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In the aftermath of a binary black hole merger event, the gravitational wave signal emitted by the
remnant black hole is modeled as a superposition of damped sinusoids known as quasinormal modes.
While the dominant quasinormal modes originating from linear black hole perturbation theory have been
studied extensively in this postmerger “ringdown” phase, more accurate models of ringdown radiation
include the nonlinear modes arising from higher-order perturbations of the remnant black hole spacetime.
We explore the detectability of quadratic quasinormal modes with both ground- and space-based next-
generation detectors. We quantify how predictions of the quadratic mode detectability depend on the
quasinormal mode starting times. We then calculate the signal-to-noise ratio of quadratic modes for several
detectors and binary black hole populations, focusing on the (220 × 220) mode—i.e., on the quadratic term
sourced by the square of the linear (220) mode. For the events with the loudest quadratic mode signal-to-
noise ratios, we additionally compute statistical errors on the mode parameters in order to further ascertain
the distinguishability of the quadratic mode from the linear quasinormal modes. The astrophysical models
used in this paper suggest that while the quadratic mode may be detectable in at most a few events with
ground-based detectors, the prospects for detection with the Laser Interferometer Space Antenna (LISA)
are more optimistic.

DOI: 10.1103/PhysRevD.109.124029

I. INTRODUCTION

The postmerger signal of a binary black hole (BH)
merger can be accurately modeled by a superposition of the
oscillation modes of a single perturbed BH, known as
quasinormal modes (QNM) [1–3]. The full merger wave-
form can be computed in numerical relativity, and the
predictions of linear perturbation theory around a fixed BH
background provide an excellent fit of the “ringdown”
phase of the waveform at late times [4,5].
In linear perturbation theory, the time-domain waveform

in the ringdown phase is a sum of damped sinusoids with
discrete frequencies labeled by the angular momentum
numbers (lm) of the spherical harmonics expansion and by
an additional “radial” overtone number, n. These frequen-
cies can be computed within linear perturbation theory, and
they are intrinsic properties of the BH, depending only on
its mass and spin. On the other hand, the amplitudes of the
QNMs excited in specific astrophysical scenarios depend

on the initial conditions of the perturbation. For a
binary BH merger, these amplitudes depend on the param-
eters of the progenitor binary, and they are usually found by
fitting either the data or the numerical simulations (see, e.g.,
[4–13]). The simplicity of the QNM spectrum in linear
perturbation theory has triggered an observational research
program to test the Kerr nature of the merger remnant by
performing “BH spectroscopy” [10,14–29]. A measure-
ment of more than one of the complex QNM frequencies
could test the so-called “no-hair theorem” of general
relativity (GR), because all of the frequencies depend only
on the mass and spin of the remnant BH. The large number
of events and the large signal-to-noise ratios (SNRs)
expected for next-generation (XG) gravitational wave
interferometers, such as the Einstein Telescope (ET) [30]
in Europe, Cosmic Explorer (CE) [31] in the US, or
LISA [32,33], suggest that precision BH spectroscopy
may become routine in the near future.
However, the idea that linear perturbation theory is

sufficient to describe the ringdown phase has recently been
challenged. Einstein’s theory of GR is well known to be*syi24@jh.edu
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nonlinear, and there could be an imprint of these non-
linearities in the QNMs. On the theoretical side, second-
order perturbation theory of BH backgrounds is an active
field of research (see, e.g., [34–53]). The second-order
perturbations of the metric around a Schwarzschild BH
obey a very similar differential equation to the linear ones,
the main difference being the presence of a term sourcing
the perturbations in the Regge-Wheeler or Zerilli equations.
The nonlinear source term depends on a product of two
linear modes which can source nonlinear QNMs. This
property implies that at second order there must be a set of
“quadratic modes” in the ringdown waveform, besides the
usual linear QNMs [54–58]. The frequency of a nonlinear
mode is just the sum or difference of the two linear QNM
frequencies ðl1m1n1 × l2m2n2Þ entering the source term, a
typical feature of nonlinear systems. Furthermore, several
works [48,50–52,54,55,58] highlighted that the amplitudes
of the quadratic modes are also an intrinsic property of the
BH, once the amplitudes of linear QNMs are fixed by the
initial conditions. This makes the observation of quadratic
modes a very interesting target to perform further tests of
GR in the nonlinear regime.
On the numerical side, the in-depth study of numerical

relativity simulations has confirmed the existence of
quadratic QNMs and provided fits to their amplitudes as
a function of the progenitor parameters [11–13,48,59–62].
These works identify the ð220 × 220Þ mode, generated by
the self-interaction of the (220) mode, as the dominant
quadratic mode in the waveform.
From an observational perspective, however, the detect-

ability of quadratic modes is still an open question. Being
generated at second-order in perturbation theory, the
amplitude of these modes is expected to be smaller than
the amplitude of the linear modes sourcing them, while
their damping time is always shorter [54,55,58]. These two
properties combine to make the potential detection of
quadratic QNMs in data a challenging task, probably out
of reach for current interferometers. However, the prospects
may be more optimistic in the future with the advent of XG
detectors. In this article we investigate the possibility of
observing and measuring quadratic QNMs in XG gravita-
tional wave observatories, both on the ground and in space.
The paper is organized as follows. In Sec. II we describe

our ringdown waveform model and data analysis frame-
work. In Sec. III we describe the astrophysical catalogs
used to estimate the quadratic mode detection rates. In
Sec. IV we discuss the detectability of the quadratic modes,
and in Sec. V the measurability of their parameters. In
Sec. VI we present our main conclusions and some
directions for future work. To improve readability, some
technical material (on the effect of the QNM starting time,
the calculation of binary BH merger rates in clusters, and
the calculation of SNRs and parameter estimation errors) is
presented in the appendices. Throughout the paper we use
geometrical units (G ¼ c ¼ 1).

II. WAVEFORM MODELS AND DATA ANALYSIS
FRAMEWORK

A. Ringdown waveform template

We assume that the plus and cross time-domain polar-
izations of the gravitational waveform in the ringdown
stage can be written as [63,64]

hþðtÞ ¼
X
lmn

Re½Ālmneiϕlmn Ŷlmþ eiðωlmnþi=τlmnÞt�; ð1Þ

h×ðtÞ ¼
X
lmn

Im½Ālmneiϕlmn Ŷlm
× eiðωlmnþi=τlmnÞt�; ð2Þ

where ϕlmn is the QNM phase and ωlmn and τlmn are the
QNM frequencies and damping times, respectively, all
specified by the angular indices lm and by the overtone
number n. Following Ref. [29] we have also introduced an
effective amplitude Ālmn ¼ MfAlmn=r, where Mf is the
redshifted mass of the remnant BH, r is the luminosity
distance, and Almn is the QNM amplitude. In our analysis
we neglect the contribution of the overtones (see
e.g. [10,65]), and therefore from now on we generally
omit the overtone index n to simplify the notation.
The modes sum in Eqs. (1)–(2) includes: (i) the linear

(22), (21), (33), and (44) QNMs and (ii) the loudest
quadratic (44) component, sourced by the square of the
(22) fundamental mode, with frequencies and damping
times ω22×22 ¼ 2ω22, τ22×22 ¼ τ22=2. We obtain numerical
values for QNM frequencies from Ref. [2] and mode
amplitudes and phases from Ref. [11], as we will discuss
in more detail in Sec. II C.
The complex functions Ŷlmþ;×ðι;φÞ are defined by

Ŷlmþ;×ðι;φÞ ¼ e−imφYlmþ;×ðι; 0Þ; ð3Þ

where

Ylmþ ðι; 0Þ ¼ −2Y
lmðι; 0Þ þ ð−1Þl−2Yl−mðι; 0Þ; ð4Þ

Ylm
× ðι; 0Þ ¼ −2Y

lmðι; 0Þ − ð−1Þl−2Yl−mðι; 0Þ; ð5Þ

and −2Ylmðι;φÞ ¼ eimφ
−2Y

lmðι; 0Þ are the spin-weighted
spherical harmonics.
We map the signal in the Fourier domain following the

Flanagan-Hughes convention [16,66], such that the two
polarizations read

h̃þðfÞ ¼
X
lm

Ālmffiffiffi
2

p ½bþeiϕlmŶlmþ þ b−e−iϕlmŶlm�þ �; ð6Þ

h̃×ðfÞ ¼
X
lm

Ālm

i
ffiffiffi
2

p ½bþeiϕlmŶlm
× − b−e−iϕlmŶlm�

× �; ð7Þ

where the superscript � denotes complex conjugation and
b� are Breit-Wigner functions:

SOPHIA YI et al. PHYS. REV. D 109, 124029 (2024)

124029-2



b� ¼ 1=τlm
τ−2lm þ ðω� ωlmÞ2

; ω ¼ 2πf: ð8Þ

The full ringdown waveform is then given by

h̃ðfÞ ¼ Fþh̃þðfÞ þ F×h̃×ðfÞ; ð9Þ

where Fþ;× are the detector pattern functions. For sim-
plicity, we average over the detector angles and over the
source orientation. For L-shaped detectors we make use of
the following identities:

hF2þ;×i ¼
1

5
; hFþF×i ¼ 0: ð10Þ

For LISA, Eqs. (10) need to be multiplied by an additional
factor of 3=2 to take into account the triangular shape of the
detector, as discussed in Ref. [67].
The template (9) allows us to compute the SNR ρ for a

detector with noise power spectral density SnðfÞ

ρ2 ¼ 4

Z
fmax

fmin

h̃ðfÞh̃�ðfÞ
SnðfÞ

df; ð11Þ

which we use as a simple metric to determine the detect-
ability of quadratic modes with both ground-based detec-
tors and the space-based interferometer LISA [32,33]. We
consider a ground-based detector network of two L-shaped,
aligned ET detectors with 15 km armlength [68] and a
40 km CE [69]. The total SNR for the ET network is
simply given by multiplying the single-detector SNR by a
factor of

ffiffiffi
2

p
. We set fmin ¼ 3 Hz (fmin ¼ 10−5 Hz) and

fmax ¼ 5000 Hz (fmax ¼ 0.5 Hz) for ground (space)
observations, respectively.
Note that since the waveform (9) contains a combination

of modes with different values of (lm), the integral (11)
depends both on the SNR of the individual QNMs, ρlm, and
on cross-products among them. However, due to the
orthogonality of the spin-weighted spherical harmonics
(see Appendix C) the total SNR of QNMs with different
multipolar indices is simply given by the sum in quadrature
of the individual ρlm’s, i.e.,

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2l1m1

þ ρ2l2m2
þ � � �

q
: ð12Þ

B. Fisher analysis

To assess the measurement accuracy of nonlinear modes
by XG detectors we use a Fisher information matrix (FIM)
approach [70]. Given the strain sðtÞ ¼ hðt; θ⃗Þ þ nðtÞ,
where nðtÞ is the detector’s stationary noise and hðt; θ⃗Þ
the gravitational wave signal, the posterior probability of
the waveform parameters θ⃗ is given by

pðθ⃗jsÞ ∝ p0ðθ⃗Þe−1
2
ΓijΔθiΔθj ; ð13Þ

where p0ðθ⃗Þ corresponds to the prior distribution for θ⃗,
Δθ⃗ ¼ θ⃗ − ξ⃗, and the vector ξ⃗ refers to the true values of the
parameters. The FIM Γij is then defined as

Γij ¼
�
∂h
∂θi

���� ∂h
∂θj

�
; ð14Þ

where we have introduced the inner product between two
waveforms in the frequency domain,

ðh1jh2Þ ¼ 2

Z
fmax

fmin

h̃1ðfÞh̃�2ðfÞ þ h̃�1ðfÞh̃2ðfÞ
SnðfÞ

df: ð15Þ

h is given by Eq. (9), and Eq. (14) is evaluated at θ⃗ ¼ ξ⃗.
Note that each mode contributes to θ⃗ with four parameters
ðĀlm;ϕlm;ωlm; τlmÞ, i.e., the mode’s (effective) ampli-
tude, phase, frequency, and damping time. The values of
ωlm and τlm only depend on the mass and spin of the
remnant black hole, but in this work we consider all
frequencies as independent parameters in order to assess
QNM detectability with more confidence, in the spirit of
“agnostic” BH spectroscopy [10].
Inverting the FIM yields the covariance matrix

Σij ¼ ðΓ−1Þij; ð16Þ

with diagonal (off-diagonal) components corresponding to
the errors on (or correlations coefficients between) the
parameters, i.e.,

σθi ¼
ffiffiffiffiffiffi
Σii

p
; cij ¼ Σii=ðσθiσθjÞ: ð17Þ

To avoid numerical errors that can arise in attempting to
invert a Fisher matrix with a very large condition number,
we use the method described in [71], normalizing Γij to its
diagonal components before inverting it.
Due to the orthogonality properties of the spin-weighted

spherical harmonics, the FIM for modes with different
harmonic indices becomes block-diagonal. If n ¼ 1;…; k
labels the QNMs included in the template, we have

Γij ¼

0
BBBBBB@

Γð1Þ
ij

Γð2Þ
ij

. .
.

ΓðkÞ
ij

1
CCCCCCA
; ð18Þ

where Γð1;2…kÞ
ij are the Fisher matrices of each individual

QNM [29].
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Modes with the same angular dependence require the
calculation of cross termswhich containmixed derivatives. In
our analysis, this only occurs for the (44) and the ð22 × 22Þ
quadratic mode. To determine the errors on the para-
meters of these modes we need to compute the 8 × 8 FIM
for θ⃗ ¼ ðĀ44;ϕ44;ω44; τ44; Ā22×22;ϕ22×22;ω22×22; τ22×22Þ.
The errors on these parameters are unaffected by the FIM
elements related to modes with ðlmÞ ≠ ð44Þ.

C. Quasinormal mode starting time estimates

In order to evaluate the SNR and the statistical errors on
the parameters of the quadratic QNMs, we first need to
estimate the corresponding mode amplitude Alm, which
appears in the waveform model of Eqs. (6)–(7). The
procedure requires a careful choice of the starting time
t0 after the peak of the signal. Choosing the value of t0
effectively determines the onset of the perturbative regime,
and is key to guaranteeing the validity of the QNM
expansion.
There is no unique, unambiguous way of choosing t0.

Here we follow the approach introduced in Ref. [20], which
makes use of Nollert’s “energy maximized orthogonal
projection” (EMOP) criterion [72]. In this framework,
the time-domain ringdown waveform h is split into
components “parallel” and “perpendicular” to the QNM.
The energy “parallel” to a QNM is given by

Ejj ¼
ωij

R
t0
ḣNRḣ

�j2
4πðω2

r þ ω2
i Þ

; ð19Þ

where we omit the angular indices (lm) to simplify the
notation, ωr and ωi denote the real and imaginary parts of
the QNM frequency, respectively, and hNR is a multipolar
component of the strain extracted from numerical relativity
simulations. The ringdown starting time t0 is then defined
as the integration limit for which Ejj is maximized. The
integral above then provides the “EMOP energy” carried by
the fundamental mode for a given multipole, Elm.
Reference [20] analyzed numerical relativity catalogs to
find semianalytical fits of Elm as a function of the
parameters of binary progenitors with aligned spins.
The energy Elm can then be mapped to the QNM

amplitude by introducing the radiation efficiency

ϵRD ¼ 1

M

Z
fmax

fmin

dE
df

df; ð20Þ

where dE=df is the gravitational wave energy spectrum,
which is also related to the SNR ρ by

ρ2 ¼ 2

5π2r2

Z
fmax

fmin

1

f2SnðfÞ
dE
df

df: ð21Þ

By comparing Eqs. (21) and (11), we can express
dE=df as a function of the waveform parameters
ðAlm;Mf; r;ϕlm;ωlm; τlmÞ, and solve for the

EMOP-based amplitudes (hereafter Alm;E) for a given
choice of ϵRD, as determined by the fits of Ref. [20].
This method allows us to estimate the amplitudes Alm;E

just for a few linear modes. However, the authors of
Ref. [11] recently derived fitting formulas for the ampli-
tudes and phases of linear modes (including overtones and
retrograde modes) as well as nonlinear modes. These fits,
which are based on a fitting algorithm applied to over
500 binary BH simulations in the SXS catalog, give the
amplitudes and phases as functions of the progenitor BH
parameters: the binary mass ratio and the projections of the
individual spins along the orbital angular momentum. We
use these amplitude and phase fits for our SNR and error
calculations, and we estimate the starting time t0 by looking
for the time at which the amplitude fits of Ref. [11] agree
well with the EMOP estimate Alm;E.
Our procedure is as follows. For each linear mode, we

compute the percentage difference between the amplitude
fit Almn of Ref. [11] and the EMOP fit Alm;E of Ref. [20]
over a four-dimensional space including the three progen-
itor binary parameters—mass ratio q≡m1=m2 in the range
[1, 10], plus symmetric and antisymmetric spin combina-
tions χþ ≡ ðqχ1 þ χ2Þ=ð1þ qÞ and χ−≡ðqχ1−χ2Þ=ð1þqÞ
in the range ½−0.99; 0.99�—and values of t0 in the range
½0; 30�Mf. For each mode, we then select the points
for which the combinations of these four parameters
(q; χþ; χ−; t0) result in a percentage difference between
fits smaller than 5%. The values of t0 that lead to such small
percentage differences for the (22) and (33) fundamental
modes are plotted in Fig. 1 as functions of χþ, for various
selected values of q and χ−. The plot shows that the values
of t0 at which the amplitude fits agree are roughly in the
range ½10; 15�Mf, except at large values of χþ. The dark
blue-green markers, corresponding to q ¼ 1, are absent in
the bottom panel because A33 → 0 in the equal-mass limit.
While this is not shown in the figure for brevity, analogous
plots for the linear (21) and (44) modes show that the
optimal values of t0 are similarly centered somewhere in
the range ½10; 15�Mf.
Armed with this qualitative understanding, we then

estimate t0 for each mode by averaging over all the times
which provide an agreement between amplitude fits better
than 5%. These averaged values of t0 are summarized in
Table I. Overall, these results suggest that, when accounting
for the amplitude dependence on the mass ratio and on the
spin values, the agreement between fits is maximized
around t0 ≈ 12Mf. This is the value we will use hereafter
for SNR and Fisher calculations.
While this choice is somewhat arbitrary, we can under-

stand if the SNR and the FIM-estimated statistical errors are
sensitive to the choice of starting time by varying t0 around
our fiducial value. In Fig. 2 we show the SNR of the
quadratic mode ρ22×22 as a function of t0 for a few selected
binary progenitor parameters (see Appendix A for a more
comprehensive analysis).
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While the starting time can certainly affect the estimates,
from Fig. 2 we see that variations in t0=Mf of order unity
result in variations in SNR (and hence, variations in
parameter estimation errors) of order unity. This can be
understood through the following simple considerations.
To compute the SNR at a given t0, we multiply each
mode in the time-domain waveform (2) by eiðωlmþi=τlmÞt0.
Absorbing the real and imaginary parts of this time
correction into the QNM phase and amplitude, respectively,
the time-shifted QNM parameters become

Ālm ⟶ Ālme−t0=τlm; ϕlm ⟶ ϕlm þ ωlmt0: ð22Þ

All calculations in the frequency domain can then proceed
along the steps described in Sec. II A. Typical values of
t0=τlm are less than 2, such that the exponential factor
e−t0=τlm does not affect the SNR (and the FIM errors)
dramatically.
Let us stress once again that the criterion for determining

the starting time of the quadraticmode laid out in this section
is only a rough estimate. A better motivated criterion could
be to use the earliest time at which the bias in the frequency,
amplitude and phase of the quadratic mode is lower than the
statistical error of measurement. Such a criterion is dis-
cussed, e.g., in Refs. [11,73]. In principle, this can be done
on a per-event basis, as follows: (i) First pick an initial guess
of t0, and use a FIM calculation to estimate the statistical
error; (ii) To estimate the systematic bias (due to the fact that
we do not start at sufficiently late times), pick a numerical
relativity simulation with parameters close to the event, fit
the waveform at t0, and compare the result with an estimate
of the (unbiased) value obtained from fits performed at a
time at which the frequency, amplitude and phases are the
most stable (see Ref. [11]); (iii) Iteratively tune t0 until the
statistical error and the systematic bias are of similar
magnitude. The resulting t0 would be the optimal starting
time to use for the event in question. Here we do not apply
this procedure because it is prohibitively expensive, espe-
cially for the large astrophysical catalogs considered below.
Given the order-of-magnitude nature of FIM calculations
and the uncertainties in the astrophysical event rates of
binary BH mergers, the simple EMOP estimates of t0 used
here are sufficiently accurate.

III. ASTROPHYSICAL CATALOGS

To estimate the rates of binary BH merger events with
detectable nonlinear modes, in this section we introduce

FIG. 1. Results of our estimates of the optimal starting time t0,
based on comparisons between Alm;E and Almn. For each mode,
we fix q and χ−, and we plot the values of t0 for which the
difference between the two amplitude fits is smaller than 5% as a
function of χþ. Different colors correspond to different values of
q. Different point marker shapes (triangles, dots, and diamonds)
correspond to selected values of χ− ¼ 0.81, 0.01, and −0.89,
respectively.

TABLE I. Optimal “averaged” starting time t0 for QNMs with
different (lm), evaluated through the procedure outlined in
Sec. II C.

Mode “Optimal” t0

(22) 10.62
(21) 12.21
(33) 12.66
(44) 10.94

FIG. 2. SNR of the ð22 × 22Þ quadratic mode as a function of
the starting time t0. Different bullet points refer to BHs with
different masses, observed by LISA or ET. All sources assume
nonspinning progenitors, with a mass ratio q ¼ 2. Events
detected by LISA and ET are located at z ¼ 10 and z ¼ 1,
respectively.
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astrophysical models of binary BH populations that fall
within the observational window of XG detectors.
In Sec. III A we focus on ground-based detectors, such

as CE and ET. In this case we consider populations
compatible with the third LIGO-Virgo-KAGRA observing
run with two different assumptions on the component spins
(model I and model II, also used in Ref. [29]), as well as a
population of dynamically formed BH binaries (model III).
In Sec. III B we introduce a range of plausible massive
black hole (MBH) population models that can produce
ringdown events detectable by LISA.

A. Stellar mass binary black hole population models

We consider two astrophysical populations with masses
sampled from the POWER LAWþ PEAK model moti-
vated by the third LIGO-Virgo-KAGRA gravitational wave
transient catalog, GWTC-3 [74]. The binaries are drawn up
to redshift z ¼ 10 from a distribution which follows the
Madau-Dickinson cosmic star formation rate (SFR), with a
local binary BH merger rate Rm ¼ 28.3 Gpc−3 yr−1

[75,76]. Following Ref. [29], we consider two possible
prescriptions for the spins of the component BHs, which
are always assumed to be either aligned or antialigned
with the orbital angular momentum of the binary. In model
I the dimensionless spin parameters are sampled from
a Beta distribution with (α ¼ 2, β ¼ 5) peaked around 0.2.
In model II the BH spins are sampled from a uniform
distribution within ½−1; 1� (see Sec. IIE of [29] for further
details).
We also consider a third model (hereafter model III)

consisting of merger events simulated using RAPSTER, a
population synthesis code for binary BH mergers pro-
duced dynamically in globular clusters [77]. The star
cluster formation rate follows the redshift distribution in
Eq. (11) of Ref. [78] in the redshift range z∈ ½0; 10�. The
BH masses are generated from the SEVN code [79], and the
stellar masses of BH progenitors follow the Kroupa initial
mass function. Since the BH mass spectrum depends
strongly on the metallicity of the system, given the redshift
of cluster formation, we sample the metallicity from a
lognormal distribution with a mean value given by Eq. (6)
of Ref. [80] and standard deviation of 0.25; these assump-
tions are motivated by Ref. [78]. Current gravitational
wave observations constrain the BH spins to be relatively
low [74]. We assume, somewhat arbitrarily, that the spin
magnitudes of first-generation BHs (those that form from
the collapse of massive stars) are uniform in the range
[0, 0.2]. Based on observations of young clusters in the
local Universe [81], we draw the mass of star clustersMcl;0

from a Schechter initial mass function with spectral index
−2 and truncation mass scale at 107M⊙ in the range
½104; 108�M⊙. The initial half-mass radius rh;0 (a required
input parameter in the RAPSTER code) is weakly correlated
with Mcl;0, and it is sampled from a lognormal distribution
with mean given by Eq. (3) of [82] and a scatter of 0.7 dex.

Finally, the initial galactocentric radius of clusters is drawn
from a Sérsic profile with index n ¼ 1 and scale radius
1 kpc (a typical Milky Way-like galaxy). All other RAPSTER
input parameters are set to their default values (see Table 1
of [77]). In Appendix B we discuss the merger rates
estimated with RAPSTER, along with the sampling technique
we use to draw events from the binary BH population
generated by the code.

B. Massive black hole evolution models

The evolution of MBHs and of their host galaxies is
followed using the semianalytic model introduced in
Ref. [83] and refined in later studies [84–89]. Galaxies
are comprised of dark matter halos accreting gas from the
intergalactic medium. This chemically primordial gas can
either flow directly to the core of the halo along cold
filaments [90–92] (either at high redshift, or in small halos
at low redshift), or it can get shock-heated to the halo’s
virial temperature, before cooling and settling at the center.
By conservation of angular momentum [93], this cold gas
can form disk structures [93], becoming a site for star
formation. When these disks get disrupted by bar insta-
bilities of major galaxy mergers, star formation bursts occur
and spheroidal structures (bulges) form. The semianalytic
model also incorporates smaller structures such as nuclear
star clusters [85,86], a central gas reservoir for MBH
accretion [94], besides the MBHs themselves, for which
the mass and spin evolution is followed through their
accretion and merger history. The models also account
for feedback processes on the growth of structures, namely
the impact of active galactic nuclei (AGNs), which expel/
heat up gas from the galactic centers in high mass systems
[95–97], potentially quenching star formation and MBH
accretion, and the damping effect of supernova (SN)
explosions on star formation in shallow potential wells
[98–100]. SN feedback can also suppress MBH accretion
and the gas-driven hardening of MBH binaries in small
systems with escape velocities ≲270 km=s [101], lower
than the typical speed of SN winds [102].
The dark-matter merger tree on which the model relies to

describe the halo merger history is produced via an
extended Press-Schechter formalism [103], calibrated
against results from N-body simulations [104]. Galaxy
mergers follow halo mergers, but with potentially large
delays. First, one has to account for the initial survival of
the smaller halo within the larger one as a sub-halo (or
satellite), which slowly sinks in by dynamical friction,
while being tidally disrupted and evaporating [105,106].
Besides this first delay, the baryonic components (the
galaxy proper) are also subject to dynamical friction and
tidal disruption/evaporation [107]. MBH mergers experi-
ence additional delays from the galaxy/halo merger, as
MBH pairs need to travel all the way from separations of
hundreds of pc or even kpc (where they are expected to be
at the coalescence of their host galaxies) down to ∼pc
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scales, where they form bound binaries, and eventually to
the sub-pc scales on which gravitational wave emission
alone can drive them to merger. At separations of hundreds
of pc, the main driver of the evolution is again dynamical
friction [108], calibrated to the results of hydrodynamic
simulations [109], while the evolution from pc to sub-pc
scales is driven by stellar hardening [110,111], interactions
with gas (if available) [112–118] and/or with other
MBHs from previous galaxy mergers [87,88,119–121].
Upon merger, the model updates the MBH mass and spin
based on semianalytic formulas reproducing the results of
numerical relativity simulations [122,123] and includes the
impact of gravitational wave recoil [101], which can lead to
the ejection of the merger remnant from the galaxy.
In addition to the delays between halo/galaxy mergers

and MBH mergers, the model’s predictions for the MBH
binary population are deeply impacted by the unknown
initial BH seed mass function at high redshift. In the light
seed (LS) scenario, MBHs are assumed to originate from
seeds of a few hundred M⊙, remnants of Pop III stars
exploding as SNe. Specifically, the model populates large
halos forming from the 3.5σ peaks of the primordial density
field at z≳ 15 with seed BHs, estimating their mass to be
∼2=3 of the initial Pop III mass (to account for mass loss
during the SN explosion). The star’s initial mass distribu-
tion is modeled as a lognormal distribution centered at
300M⊙ with a standard deviation of 0.2 dex, excluding
masses between 140 and 260M⊙, which produce pair-
instability SNe leaving no BH remnant. Our model also
considers a heavy seed (HS) scenario, where MBHs form
with mass already of ∼105M⊙. This scenario is based on
the model of Ref. [124], where seeds emerge from the
collapse of protogalactic disks, driven by bar-instability in
high-redshift, low-spin, and low-temperature halos. The
seed masses are determined according to specific formulas
from the same reference. It is of course conceivable that a
combination of both HSs and LSs forms in nature, a
hypothesis that LISA will help clarify [125], but in this
paper we will consider one scenario at a time.
The semianalytic model is calibrated against a number

of galactic/subgalactic scale observables (e.g., galaxy,
MBH baryonic mass functions, star formation rates and
densities, scaling relations for MBHs and nuclear star
clusters, AGN luminosity function, etc.) [83–89] and also
against the recent observations of a putative stochastic
background of gravitational waves from MBH binaries by
pulsar timing array experiments [126–130]. In more detail,
we will consider here a subset of the models presented in
Refs. [131,132], where a comparison to pulsar timing array
data is presented. Despite this calibration, the uncertainty
on the predictions of the merger rate of MBH binaries
observable by LISA remains significant.
In this paper, we bracket these uncertainties by focusing

on six models from Refs. [131,132] predicting rather
different LISA event rates. In particular, we will consider

models “HS-nod-noSN (Bþ 20),” “LS-nod-noSN
(Bþ 20),” “LS-nod-SN (Bþ 20),” “popIII-d (Kþ 16),”
“Q3-d (Kþ 16),” and “Q3-nod (Kþ 16),” where “HS/Q3”
(“LS/popIII”) indicate models with heavy (light) seeds,
respectively; “nod” indicates models with no delays
between galaxy and MBH mergers (except for the dynami-
cal friction time—including tidal effects—between halos);
“d” indicates models which include not only the delays
between halo and galaxy mergers, but also for stellar
hardening, MBH triplets and gas-driven migration; and
“(Kþ 16)/(Bþ 20)” refer to the papers where the models
were first presented (Refs. [89,133]). “SN” and “noSN”
refers to whether the quenching effect of SN winds on
MBH accretion is accounted for or not, respectively.
Note that Refs. [131,132] presented predictions of each
of these models at finite merger tree resolution, and
extrapolated predictions to infinite resolution. As discussed
in Refs. [131,132], the extrapolated results should be
considered as upper limits to the predicted merger rates,
while the finite-resolution results provide lower limits.

IV. DETECTABILITY OF NONLINEAR MODES

To understand which events in our catalogs are likely to
have a detectable quadratic mode, we begin by computing
the SNR for this mode alone. We will then select the
events with detectable nonlinear modes (i.e., those with
ρ22×22 > 8) for further analysis.

A. Quadratic mode SNR of stellar-mass black hole
binaries as observed by ground-based detectors

We first compute the quadratic mode SNR of 105

binaries at t0 ¼ 12Mf after the peak of the waveform
for both CE and ET. We use the same catalogs (model I and
model II) studied in Ref. [29].
The results are shown in Fig. 3, where the color of the

points corresponds to the redshift of each binary. For each
of the two detectors, the vast majority of the events have a
quadratic mode SNR less than 8, with model II yielding
slightly larger SNRs than model I. This is because model II
has more events with large, positive progenitor spins, for
which the quadratic mode amplitude is larger. This is
illustrated in Fig. 4, where we plot the number of events
with a given value of χ1 (left axis) and the magnitude of
A22×22 (right axis) as a function of the BH spin χ1 (note that
each event in the model I and model II catalogs has χ1 ¼ χ2
by assumption). The quadratic mode amplitude is clearly
higher as the individual spins approach the extremal limit.
The quadratic mode amplitudes plotted in Fig. 4 refer to
equal-mass binaries (q ¼ 1), but we have checked that the
behavior is qualitatively similar as long as q ≤ 3.6, the
largest mass ratio for binaries in the model I and model II
catalogs.
Overall, under the conservative assumption that the

mass distribution follows current LIGO-Virgo-KAGRA
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observations and that the redshift distribution follows the
star formation rate, we conclude that the quadratic mode
may be observable by XG detectors (in the sense that
ρ22×22 > 8) for at most a few tens of stellar mass binary BH
merger events per year.

B. Quadratic mode SNR of dynamically formed black
hole binaries as observed by ground-based detectors

We now investigate whether prospects improve if we
compute the quadratic mode SNR for binaries formed
exclusively in dynamical channels. We simulate dynamical

formation with the RAPSTER code [77], which allows for
heavy binary mergers with primary masses Oð100ÞM⊙.
The amplitude fits that we employ are not accurate for

high mass ratios, so we conservatively exclude all events in
the RAPSTER catalog with q > 10 (these constitute less than
0.7% of all events). Since the quadratic mode amplitude,
and the corresponding SNR, is significantly higher for
comparable-mass binaries (see Fig. 6), our forecasts of
quadratic mode detectability are only mildly affected by the
implementation of this mass ratio cutoff.
We take weighted samples of 105 events at a time from

the RAPSTER catalog of dynamically formed binary BH
events, weighting samples by a realistic merger rate as a
function of redshift (see Appendix B). The quadratic mode
SNRs, again for a 40-km CE and a 15-km ET, are plotted in
Fig. 5. Once again, we find only a few events with a
potentially detectable ρ22×22. For CE (ET), the mean
quadratic mode SNR for the events shown in Fig. 5 is
0.64 (0.81), with 7 (6) events having ρ22×22 > 8. We have
repeated the analysis several times, taking multiple
weighted samples of 105 events from the total catalog
and computing the quadratic mode SNR for these events,
and in each case we find qualitatively similar results.

FIG. 3. SNR of the 22 × 22) quadratic mode computed for
model I and model II (POWER LAWþ PEAK mass distribution
and two different spin distributions). Plot points are colored by
redshift, z. The horizontal red line in each plot marks our
detectability threshold of ρ22×22 ¼ 8.

FIG. 4. Quadratic amplitude dependence on spin. This plot
explains why model II has a larger number of events with
detectable quadratic modes, as compared to model I. Histograms
(left axis): number of events in the model I and model II catalogs
with a given value of χ1 (which in the catalogs is assumed to be
equal to χ2). Teal line (right axis): quadratic mode amplitude for
equal-mass mergers (q ¼ 1) as a function of χ1. The qualitative
behavior for unequal-mass binaries (q > 1) is similar.

FIG. 5. SNR of the quadratic mode (22 × 22) calculated for 105

binary BH mergers simulated by RAPSTER, including numerous
IMBHs, for both CE (left panel) and ET (right panel). The
horizontal red line marks the detection threshold (ρ22×22 ¼ 8).

FIG. 6. The quadratic mode SNR is lower at large values of q.
Results are shown for CE’s noise curve (z ¼ 1) and m2 fixed to
100M⊙, but results are qualitatively similar for other detectors
and secondary mass values.
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Unlike the model III binaries predicted by the RAPSTER

simulations,which can have total massMtot ∼ ½300; 600�M⊙,
themostmassive binaries in themodel I andmodel II catalogs
have a total mass of ∼170M⊙. In the particular RAPSTER

universe realization shown in Fig. 5, all six of the events
detectable by ET have masses Mtot ∼ ½60; 100�M⊙ and red-
shifts z ∼ ½0.04; 0.07�. For CE we find a total of seven
detectable sources: three of them have values of ðMtot; zÞ
comparable to those observedbyET,while the remaining four
have larger masses (Mtot ∼ ½300; 600�M⊙) and are located at
redshifts z ∼ ½1.4; 3�. The improved sensitivity at lower
frequencies allows CE to detect signals from heavier BHs.
This can be seen in Fig. 7, where we plot the quadratic

mode SNR as a function of the primary mass for binary
BHs in the stellar-mass and IMBH ranges (left and right
panels, respectively). While ET is slightly better at
detecting the quadratic mode of binaries with individual
masses Oð10ÞM⊙, CE performs significantly better in the
IMBH range. These results suggest that binary BHs with
masses somewhat larger than the range covered in the
model I and model II catalogs may be good candidates for
detection of the ð22 × 22Þ quadratic mode with CE.
In Fig. 8 we show the distribution of detectable quadratic

mode SNRs (>8) for each of the catalogs discussed thus far
over one year of observation. The astrophysical models
used here suggest that we may expect at mostOð10Þ events
with a detectable ð22 × 22Þ mode during each year of
operation of ground-based XG detectors.

C. Massive black hole observations with LISA

We now compute the quadratic mode SNRs for the
six astrophysical models from Ref. [131] discussed in
Sec. III B. We use the LISA noise curve [67], and again we
take the starting time of the modes to be t0 ¼ 12Mf after
the peak of the waveform.

The results for each model are plotted in Fig. 9 for a
single realization of a 4-year LISA observation time using
models with finite merger tree resolution, as described in
Sec. III B. In Table II we list the mean and maximum values

FIG. 7. SNR of the ð22 × 22Þ quadratic mode calculated for
ET (orange) and CE (blue), as a function of the binary’s primary
mass, for mass ratio q ¼ 1 (filled markers) and q ¼ 3 (empty
markers), and selected values of the component spins χ1;2 (these
map into different values of the remnant spin, as indicated in the
legend). The left and right panels refer to systems in the stellar-
mass and IMBH range, respectively.

FIG. 8. Quadratic mode SNR distribution of observable events
(ρ22×22 > 8) over one year of operation of ground-based XG
detectors. Note that in the top panel we use a linear scale, while in
the bottom panel we use a log scale.

FIG. 9. SNR distribution of MBH events with a detectable
quadratic mode (ρ22×22 > 8) over 4 years of LISA observations.
Results are shown for the finite-resolution catalogs; extrapolated
results show a similar distribution of events, but with rates
increased by a factor of a few.
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of ρ22×22 for each model, as well as the number of events
with ρ22×22 > 8 expected to be observed in four years.
Alongside each value, we report in parentheses the corre-
sponding value for models with extrapolated merger rates
(the “infinite resolution” models described in Sec. III B).
For context, for each model, we also display the number
of events with fundamental mode SNR ρ22 > 8, and with
full inspiral-merger-ringdown (IMR) SNR > 8. We again
exclude events with q > 10 from both Fig. 9 and Table II.
Whereas Fig. 9 shows results for a single realization of a
4-year observation time, Table II contains averaged sta-
tistics for the entire catalogs described in Ref. [131], which
collectively correspond to 100 years of MBH data: for
instance, to determine the number of events with a
detectable quadratic mode in 4 years, we divide the total
number of events with ρ22×22 > 8 by 25.
While there is large variation between different astro-

physical MBH models, the number of events with a
detectable quadratic mode can be several orders of magni-
tude larger than what we found for ground-based
observations using models I-III. Although we do not show
all of our results here for brevity, we consistently find
Oð10 − 103Þ events per 4 years with ρ22×22 > 8 for all
models with heavy seeds (including the other models in
Ref. [131], i.e., “HS-nod-SN (Bþ 20)” and “HS-nod
(B12)”). In contrast, prospects for detecting the (22 × 22)
mode are no better (in fact, they are somewhat worse) for
models with light seeds, compared to the stellar mass and
IMBH populations. (See Appendix D for a visualization of
the comparative number of events with detectable quadratic
mode for heavy seed vs. light seed MBH models.)
To further understand the conditions under which we

will be more likely to detect the (22 × 22) mode, we also
divide the results plotted in Fig. 9 into subsets of data
spanning different redshift ranges. The results are shown
in Fig. 10. Perhaps counterintuitively, by far the largest
number of MBH events with a detectable quadratic mode
are at a redshift greater than 9. This can be understood

in terms of gravitational redshift (compare e.g. Fig. 1
of Ref. [22]): MBHs with source-frame masses of
Oð105–106ÞM⊙, which are the average masses of the
“HS” and “Q3” models, have redshifted masses that fall
well within the LISA noise band.
To conclude, our SNR calculations suggest that MBHs

with source frame masses of ∼105–106M⊙ and z≳ 9 will
be excellent candidates for detecting the (22 × 22) non-
linear mode with LISA.

V. PARAMETER ESTIMATION
OF NONLINEAR MODES

The SNR results presented so far are a simple figure of
merit to assess the detectability of nonlinear modes with
future ground-based and space-based detectors. However, a
more complete understanding of our ability to distinguish
these quadratic QNMs from “ordinary” linear QNMs
requires a parameter estimation analysis, and it should
take into account correlations among the waveform param-
eters. Here we assess parameter estimation accuracy for
quadratic modes, as observed by both ground-based and
space-based detectors, through the FIM formalism. We use
the same conventions adopted for the SNR calculations: in
particular, we use a starting time t0 ¼ 12Mf, and we
discard all events with mass ratio q > 10.
As highlighted in Sec. II B, for our purposes it is

sufficient to compute the 8 × 8 block diagonal elements
of the Fisher matrix including the (44) and the (22 × 22)
QNMs, because these errors are independent from the
errors corresponding to QNMs with ðlmÞ ≠ ð44Þ.

A. Error estimates with ground-based XG detectors

In Fig. 11 we plot histograms of the errors on the (44)
and ð22 × 22Þ amplitude, phase, frequency, and damping
time, focusing on the model I–III events such that the
SNR of the quadratic mode ρ22×22 > 8, as observed by ET

TABLE II. Averaged statistics on the MBH binaries observed by LISA. The first and second columns show the total number of
mergers and the number of events with observable IMR expected in a 4-year mission lifetime for each catalog. The third and fourth
columns show the same quantities when we implement the mass ratio cutoff (q < 10). The fifth and sixth columns list the number of
events having SNR above threshold for the dominant (22) linear QNM and for the ð22 × 22Þ quadratic QNM (for the q < 10 events
only). In the last two columns we list the average and maximum SNRs of the ð22 × 22Þ mode (again, for q < 10 events). Numbers
without and with parentheses represent values for the finite-resolution and extrapolated models, respectively.

Events in 4 yrs
Num. with
ρIMR > 8

Events in 4 yrs
(q < 10)

Num. with
ρIMR > 8 (q < 10)

Num. with
ρ22 > 8

Num. with
ρ22×22 > 8

Mean
ρ22×22 Max ρ22×22

HS-nod-noSN
(Bþ 20)

16288(39785) 16284(39764) 11978(29383) 11977(29380) 6704(20951) 1098(5623) 3(5) 905(2211)

LS-nod-noSN
(Bþ 20)

1313(1672) 224(271) 1193(1529) 132(163) 11(13) 3(4) 0.3(0.3) 1149(1152)

LS-nod-SN
(Bþ 20)

1279(1626) 6(7) 1276(1622) 5(6) 0(6) 0(0) 0(0) 94(418)

pop-III-d
(Kþ 16)

689(1430) 206(382) 662(1376) 180(334) 5(15) 2(7) 0.6(0.7) 1725(1024)

Q3-nod (Kþ 16) 470(660) 470(659) 359(516) 359(516) 277(427) 77(139) 8(14) 964(1744)
Q3-d (Kþ 16) 33(74) 33(74) 31(70) 31(70) 28(66) 22(55) 74(93) 2194(3870)

SOPHIA YI et al. PHYS. REV. D 109, 124029 (2024)

124029-10



(see bottom panel of Fig. 8). The results for CE, not shown
here for brevity, are qualitatively similar.
The posterior distributions on the parameters of the

quadratic mode are all informative. The frequency of the
ð22 × 22Þ QNM is always measured with an accuracy of
order 10% or better, with relative errors clustering around 3%
in the most optimistic case (model II). The frequency of
the dominant (44) linear QNM is measured even better.
The quadratic mode damping time is also measured quite
well, with relative errors generally smaller than ∼30%.
Interestingly, for the majority of the events, the errors on
the parameters of the quadratic ð22 × 22Þ QNM are compa-
rable to, or sometimes even smaller than, those of the linear
(44) QNM. This is because the amplitude of the quadratic
mode is typically larger than the amplitude of the (44) linear
QNM at t0 ¼ 12Mf. In particular, this explains why the
relative error on the damping time of the (44) linear QNM is
slightly worse than the corresponding error on the damping
time of the ð22 × 22Þ QNM. Note also that the posteriors of
the quadratic QNM amplitudes do not show support
for Ā22×22 ¼ 0.
Let us summarize our expected ability to measure

quadratic QNM parameters with ground-based detectors
in the most optimistic case.

Focusing on the model with the largest number of
events satisfying ρ22×22 > 8 (model II, with 50 events
satisfying this criterion), we find 14 events with relative
errors on the quadratic mode amplitude smaller than 50%,
as measured with ET. The ð22 × 22Þ mode phases,
frequencies and damping times are measured much better:
all 50 events have Δϕ22×22=2π < 8%, relative errors on
ω22×22 smaller than 4%, and relative errors on τ22×22
smaller than 30%. For CE, we have 4 out of the 10
detectable events with ΔĀ22×22=Ā22×22 < 50%; again, all
detectable events have relative errors on ϕ22×22 < 8%,
relative errors on ω22×22 < 4%, and relative errors on
τ22×22 < 30%.
In the most pessimistic case, i.e., model I, we find only 2

events with ρ22×22 > 8 as measured by ET, and no events
with a detectable quadratic mode as measured by CE. The
errors for the 2 events measured with ET are similar to the
errors for model II.

B. Error estimates with LISA

In Fig. 12 we plot the estimated errors on the (44) and
(22 × 22) mode parameters for the MBH events with
ρ22×22 > 8. Many of the trends are similar to those
observed in Fig. 11. For example, the (22 × 22) damping

FIG. 10. Same as Fig. 9, but with the quadratic mode SNR distributions further broken down by redshift range. The plots refer to the
same finite-resolution catalogs shown in Fig. 9.
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FIG. 11. Histograms of the errors on the QNM parameters (amplitude, phase, frequency and damping time, from top to bottom) for the
subset of model I-III events such that the quadratic mode is observable by ET. Results for CE are qualitatively similar.
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FIG. 12. Histograms of QNM parameter errors for the events in the MBH catalogs with a detectable quadratic mode SNR.
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time, amplitude and phase are generally measured some-
what better than the corresponding (44) parameters, and the
real parts of the QNM frequencies are measured quite well,
with typical errors of the order of a few percent. The major
difference, of course, is that the number of MBH events
with such small errors is much larger than the number of
events originating from the stellar mass and IMBH mergers
observable by ground-based detectors.
In the most optimistic case (i.e., for the “HS-nod-noSN

(Bþ 20)” model, with 1098 events satisfying ρ22×22 > 8),
we find 896 events with relative error on the quadratic
mode amplitude less than 50%. All 1098 events have
relative error on ϕ22×22 and ω22×22 less than 10%, and
relative error on τ22×22 less than 30%. These results refer to
the finite-resolution catalogs, which, as explained in
Sec. III B, provide a lower limit to our predicted detectable
quadratic QNM rates. Note also that the posteriors of
the quadratic QNM amplitudes show no support for
Ā22×22 ¼ 0 for all of the MBH models we consider. In
the most pessimistic case (“LS-nod-SN (Bþ 20)”), we find
no events with a detectable quadratic mode.

VI. CONCLUSIONS

In this paper we have built on recent developments in the
construction of amplitude and phase fits for nonlinear
quasinormal modes [11] to forecast the detectability of
the ð22 × 22Þ quadratic mode with XG gravitational wave
detectors. We have estimated the SNR of the quadratic
mode for several binary BH population models that may be
observed by ground-based and space-based detectors in the
upcoming decades. Our main finding is that a 15 km ET
could detect up to a few tens of events per year with an
observable quadratic mode, and CE has similar prospects
for observing quadratic modes. In contrast, the most
optimistic astrophysical MBH formation models allow
for the possibility that LISA may observe up to
Oð1000Þ events with a detectable quadratic mode in its
nominal 4-year observation time.
For the subset of events with a detectable ð22 × 22Þ

mode, we used a FIM analysis to estimate fairly
small measurement errors on the quadratic mode ampli-
tude, phase, and frequencies. It will be important to
validate these preliminary findings with Bayesian param-
eter estimation codes such as PYRING [134,135]
and RINGDOWN [9,136], or neural posterior estimation
methods [137].
In this study, we have only investigated the ability of

future gravitational wave interferometers to detect the
quadratic ð22 × 22Þ mode sourced by the square of the
fundamental (22) mode, simply because this mode is
the easiest to identify in numerical relativity simulations.
It will be interesting to further investigate the detectability
of other nonlinearities in the merger signal, including (but
not limited to) subdominant quadratic QNMs.
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APPENDIX A: SNR AND PARAMETER
ESTIMATION RESULTS AT DIFFERENT QNM

STARTING TIMES

In this appendix, we argue that despite the non-negligible
dependence of the SNR and parameter errors on the choice
of t0, our use of t0 ¼ 12Mf for the main results never-
theless provides a useful estimate of the quadratic mode
detectability with XG observatories.
To this end, we first take a subset of the events plotted in

Figs. 9 and 10 having the “loudest” quadratic mode SNRs
(ρ22×22 > 50 at t0 ¼ 12Mf), and we recompute their SNR
at t0 ¼ 7Mf and t0 ¼ 17Mf. The results are shown in
Fig. 13, where the SNR values computed at t0 ¼ 7Mf

(t0 ¼ 17Mf) are plotted with dashed (dotted) lines, and the
results at t0 ¼ 12Mf shown in the main text are plotted as
solid lines for reference. For simplicity we only focus on
the loudest events in the “HS-nod-noSN (Bþ 20)” catalog,
but we have observed similar trends for the loudest events
in other MBH catalogs.
As expected, the SNRs calculated at earlier (later) times

are larger (smaller) than the SNRs computed at the fiducial
time t0 ¼ 12Mf that we use throughout the main text.
However, the results change by less than one order of
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magnitude: the minimum quadratic mode SNR of all events
in Fig. 13 is 24.3 at t0 ¼ 17Mf and 90.9 at t0 ¼ 7Mf, and
the maximum SNR is 177.9 at t0 ¼ 17Mf and 745.5 at
t0 ¼ 7Mf. Therefore, when we can claim detection of the
quadratic mode fairly confidently, increasing or decreasing
t0 by ∼5Mf is not usually enough to withdraw a detec-
tion claim.
In Fig. 14 we perform a similar test for the detectable

events in the model II catalog as observed by ET. Here, we
see that since many of the events were only marginally
detectable at t0 ¼ 12Mf, increasing t0 by 5Mf will cause
the quadratic mode SNR of some of the events to fall below
our detectability threshold (ρ22×22 ¼ 8, marked by the
vertical red line). On the bright side, if t0 is smaller than
our fiducial value by a few Mf, many of the events with

marginally detectable SNRs (very close to ρ22×22 ¼ 8) at
t0 ¼ 12Mf are louder.
Finally, in Fig. 15 we plot the errors on the ð22 × 22Þ

mode parameters calculated at different values of t0 for the
same “loud” MBH events shown in Fig. 13. While the
errors do increase (decrease) for larger (smaller) values of
t0, we see that the shifts in the distributions are fairly
moderate. In particular, the relative errors on all mode
parameters for these “loudest” events remain smaller than
unity even at a pessimistic value of t0 ¼ 17Mf.

APPENDIX B: MERGER RATE OF BINARY BHS
FROM STAR CLUSTERS

In this appendix, we describe how to properly reweigh
the RAPSTER simulation output and compute the merger rate
from our generated set of events. Our RAPSTER simulations
have been carried out in a fixed comoving volumeΔVc. We
define the comoving source-frame merger rate density to be
Rs ¼ dNme=ðdVcdtsÞ. To compute this quantity we count
the number of binary BH mergers within ½z; zþ Δz�,
denoted by ΔN½z;zþΔz�

me;simul. Each such event “i” has been
produced by a cluster that formed at a larger redshift

zðiÞcl . Since we have simulated ΔN½zðiÞcl ;z
ðiÞ
cl þΔz�

cl;simul clusters, we
need to correct for the true number of clusters that form at

zðiÞcl , that is,

ΔN½zðiÞcl ;z
ðiÞ
cl þΔz�

cl;true ¼ ψ clðzðiÞcl ÞΔVcΔtsðzðiÞcl Þ; ðB1Þ

where ψ cl is the comoving source-frame cluster formation
rate density given by Eq. (11) of Ref. [78]. As such, the true
number of mergers in ½z; zþ Δz� becomes

FIG. 13. Quadratic mode SNR of the “loudest” MBH events in
the “HS-nod-noSN (Bþ 20)” model, calculated at different
starting times, t0. Dashed, solid, and dotted lines correspond
to SNRs calculated at t0 ¼ 7, 12, and 17Mf , respectively.

FIG. 14. Quadratic mode SNRs of events in the model II
catalog classified as “detectable” in the main text (ρ22×22 > 8 at
t0 ¼ 12Mf), calculated at different starting times. Dashed, solid,
and dotted lines correspond to SNRs calculated at t0 ¼ 7, 12, and
17Mf , respectively. The vertical red line marks ρ22×22 ¼ 8.

FIG. 15. Errors calculated at different values of t0 for the
“loudest” MBH events in the “HS-nod-noSN (Bþ 20)” model.
Once again, dashed, solid, and dotted lines correspond to errors
calculated at t0 ¼ 7, 12, and 17Mf , respectively.
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ΔN½z;zþΔz�
me;true ¼

XΔN½z;zþΔz�
me;simul

i¼1

ΔN½zðiÞcl ;z
ðiÞ
cl þΔz�

cl;true

ΔN½zðiÞcl ;z
ðiÞ
cl þΔz�

cl;simul

: ðB2Þ

Thus, the source-frame merger rate per unit comoving
volume can be approximated as

RsðzÞ ≃
XΔN½z;zþΔz�
me;simul

i¼1

ψðzðiÞcl Þ
N

½zðiÞcl ;z
ðiÞ
cl þΔz�

cl;simul

ΔtsðzðiÞcl Þ
ΔtsðzðiÞmeÞ

: ðB3Þ

By rearranging the definition of the observer-frame
volumetric merger rate Ro ¼ Rsdto=dts, where dto=dts ¼
ð1þ zÞ, we obtain the cumulative number of mergers
within redshift z per year (see also Eq. (17) from [138]):

Roð< zÞ ¼
Z

z

0

dz0

1þ z0
Rsðz0Þ

dVc

dz0
: ðB4Þ

Integrating out to a redshift of 10 results in ≃2 × 104

globular cluster mergers per year anywhere in the Universe.
When we sample 2 × 104 events from the RAPSTER

catalog with a probability density given by the integrand
of Eq. (B4), we find no events with ρ22×22 > 8.
Nevertheless, we have reasons to believe that the actual
number of these mergers per year may be somewhat larger.
First, the RAPSTER code likely underestimates the merger
rate per cluster by a factor of a few (see Fig. 5 of [77]).
Moreover, dynamically formed binary BHs may also
originate from young massive and nuclear star clusters,
in addition to the globular cluster contribution [78]. Even
the number density of globular clusters is uncertain, leading
to a large merger rate uncertainty (see Fig. 3 of [139]), with
an upper limit that is consistent with the currently inferred
value from gravitational wave observations [74]. We
roughly estimate these considerations to collectively
increase the number of mergers from dynamical channels
by a factor of a few per year. Altogether, then, to generate
the catalog of model III used for our analysis, we sample
105 events with a probability density given by the integrand
of Eq. (B4).

APPENDIX C: SNR AND FISHER MATRIX
EXPRESSIONS FOR MULTIPLE MODES IN THE

SAME ANGULAR HARMONIC

Consider the complex spherical harmonic functions
defined in Eq. (5). The following averaged products
are zero for any combination of modes with ðlmÞ ¼
ð22Þ; ð21Þ; ð33Þ; ð44Þ:

hðŶlmþ Þ2i ¼ hðŶlm�þ Þ2i ¼ 0; ðC1Þ

hðŶlm
× Þ2i ¼ hðŶlm�

× Þ2i ¼ 0; ðC2Þ

hðŶlmþ ÞðŶlm
× Þi ¼ hðŶlmþ Þ�ðŶlm

× Þ�i ¼ 0; ðC3Þ

hðŶlmþ ÞðŶlm
× Þ�i ¼ hðŶlmþ Þ�ðŶlm

× Þi ¼ 0: ðC4Þ

The products

hðŶlmþ ÞðŶlmþ Þ�i ¼ hjŶlmþ j2i ðC5Þ

hðŶlm
× ÞðŶlm

× Þ�i ¼ hjŶlm
× j2i ðC6Þ

are not always zero; however, the sum

hjŶlmþ j2 þ jŶlm
× j2i ðC7Þ

is equal to zero for any two modes with different indices
(lm), and equal to 1=π for two modes with the same (lm).
These relations have consequences for how we compute

the SNR and Fisher matrices for multiple modes.
Specifically, when treating modes within the same (lm)
harmonic, we cannot simply assume a block-diagonal
Fisher matrix, or that the SNR is given by a sum in
quadrature of the individual mode SNRs.

1. Modifications to the SNR for two modes
with the same (lm)

The frequency-domain ringdown waveform is given by
Eqs. (6)–(9). If we want to compute the SNR of a waveform

with just two modes (i.e., h̃þðfÞ ¼ h̃ð1Þþ þ h̃ð2Þþ and h̃×ðfÞ ¼
h̃ð1Þ× þ h̃ð2Þ× ), then using hF2þ;×i ¼ 1

5
and hFþF×i ¼ 0, we

have, after averaging over all angles,

hh̃ðfÞh̃�ðfÞi ¼ 1

5
½jh̃ð1Þþ j2 þ h̃ð1Þþ h̃ð2Þ�þ þ h̃ð1Þ�þ h̃ð2Þþ þ jh̃ð2Þþ j2

þ jh̃ð1Þ× j2 þ h̃ð1Þ× h̃ð2Þ�× þ h̃ð1Þ�× h̃ð2Þ× þ jh̃ð2Þ× j2�:
ðC8Þ

If the modes have different indices (lm), then by the
orthogonality of the spherical functions, this reduces to

hh̃ðfÞÞh̃�ðfÞi ¼ 1

5
½jh̃ð1Þþ j2 þ jh̃ð2Þþ j2 þ jh̃ð1Þ× j2 þ jh̃ð2Þ× j2�

¼ Ā2
1

10π
ððbð1Þþ Þ2 þ ðbð1Þ− Þ2Þ

þ Ā2
2

10π
ððbð2Þþ Þ2 þ ðbð2Þ− Þ2Þ: ðC9Þ

If the two modes have the same (lm), we have additional
terms from the following nonzero quantities:
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h̃ð1Þþ h̃ð2Þ�þ ¼ Ā1Ā2

2
ðbð1Þþ bð2Þþ eiðϕ1−ϕ2ÞŶð1Þ

þ Ŷð2Þ�
þ þ bð1Þ− bð2Þ− e−iðϕ1−ϕ2ÞŶð1Þ�

þ Ŷð2Þ
þ Þ; ðC10Þ

h̃ð1Þ�þ h̃ð2Þþ ¼ Ā1Ā2

2
ðbð1Þþ bð2Þþ e−iðϕ1−ϕ2ÞŶð1Þ�

þ Ŷð2Þ
þ þ bð1Þ− bð2Þ− eiðϕ1−ϕ2ÞŶð1Þ

þ Ŷð2Þ�
þ Þ; ðC11Þ

h̃ð1Þ× h̃ð2Þ�× ¼ Ā1Ā2

2
ðbð1Þþ bð2Þþ eiðϕ1−ϕ2ÞŶð1Þ

× Ŷð2Þ�
× þ bð1Þ− bð2Þ− e−iðϕ1−ϕ2ÞŶð1Þ�

× Ŷð2Þ
× Þ; ðC12Þ

h̃ð1Þ�× h̃ð2Þ× ¼ Ā1Ā2

2
ðbð1Þþ bð2Þþ e−iðϕ1−ϕ2ÞŶð1Þ�

× Ŷð2Þ
× þ bð1Þ− bð2Þ− eiðϕ1−ϕ2ÞŶð1Þ

× Ŷð2Þ�
× Þ: ðC13Þ

Adding the first and third lines, and the second and fourth lines, and recalling that hjŶlmþ j2 þ jŶlm
× j2i ¼ 1

π for two modes
with the same (lm), the term we must add to the SNR for two modes in the same harmonic is

1

5
½h̃ð1Þþ h̃ð2Þ�þ þ h̃ð1Þ�þ h̃ð2Þþ þ h̃ð1Þ× h̃ð2Þ�× þ h̃ð1Þ�× h̃ð2Þ× � ¼ Ā1Ā2

10π
ðbð1Þþ bð2Þþ eiðϕ1−ϕ2Þ þ bð1Þ− bð2Þ− e−iðϕ1−ϕ2ÞÞ

þ Ā1Ā2

10π
ðbð1Þþ bð2Þþ e−iðϕ1−ϕ2Þ þ bð1Þ− bð2Þ− eiðϕ1−ϕ2ÞÞ

¼ Ā1Ā2

5π
½ðbð1Þþ bð2Þþ þ bð1Þ− bð2Þ− Þ cosðϕ1 − ϕ2Þ� ðC14Þ

after we average over the spherical functions.

2. Modifications to FIM expressions for two modes
with the same values of (lm)

The top left and bottom right 4 × 4 blocks of the total
8 × 8 FIM for two QNMs with identical (lm) indices are
given by the expressions in Appendix D of [29].
In addition, we have the following nonzero components

on the off-diagonal blocks of the FIM. We denote the 8
mode parameters by θ⃗ ¼ ðĀ1;ϕ1;ω1; τ1; Ā2;ϕ2;ω2; τ2Þ; in
this paper, we have primarily been considering the indices 1
and 2 to stand for mode indices (44) and ð22 × 22Þ. What
we call “∂θihð∂θjhÞ�” here corresponds to the expressions
labeled “Γθiθj” in Appendix D of Ref. [29].

∂Ā1
hð∂Ā2

hÞ� ¼ 1

10π
½eiðϕ2−ϕ1Þbð1Þ− bð2Þ− þ eiðϕ1−ϕ2Þbð1Þþ bð2Þþ �

ðC15Þ

∂Ā1
hð∂ϕ2

hÞ� ¼ iĀ2

10π
½eiðϕ2−ϕ1Þbð1Þ− bð2Þ− − eiðϕ1−ϕ2Þbð1Þþ bð2Þþ �

ðC16Þ

∂Ā1
hð∂ω2

hÞ� ¼ Ā2

10π
½eiðϕ2−ϕ1Þbð1Þ− bð2Þ−;ω2

þ eiðϕ1−ϕ2Þbð1Þþ bð2Þþ;ω2
�

ðC17Þ

∂Ā1
hð∂τ2hÞ� ¼

Ā2

10π
½eiðϕ2−ϕ1Þbð1Þ− bð2Þ−;τ2 þ eiðϕ1−ϕ2Þbð1Þþ bð2Þþ;τ2 �

ðC18Þ

∂ϕ1
hð∂Ā2

hÞ� ¼ −
iĀ1

10π
½eiðϕ2−ϕ1Þbð1Þ− bð2Þ− − eiðϕ1−ϕ2Þbð1Þþ bð2Þþ �

ðC19Þ

∂ϕ1
hð∂ϕ2

hÞ� ¼ Ā1Ā2

10π
½eiðϕ2−ϕ1Þbð1Þ− bð2Þ− þ eiðϕ1−ϕ2Þbð1Þþ bð2Þþ �

ðC20Þ

∂ϕ1
hð∂ω2

hÞ� ¼ −
iĀ1Ā2

10π
½eiðϕ2−ϕ1Þbð1Þ− bð2Þ−;ω2

− eiðϕ1−ϕ2Þbð1Þþ bð2Þþ;ω2
� ðC21Þ

∂ϕ1
hð∂τ2hÞ� ¼ −

iĀ1Ā2

10π
½eiðϕ2−ϕ1Þbð1Þ− bð2Þ−;τ2 − eiðϕ1−ϕ2Þbð1Þþ bð2Þþ;τ2 � ðC22Þ
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∂ω1
hð∂Ā2

hÞ� ¼ Ā1

10π
½eiðϕ2−ϕ1Þbð1Þ−;ω1

bð2Þ− þ eiðϕ1−ϕ2Þbð1Þþ;ω1
bð2Þþ � ðC23Þ

∂ω1
hð∂ϕ2

hÞ� ¼ iĀ1Ā2

10π
½eiðϕ2−ϕ1Þbð1Þ−;ω1

bð2Þ− − eiðϕ1−ϕ2Þbð1Þþ;ω1
bð2Þþ � ðC24Þ

∂ω1
hð∂ω2

hÞ� ¼ Ā1Ā2

10π
½eiðϕ2−ϕ1Þbð1Þ−;ω1

bð2Þ−;ω2
þ eiðϕ1−ϕ2Þbð1Þþ;ω1

bð2Þþ;ω2
� ðC25Þ

∂ω1
hð∂τ2hÞ� ¼

Ā1Ā2

10π
½eiðϕ2−ϕ1Þbð1Þ−;ω1

bð2Þ−;τ2 þ eiðϕ1−ϕ2Þbð1Þþ;ω1
bð2Þþ;τ2 � ðC26Þ

∂τ1hð∂Ā2
hÞ� ¼ Ā1

10π
½eiðϕ2−ϕ1Þbð1Þ−;τ1b

ð2Þ
− þ eiðϕ1−ϕ2Þbð1Þþ;τ1b

ð2Þ
þ � ðC27Þ

∂τ1hð∂ϕ2
hÞ� ¼ iĀ1Ā2

10π
½eiðϕ2−ϕ1Þbð1Þ−;τ1b

ð2Þ
− − eiðϕ1−ϕ2Þbð1Þþ;τ1b

ð2Þ
þ � ðC28Þ

∂τ1hð∂ω2
hÞ� ¼ Ā1Ā2

10π
½eiðϕ2−ϕ1Þbð1Þ−;τ1b

ð2Þ
−;ω2

þ eiðϕ1−ϕ2Þbð1Þþ;τ1b
ð2Þ
þ;ω2

� ðC29Þ

∂τ1hð∂τ2hÞ� ¼
Ā1Ā2

10π
½eiðϕ2−ϕ1Þbð1Þ−;τ1b

ð2Þ
−;τ2 þ eiðϕ1−ϕ2Þbð1Þþ;τ1b

ð2Þ
þ;τ2 � ðC30Þ

These sixteen expressions provide the FIM elements in
the top right block of the total 8 × 8 matrix. To obtain the
bottom left block, one can simply take the complex
conjugate of the above expressions (so, for instance,
ΓĀ2Ā1

¼ ðΓĀ1Ā2
Þ�).

The similarities with the expressions in Appendix D of
Ref. [29] are immediately evident. An important distinction
lies in phase factors: the QNM phases are in general
different for different modes, so we cannot take the
exponential factors to simply be e0 ¼ 1.

APPENDIX D: RELATIVE NUMBER OF LIGHT
SEED VS. HEAVY SEED MBH EVENTS WITH

DETECTABLE QUADRATIC MODE

In Fig. 16, we plot the number of MBH events satisfying
various criteria in Table II. From left to right, the panels
show the detector frame redshifted total mass,MTz

, and the

redshift, z, of (i) all model events in 4 years, (ii) all model
events in 4 years with a detectable IMR SNR (ρIMR), (iii) all
model events in 4 years with detectable ρIMR and q < 10,
(iv) all model events in 4 years with detectable ρ22 and
q < 10, and (v) all model events in 4 years with detectable
ρ22×22 and q < 10. The color corresponds to the IMR SNR
of the event, and the point size corresponds to

ffiffiffi
q

p
of the

event, with a few representative mass ratio/point size
correspondences given in the legend. From these plots,
we see clearly that a much larger fraction of heavy seed
events (“Q3-nod (Kþ 16)” and “Q3-d (Kþ 16)”) have a
detectable ringdown and, in particular, a detectable quad-
ratic mode, as compared with the light seed events (“pop-
III-d (Kþ 16)”). We also see that implementing the mass
ratio cut (i.e., going from the second to the third panels in
each row) in order to ensure the validity of the amplitude
fits does not cause us to lose too large of a fraction of
potentially detectable events.
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Kidder, J. Moxon, W. Throwe, N. L. Vu, and Y. Chen,
Phys. Rev. D 106, 084036 (2022).

[63] E. Berti, J. Cardoso, V. Cardoso, and M. Cavaglia, Phys.
Rev. D 76, 104044 (2007).

[64] E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake, M.
Hannam, S. Husa, and B. Bruegmann, Phys. Rev. D 76,
064034 (2007).

[65] P. J. Nee, S. H. Völkel, and H. P. Pfeiffer, Phys. Rev. D
108, 044032 (2023).

[66] E. E. Flanagan and S. A. Hughes, Phys. Rev. D 57, 4535
(1998).

[67] T. Robson, N. J. Cornish, and C. Liu, Classical Quantum
Gravity 36, 105011 (2019).

[68] M. Branchesi et al., J. Cosmol. Astropart. Phys. 07 (2023)
068.

[69] M. Evans et al., arXiv:2306.13745.
[70] M. Vallisneri, Phys. Rev. D 77, 042001 (2008).
[71] K. Yagi and T. Tanaka, Phys. Rev. D 81, 064008 (2010);

81, 109902(E) (2010).
[72] H. Nollert (unpublished Habilitationsschrift).
[73] T. A. Clarke et al., arXiv:2402.02819.
[74] R. Abbott et al. (KAGRA, VIRGO, and LIGO Scientific

Collaborations), Phys. Rev. X 13, 011048 (2023).
[75] P. Madau and M. Dickinson, Annu. Rev. Astron. As-

trophys. 52, 415 (2014).
[76] K. K. Y. Ng, S. Vitale, W.M. Farr, and C. L. Rodriguez,

Astrophys. J. Lett. 913, L5 (2021).
[77] K. Kritos, V. Strokov, V. Baibhav, and E. Berti, arXiv:

2210.10055.
[78] M.Mapelli,Y.Bouffanais, F. Santoliquido,M. A. Sedda, and

M. C. Artale, Mon. Not. R. Astron. Soc. 511, 5797 (2022).

SOPHIA YI et al. PHYS. REV. D 109, 124029 (2024)

124029-20

https://arXiv.org/abs/2311.12762
https://doi.org/10.1103/PhysRevD.109.064075
https://doi.org/10.1103/PhysRevD.109.064075
https://doi.org/10.1086/158109
https://doi.org/10.1088/0264-9381/21/4/003
https://doi.org/10.1088/0264-9381/21/4/003
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1103/PhysRevLett.117.101102
https://doi.org/10.1103/PhysRevD.94.084024
https://doi.org/10.1103/PhysRevD.94.084024
https://doi.org/10.1103/PhysRevD.95.069906
https://doi.org/10.1103/PhysRevLett.118.161101
https://doi.org/10.1103/PhysRevD.97.044048
https://doi.org/10.1103/PhysRevD.97.044048
https://doi.org/10.1103/PhysRevD.98.084038
https://doi.org/10.1103/PhysRevD.98.084038
https://doi.org/10.1103/PhysRevD.99.024005
https://doi.org/10.1103/PhysRevD.101.044033
https://doi.org/10.1103/PhysRevD.101.044033
https://doi.org/10.1103/PhysRevD.101.024043
https://doi.org/10.1103/PhysRevD.101.024043
https://doi.org/10.1103/PhysRevD.103.024041
https://doi.org/10.1103/PhysRevD.103.024041
https://doi.org/10.1103/PhysRevD.102.124070
https://doi.org/10.1103/PhysRevD.102.124070
https://doi.org/10.1103/PhysRevD.102.044053
https://doi.org/10.1103/PhysRevD.105.044015
https://doi.org/10.1103/PhysRevD.109.064060
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1103/PhysRevD.91.082001
https://arXiv.org/abs/1702.00786
https://arXiv.org/abs/1702.00786
https://arXiv.org/abs/2402.07571
https://doi.org/10.1088/0264-9381/13/10/001
https://doi.org/10.1103/PhysRevD.59.044024
https://doi.org/10.1016/S0370-1573(99)00048-4
https://doi.org/10.1103/PhysRevD.59.124022
https://doi.org/10.1103/PhysRevD.59.124022
https://doi.org/10.1103/PhysRevD.68.084014
https://doi.org/10.1103/PhysRevD.80.024021
https://doi.org/10.1103/PhysRevD.80.024021
https://doi.org/10.1103/PhysRevD.76.024004
https://doi.org/10.1103/PhysRevD.74.044039
https://doi.org/10.1103/PhysRevD.103.104017
https://doi.org/10.1103/PhysRevD.103.104017
https://doi.org/10.1103/PhysRevD.103.104018
https://doi.org/10.1103/PhysRevD.103.104018
https://doi.org/10.1103/PhysRevD.105.064046
https://doi.org/10.1103/PhysRevLett.130.241402
https://arXiv.org/abs/2306.17847
https://doi.org/10.1103/PhysRevD.108.L021501
https://doi.org/10.1103/PhysRevD.108.L021501
https://arXiv.org/abs/2308.14796
https://doi.org/10.1016/j.nuclphysb.2023.116432
https://doi.org/10.1016/j.nuclphysb.2023.116432
https://doi.org/10.1007/JHEP12(2023)048
https://doi.org/10.1007/JHEP12(2023)048
https://doi.org/10.1103/PhysRevD.109.104050
https://arXiv.org/abs/2401.15516
https://arXiv.org/abs/2402.00604
https://doi.org/10.1103/PhysRevD.76.061503
https://doi.org/10.1103/PhysRevD.76.084007
https://doi.org/10.1103/PhysRevD.77.124018
https://doi.org/10.1103/PhysRevD.77.124018
https://doi.org/10.1103/PhysRevD.82.104028
https://doi.org/10.1103/PhysRevD.107.044040
https://doi.org/10.1103/PhysRevD.90.124032
https://doi.org/10.1103/PhysRevD.90.124032
https://doi.org/10.1103/PhysRevD.94.069902
https://doi.org/10.1103/PhysRevLett.130.081402
https://doi.org/10.1103/PhysRevLett.130.081401
https://doi.org/10.1103/PhysRevLett.130.081401
https://doi.org/10.1103/PhysRevD.106.084036
https://doi.org/10.1103/PhysRevD.76.104044
https://doi.org/10.1103/PhysRevD.76.104044
https://doi.org/10.1103/PhysRevD.76.064034
https://doi.org/10.1103/PhysRevD.76.064034
https://doi.org/10.1103/PhysRevD.108.044032
https://doi.org/10.1103/PhysRevD.108.044032
https://doi.org/10.1103/PhysRevD.57.4535
https://doi.org/10.1103/PhysRevD.57.4535
https://doi.org/10.1088/1361-6382/ab1101
https://doi.org/10.1088/1361-6382/ab1101
https://doi.org/10.1088/1475-7516/2023/07/068
https://doi.org/10.1088/1475-7516/2023/07/068
https://arXiv.org/abs/2306.13745
https://doi.org/10.1103/PhysRevD.77.042001
https://doi.org/10.1103/PhysRevD.81.064008
https://doi.org/10.1103/PhysRevD.81.109902
https://arXiv.org/abs/2402.02819
https://doi.org/10.1103/PhysRevX.13.011048
https://doi.org/10.1146/annurev-astro-081811-125615
https://doi.org/10.1146/annurev-astro-081811-125615
https://doi.org/10.3847/2041-8213/abf8be
https://arXiv.org/abs/2210.10055
https://arXiv.org/abs/2210.10055
https://doi.org/10.1093/mnras/stac422


[79] M. Spera and M. Mapelli, Mon. Not. R. Astron. Soc. 470,
4739 (2017).

[80] P. Madau and T. Fragos, Astrophys. J. 840, 39 (2017).
[81] M. R. Krumholz, C. F. McKee, and J. Bland-Hawthorn,

Annu. Rev. Astron. Astrophys. 57, 227 (2019).
[82] S. S. Larsen, Astron. Astrophys. 416, 537 (2004).
[83] E. Barausse, Mon. Not. R. Astron. Soc. 423, 2533 (2012).
[84] A. Sesana, E. Barausse, M. Dotti, and E. M. Rossi,

Astrophys. J. 794, 104 (2014).
[85] F. Antonini, E. Barausse, and J. Silk, Astrophys. J. Lett.

806, L8 (2015).
[86] F. Antonini, E. Barausse, and J. Silk, Astrophys. J. 812, 72

(2015).
[87] M. Bonetti, F. Haardt, A. Sesana, and E. Barausse, Mon.

Not. R. Astron. Soc. 477, 3910 (2018).
[88] M. Bonetti, A. Sesana, F. Haardt, E. Barausse, and M.

Colpi, Mon. Not. R. Astron. Soc. 486, 4044 (2019).
[89] E. Barausse, I. Dvorkin, M. Tremmel, M. Volonteri, and

M. Bonetti, Astrophys. J. 904, 16 (2020).
[90] A. Dekel and Y. Birnboim, Mon. Not. R. Astron. Soc. 368,

2 (2006).
[91] A. Cattaneo, A. Dekel, J. Devriendt, B. Guiderdoni, and J.

Blaizot, Mon. Not. R. Astron. Soc. 370, 1651 (2006).
[92] A. Dekel, Y. Birnboim, G. Engel, J. Freundlich, T. Goerdt,

M. Mumcuoglu, E. Neistein, C. Pichon, R. Teyssier, and E.
Zinger, Nature (London) 457, 451 (2009).

[93] H. J. Mo, S. Mao, and S. D. M. White, Mon. Not. R.
Astron. Soc. 295, 319 (1998).

[94] G. L. Granato, G. De Zotti, L. Silva, A. Bressan, and L.
Danese, Astrophys. J. 600, 580 (2004).

[95] D. J. Croton, V. Springel, S. D. M. White, G. De Lucia,
C. S. Frenk, L. Gao, A. Jenkins, G. Kauffmann, J. F.
Navarro, and N. Yoshida, Mon. Not. R. Astron. Soc.
365, 11 (2006); 367, 864(E) (2006).

[96] P. F. Hopkins, T. J. Cox, D. Kereš, and L. Hernquist,
Astrophys. J. Suppl. Ser. 175, 390 (2008).

[97] R. G. Bower, A. J. Benson, R. Malbon, J. C. Helly, C. S.
Frenk, C. M. Baugh, S. Cole, and C. G. Lacey, Mon. Not.
R. Astron. Soc. 370, 645 (2006).

[98] V. Springel and L. Hernquist, Mon. Not. R. Astron. Soc.
333, 649 (2002).

[99] A. Fujita, M. M. Mac Low, A. Ferrara, and A. Meiksin,
Astrophys. J. 613, 159 (2004).

[100] Y. Rasera and R. Teyssier, Astron. Astrophys. 445, 1
(2006).

[101] J. R. van Meter, M. C. Miller, J. G. Baker, W. D. Boggs,
and B. J. Kelly, Astrophys. J. 719, 1427 (2010).

[102] M. Habouzit, M. Volonteri, and Y. Dubois, Mon. Not. R.
Astron. Soc. 468, 3935 (2017).

[103] W. H. Press and P. Schechter, Astrophys. J. 187, 425
(1974).

[104] H. Parkinson, S. Cole, and J. Helly, Mon. Not. R. Astron.
Soc. 383, 557 (2008).

[105] M. Boylan-Kolchin, C.-P. Ma, and E. Quataert, Mon. Not.
R. Astron. Soc. 383, 93 (2008).

[106] G. Taffoni, L. Mayer, M. Colpi, and F. Governato, Mon.
Not. R. Astron. Soc. 341, 434 (2003).

[107] J. Binney and S. Tremaine, Galactic Dynamics: Second
Edition (Princeton University Press, Princeton, 2008).

[108] F.Dosopoulou and F.Antonini, Astrophys. J.840, 31 (2017).

[109] M. Tremmel, F. Governato, M. Volonteri, T. R. Quinn, and
A. Pontzen, Mon. Not. R. Astron. Soc. 475, 4967 (2018).

[110] G. D. Quinlan, Nat. Astron. 1, 35 (1996).
[111] A. Sesana and F. M. Khan, Mon. Not. R. Astron. Soc. 454,

L66 (2015).
[112] A. I. Macfadyen and M. Milosavljevic, Astrophys. J. 672,

83 (2008).
[113] J. Cuadra, P. J. Armitage, R. D. Alexander, and M. C.

Begelman, Mon. Not. R. Astron. Soc. 393, 1423 (2009).
[114] G. Lodato, S. Nayakshin, A. R. King, and J. E. Pringle,

Mon. Not. R. Astron. Soc. 398, 1392 (2009).
[115] C. Rodig, M. Dotti, A. Sesana, J. Cuadra, and M. Colpi,

Mon. Not. R. Astron. Soc. 415, 3033 (2011).
[116] C. J. Nixon, P. J. Cossins, A. R. King, and J. E. Pringle,

Mon. Not. R. Astron. Soc. 412, 1591 (2011).
[117] P. C. Duffell, D. D’Orazio, A. Derdzinski, Z. Haiman, A.

MacFadyen, A. L. Rosen, and J. Zrake, Astrophys. J. 901,
25 (2020).

[118] D. J. Muñoz, R. Miranda, and D. Lai, Astrophys. J. 871, 84
(2019).

[119] L. Hoffman and A. Loeb, Mon. Not. R. Astron. Soc. 377,
957 (2007).

[120] M. Bonetti, F. Haardt, A. Sesana, and E. Barausse, Mon.
Not. R. Astron. Soc. 461, 4419 (2016).

[121] M. Bonetti, A. Sesana, E. Barausse, and F. Haardt, Mon.
Not. R. Astron. Soc. 477, 2599 (2018).

[122] E. Barausse, V. Morozova, and L. Rezzolla, Astrophys. J.
758, 63 (2012); 786, 76(E) (2014).

[123] F. Hofmann, E. Barausse, and L. Rezzolla, Astrophys. J.
Lett. 825, L19 (2016).

[124] M. Volonteri, G. Lodato, and P. Natarajan, Mon. Not. R.
Astron. Soc. 383, 1079 (2008).

[125] A. Toubiana, K.W. K. Wong, S. Babak, E. Barausse, E.
Berti, J. R. Gair, S. Marsat, and S. R. Taylor, Phys. Rev. D
104, 083027 (2021).

[126] J. Antoniadis et al., Astron. Astrophys. 678, A50 (2023).
[127] P. Tarafdar et al., Pub. Astron. Soc. Aust. 39, e053 (2022).
[128] G. Agazie et al. (NANOGrav Collaboration), Astrophys. J.

Lett. 951, L8 (2023).
[129] D. J. Reardon et al., Astrophys. J. Lett. 951, L6 (2023).
[130] H. Xu et al., Res. Astron. Astrophys. 23, 075024 (2023).
[131] E. Barausse, K. Dey, M. Crisostomi, A. Panayada, S.

Marsat, and S. Basak, Phys. Rev. D 108, 103034 (2023).
[132] J. Antoniadis et al. (EPTA Collaboration), arXiv:2306

.16227.
[133] A. Klein et al., Phys. Rev. D 93, 024003 (2016).
[134] G. Carullo, W. Del Pozzo, and J. Veitch, Phys. Rev. D 99,

123029 (2019); 100, 089903(E) (2019).
[135] G. Carullo, W. D. Pozzo, D. Laghi, M. Isi, and J. Veitch,

PYRING: A time-domain ringdown analysis Python pack-
age, https://git.ligo.org/lscsoft/pyring.

[136] M. Isi, H. Siegel, W. Farr, A. Hussain, and R. Udall,
RINGDOWN: Bayesian analysis of black hole ringdowns,
https://github.com/maxisi/ringdown.

[137] M. Crisostomi, K. Dey, E. Barausse, and R. Trotta, Phys.
Rev. D 108, 044029 (2023).

[138] C. L. Rodriguez, S. Chatterjee, and F. A. Rasio, Phys. Rev.
D 93, 084029 (2016).

[139] I. Mandel and F. S. Broekgaarden, Living Rev. Relativity
25, 1 (2022).

NONLINEAR QUASINORMAL MODE DETECTABILITY WITH … PHYS. REV. D 109, 124029 (2024)

124029-21

https://doi.org/10.1093/mnras/stx1576
https://doi.org/10.1093/mnras/stx1576
https://doi.org/10.3847/1538-4357/aa6af9
https://doi.org/10.1146/annurev-astro-091918-104430
https://doi.org/10.1051/0004-6361:20034533
https://doi.org/10.1111/j.1365-2966.2012.21057.x
https://doi.org/10.1088/0004-637X/794/2/104
https://doi.org/10.1088/2041-8205/806/1/L8
https://doi.org/10.1088/2041-8205/806/1/L8
https://doi.org/10.1088/0004-637X/812/1/72
https://doi.org/10.1088/0004-637X/812/1/72
https://doi.org/10.1093/mnras/sty896
https://doi.org/10.1093/mnras/sty896
https://doi.org/10.1093/mnras/stz903
https://doi.org/10.3847/1538-4357/abba7f
https://doi.org/10.1111/j.1365-2966.2006.10145.x
https://doi.org/10.1111/j.1365-2966.2006.10145.x
https://doi.org/10.1111/j.1365-2966.2006.10608.x
https://doi.org/10.1038/nature07648
https://doi.org/10.1046/j.1365-8711.1998.01227.x
https://doi.org/10.1046/j.1365-8711.1998.01227.x
https://doi.org/10.1086/379875
https://doi.org/10.1111/j.1365-2966.2005.09675.x
https://doi.org/10.1111/j.1365-2966.2005.09675.x
https://doi.org/10.1111/j.1365-2966.2006.09994.x
https://doi.org/10.1086/524363
https://doi.org/10.1111/j.1365-2966.2006.10519.x
https://doi.org/10.1111/j.1365-2966.2006.10519.x
https://doi.org/10.1046/j.1365-8711.2002.05445.x
https://doi.org/10.1046/j.1365-8711.2002.05445.x
https://doi.org/10.1086/422861
https://doi.org/10.1051/0004-6361:20053116
https://doi.org/10.1051/0004-6361:20053116
https://doi.org/10.1088/0004-637X/719/2/1427
https://doi.org/10.1093/mnras/stx666
https://doi.org/10.1093/mnras/stx666
https://doi.org/10.1086/152650
https://doi.org/10.1086/152650
https://doi.org/10.1111/j.1365-2966.2007.12517.x
https://doi.org/10.1111/j.1365-2966.2007.12517.x
https://doi.org/10.1111/j.1365-2966.2007.12530.x
https://doi.org/10.1111/j.1365-2966.2007.12530.x
https://doi.org/10.1046/j.1365-8711.2003.06395.x
https://doi.org/10.1046/j.1365-8711.2003.06395.x
https://doi.org/10.3847/1538-4357/aa6b58
https://doi.org/10.1093/mnras/sty139
https://doi.org/10.1016/S1384-1076(96)00003-6
https://doi.org/10.1093/mnrasl/slv131
https://doi.org/10.1093/mnrasl/slv131
https://doi.org/10.1086/523869
https://doi.org/10.1086/523869
https://doi.org/10.1111/j.1365-2966.2008.14147.x
https://doi.org/10.1111/j.1365-2966.2009.15179.x
https://doi.org/10.1111/j.1365-2966.2011.18927.x
https://doi.org/10.1111/j.1365-2966.2010.17952.x
https://doi.org/10.3847/1538-4357/abab95
https://doi.org/10.3847/1538-4357/abab95
https://doi.org/10.3847/1538-4357/aaf867
https://doi.org/10.3847/1538-4357/aaf867
https://doi.org/10.1111/j.1365-2966.2007.11694.x
https://doi.org/10.1111/j.1365-2966.2007.11694.x
https://doi.org/10.1093/mnras/stw1590
https://doi.org/10.1093/mnras/stw1590
https://doi.org/10.1093/mnras/sty874
https://doi.org/10.1093/mnras/sty874
https://doi.org/10.1088/0004-637X/758/1/63
https://doi.org/10.1088/0004-637X/758/1/63
https://doi.org/10.1088/0004-637X/786/1/76
https://doi.org/10.3847/2041-8205/825/2/L19
https://doi.org/10.3847/2041-8205/825/2/L19
https://doi.org/10.1111/j.1365-2966.2007.12589.x
https://doi.org/10.1111/j.1365-2966.2007.12589.x
https://doi.org/10.1103/PhysRevD.104.083027
https://doi.org/10.1103/PhysRevD.104.083027
https://doi.org/10.1051/0004-6361/202346844
https://doi.org/10.1017/pasa.2022.46
https://doi.org/10.3847/2041-8213/acdac6
https://doi.org/10.3847/2041-8213/acdac6
https://doi.org/10.3847/2041-8213/acdd02
https://doi.org/10.1088/1674-4527/acdfa5
https://doi.org/10.1103/PhysRevD.108.103034
https://arXiv.org/abs/2306.16227
https://arXiv.org/abs/2306.16227
https://doi.org/10.1103/PhysRevD.93.024003
https://doi.org/10.1103/PhysRevD.99.123029
https://doi.org/10.1103/PhysRevD.99.123029
https://doi.org/10.1103/PhysRevD.100.089903
https://git.ligo.org/lscsoft/pyring
https://git.ligo.org/lscsoft/pyring
https://git.ligo.org/lscsoft/pyring
https://github.com/maxisi/ringdown
https://github.com/maxisi/ringdown
https://doi.org/10.1103/PhysRevD.108.044029
https://doi.org/10.1103/PhysRevD.108.044029
https://doi.org/10.1103/PhysRevD.93.084029
https://doi.org/10.1103/PhysRevD.93.084029
https://doi.org/10.1007/s41114-021-00034-3
https://doi.org/10.1007/s41114-021-00034-3

