all other times in this table are quoted
in units ofM. If the tone is not stably recovered for any time, this
cell is marked “� � �.” The variable tunresolved indicates the time at
which the amplitude becomes consistent with zero. If the tone is
never consistent with zero, this cell is marked “� � �.” τ denotes the
damping time for each tone.

Ntones Tone τ tstable tunresolved Stable interval

1 220 11.74 30 � � � 30–70

2 220 11.74 30 � � � 30–70
320 11.27 0 � � �

3 220 11.74 15 � � � 30–45
320 11.27 5 � � �
221 3.88 30 45

4 220 11.74 5 � � � � � �
320 11.27 0 � � �
221 3.88 20 40
222 2.30 � � � 20

5 220 11.74 0 � � � � � �
320 11.27 0 � � �
221 3.88 10 35
222 2.30 5 15
223 1.62 � � � 15

6 220 11.74 0 � � � � � �
320 11.27 0 � � �
221 3.88 10 35
222 2.30 0 15
223 1.62 � � � 10
224 1.26 � � � 5

FIG. 3. Maximum natural log likelihood as a function of t0 for
different values of Ntones. (To handle the large dynamic range of
likelihood values, we actually plot the log10 of − lnLmax.) All
four models include the 320 tone. At early times the fits improve
as we add tones to the model before saturating at around 30M,
lending further support to the conclusion that the fit is dominated
by the 220 past 30M.
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We also test a model with seven tones (six tones of the 22
mode and the 320) and find that when the 225 is the highest
tone, the 225 can be resolved away from zero, but is not
resolved with the addition of the 226. It becomes consistent
with zero at the next time step. This suggests that at least

some over-fitting is likely occurring for n ¼ 7 within the
framework of our phenomenological noise model, since
those higher overtones are not resolved for this fit. Figure 4
shows the posteriors for the amplitudes of each tone
included in this fit.

FIG. 4. The amplitude posteriors for a seven-tone fit at the strain peak (t0 ¼ 0M). Tones up to n ¼ 4 are measured confidently with
amplitudes consistent with [35], higher overtones return posteriors that support zero. This suggests that including tones higher than
the 224 may be over-fitting. We notice that the correlation between tones increases as n increases. This is consistent with the
findings of [18], and reflects the increasing difficulty to distinguish between higher tones that decay quickly and may not be stably
recovered.
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IV. DISCUSSION AND CONCLUSIONS

In this work we introduce a framework to determine under
what circumstances a perturbative description can be self-
consistently applied to a binary black hole ringdown
obtained from numerical relativity simulations. We start
near the end of thewaveformwhere the 220 tone is expected
to be dominant and work backward, using the late-time
waveform to set the scale of systematic uncertainty in our
model. Similarly to [e.g., [45,50]] we employ a criterion for
stability to ensure that the fits obtained at different start times
are consistent. We find that it is possible to achieve a self-
consistent perturbative description within our framework
from ≈10M after peak strain. The perturbative description
does not appear to be stable back to the peak strain given the
specific set of tones considered here.
The 220 is not stably recovered without the addition of

the 221 until late times. However, the 221 is only stably
recovered and resolvable with this method for a short time
interval between 10 − 35M. Including the 222 appears to
improve the fits at early times and allows the 220 and 221 to
be recovered stably at earlier times. The 222 recovery can
be briefly stabilized with the addition of the 223. However
the 223 is not stably recovered at any of the times we
investigate and does not seem to stabilize with the addition
of the 224.
The 320 tone, which we add as the dominant contribu-

tion frommode mixing, is always stable from the waveform
peak. Reference [35] suggests that the perturbative model
can be applied at or before t0 ¼ tpeak. We show that, in our
framework, at t0 ¼ tpeak ¼ 0M the numerical-relativity
data can be explained in a self-consistent way with a set
of five tones (four tones of the 22 mode along with the
320 tone). Any higher tones included in the fit are
consistent with zero amplitude.
None of the sets of tones beyond Ntones ¼ 3 include a

region where all tones included in the set are recovered
stably. When Ntones > 3, the highest tone transitions from
unstable to unresolved with no stable region. If one requires
that all the tones in a set are stably recovered over some
finite interval, then the largest available set of tones
is Ntones ¼ 3.
We have shown that a superposition of quasinormal

tones can be used to produce a self-consistent description of
the ringdown. However, this does not prove that these fits
are “physical” (as opposed to phenomenological) or that
the signal is consistent with a perturbed black hole. This
study brings into focus a great challenge at the heart of the
black-hole spectroscopy program: it is unclear how one can
even answer the question of whether the perturbative
description is physical or phenomenological. The stability
of the quasinormal tone fits is a requirement for their

physical interpretability, but further work is required to
understand the relation of these observables to the under-
lying nature of the spacetime and our ability to probe it.

Note added. As we were preparing this manuscript, we
became aware of work by [84] and [85]. Reference
[84] also attempts to extract tones in a self-consistent
framework—by iteratively subtracting away the tone with
the longest damping time. They find that this technique
improves the stability of the extracted amplitude and phases
for up to five tones of SXS:0305. This is broadly
consistent with our result that only a limited number of
tones can be fitted in a self-consistent framework, although
we find this is limited to four tones rather than five. They
also include the 320 contribution from mode-mixing and
find that this improves the stability of the early tones but
introduces more instability of tones higher than n ¼ 2.
Reference [85] uses Bayesian inference to compare the
performance of nonlinear inspiral-merger-ringdown (IMR)
models with linear QNM ringdown models. They find that
IMRmodels produce better fits with higher Bayes factors at
early times. They find that overtones may be measurable in
high SNR events consistent with third-generation observa-
tories. They caution that the instability of tones may make
linear QNM models less reliable than nonlinear models for
performing tests of general relativity.

ACKNOWLEDGMENTS

We thank the referee for their helpful suggestions to
improve the manuscript. We thank Dana Jones and
Gregorio Carullo for their helpful comments on this work.
We also thank Saul Teukolsky, Vishal Baibhav, Will Farr,
Harrison Siegel and Ben Farr for helpful advice and
discussions. This work is supported through Australian
Research Council (ARC) Centre of Excellence
CE170100004, Discovery Projects No. DP220101610
and No. DP230103088, and LIEF Project
No. LE210100002. This work was supported in part by
the Sherman Fairchild Foundation and NSF Grants
No. PHY-2011968, No. PHY-2011961, No. PHY-
2309211, No. PHY-2309231, No. OAC-2209656 at
Caltech, as well as NSF Grants No. PHY-2207342 and
No. OAC-2209655 at Cornell. T. A. C. receives support
from the Australian Government Research Training
Program. The authors are grateful for computational
resources provided by the LIGO Laboratory computing
cluster at California Institute of Technology supported by
National Science Foundation Grants No. PHY-0757058
and No. PHY-0823459, and the Ngarrgu Tindebeek /
OzSTAR Australian national facility at Swinburne
University of Technology.

TEAGAN A. CLARKE et al. PHYS. REV. D 109, 124030 (2024)

124030-8



APPENDIX A: NOISE MODEL

In the body of this manuscript, we employ an “artificial
noise” model in which the systematic uncertainty is a
constant error relative to the 220 tone; see Sec. II. We
also test a “flat noise” model in which the systematic
uncertainty is constant at all times. In Fig. 5 we show
how the flat-noise fits compare to the artificial-noise fits.
(For this analysis, we include the 220 and 320 tones.) We
find that the posteriors are more comparable in magnitude
and size over time using the artificial noise approach. We
also find better sampler convergence, which is likely due
to the SNR being comparable at early and late times
rather than orders of magnitude different. Thus, in order
to facilitate a self-consistent overtone model, we employ
the artificial noise model in the main body of the
manuscript. However we emphasize that this noise model
is entirely phenomenological and not physically
motivated.

APPENDIX B: PHASE POSTERIORS

In Fig. 6 we plot the phase posteriors of the five-tone fit
we present in the main body of the manuscript. The
corresponding posteriors for the tone amplitudes are
presented in Fig. 2.

APPENDIX C: 220 STABILITY

Figure 7 shows the posterior distributions recovered for
the 220 tone with the lowest and highest dimensional
models included in the study. We also show the median
values that are common to all posteriors in the 5-tone fit.

FIG. 6. Posterior distributions for phase as a function of t0.
Each panel represents a different tone. We show the regimes
where each fit is stably recovered (white), unstably recovered
(light gray) and unresolved (dark gray). The 221, 222 and
223 tones are unstably recovered at early times and become
unresolved at late times, which implies that they do not
significantly improve the fit at late times. The 223 tone is not
stably recovered at any time but may stabilize with additional
tones. We show the corresponding amplitude posteriors in Fig. 2.

FIG. 5. Posterior for amplitude and phase as a function of start
time t0 for the 220 tone. (The fits also include the 320 tone; not
shown here.) The “flat-noise” model (teal) assumes the system-
atic error does not change with respect to t0. The “artificial-noise”
model (orange) assumes that systematic error is a constant
fraction of the 220 amplitude. The artificial-noise model produces
more consistent fits than the flat-noise model.

TOWARD A SELF-CONSISTENT FRAMEWORK FOR MEASURING … PHYS. REV. D 109, 124030 (2024)

124030-9



APPENDIX D: VARYING THE FREQUENCY
OF OVERTONES

In the main body of this manuscript, we assume that the
frequency and damping time of each tone are fixed to the
values expected from black-hole perturbation theory. Here,
we relax this assumption so that the frequency can be
treated as a free parameter. We test a set of three tones
including the 220, 320 and 221 tones and allowing the
frequency of the 221 to vary. We use a uniform prior
between 0.5 and 0.6 for the 221 frequency. Figure 8 shows
the result of this fit. The predicted frequency value is shown
as a red line in the bottom panel. The predicted frequency is
consistent with the posterior only for start times t0 > 15M.
The posteriors for other parameters do not change signifi-
cantly when f221 is treated as a free parameter. The fact that
the numerical-relativity data prefer the wrong value of f221
before 15M could mean that nonlinearities are present in
the data at early times that are influencing the fit.
Alternatively, it may be that more tones are required at
early times to avoid this behavior, which is what [e.g., [35]]
would imply.
We also measure the frequency of the 220 tone in a two-

mode fit with the 220 and 320 tones. We find that the
posterior moves away from the predicted frequency value
while the phase becomes unstable. The frequency predicted
by general relativity is only recovered for three time steps
between 35 and 45M. In the three- and four-tone models,
varying the 221 frequency slightly improves the stability of
the first three tones. The general relativity frequency for the

221 is recovered at relatively late times: 15M for a three-
mode fit and 10M for a four-mode fit. This further high-
lights that caution is required when fitting the tone
frequencies due to the uncertain number of tones required,
potential nonlinearities and nonoptimal fits, especially
when doing so to test the no-hair theorem as shown in
[e.g., [16,35]].
Table II summarizes the stability of the recovery of each

of the tones when we sample the frequency as well as the

FIG. 8. Violin plots showing the posterior distributions for a
three-tone fit where f221 is treated like a free parameter. Including
the 221 makes the 220 fit stable at earlier times. The fit becomes
stable at 20M, which is 10M earlier than when we keep f221
fixed. Similarly, the 220 becomes stably recovered 5M earlier
than when f221 was fixed.

FIG. 7. The amplitude and phase posteriors of the 220 tone
when measured with a 1 and 5-tone model. The 5-tone model is
stable at all times, while the 1-tone model becomes stable at 30M.
The dashed horizontal lines show the median of the overlap at
95% confidence for the 5-tone model.
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amplitude and phase. Treating f221 as a free parameter
helps stabilize the fits at earlier times than when we sample
in the amplitude and phase alone. The 221 also remains
distinct from zero for an extra time step. However, we see

the opposite effect when we treat f220 as a free parameter
for the two-tone fit. The 220 parameters do not become
stable until 60M and the 320 tone is slightly affected,
stabilizing at 5M instead of 0M.
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