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Modeling the gravitational wave signal from binaries beyond comparable mass is an important open
issue in gravitational wave astronomy. For nonspinning binaries and when the spins are aligned with the
orbital angular momentum, some first studies concerning the transition between the comparable and
extreme mass ratio regime are already available, which suggest that extreme mass ratio results at times
extrapolate to comparable mass ratios with surprising precision. Here we study the case of misaligned
spins: We present new numerical relativity (NR) simulations performed with the Einstein Toolkit code at mass
ratios up to 18 and construct a heterogeneous dataset that spans all mass ratios, including data from NR
simulations, numerical approximations to extreme mass ratio binaries, and data from the geodesic
approximation. As a first application we provide fits for the remnant mass and spin magnitude in single spin
precessing systems, omitting consideration of the in-plane spin orientation. These fits demonstrate
accuracy comparable to the state-of-the-art NRSur7dq4EmriRemnant model, all while retaining the
simplicity and efficiency inherent in previous phenomenological fits.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA)
mission is expected to observe gravitational waves from
compact binaries with a large range of mass ratios [1,2]
up to and including extreme mass ratio inspirals
(EMRIs). It will be prudent to develop waveform
models that accurately describe a wide range of mass
ratios well before the LISA era and to optimize LISA
data analysis algorithms with such pipelines in hand.
EMRI waveforms are best described via the self-force
method, where one perturbs in the mass ratio of the
system ([3,4], see [5] for discussion). For comparable
mass binaries, several families of waveform models
have been developed [6–13], which have become
indispensable tools for gravitational wave data analysis,
e.g., [14–17]. Such waveform models are calibrated to
data from numerical relativity (NR) simulations [18–20].
However, for the foreseeable future, NR waveforms will
be sparse in the parameter space of precessing (even
more so for generic) black hole binaries, especially at
high mass ratios (see [21–25] for the latest releases of
NR catalogs). While simulations at, say, mass ratios of
order 102 or 103 are, in principle, feasible in numerical
relativity [26], the number, length, and accuracy of such
waveforms will be severely restricted by computational
cost until new computational approaches are developed
(see, however, [27]).

It is well known that the extreme mass ratio limit and the
self-force expansion in mass ratio can provide useful
information even for the comparable mass ratio regime
[28–30], fueling hope that using such information can
reduce the number of NR waveforms that are needed for
calibrating waveform models. To date, work that connects
the two mass ratio regimes has focused on either non-
spinning binaries [31–33], the use of extreme mass ratio
waveforms to calibrate quasicircular aligned spin wave-
form models [10,11,34,35], or the simpler problem of
models for the final mass and spin in the quasicircular
aligned spin case [36]. For misaligned spins, however, one
faces much more complicated phenomena and a much
larger parameter space (seven instead of three dimensions
in the absence of orbital eccentricity, as is the case here).
In this work, we make a first step to bridge the

comparable mass and extreme mass ratio regimes in the
misaligned spin sector and develop precessing models
for the remnant mass and spin, thus extending previous
work [36] to the precessing case. An efficient and accurate
remnant model for precessing systems is a key component
for the advancement of precessing waveform models.
Specifically, given that the ringdown frequencies are
entirely characterized by the final state of the binary,
remnant models play a vital role in conducting tests of
general relativity through ringdown studies. Other recent
remnant models in the literature include aligned spin
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datasets with and without information from the extreme
mass ratio (EMR) limit (see, for instance, Refs. [36,37]),
precessing datasets with information from the aligned
spin EMR limit (see [38,39]), surrogate models like
NRSur7dq4EmriRemnant [40], and also a machine learn-
ing approach [41].
As our input data we construct a heterogeneous dataset

for quasicircular precessing binaries. The dataset combines
NR waveforms from different codes, numerical solutions of
the Teukolsky equation [42,43], and information from Kerr
geodesics [44]. To understand the region where no NR
information is available, we rely on Kerr geodesics, which
determine the final mass and spin to linear order in the mass
ratio, but surprisingly provide valuable information across
the parameter space, i.e., from EMRIs to comparable mass
binaries.
In order to construct our model, we have to compensate

for the lack of a dense dataset of numerical relativity
simulations across a large range of mass ratios with several
simplifications and approximations. As more simulations
become available, along with further self-force results and
possibly other analytical methods, these simplifications and
approximations can be relaxed. As a first simplification, we
restrict the models to the single spin case and leave double
spin effects for future work. Neglecting the spin of the
smaller black hole, which is a subdominant effect for large
mass ratios, simplifies our analysis toward focusing on the
transition to large mass ratios. Furthermore, we neglect the
dependence of the angle of the spin in the orbital plane,
which we will denote ϕ1 below, for our models of the
remnant mass and spin. While this angle is indeed an
essential parameter for the recoil [45], and more accurate
models of the mass and spin should take this dependence
into account, we argue in Sec. III that we can neglect it for
the simple models we present here. Further approximations
are used to establish a common parametrization for our
inhomogeneous nature of our input dataset. Different
numerical relativity codes use different coordinate gauges,
which affects, in particular, spin angles or quantities such as
merger times. The geodesics and numerical solutions of the
Teukolsky equation again use different coordinates. In the
future it will be interesting to better understand how to
remove some of the ambiguities and gauge dependencies.
For this work, we justify not resolving these issues by the
fact that the resultant remnant model proves to be accu-
rately predictive and can be used for the advancement of
existing waveform models. Further justifications regarding
the approximations we use will be given as we introduce
them throughout this paper.
In Sec. II we describe the datasets we use and the

procedures chosen to blend them into a single consistent
dataset. In the quasicircular aligned spin case, generating a
heterogeneous dataset is relatively straightforward, since
the intrinsic parameters only consist of the masses and
spins, which in turn depend only very weakly on time due

to the very small amounts of infalling radiation. Hence, the
time dependence of masses and spins is often neglected in
aligned spin waveform models [34,35]. For misaligned
spins, however, the spin angles and orientation of the
orbital plane depend on time, and a coordinate frame needs
to be defined judiciously to consistently parametrize the
different datasets. Note that throughout this paper we refer
to any black hole binary system without in-plane spin
contributions as having “aligned spin” (AS), independent
of whether spins are parallel or antiparallel to the orbital
angular momentum.
In Sec. III we use our heterogeneous dataset to compute

the remnant mass and spin magnitude across all mass ratios
for the case when only the larger black hole is spinning,
as the spin on the smaller black hole becomes a subdomi-
nant effect for large mass ratios [46]. Additionally, we
neglect the orientation of the in-plane component of the
single spin, a decision driven by the current limitations in
computational cost and tests of the impact of the in-plane
angle on our results. Ultimately, a careful selection of
the quantities for modeling allows us to generate simple
parametrized fits for both the mass and spin magnitude of
the remnant in a precessing binary. These fits can be
evaluated efficiently and achieve an accuracy comparable
to the NRSur7dq4EmriRemnant model [40], the current
state of the art in remnant models.
Finally, in Sec. IV, we summarize and discuss the scope

and limitations of the work we report here, as well as
next steps.
Throughout this paper, we use geometric units with

G ¼ c ¼ 1. Component masses are denoted by mi, and we
define the mass ratio q ¼ m1=m2 ≥ 1 and the symmetric
mass ratio η ¼ m1m2=ðm1 þm2Þ2. The total component
mass will be denoted by M ¼ m1 þm2 and will serve as a
scale parameter. The dimensionless spin magnitudes are
denoted χi.

II. PRECESSING DATASET

In Secs. II A and II B we review the ingredients for our
heterogeneous dataset:

(i) NR waveforms from the public SXS catalog [22],
produced with the SpEC code [47], and the Cardiff
group’s public catalog [23] of waveforms produced
with the BAM [48,49] code;

(ii) NR waveforms recently produced with the public
Einstein Toolkit code [50], which have not been
presented previously;

(iii) numerical solutions of the Teukolsky equation for
inspirals at mass ratio 1000 [42,43]; and

(iv) solutions of the geodesic equation in Kerr spacetime.
In Sec. II C we discuss how to blend all the above data into
one consistent dataset for the remnant mass and spin.
Our datasets use different coordinate gauge conditions,

and thus spin angles cannot be expected to be exactly the
same even for physically identical binaries. We expect such
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uncertainties to only correspond to a few degrees [51] and
to not play a major role at our current level of accuracy. In
our work, we again find approximate consistency between
different datasets; this aspect will, however, have to be
studied further in the future.

A. NR datasets

Our NR dataset spans mass ratios from q ¼ 1 (equal
masses) to q ¼ 18. We use data from two publicly available
catalogs of NR simulations, the SXS catalog [22], obtained
with the SpEC code [47], and a catalog of waveforms [23]
obtained with the BAM code [48,49]. In addition we use
new simulations we performed with the Einstein Toolkit (ETK)
[50]. The SXS simulations are performed with the gener-
alized harmonic formulation of the Einstein equations [52],
while the BAM and ETK simulations use the moving
puncture setup with the 1þ log lapse and Γ̃-driver shift
coordinate conditions. We have analyzed both the wave-
forms and apparent horizon data of all simulations to create
a consistent heterogeneous dataset encompassing informa-
tion from both sources. In this paper, however, we only
discuss the remnant properties, leaving investigations into
the precessing waveform dataset to future work.
All the NR points in our dataset are included in Fig. 1,

where we show the distribution of the data in a three-
dimensional subspace defined at 100M before merger. The
merger time is not defined in exactly the same way for data
produced with different codes. We report details for each
catalog in the subsections below, however, our findings

indicate that the small differences in the definition of the
merger time across catalogs does not significantly impact
the results at the current level of accuracy. For all datasets,
we shift the time coordinate to the value of zero at the
merger time. From Fig. 1 we can see that the majority of the
points are concentrated in the comparable mass regime
(η ≥ 0.15), mostly from the SXS catalog. The BAM points
are located in the lower plane as they are single spin
simulations, while the high mass ratio ETK simulations
are dispersed in the mid–high mass ratio regime. In Fig. 2
we show the single spin simulations distributed in the
ðη; χ1; θ1Þ parameter space, where χ1 is the magnitude of
spin of the more massive black hole, and θ1 is the angle
between the spin and the axis of orbital motion 100M
before merger. These are the simulations we are using to
compute the remnant fits in Sec. III.

1. SXS dataset

We use 1409 quasicircular precessing simulations from
the SXS catalog [22], which range from mass ratio 1–6 and
0 < χ1 < 0.99, 0 < χ2 < 0.9. To confine the parameter
space to quasicircular orbits, we impose a limit on the
orbital eccentricity e (effectively defined as the Newtonian
eccentricity, see [22]) to e ≤ 0.002, leading to the exclusion
of 13 simulations from the original catalog. The referen-
ce_eccentricity parameter from the metadata was utilized
for this purpose. Among the 1409 simulations included
in our analysis, 80 correspond to single spin configura-
tions. The criterion for identifying single spin cases was

FIG. 1. Three-dimensional representation of the precessing
numerical relativity simulations used in this project described
in Sec. II. The visualization presents the distribution of the data in
terms of their symmetric mass ratio η and the spin magnitudes of
the largest and smallest black holes, denoted as χ1 and χ2,
respectively.

FIG. 2. Three-dimensional representation of the single spin
subset of the precessing numerical relativity simulations intro-
duced in Sec. II. It shows the distribution of the data in terms of
their symmetric mass ratio η, the spin magnitude of the largest
black hole χ1, and its orientation with respect to the orbital
frequency vector at the reference time θ1.
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χ2ðtrefÞ < 0.001. These specific waveforms are employed
for the remnant properties’ fits presented in this paper, with
the reference time set at tref ¼ −100M (where the merger
corresponds to t ¼ 0). For the SXS dataset the merger time
is defined as the maximum of the L2 norm of all the
available modes, as provided by the SXS PYTHON package.
The simulations have been performed with the pseudo-

spectral SpEC code [47], which excises spatial regions inside
of pure outflow boundaries located inside but close to the
apparent horizons of the black holes. Initial data are con-
structed to satisfy the constraints of general relativity using
the extended conformal thin sandwich [53,54] equations.

2. BAM dataset

We also use 80 simulations from the single spin
Cardiff precessing catalog [23], which span the 1≤q≤8,
0 < χ1 < 0.8, χ2 ¼ 0 parameter space evenly in mass
ratio, spin magnitude, and orientation θ1, so θ1ðtinÞ∈
fπ
6
; π
3
; π
2
; 2π
3
; 5π
6
g. The in-plane orientation of the single spin

ϕ1 was chosen to be zero at the relaxed time for each
simulation. The eccentricity for all the simulations was
reduced to 0.002 through manual iterations of the linear
momenta of the punctures in the initial parameters
(see Sec. II B 1 in [23] for details). For the BAM dataset,
the merger time is defined to be the peak of the l ¼ 2
multipole modes of Ψ4, provided in the metadata.
The simulations have been carried out in the “moving

puncture” approach with the BAM code, which uses con-
formally flat Bowen-York puncture initial data [55]. Note
that this setup for the initial data allows one to analytically
compute the initial orbital angular momentum analytically
using the Newtonian physics formula as a cross product of
position vector and linear momentum. The initial data are
evolved with fixed mesh refinement and sixth order finite
differencing [48,49].

3. Einstein Toolkit dataset

In addition to the public data from the SXS and BAM

dataset, we also use higher mass ratio simulations we
have recently performed with ETK [50]. We produced 24
simulations that span the region 4≤ q≤ 18, 0.4 ≤ χ1 ≤ 0.8,
0 ≤ χ2 ≤ 0.4. Because of an inappropriate configuration of
the wave extraction grids, some gravitational wave signals
exhibit excessive noise, making it challenging to extract
the merger time directly from it. We thus rely on horizon
quantities, identifying the merger time as the transition from
the individual black hole spins to the remnant spin. Detailed
information on these simulations can be found in Table I.
The setup of our Einstein Toolkit code is very similar to that

of the BAM code. Differences include the use of eighth order
accurate finite difference stencils and the eccentricity
reduction algorithm described in [56]. Furthermore, fixed
mesh refinement with moving cubical boxes is not used
for the whole computational domain. However, for the

wave extraction region and beyond, the multipatch Llama

code [57] is used to allow a high radial grid resolution with
a reduced memory consumption. The final mass and spin
are determined from the apparent horizons, which are
located with the AHFinderDirect code [58].

B. Extreme mass ratio limit

In the EMR case (η ≪ 1=4) one can rely on black hole
perturbation theory (BHPT), which assumes a perturbation
of Kerr spacetime due to a small object m2 orbiting a black
hole of mass m1 ≫ m2. In the test mass limit (η → 0) the
calculation of the orbital motion decouples from the
calculation of the gravitational wave signal, radiation
reaction vanishes, and the smaller object follows a geo-
desic. Below we first summarize quasicircular geodesics of
Kerr spacetime and then describe our numerical dataset for
mass ratio 103 [42], which we use for cross-checks.

1. Kerr geodesics

We consider the geodesic motion of a test mass m2 in a
Kerr spacetime of mass m1 and angular momentum
jJj ¼ am1. For a given black hole with parameters a and
m1 the geodesics can be parametrized by the constant
orbital quantities p (semilatus rectum), e (eccentricity), and
θ− (inclination parameter), or by the energy E, angular
momentum along the axis of symmetry Lz and Carter’s
constant Q, which are also constants of motion. The orbital
quantities are defined in Boyer-Lindquist coordinates
ðt; r; θ;φÞ [59]. In this paper, we will only be interested
in the circular case, where e ¼ 0 and radial separation r
is constant, while the angular position θ will be time
dependent and oscillates between extrema determined by
the inclination parameter θ−,

θ− ≤ θ ≤ ðπ − θ−Þ: ð2:1Þ

The solution for the time-dependent geodesic motion,
and the relation between the conserved quantities
ðE;Lz;QÞ and the orbital motion can be found, for
instance, in Ref. [44], and is briefly summarized in
Appendix A. Here we follow the parametrization of [44]
or [60], which is also used in the Black Hole Perturbation
Toolkit software package [61]. This toolkit, among other
things, provides a Mathematica implementation of Kerr
geodesics, KerrGeodesics, which we have used in parallel
to our own implementation. In order to solve for the
geodesics and discuss the results, it is natural to adopt a
scale-invariant formulation of the problem introducing
dimensionless quantities,

ã¼ a
m1

; Ẽ¼ E
m2

; eLz ¼
Lz

m1m2

; Q̃¼ Q
m1

2m2
2
: ð2:2Þ

The conserved quantities ðẼ; L̃z; Q̃Þ can be computed
algebraically from the parameters ða; p; e; θ−Þ, e.g.,
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Q̃ ¼ cos2θ−

�
ã2ð1 − Ẽ2Þ þ

fL2
z

1 − cos2θ−

�
: ð2:3Þ

The Carter constant is given by Q ¼ L2 − L2
z in the limit

a → 0. It is, however, useful to approximate Lρ by the
square root of the Carter constant

ffiffiffiffi
Q

p
even for non-

vanishing spin, see, e.g., [60]. There, an equivalent incli-
nation angle I (called θinc in [60]) is defined as

I ¼ π

2
− signðLzÞθ−; ð2:4Þ

which resembles an alternative definition for an orbital
inclination angle ι,

cos ι ¼ Lzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
z þQ

p ; ð2:5Þ

where Q plays the role of the magnitude squared of the
angular momentum orthogonal to Lz. It has been found
that, in general, ι ≈ I and that the angles I and ι automati-
cally encode a notion of prograde and retrograde orbits
(I; ι < 90° for prograde and I; ι > 90° for retrograde) [44].
In terms of the energy and angular momentum, one finds

that ẼðpÞ < ẼðrÞ and L̃z
ðpÞ < L̃z

ðrÞ, where p stands for
prograde orbits and r for retrograde, i.e., for prograde orbits
the particle has higher binding energy.
Of special interest is the innermost stable spherical orbit

(ISSO). Particles with small but finite mass will adiabati-
cally inspiral to the ISSO and then plunge into the black
hole. The radiation of energy and angular momentum
during the plunge is much smaller than during the inspiral,
and the remnant mass and spin can therefore be approxi-
mated by the values of the energy and angular momentum
at the ISSO. This aspect will be discussed further in Sec. III
and concretely motivated in Fig. 5.
The simpler subset of aligned spin binaries is defined by

setting the inclination angles I or ι to 0 or π. The Lz
component of the orbital angular momentum then corre-
sponds to the total orbital angular momentum, the final
spin only has a nonvanishing z component, and the orbital
plane is preserved. In this particular case of equatorial
orbits, the ISSO is referred to as innermost stable circular
orbit (ISCO).

2. Numerical EMRI data

In this work we use the data of [42], 5925 EMRIs of
mass ratio q ¼ 1000, distributed in a grid of values of the

TABLE I. Initial and reference data (in brackets) of the numerical relativity simulations computed using the Einstein Toolkit, described in
Sec. II A 3. The reference time is chosen to be 100M before merger. From left to right, the table gives the ID of each simulation, its mass
ratio, the dimensionless spin magnitude of the larger black hole, the primary spin’s orientation with respect to the orbital frequency ω⃗, the
dimensionless spin of the lighter black hole, its orientation, the dimensionless orbital frequency at which the quantities are given, the
dimensionless final mass of the remnant object, its spin, its orientation with respect to ω⃗, and finally, the dimensionless merger time.

ID qref χ1 θLχ1 (deg) χ2 θLχ2 (deg) Mωorbð×10−2Þ Mf=M χf θLχf (deg) tM=M

1 4 0.4 135.0 (134.1) 0 � � � 1.66 (5.44) 0.981 0.368 17.27 (27.89) 2562
2 4 0.4 170.0 (170.0) 0 � � � 1.66 (5.29) 0.982 0.265 6.41 (9.51) 2395
3 4 0.4 170.0 (169.8) 0.4 170.0 (170.1) 1.64 (5.18) 0.982 0.257 7.20 (10.14) 2328
4 6 0.4 135.0 (134.1) 0 � � � 1.98 (5.35) 0.987 0.281 36.34 (46.30) 2555
5 6 0.4 135.0 (133.5) 0.4 135.0 (145.1) 1.96 (5.31) 0.987 0.283 37.67 (47.30) 2504
6 8 0.8 170.0 (169.5) 0 � � � 1.86 (4.83) 0.992 0.285 155.1 (156.7) 2016
7 8 0.4 90.00 (88.24) 0 � � � 2.06 (6.32) 0.989 0.440 36.77 (43.76) 2253
8 8 0.8 135.0 (135.1) 0 � � � 1.89 (5.21) 0.991 0.460 92.79 (100.7) 2433
9 8 0.8 90.00 (86.03) 0 � � � 2.13 (6.54) 0.986 0.700 58.90 (59.14) 2362
10 8 0.8 170.0 (169.9) 0 � � � 1.92 (4.80) 0.992 0.285 155.0 (157.1) 2016
11 8 0.4 15.00 (14.89) 0 � � � 2.49 (7.17) 0.986 0.585 6.81 (7.67) 1605
12 8 0.2 90.00 (89.98) 0 � � � 2.63 (6.07) 0.989 0.345 24.25 (27.09) 1047
13 8 0.4 30.00 (29.14) 0 � � � 2.49 (7.05) 0.986 0.573 13.45 (14.69) 1574
14 8 0.8 165.0 (164.5) 0 � � � 2.19 (4.70) 0.992 0.301 144.9 (146.3) 1307
15 8 0.8 15.00 (15.13) 0 � � � 2.61 (9.05) 0.977 0.858 9.64 (10.61) 1906
16 8 0.8 150.0 (149.2) 0 � � � 2.24 (4.84) 0.992 0.372 117.6 (120.5) 1274
17 8 0.8 30.00 (27.55) 0 � � � 2.58 (8.72) 0.978 0.847 19.33 (18.14) 1895
18 8 0.8 75.00 (74.63) 0 � � � 2.62 (6.87) 0.984 0.757 49.34 (52.04) 1368
19 8 0.8 105.0 (104.1) 0 � � � 2.47 (5.81) 0.989 0.633 68.37 (74.24) 1320
20 18 0.4 150.0 (149.9) 0 � � � 2.51 (5.64) 0.996 0.225 124.5 (126.8) 2234
21 18 0.4 90.00 (89.34) 0 � � � 2.74 (6.63) 0.996 0.395 61.30 (65.03) 2221
22 18 0.8 150.0 (149.4) 0 � � � 2.39 (5.00) 0.996 0.565 138.7 (139.8) 2207
23 18 0.8 30.00 (29.78) 0 � � � 2.93 (10.5) 0.991 0.828 24.33 (25.20) 3243
24 18 0.8 90.00 (90.35) 0 � � � 2.87 (6.93) 0.995 0.738 75.84 (77.67) 2243
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spin of the largest black hole a, inclination angle I, and
plunge angle θf (see Fig. 3). Reference [42] extends the
work of Ori and Thorne [62] from equatorial to inclined
orbits. The procedure splits the worldline into three regions:
(i) The adiabatic inspiral, where they use a frequency-
domain BHPT code [60] to evolve the orbital quantities
until they reach (ii) the transition region. Closer to the
ISSO, the inspiral is no longer adiabatic, requiring further
considerations. (iii) On reaching the plunge, E;Lz, and Q
are frozen to the last value of the orbit while other orbital
quantities are evolved solving the geodesic equation. We
thus define the merger time when the small object crosses
the horizon and E; Lz, and Q reach their frozen value.
In Lim et al. [43], the companion paper to [42], they

investigate the dependence of individual-mode excitation
on plunge parameters via their waveform set. The gravi-
tational waves generated by the system are computed from
the worldline by solving the Teukolsky equation in the time
domain [63,64]. Further details on the procedure can be
found in Ref. [42].
For each configuration, the dataset includes all the

spherical harmonic modes up to l ¼ 4, plus selected higher
l, m modes, and complete information on the small body’s
trajectory,

x⃗2ðtÞ ¼ −r⃗

¼ rðtÞðsin θðtÞ cosϕðtÞ; sin θðtÞ sin θðtÞ; cos θðtÞÞ;
ð2:6Þ

by providing (r, ϕ, θ), velocity (dr=dt, dϕ=dt, dθ=dt), and
also the time evolution of the geodesic constants of motion
E, Lz, and Q, which are used in Sec. II C 2 to compute the

remnant quantities. The natural frame for EMRIs is defined
by the spin of the massive black hole, so both the waveform
and trajectories are defined with respect to this frame as
illustrated in Fig. 3. To cohesively append to our existing
dataset, it is therefore necessary to transform from this
frame to that used by comparable mass simulations, where
the z axis is defined not by the angular momentum of the
larger black hole, but by the direction of the orbital angular
momentum or a similar quantity like the orbital angular
velocity or Newtonian orbital angular momentum ω⃗, as
shown in Fig. 4.

C. Creation of a heterogeneous dataset

In this work, we investigate the properties of the remnant
object: the final mass and spin. The final mass of the binary
is given by

Mf ¼ 1 − Erad; ð2:7Þ

and one can then apply the conservation of angular
momentum to compute the final spin χ⃗f,

M2
f χ⃗f ¼ m2

1χ⃗1 þm2
2χ⃗2 þ L⃗: ð2:8Þ

For the numerical relativity datasets, the final mass and
spin were determined from the apparent horizons. In the
case of the SXS and BAM dataset they were taken from
the supplied metadata, and for our Einstein Toolkit dataset
the numbers were averaged over appropriate portions of
the late time behavior of the dataset. For the extreme
mass ratio case, the determination of the final state is
described below.

FIG. 3. Definition of the EMRI orbital quantities provided in
the dataset described in Sec. II B. The dataset spans a parameter
space described by the black hole spin magnitude a, the
inclination angle I, and the final angle of the plunge θf . The
spherical coordinates (r; θ;ϕ) determine the evolved position of
the smaller black hole of mass m2.

FIG. 4. Definition of the orbital quantities employed in this
project (traditional to the comparable mass simulations). All
vectors are defined with respect to the orbital angular momentum
L⃗, as opposed to those shown in Fig. 3, which are specified in
terms of the larger black hole spin. Note that in this project we
approximate L⃗ by ω⃗ (2.9).
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1. Choice of reference frame

In the aligned spin quasicircular sector, creating a
consistent heterogeneous dataset, which combines compa-
rable mass and extreme mass ratio cases, is relatively
straightforward. As the spins and orbital plane maintain
their orientation as a consequence of equatorial symmetry, a
natural class of inertial frames can be constructed, where
the z axis is the fixed axis of the orbital motion, and the
angular coordinate in the orbital plane can be defined
based on the separation vector. In the precessing case, this
equatorial symmetry of the aligned spin vector is lost; the
orbital plane and spin directions are time dependent
and there is, in general, no natural inertial frame. An
intuitive approach to choosing a reference frame is then to
work with a noninertial frame that tracks the precession
motion, which drastically simplifies the dynamics and
waveform [65,66]. This can then be used to construct
precessing waveform models in terms of rotating or “twist-
ing up” a nonprecessing waveform with an inverse rotation
that maps a corresponding precessing waveform into the
appropriate noninertial frame [65,66]. Unfortunately, the
natural choices in the EMR limit and comparable mass
cases are not equal.
For EMRIs, as discussed above in Sec. II B, fixing an

inertial frame by choosing the z axis as the spin axis of
the large black hole (BH) is indeed natural, e.g., it gives rise
to a conserved spin component in the z direction of the
larger BH, a conserved orbital angular momentum projec-
tion Lz, and the definition of the conserved inclination I
for a fixed geodesic. In the comparable mass case, this
choice has, however, no meaningful analog, and it has
become customary to work in a co-orbital or similar frame,
which is defined in the spirit of the quadrupole aligned
frame [65–67] for the gravitational wave signal. Similar
behavior can be achieved by choosing the z axis as the
direction of the orbital angular momentum L⃗ or the orbital
angular velocity ω⃗. In the frame defined by the orbital
angular momentum, the magnitude of the spin projections
parallel and orthogonal to the orbital angular momentum
are approximately preserved [68,69] and the orbital angular
momentum is approximately aligned with the direction of
maximum wave emission [65]. In the EMR limit, the
projection of the black hole spin onto the orbital angular
momentum is preserved, in contrast to the scenario where
the orbital angular momentum is replaced the orbital
angular velocity ω⃗. Some simplification of the gravitational
wave signal and dynamics can also be achieved by
choosing the z axis as the direction of the total angular
momentum J⃗, see, e.g., [66], which only varies slowly and
by a small amount, except for the case of transitional
precession [66]. Furthermore, in the EMR limit, J⃗ corre-
sponds to the spin of the largest black hole, making it a
more suitable choice as the mass ratio increases.
The NRSur7dq4 model [12] uses the quadrupole aligned

waveform to define the reference frame, where the z axis is

computed as the principal eigenvector of the angular
momentum operator as described in [67]. In this work,
we have chosen to construct our co-orbital frame in terms
of orbital quantities, as their formulation is more straight-
forward than the orbital angular momentum in a numerical
relativity evolution. For some of the ETK waveforms, the
gravitational wave signal is too noisy to work with the
quadrupole aligned frame, due to an inappropriate con-
figuration of the wave extraction grids. This problem and its
resolution will be discussed in a separate paper. The z axis
is then chosen to point in the direction of the orbital angular
velocity ω⃗,

ω⃗ðtÞ ¼ r⃗ × v⃗
r2

¼ r⃗ × ˙r⃗
r2

; ð2:9Þ

where r⃗ is the vector that points from the smallest black
hole to the largest (r⃗ ¼ x1

!− x2
!), and the x axis is chosen to

point in the r⃗ direction (see Fig. 4 for visual definition). The
y axis is defined as usual to complete an orthogonal right-
handed triad.
In order to perform this alignment, one needs the time

evolution of the two black hole positions, as well as the
time evolution of all the quantities we include in our
dataset. These are the spins and masses of both initial black
holes and the remnant, the emitted waves, the radiated
energy, and/or orbital frequencies, although additional
information on how to get these quantities is recommended
to ensure consistency. Some public catalogs are hence not
adequate for our purposes, e.g., the RIT catalog [21]
includes precessing waveforms, but it does not provide
the trajectory evolution. For future work, we also plan to
include the most recent MAYA catalog [24].
We adopt the same reference time for defining the

spin components in a co-orbital frame as in [12,40],
which is set to 100M before merger. This choice facili-
tates direct comparisons between our remnant model and
NRSur7dq4EmriRemnant [40]. The binary evolution
closely approaches the merger state at this reference time,
thus one can expect a simpler functional dependence for the
remnant quantities. For the EMR limit, the ISSO provides
an approximate plunge time. For our numerical EMRI
dataset detailed in Sec. II B, we compare the numerical
preserved quantities at merger with those obtained at the
ISSO time. For our EMRI dataset, the ISSO time ranges
from −700M for the most antialigned cases to −150M for
the aligned ones. Upon comparing the values for the
preserved quantities obtained by solving the geodesic
equations at the ISSO with the numerical results, we
observe maximum relative errors of 0.1%. Consequently,
we conclude that the ISSO time can be effectively
employed as the reference time for the EMR limit without
impacting the transition from the comparable mass regime,
where the chosen reference time is −100M. These obser-
vations, however, suggest that this choice might not be
optimal. Instead, a quantity that smoothly transitions from
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the comparable mass reference time to the ISSO could be
more suitable, such as the minimal energy circular orbit
time [70]. We leave this as future work, to investigate
further a choice of optimal reference time, which allows
simple yet precise fits and an accurate match with fast
post-Newtonian inspiral codes, e.g., [71]. These codes
serve to bridge the gap between the reference time and
some earlier time where waveform models define their spin
vectors.
The rotation of the vector quantities such as the black

holes’ spins is straightforward, consisting of a fixed rotation
to the full time array. For the waveforms, it is common to
decompose the waves into spherical harmonics and rotate
each mode individually via Wigner matrices. Comparable
mass binaries are usually described at the co-orbital frame
at some reference time close to the initial time, and
performing a fixed rotation to a later co-orbital frame does
not suppose higher complications. More efforts need to be
done, however, for the extreme mass ratio limit, where
the natural frame is defined in terms of the largest black
hole spin. From the trajectories, one can obtain the vector
r⃗ ¼ −x⃗2, as in Eq. (2.6), then compute the velocity ˙r⃗ and
finally obtain the z axis given by ω̂ðtrefÞ. In the case of using
geodesics, one just inputs the inclination angle at the
reference time. Once the alignment is done for all simu-
lations, we keep the metadata at the chosen reference time
−100M where the alignment takes place. This includes the
mass ratio, the two black holes’ spins and positions, the
reference orbital frequency, the time of merger, and finally
the remnant quantities.

2. Extreme mass ratio limit

In the EMR limit, the final mass and spin can be
computed to first order in the mass ratio from the energy
and orbital angular momentum at the ISSO, since the
contribution of the plunge can be neglected [72]. The
quantities E and Lz are preserved for geodesics and
can thus be evaluated directly for any geodesic. This is,
however, not true for the full angular momentum
vector, which would require further knowledge about the
spacetime. According to the previous discussion around
Eq. (2.5), we approximate Lρ by the square root of the
Carter constant

ffiffiffiffi
Q

p
and extract the direction of the final

spin with respect to the z axis. Since only the z or the in-
plane components are preserved, there will be a freedom
regarding the in-plane direction of the final spin that wewill
not be able to fix. Regardless, here we are only interested in
the final spin magnitude, so the missing direction does not
constrain our work.
Numerically solving the geodesic equations detailed in

Appendix A allows one to determine the constants of
motion at a specific geodesic. As previously discussed, in
the EMR limit, we select the ISSO time as the reference
time. At this point, the conditions RðrISSOÞ ¼ R0ðrISSOÞ ¼
R00ðrISSOÞ ¼ 0 are satisfied [refer to Eq. (A4)]. Solving

this set of algebraic equations provides the constants of
motion ðE;Lz;QÞ at the ISSO, as well as the radius rISSO.
This numerical procedure is described in Ref. [73] and
implemented in the KerrGeodesics Mathematica package,
which we have utilized extensively to solve precessing
geodesics throughout.
For the specific case of nonprecessing orbits

(I ¼ f0; πg), one can derive simple analytical expressions
for the energy and angular momentum at the ISCO
(particular ISSO for equatorial orbits), given by

ẼISCOðχfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3ρISCOðχfÞ

s
; ð2:10Þ

and

L̃orb
ISCOðχfÞ ¼

2
�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiρISCOðχfÞ
p − 2χf

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ρISCOðχfÞ

p ; ð2:11Þ

where ρISCO is the radius at the ISCO,

ρISCOðχÞ ¼ 3þ Z2 − signðχÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
;

Z1 ¼ 1þ ð1 − χ2Þ1=3
h
ð1þ χÞ1=3 þ ð1 − χÞ1=3

i
;

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3χ2 þ Z2

1

q
:

From these equations, it is clear that the derivative of the
final mass and spin with respect to the component spin is
singular at η ¼ 0 when the black hole spin is extremal and
aligned with the orbital angular momentum. For other mass
ratios, this derivative is regular, as is the derivative with
respect to η. This behavior is difficult to capture in models
without further analytical insight in the region near the
singular point where η ¼ 0 and the component spins are
extremal. Further work will be required to fully resolve the
associated issues.
Approximating the orbital angular momentum magni-

tude L by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
z þQ

p
, the remnant quantities in Eqs. (2.7)

and (2.8) depend exclusively on the “preserved” quantities
ðE;Lz;QÞ. While the numerical dataset provides these
values after the plunge, for the geodesic description we
take these values from the ISSO and neglect the contribu-
tion from the plunge [72]. We scaled the radiated energy by
η at linear order, which is consistent with our earlier
discussion that the geodesic values are accurate up to order
η. We compare the final mass and spin magnitude obtained
from the precessing geodesic equations and the numerical
EMRI data in Fig. 5, showing a maximum error around
10−6, comparable to the numerical error expected from the
simulations.
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III. MODELS FOR THE REMNANT MASS
AND SPIN

In this section, we develop fits for the remnant mass and
spin for precessing binaries, extending some of the ideas
that have been used in [36] to create such fits for aligned
spin binaries. We use extreme mass ratio data and split the
input parameter space (in a hierarchical way) by dimension
to design a class of functional forms for the fits. We use
information criteria to select the best fit among this class of
functions preventing overfitting.
At high mass ratios, the contribution of the secondary

spin becomes a subdominant effect. This makes the single
spin subspace a natural arena when trying to understand the
high mass ratio regime for precessing systems and gain
intuition on how to bridge the gap to comparable mass
binaries (through intermediate mass ratio systems). The
problem thus becomes four dimensional, with three dimen-
sions due to the largest black hole spin, ðχ1; θ1;ϕ1Þ, and
one for the symmetric mass ratio η. To assess the impact of
the in-plane spin orientation ϕ1 on the remnant quantities,
we utilize the NRSur7dq4EmriRemnant model, which has
been calibrated to numerical relativity and includes the ϕ1

dimension. For all configurations in our full numerical
relativity single spin dataset, we compute the residual error
between the NR values for the remnant quantities and
those obtained with NRSur7dq4EmriRemnant, first using
the value of ϕref

1 from the simulation and then a random
value. The results, depicted in Fig. 6, reveal that the root-
mean-square errors are virtually unaffected by this addi-
tional dimension and that the error distribution exhibits
similar behavior. This supports the decision to exclude the
ϕ1 dimension in this study, reducing our dimensionality to
three free parameters and thereby lowering the computa-
tional cost of the procedure. We leave the incorporation of
the ϕ1 dependence for future work.

The twisting up procedure introduced in Sec. II C
permits one to understand precession in terms of an
approximate map between aligned spin binaries and pre-
cessing ones in a co-orbital frame. Our strategy will be to
work in a co-orbital frame to facilitate constructing our fits
as corrections to the values of the corresponding aligned
spin binary configuration. The misaligned spin components
induce a precessing motion of the binary, which introduces
a new timescale compared to aligned spin systems. During
the inspiral this precessing timescale is, however, much
slower than the orbital one, so its effect on the energy
radiated in gravitational waves is rather small. For the
radiated angular momentum we will see that the situation is
slightly more complicated: because the angular momentum

FIG. 5. Histogram illustrating the difference between the
remnant properties obtained by solving the precessing geodesic
equations at the ISSO and the corresponding numerical values
from the used EMRI dataset described in Sec. II B. The triangles
represent the median value for each distribution.

FIG. 6. Error histograms illustrating the effect of the in-plane
orientation of the single spin ϕ1 on the NRSur7dq4EmriRemnant
model for the remnant properties. We consider the corresponding
ϕ1 of each simulation (ϕsim in the legend) and a random angle
value (ϕrand) and compare the error distributions for our dataset.
Top: the errors associated with the final mass (with a RMSE
¼ 5.4 × 10−4 for the ϕsim distribution and RMSE ¼ 8.2 × 10−4

for ϕrand). Bottom: the errors related to the final spin magnitude
[RMSEðϕsimÞ ¼ 5.4 × 10−3 and RMSEðϕrandÞ ¼ 5.8 × 10−3].
Triangles indicate the median value for each distribution. Both
plots suggest that ϕ1 does not significantly influence the error
distribution of the model, supporting our decision to exclude that
dimension from our studies.
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and the component spins are time-dependent vectors, the
final angular momentum is affected by a nontrivial vector
addition effect. For a recent discussion in the context of
current waveform models see, e.g., [74].
To prevent overfitting, we follow Ref. [36], where

aligned spin remnant fits were developed, and we use
the Bayesian information criterion (BIC) and Akaike
information criterion as metrics for model selection.
These criteria are designed to balance model accuracy
and complexity to avoid overfitting. For further details on
the definition of the information criteria, see Appendix B.
We focus in particular on the BIC, which provides a more
restrictive criterion for our purposes. A lower BIC value
indicates a more favorable trade-off between model fit and
complexity, leading to the selection of a model with
improved predictive performance.
Our input dataset consists of the single spin simulations

displayed in Fig. 2. Our calibration parameter space
extends only up to χ1 ¼ 0.8. However, we discuss extrapo-
lation to extreme spins in Appendix D, where we conclude
that our model extrapolates well to maximally precess-
ing spins.
We evaluate the accuracy of the remnant fits and compare

with the results obtained with NRSur7dq4EmriRemnant,
which is calibrated against double spin numerical relativity
simulations, and with the remnant fits that are being used in
existing precessing phenomenological models [6,7], which
are only calibrated to aligned spin simulations. By sub-
tracting information from the aligned spin sector and EMR
before the fits, we can construct simple parametrized fits
that provide a far higher accuracy than what is currently
required for gravitational wave observations, as does the
NRSur7dq4EmriRemnant model, but at a much reduced
complexity and computational cost.

A. Remnant mass

Since the correction of the final mass due to precession is
expected to be small when parametrizing the input spins in
a co-orbital frame, it is natural to directly fit the effect of
precession on the aligned spin radiated energy. We then
define our fitting quantity as

ΔE ¼ Eprec
rad ðη; χ1; θ1Þ − EAS

radðη; χ1 cosðθ1Þ; χ2 cosðθ2Þ ¼ 0Þ;
ð3:1Þ

so the final mass of a precessing binary will be modified as

Mf ¼ 1−Erad ¼ 1−
�
EAS
radðη;χ1 cosðθ1ÞÞþΔEðη;χ1;θ1Þ

�
;

ð3:2Þ

where all the input parameters are taken at the reference
time. Since by design our fitted quantity ΔE has very small
values, we need to ensure that poor accuracy of the aligned
spin fit for the energy does not contaminate our error

budget. What we found is that the previous fit developed in
Ref. [36] did not accurately capture the radiated energy
close to the joint extremal spins and extreme mass ratio
limit. Hence, we first improved the aligned spin fit near this
singular point as shown in Fig. 7, where we defined ΔEAS

rad
as the difference between the updated fit and the old one.
The updated expression is provided in Appendix C,
Eq. (C2), and will be discussed in detail elsewhere.
In order to improve the conditioning of our fitting

method for the EMRI regime we use the geodesic results,
which are valid at linear order in η: We subtract the
resulting linear-in-η term from the numerical dataset and
only include higher powers of η in our fits. Figure 8 shows
that the linear-in-η term is small for comparable masses,
which benefits this strategy by not contributing much
where the linear approximation is not valid. We therefore
fit the quantity ΔE defined as

ΔE ¼ ΔE − ΔEEMR: ð3:3Þ

Here ΔEEMR is computed using the KerrGeodesics

Mathematica package for the energy in the precessing
case and Eq. (2.10) for the aligned spin energy case.
In order to develop a suitable Ansatz for a parametric fit

across the three-dimensional space ðη; χ1; θ1Þ, we first
visualize only two dimensions and show results for fixed
values of θ1, chosen as the evenly spaced grid points of
the BAM catalog [23]: θ1 ∈ fπ

6
; π
3
; π
2
; 2π
3
; 5π
6
g. This way, we

ensure that each fitted surface contains numerical relativity
data. By definition, ΔE (as well as ΔE) has to vanish at the
boundaries θ1 ∈ f0; πg, so that we recover the aligned and
antialigned limits. The simple structure of the numerical
values of ΔE (and hence ΔE) across the η − χ1 subspace at

FIG. 7. Difference between the updated aligned spin fit for the
radiated energy [see Eq. (C2)] and the previous one [36] used in
phenomenological families IMRPhenomX [34] and IMRPhe-
nomT [35] for single spin systems, scaled by the mass ratio. The
key enhancement in the new model is a more accurate description
of the singularity at χ1 → 1 and η → 0.
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the fixed values of θ1 (see, e.g., Fig. 10) suggests that a
simple polynomial Ansatz can effectively capture its
behavior. More specifically, our Ansatz consists of ηaχb1-
like terms using a rectangular grid in ða; bÞ. Visually
inspecting the data, the highest order fit that avoids over-
fitting for any fixed θ1 is given by a ≤ 5 and b ≤ 2, which
results in 18 terms in the polynomial Ansatz. However,
many of these terms can be discarded.
We set the constant term (a ¼ b ¼ 0) of the expansion

to 0 because, at χ1 ¼ 0 and η → 0, it holds that ΔE ¼ 0,
leaving us with 17 terms. These data points with correc-
tions set to zero are designated as AS, since one recovers
the underlying aligned spin model. We utilize the
LINEARMODELFIT function from Mathematica [75] to fit
the numerical data for each θ1 surface and record the BIC of

the resulting model across all θ1’s. Subsequently, we
perform a weighted averaging of the BIC for each surface,
assigning weights of 0.05 for θ1 ∈ fπ

6
; 5π
6
g, of 0.2 for

θ1 ∈ fπ
3
; 2π
3
g, and finally, 0.5 for θ1 ¼ π

2
. The assignment

of weights depends on the nature of the quantity being
fitted: the magnitude is more significant for highly pre-
cessing systems, making the results more reliable in the
region closer to in-plane spins (θ1 ∼ π=2). Conversely, for
systems close to aligned or antialigned configurations, the
value is so small that it is overshadowed by the numerical
error of the simulations. By employing weighted averaging,
we ensure that the fitting procedure is not dominated by the
numerical errors in our dataset, while still taking into
account all cases. This process is repeated iteratively for a
modified Ansatz where each term is removed, saving the
averaged BIC for each case. We retain the Ansatz with the
lowest mean BIC only if it falls below the BIC value of
the initial polynomial set. This procedure is reiterated until
removing more terms no longer contributes positively to
the final fit. With this procedure, we obtain a final fit with
only seven terms favored by about −44 in relative BIC.
Then, for every value of θ1 ∈ fπ

6
; π
3
; π
2
; 2π
3
; 5π
6
g, we have

faigi¼7
i¼1ðη2χ1; η3χ1; η3χ21; η4χ1; η4χ21; η5χ1; η5χ21Þ: ð3:4Þ

Upon visually inspecting each ai, we observed that the
contribution of the η2χ1 term was minimal, supporting
its removal from the final fit. Consequently, we are left
with six coefficients to fit for θ1. Thereafter, we proceed
to fitting the θ1 dependence of the coefficients ai. As
previously mentioned, at the boundaries θ1 ∈ f0; πg, we
recover the aligned and antialigned limits, implying that
aið0Þ ¼ aiðπÞ ¼ 0. Given that θ1 is an angle, it makes
sense to propose a sinusoidal Ansatz such as

aiðθ1Þ ¼ Ai sin θ1 þ Bi sin 2θ1; ð3:5Þ

which will always satisfy the boundary conditions. Figure 9
shows the functional dependence of the η3χ1 term in θ1 and
the corresponding fit from the above Ansatz in Eq. (3.5).
The final expression for ΔEðη; χ1; θ1Þ is given by

ΔEðη;χ1;θ1Þ¼ η3χ1½0.759123sinðθ1Þ−2.33392sinð2θ1Þ�
þη3χ21½6.51059sinðθ1Þþ7.06906sinð2θ1Þ�
þη4χ1½−11.7873sinðθ1Þþ22.364sinð2θ1Þ�
þη4χ21½−37.0594sinðθ1Þ−63.3841sinð2θ1Þ�
þη5χ1½35.0427sinðθ1Þ−51.36sinð2θ1Þ�
þη4χ21½−37.0594sinðθ1Þ−63.3841sinð2θ1Þ�:

ð3:6Þ

Figure 10 shows ΔE computed as in Eq. (3.3) together
with the numerical values for the entire dataset at θ1 ¼ π=2.

FIG. 8. Numerical evaluations of ΔE as defined in Eq. (3.1) for
the extreme mass ratio limit (denoted as ΔEEMR) at a fixed mass
ratio while varying the black hole’s spin magnitude χ1 and its
orientation with respect to the orbital frequency at the reference
time θ1. The precessing and aligned spin radiated energies are
obtained from the geodesic equations of motion, which provide
the linear contribution in η to the energy. The precessing radiated
energy at the ISSO is obtained with the KerrGeodesics package,
whereas the aligned spin energy is computed from Eq. (2.10).
Top: corresponds to a mass ratio of 1000, where the geodesic
equations are expected to be valid. Bottom: corresponds to a mass
ratio of 4. In the lower plot, we included the single spin
simulations from Fig. 2 that fall into this subspace.
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This fit can now be inserted into Eq. (3.2) in order to get the
new model for the mass of the remnant object. To compute
the final mass of the corresponding aligned system, we rely
on the updated IMRPhenomX model given by Eq. (C2).
We can now assess the accuracy of our new model. For

the entire single spin precessing dataset, we calculate
the final mass using our model [Eqs. (3.2) and (3.6)],
denoted as PhenNew. We compare this with the current
IMRPhenomX model, which does not account for the ΔE
correction (PhenXP), and with NRSur7dq4EmriRemnant
for validation. Figure 11 presents the histogram of errors

associated with each model. Results are based on the NR
data from our dataset, comprising 184 simulations with
q ≤ 18. The EMRI dataset has been excluded from the
comparison due to its large number of simulations and
small errors. Table II provides the computational time
required to evaluate the final masses and spins for the whole
NR dataset, along with the numerical values of the median
error and root-mean-square error (RMSE) computed as in
Eq. (B1). The PhenXP model for the final mass Mf

involves evaluating the aligned spin model for the radiated
energy using Eq. (C2). On the other hand, PhenNew
evaluates both Eq. (C2) and the parametrized fit for ΔE
(3.6), as well as ΔEEMR, using the KerrGeodesics package.
Note that computational times refer to a straightforward
implementation in Mathematica, with most of the com-
putational time required to solve the precessing geodesic
equations to obtain ΔEEMR. An optimized implemen-
tation and a fit to the analytically known EMR results
would dramatically accelerate the evaluation. For the
evaluation of the NRSur model, we utilized the SurfinBH

PYTHON package [12] with the NRSur7dq4EmriRemnant
[40] model. In this case, the evaluation time is provided as a
single number for both the final mass and spin because both
are returned together as an array. It takes approximately
5 ms to compute the remnant properties for one binary
black hole configuration, consistent with the findings
in [40]. It is noteworthy that NRSur7dq4EmriRemnant
incorporates the direction of the final spin, thereby intro-
ducing complexity to the model which is reflected in the
computational time.

FIG. 9. Functional dependence of the η3χ1 term on the angle θ1
[following the Ansatz given by Eq. (3.5)], as depicted in Eq. (3.6).
Similar results are obtained for the remaining five terms of the
parametrized fit for ΔE. All fits were performed with the FIT
function in Mathematica [76].

FIG. 10. Numerical evaluation of ΔE as defined in Eq. (3.1),
obtained from the parametrized fit ΔE (3.6) and ΔEEMR, at a
fixed spin orientation θ1 ¼ π=2, while varying the mass ratio η
and the spin magnitude χ1. The figure includes the single spin
precessing simulations shown in Fig. 2 that fall into this subspace,
as well as the vanishing corrections for the limits η → 0 and
χ1 ¼ 0, denoted as AS.

FIG. 11. Histogram of the errors in the remnant mass computed
with each of the three models for our single spin precessing
dataset presented in Fig. 2. The model developed in this project
is labeled as PhenNew, the underlying model as PhenXP, and
NRSur7dq4EmriRemnant as NRSur. The triangles above the dis-
tributions represent their median values, also included in Table II.
This table provides additional information on the distributions: the
computational time needed to evaluate the dataset for each model,
along with the RMSEs. Note that the PhenXP model shows a
sensible bias that is significantly reduced in the PhenNew model.
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These findings demonstrate that our new model for
the final mass achieves an accuracy comparable to the
NRSur7dq4 model, surpassing the original PhenXP
model, while maintaining its computational efficiency.
Additionally, PhenNew exhibits a less biased error distri-
bution compared to the old model, which tends to over-
estimate the final mass.
To ensure completeness, we assessed the resulting model

beyond our calibration region, specifically when χ1 > 0.8.
We focused on scenarios where precession effects are
maximal, corresponding to an in-plane spin configuration,
i.e., θ1 ¼ π=2. We include the result of the extrapolation
in Appendix D. Despite the absence of numerical data in
that region, the study indicates that the extrapolation
behaves well, and no dubious features emerge outside
the calibration regime.

B. Remnant spin

If one assumes the twisting-up approximation and that
the in-plane and aligned spin components are conserved,
then one can write the final spin magnitude as

χprecf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χAS

2

f þ m4
1

M4
f

χ2⊥

s
; ð3:7Þ

where χ⊥ is the total in-plane spin. Variants of this
approximation with different assumptions to compute χ⊥
have been used in the IMRPhenomX and IMRPhenomT
waveform models [6,7]. In our case, considering only the
single spin sector, χ⊥ simply becomes the in-plane com-
ponent of the larger black hole. However, the in-plane and
orthogonal spin components are not exactly conserved, and
we therefore introduce a correction term δ2 that we fit to our
numerical dataset. Note that denoting the unknown quantity
as δ2 is an abuse of notation, since it is not necessarily

positive and indeed typically is negative. Consequently, the
final spin of a precessing system can be written as

χprecf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χAS

2

f þ m4
1

M4
f

χ2⊥ þ δ2

s
; ð3:8Þ

where χ⊥1 in the single spin case is given by χ⊥1 ¼
χ1 sinðθ1Þ, and Mf ¼ 1 − Erad, where we use the model
of the previous section to compute Erad.
One can develop the previous equation and turn it into

a closed-form approximation for the extreme mass ratio
limit by using Eq. (2.8) for both the precessing and aligned
final spin, assuming that the Carter constant is approx-
imately the in-plane orbital angular momentum (Q ≈ L2

ρ).
This procedure results in

δ2EMR ¼ M4

M4
f

�
m2

2

m2
1

�
L̃z

2 þ Q̃ − ˜
Lk
z

�
þ 2

m2

m1

χ1 cosðθ1Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L̃z
2 þ Q̃

q
− ˜
Lk
z

��
: ð3:9Þ

The main advantage of this expression lies in the fact that it
relies exclusively on geodesic information for precessing
and aligned equations. Remarkably, even for close to
comparable masses, its behavior closely resembles that
obtained from numerical data, up to a scaling factor, as can
be seen in the lower panel of Fig. 12. Equation (3.9)
consists of two contributions: the first term, quadratic in
1=q, and the second term, linear. Both terms are shown in
Fig. 12. The linear term dominates for extreme mass ratios
(in dotted lines, covered by the continuous lines) and
exhibits oscillations due to the cosine dependence of the
inclination angle. However, as the mass ratio increases,
these oscillations are overshadowed by the growth of the
quadratic contribution (depicted by dashed lines), as shown
in the lower panel of Fig. 12. It turns out that, in order to
reproduce our numerical data in the comparable mass
regime, it is best to keep both the linear and quadratic in
η terms. Following the same motivation as for the energy,
we proceed to subtract δ2EMR from our fitting quantity δ2 to
capture the EMRI regime, defining

δ2 ¼ δ2 − δ2EMR; ð3:10Þ

where again δ2EMR is computed using the KerrGeodesics

Mathematica package.
The fitting procedure then follows the same structure

described in the previous subsection. We first compute δ2

from Eq. (3.8) for all the single spin simulations in our
precessing dataset. We again neglect the in-plane spin angle
ϕ1, reducing our independent variables to ðq; χ1; θ1Þ. We

then show δ2 for fixed values of θ1, chosen to be the same
values as for the energy: θ1 ∈ fπ

6
; π
3
; π
2
; 2π
3
; 5π
6
g. Again, at

TABLE II. Median value and RMSE of the error distributions
of the remnant mass Mf and spin magnitude χf for different
models, with respect to the numerical relativity dataset shown in
Fig. 2. The histograms of the distributions are shown in Figs. 11
and 15, respectively. The last row provides the averaged time (Av.
ev. time) needed to evaluate the complete dataset (184 simu-
lations) with each model for the final mass/final spin. For the
NRSur7dq4EmriRemnant model (NRSur) only one value is
provided because their PYTHON implementation jointly returns
both quantities.

PhenNew PhenXP NRSur

Mf Median 4.4 × 10−5 −7.0 × 10−4 −1.8 × 10−4

RMSE 6.4 × 10−4 1.8 × 10−3 5.4 × 10−4

χf Median 1.5 × 10−4 −8.6 × 10−3 1.7 × 10−3

RMSE 3.4 × 10−3 1.5 × 10−2 5.4 × 10−3

Av. ev. time (ms) 0.55=2.7 0.019=0.071 5.2
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θ1 ∈ f0; πg, δ2 is defined to vanish so one recovers the
nonprecessing limit. In order to find an appropriate Ansatz
in this case, we start our procedure with a ≤ 3 and b ≤ 2.
We then followed the iterative procedure described above
to reduce our grid from 11 to 7 coefficients, representing an
improvement of −16.5 in BIC. Then, for every fixed value
of θ1, we have

faigi¼7
i¼1ðχ21; ηχ1; ηχ21; η2χ1; η2χ21; η3χ1; η3χ21Þ: ð3:11Þ

Finally, five more coefficients can be discarded when
inspecting their θ1 dependence, resulting in a very simple

Ansatz for δ2,

faigi¼2
i¼1ðη2χ21; η3χ21Þ: ð3:12Þ

We propose again a sinusoidal Ansatz for the coefficients ai
which satisfies the boundary conditions

aiðθ1Þ ¼ Ai sin θ1 þ Bi sin 3θ1: ð3:13Þ

Figure 13 shows an example of the functional dependence
of the first fit coefficient a1 (η3χ21) in terms of θ1.
The resulting fit is finally given by

δ2ðη; χ1;θ1Þ ¼ η2χ21½1.25552 sinð3θ1Þ− 6.47984 sinðθ1Þ�
þ η3χ21½27.0456 sinðθ1Þ− 4.71194 sinð3θ1Þ�;

ð3:14Þ

and it is represented in Fig. 14 for θ1 ¼ π=2, together with
the numerical δ2 values for the entire dataset. Note that the
plot shows δ2, which is computed from Eq. (3.10). This fit
can now be inserted into Eq. (3.8) in order to get the new
model for the remnant spin. In this expression, the aligned
spin final spin dependence goes as χASf ðη; χ1 cosðθ1ÞÞ and
the final mass is computed using the fit for Mfðη; χ1; θ1Þ
shown in Eq. (3.2).
We can now assess the accuracy of our new model

computing the final spin for our dataset using our new
model, denoted as PhenNew. We then compare it with the
current IMRPhenomX model, which ignores the δ2 cor-
rection (PhenXP) and the NRSur7dq4EmriRemnant
model. Figure 15 displays the error histogram for each
model relative to the numerical values, equivalent to the
approach in Fig. 11, utilizing the full dataset without the
EMRI waveforms. Table II provides the median and
root-mean-square errors, computed as in Eq. (B1), of the

FIG. 12. Numerical evaluation of δ2EMR as defined in Eq. (3.9).
The constants of motion Lz, Q, and E are obtained from the

precessing geodesic equations, while Lk
z is computed from

Eq. (2.11). Dotted lines show the linear term in Eq. (3.9) and
dashed lines, the quadratic term. We solve the precessing
geodesic equations at the ISSO using the KerrGeodesics package
at a fixed mass ratio, while varying the black hole’s spin
magnitude χ1 and its orientation with respect to the orbital
frequency at the reference time θ1. Top: corresponds to a mass
ratio of 1000, where the geodesic equations are expected to be
valid. Bottom: corresponds to a mass ratio of 4, where they are
expected to fail. In the lower plot, we included the single spin
simulations from Fig. 2 that fall into this subspace.

FIG. 13. Functional dependence of the η2χ21 term on θ1
[following the Ansatz given by Eq. (3.13)], as depicted in
Eq. (3.14). Similar results are obtained for the remaining term

of the parametrized fit for δ2. All fits were performed with the FIT
function in Mathematica [76].
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distributions, along with the computational time required
for each model evaluation. The PhenXP model for the final
spin χf involves evaluating Eq. (3.8) assuming δ2 ¼ 0. On
the other hand, PhenNew evaluates Eq. (3.8) and the

parametrized fit for δ2 (3.14), as well as δ2EMR, using the
KerrGeodesics package. Both models are fully assessed in

Mathematica, with most of the computational time attrib-
uted to solving the precessing geodesic equations to obtain
δ2EMR. In the case of NRSur, as previously mentioned, we
evaluated the NRSur7dq4EmriRemnant using the SurfinBH

package, extracting the final mass and spin from the
package’s output. Regarding computational times, it is
important to note that the provided times are for the
purpose of comparison and not aimed at optimizing the
code’s efficiency. In the case of the model developed in this
project, the majority of the evaluation time is dedicated to
solving the geodesic equations. As part of future work, we
anticipate parametrizing ΔEEMR and δ2EMR to make the fits
entirely parametric. The conclusions drawn from these
results parallel those from the final mass: the new model
offers a more accurate and less biased distribution than
IMRPhenomX, achieving precision comparable to that of
the NRSur7dq4EmriRemnant model while retaining the
simplicity and efficiency of the model on which it is based.
To ensure completeness, we perform a final check on the

extrapolation of this new remnant spin model for extreme
spins (see Appendix D). Once again, we confirm that our
model is well behaved even for extreme spins, despite not
being calibrated in that regime, and it maintains the Kerr
limit jχ1j ≤ 1.

C. Cross-validation of the remnant model

In this last section, we provide additional tests of our
complete remnant model. First, we compute “out-of-
sample” errors to evaluate the consistency of our proposed
Ansätze. Finally, we test the performance of our model on
the entire precessing dataset, including both double and
single spin simulations.
The parametrized fits shown in Figs. 10 and 14 were

obtained from our single spin precessing dataset (184
simulations), yielding the in-sample errors detailed in
Table II. To examine the consistency of our method, we
now compute out-of-sample errors using a procedure that
involves dividing the data into 23 sets of 8 random samples
each. For each set, we construct the final mass and spin
magnitude fits using the remaining 176 data points and test
their performance against the eight validation samples. The
resulting root-mean-square error values display the follow-
ing mean values over the 23 sets: RMSEðMfÞ ¼ 6.3 ×
10−4 and RMSEðχfÞ ¼ 3.2 × 10−3. These values closely
match those shown in Table II, where no samples were
taken to compute the fits. Therefore, we conclude that, as
expected from our analysis based on information criteria,
our models do not exhibit overfitting tendencies, affirming
the consistency of our fitting procedure.
As a final test, we evaluate our remnant model for the

complete precessing dataset outlined in Sec. II A. Although
the model has been calibrated for the single spin limit, one
might be interested in its performance across the full
precessing quasicircular space, as well as its comparison
with the currently available remnant models. Figures 11

FIG. 14. Numerical evaluation of the parametrized fit of δ2 as

defined in Eq. (3.8), obtained from the parametrized fit δ2 (3.14)
and δ2EMR at a fixed spin orientation θ1 ¼ π=2, while varying the
mass ratio η and the spin magnitude χ1. The figure includes the
single spin precessing simulations shown in Fig. 2 that fall into
this subspace, as well as the vanishing corrections for the limits
η → 0 and χ1 ¼ 0, denoted as AS.

FIG. 15. Histogram of the errors in the remnant spin computed
with each of the three models for our single spin precessing
dataset presented in Fig. 2. The model developed in this project is
labeled as PhenNew, the underlying model as PhenXP, and
NRSur7dq4EmriRemnant as NRSur. The triangles represent the
median of each distribution, also included in Table II. This table
provides additional information on the distributions: the compu-
tational time needed to evaluate the dataset for each model, along
with the RMSEs.
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and 15 reveal that PhenXP exhibits a biased distribution for
both the final mass and spin magnitude, tending to overesti-
mate the real value. The fitting quantities ΔE and δ2

consistently show a clear tendency in their sign, as evident
in Figs. 10 and 14. These quantities appear as a small
correction to the PhenXPmodel, which works for the double
spin case, and hence the effect of our parametrized fits results
in a slight shift toward the correct values.However, since they
only account for the single spin, substantial improvements in
accuracy are not expected in this scenario.
Figure 16 and Table III demonstrate that the error

distributions obtained with PhenNew for the complete
precessing dataset exhibit less bias compared to those
obtained with PhenXP. However, given that PhenNew
only considers the single spin correction, the overall
performance does not exhibit a substantial improvement,
as anticipated. Incorporating the double spin correction
remains a direction for future work. In Fig. 16, we observed
a slightly biased error distribution of the remnant properties

for NRSur7dq4EmriRemnant. Despite extensive tests,
including waveform alignment using quadrupole alignment
and different rotation methods, the small magnitude of the
bias (see Table III) makes it challenging to track down the
source of the error. Moreover, Ref. [40] only provides
absolute errors, which limits further comparisons on the
relative error distributions found. While it would be
interesting to further understand this issue, it is not within
the scope of this project, and further exploration remains a
topic for future work.

IV. CONCLUSIONS

In this work, we presented a new parametrized remnant
model for single spin precessing black hole binary systems
at any mass ratio. We employed information from precess-
ing geodesics at the ISSO to estimate the remnant proper-
ties in the extreme mass ratio regime and numerical data at
mass ratio 1000 as a cross-check. For the final mass we
have fixed the term linear in symmetric mass ratio η to the
values obtained from the EMR limit, and for the final spin
we have fixed both the linear and quadratic terms in η terms
this way. As has become customary before, we have
worked in a co-orbital frame, which drastically reduces
differences between the aligned spin and precessing sec-
tors, and in addition we have subtracted previous aligned
spin fits from our data before performing the fit to the
precessing dataset. These procedures have allowed us to
obtain rather accurate but simple fits from a relatively small
number of numerical relativity waveforms across the entire
range of mass ratios. Overfitting was controlled by model
selection based on the BIC information criterion and cross-
checked by performing out-of-sample errors tests which
confirm the consistency of our remnant models, yielding
RMSEs very close to those obtained for the model utilizing
the full dataset.
We observe that the correction terms that map aligned

spin results to the precessing case have a dominant sign. In
consequence, our models remove biases that had been
present in previous simple fits that only used aligned spin
numerical relativity data and are being used in precessing
phenomenological waveform models [6,7]. These biases
have been found to be related to the typical positive sign in

FIG. 16. Histograms of the errors in the remnant properties with
each of the three models for our full precessing dataset presented
in Fig. 1. PhenNew corresponds to PhenXP plus the corrections
derived in Secs. III A and III B for the final mass (top) and final
spin (bottom), respectively, and NRSur corresponds to the
NRSur7dq4EmriRemnant model. The triangles represent the
median of each distribution. Table III provides the medians
along with the RMSEs for each distribution.

TABLE III. Median value and RMSE of the error distributions
of the remnant mass Mf and spin magnitude χf for different
models, with respect to the full numerical relativity dataset shown
in Fig. 1. The histograms of the distributions are shown in Fig. 16,
top and bottom panels, respectively.

PhenNew PhenXP NRSur

Mf Median 3.7 × 10−5 −1.3 × 10−3 −1.5 × 10−4

RMSE 1.1 × 10−3 2.3 × 10−3 4.2 × 10−4

χf Median −9.9 × 10−5 −1.2 × 10−2 1.8 × 10−3

RMSE 1.6 × 10−2 2.2 × 10−2 6.1 × 10−3
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ΔE and negative in δ2, leading to an overestimation trend in
the underlying model.
The assessment of the resulting models is summarized

in Table II. Our new model PhenNew surpasses its
underlying baseline PhenXP used in current pheno-
menological models, achieving a performance akin to
NRSur7dq4EmriRemnant (NRSur) at much smaller com-
putational cost. The largest contribution to the computa-
tional cost is the evaluation of the final mass and spin
contributions of the geodesic approximation. While our
straightforward Mathematica code could be optimized, or
implemented in other languages, a further path to accel-
erating the evaluation would be to make a fast approximate
model of the geodesic contribution. The evaluation of our
fits on the complete precessing dataset reveals that the new
model, PhenNew, exhibits a less biased distribution com-
pared to PhenXP, but, not surprisingly, lacks a significant
overall improvement for the double spin case. In order to
develop a general model of precessing remnant mass and
spin, the next steps will therefore be to extend our work to
the double spin case and also to include the dependency on
the in-plane spin angles. In the double spin case, one faces a
significantly larger parameter space (two spinvectors instead
of one) and more complex phenomenology. One complica-
tion is that since the two spins will, in general, rotate at
different rates, whether spins add up or cancel changes over
time. This will require additional numerical relativity sim-
ulations. For ourmodeling approach and, in general, to better
understand the phenomenology, it will be useful to have a
significant number of numerical relativity simulations,where
one parameter is changed at a time. One would expect that
these simulations can primarily focus on the comparable
mass regime, if sufficient perturbative information is avail-
able. The secondary spin is expected to function primarily as
a correction to the single spin limit in scenarios involving
highmass ratios, but in order to correctlymodel the transition
from comparable to extreme mass ratios, we expect that,
again, perturbative information will be essential.
In Sec. II we have discussed the problem of creating a

consistent precessing dataset from several different numeri-
cal relativity catalogs. Here we have only used this
heterogeneous dataset for models of the final state, using
a reference time of 100M before the merger to define the
input data for our fits to facilitate comparisons with
NRSur7dq4EmriRemnant [40]. Future work should inves-
tigate the optimization of trade-offs related to the choice of
reference time: later times minimize the spin dynamics
between input parameters and results, whereas earlier times
benefit the connection of the final state fits with models for
the inspiral. Furthermore, ambiguities arise in the definition
of the merger time across different datasets and in the
choice of co-orbital frame. Future work will investigate
these issues further. We have also created consistent data-
sets for the waveforms, which we have not discussed or
used in this paper. This dataset is intended for the
calibration of precessing waveform models to numerical

relativity, where a large number of waveforms is required,
and the pooling of data from different numerical relativity
catalogs will be advantageous.
This work makes use of the Black Hole Perturbation

Toolkit [61], in concrete, the KerrGeodesics package.
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APPENDIX A: DETAILS ON THE GENERAL
GEODESIC EQUATIONS

Following Ref. [44], for geodesics in Kerr spacetime, the
constants of motion E, Lz and Carter’s constantQ for given
orbital parameters and also the parameters of the source a
and q ¼ m1=m2 ¼ M=μ are given by [using Boyer-
Lindquist coordinates ðr; θ;ϕ; tÞ]

dr
dτ

¼ RðrÞ ¼ ½ðr2 þ a2ÞE − aLz�2

− Δ½μ2r2 þ ðLz − aEÞ2 þQ� ¼ 0; ðA1Þ
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dθ
dτ

¼ΘðθÞ ¼Q−
�
ðμ2−E2Þa2þ L2

z

sin2θ

�
cos2θ¼ 0; ðA2Þ

where Δ ¼ r2 − 2Mrþ a2. The roots of the equations
correspond to the turning points of the radial and polar
motion. For circular orbits (e ¼ 0), we will need a third
constraint R0ðr0Þ ¼ 0, apart from Rðr0Þ ¼ 0 and Θðθ0Þ ¼ 0.
Circular orbits are stable if R00ðr0Þ < 0. The radius
that separates the stable and unstable orbits is known as
the ISSO and hence satisfies R00ðr0Þ ¼ 0. Thus, solving
these four equations one can find the radius r0 ¼ rISSO,
the energy E, the orbital angular momentum Lz, and
Carter’s constant Q for a given system and orbital
quantities.
If we use the dimensionless quantities introduced in

Eq. (2.2) and rearrange Θðθ−Þ ¼ 0, we can express the
Carter constant as

Q̃ ¼ cos2θ−

�
ã2ð1 − Ẽ2Þ þ L̃2

z

1 − cos2θ−

�
: ðA3Þ

Substituting this equation in R̃ðr̃Þ gives

R̃ðr̃Þ ¼ fðr̃ÞẼ2 − 2gðr̃ÞẼ L̃z −hðr̃ÞL̃z þ dðr̃Þ; ðA4Þ

where

fðr̃Þ ¼ r̃4 þ ã2½r̃ðr̃þ 2Þ þ cos2 θΔ̃�; ðA5Þ

gðr̃Þ ¼ 2ã r̃; ðA6Þ

hðr̃Þ ¼ r̃ðr̃ − 2Þ þ cos2 θ−
1 − cos2 θ−

Δ̃; ðA7Þ

dðr̃Þ ¼ ðr̃2 þ ã2 cos2 θ−ÞΔ̃; ðA8Þ

and one can then compute R̃0ðer0Þ and R̃00ðer0Þ from
Eq. (A4). Solving these equations yields four solutions
for the constants of motions and one fixed value for the
rISSO in the case of circular orbits. Considering only
those solutions with positive energy, we have
ðẼðpÞ; L̃z

ðpÞ; Q̃ðpÞÞ and ðẼðrÞ; L̃z
ðrÞ; Q̃ðrÞÞ, where p stands

for prograde orbits and r stands for retrograde. It is
verified that ẼðpÞ < ẼðrÞ and L̃z

ðpÞ < L̃z
ðrÞ; for prograde

orbits the particle has higher binding energy and cor-
evolves with the black hole, whereas retrograde orbits
usually counterrevolve.

APPENDIX B: INFORMATION CRITERIA

We do not work with an a priori Ansatz for our
parametrized fits, but rather select the best functional form
from a wide class of models. We then use information

criteria to perform the model selection to avoid overfitting,
following [36], where aligned spin fits for the remnant
quantities are constructed. In this appendix, we describe the
information criteria in more detail.
A basic performance metric for model adjustment is

the RMSE. For a model of a quantity q dependent on
parameters λ, and data points ðλi; qiÞ for i ¼ 1…N,

RMSE½model� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

½qi −modelðλiÞ�2
vuut : ðB1Þ

Using only the RMSE to perform model selection is prone
to overfitting. For this reason, when selecting the best
model, one should penalize models according to its com-
plexity, specifically the number of free coefficients. A
widely used statistical quantity is the Akaike information
criterion (AIC) [77],

AIC ¼ −2 lnLmax þ 2Ncoeffs; ðB2Þ

which compensates the accuracy of the fit with the
number of coefficients. Here a lower value of the AIC
indicates better suitability of the model. We have
used the implementation of the AIC in Mathematica’s
LINEARMODELFIT function [75].
An alternative quantity that serves the same purpose, but

has a different theoretical foundation, is the Bayesian
information criterion [78],

BIC ¼ −2 lnLmax þ Ncoeffs lnNdata: ðB3Þ

In terms of performance, both criteria penalize the degen-
eracies between parameters and the BIC usually penalizes
additional parameters more than AIC. To discern between
models, a 1 unit difference is generally required, while 10
points would be decisive evidence. Further discussion on
the criteria can be found in [79].

APPENDIX C: FIT FOR THE UPDATED
ALIGNED RADIATED ENERGY

In this appendix, we provide the full parametrized
expression for the aligned spin radiated energy used in
this paper, which updates the one developed in Ref. [36].
Defining

Ŝ ≔
χ1 þ q2χ2
1þ q2

; ðC1Þ
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we can write

EAS ¼ 0.288265η5ðχ1 − χ2Þ2 − 0.0483974η2ð1 − 1.76539ηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ðχ1 − χ2Þ

þ
1393.61η7 − 1160.94η6 þ 372.473η5 − 54.0578η4 þ 3.33345η3 þ 0.44487η2 þ

�
1 − 2

ffiffi
2

p
3

�
η

ð1.96359η2 þ 0.557424η − 0.956935ÞŜþ 1

½ð−5.40979η2 þ 1.74325η − 0.106587ÞŜ6 þ ð0.915964η2 þ 0.0338535η − 0.0809724ÞŜ5
þ ð3.93186η2 − 1.15351ηþ 0.0316422ÞŜ4 þ ð−1.16612η2 þ 0.379967η − 0.0552524ÞŜ3
þ ð−0.950876η2 þ 0.635553η − 0.173169ÞŜ2 þ ð−2.75115η2 þ 1.73637η − 0.398234ÞŜþ 1�: ðC2Þ

APPENDIX D: EXTRAPOLATION OF THE
REMNANT MODEL TOWARD EXTREME SPINS

In this appendix, we assess the extrapolation behavior of
our parametrized remnant models focusing on the scenario
where precession effects are maximized. Specifically, we
explore spin magnitudes beyond the calibrated regime
(0.8 ≤ χ1 ≤ 1), considering the case of in-plane configu-
rations (θ1 ¼ π=2).

Figure 17 illustrates the extrapolation results, showing a
smooth continuation without exhibiting any nonphysical
behavior, as well as the Kerr limit χ1 ≤ 1. While these
extrapolations provide valuable insights, it is important to
interpret them cautiously, recognizing the need for further
refinement when numerical data becomes available in the
high spin magnitude regime.
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