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A fully relativistic three-dimensional Cauchy-characteristic matching (CCM) algorithm is implemented
for physical degrees of freedom in a numerical relativity code SpECTRE. The method is free of
approximations and can be applied to any physical system. We test the algorithm with various scenarios
involving smooth data, including the propagation of Teukolsky waves within a flat background, the
perturbation of a Kerr black hole with a Teukolsky wave, and the injection of a gravitational-wave pulse
from the characteristic grid. Our investigations reveal no numerical instabilities in the simulations. In
addition, the tests indicate that the CCM algorithm effectively directs characteristic information into the
inner Cauchy system, yielding higher precision in waveforms and smaller violations of Bondi-gauge
constraints, especially when the outer boundary of the Cauchy evolution is at a smaller radius.
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I. INTRODUCTION

Since the detection of GW150914 [1], gravitational wave
(GW) astronomy has become a flourishing field. Accurate
modeling of GW signals is a key ingredient in extracting
signals from detector noise and understanding the proper-
ties of sources. To date, numerical relativity (NR) remains
the only ab initio method to simulate the major sources
of the GW signals: the coalescence of binary black hole
(BBH) systems.
Generally speaking, the formulations of NR can be

classified into two groups: Cauchy [2,3] and characteristic
[4–11] formalism, depending on how spacetime is foli-
ated.1 For the Cauchy approach, a spacelike foliation is
adopted, and Einstein’s equations are split into evolution
and constraint sets. This formalism has successfully led to
high-accuracy simulations of BBH systems [3].
On the other hand, in the characteristic approach,

spacetime is sliced into a sequence of null hypersurfaces
that extend to future null infinity. Einstein’s equations are
formulated in terms of the unambiguous geometric treat-
ment of gravitational radiation in curved spacetimes due to

Bondi et al. [17], Sachs [18], and Penrose [19]. Meanwhile,
future null infinity is rigorously encompassed on the
characteristic grid via a compactified coordinate system
and treated as a perfect absorbing outer boundary. In this
way, one is able to extract faithful GWs with the character-
istic formalism at future null infinity without any ambiguity
[20–24]. However, the characteristic method cannot evolve
the near-field region of BBHs when caustics of null rays are
present [25–30], because for this method coordinates are
chosen to follow null rays so caustics result in coordinate
singularities. Therefore, in practice, one can use the Cauchy
evolution to simulate the near-zone of the systems and
construct metric data on a timelike worldtube [9–11,31].
Then the characteristic system propagates the world-
tube data nonlinearly to future null infinity, which in
turn yields GW information there. This procedure of
extracting GWs is known as Cauchy-characteristic evolu-
tion (CCE) [4–11,32]. Studies of characteristic evolution
and CCE date back to the 1980s. Isaacson et al. [33] and
Winicour [34,35] considered a prototype of CCE by
shrinking the worldtube to a timelike geodesic and inves-
tigated the GWs emitted by an axially symmetric ideal
fluid. More complete and complicated CCE systems were
developed later [6,7,36–40–42]. Early applications of the
characteristic evolution were focused on simulating generic

*sma@caltech.edu
1The third group adopts hyperboloidal slicing [12–16]. Its

discussion is beyond the scope of this paper.
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three-dimensional (3D) single-black-hole spacetimes [43],
Einstein-perfect fluid systems [44–48], Einstein-Klein-
Gordon systems [47,49–52], (nonlinear) perturbations of
BHs [53–56], event horizons [57–59], fissioning white
holes [60], extreme mass ratio inspirals [61], stellar core
collapse [62], as well as linearized systems [63]. By using
finite-difference methods, PITT null [6–8] was the first
code to implement CCE and characteristic evolution, which
led to the first CCE simulation of BBH systems [64–67].
The code was also used to extract GWs emitted by rotating
stellar core collapse [68]. Later, a spectral algorithm for
CCE was built as a module in SpEC [9,69–71] and SpECTRE

[10,11], developed by the SXS collaboration [3,72–75].
Bhagwat et al. [29] used SpEC CCE to investigate the
start time of BBH ringdown. And SpECTRE CCE has
been applied to computing memory effects [76,77], fixing
the Bondi-Metzner-Sachs frame of GWs [78,79], extracting
GWs emitted by black hole-neutron star binaries [80],
computing GW echoes [81], and constructing a NR
surrogate model [82].
Although CCE has led to high-accuracy and unambigu-

ous GWs at future null infinity, CCE’s data flow is one-
way, meaning that the Cauchy evolution does not depend
at all on the characteristic evolution. This is inaccurate
because for a nonlinear set of equations like general
relativity, outgoing radiation at arbitrarily far distances
can backscatter off the spacetime curvature and eventually
affect the source; the Cauchy evolution (with or without
CCE) fails to capture this backscatter. To explain this in
more detail, note that to perform a Cauchy simulation, the
spatial Cauchy domain is typically truncated at a finite
distance from the source, with suitable boundary conditions
provided at the artificial outer boundary.2 Ideally speaking,
perfect boundary conditions would make the artificial
boundary as transparent as possible so that the numerical
solution is identical to one that would be evolved on an
infinite domain, and these boundary conditions would
ideally include nonlinear backscatter. On the contrary, if
poor boundary conditions are prescribed, not only will the
backscatter be incorrect, but also spurious reflection can be
introduced at the boundary and contaminate the whole
simulation. In SpEC [73] and SpECTRE [74,75], the gener-
alized harmonic (GH) evolution system [83] is adopted for
the Cauchy simulation, whose boundary conditions can be
divided into three subsets: constraint-preserving, physical,
and gauge boundary conditions [84]. Effort has been made
to improve the accuracy of these boundary conditions, such
as Refs. [85–88]. In particular, the boundary conditions on
the physical degrees of freedom are expected to encode the
information of the backscattered (incoming) GWs that enter
the Cauchy domain. Accurate modeling of the backscat-
tered radiation is not a trivial task. Although there were
some attempts [85,86] to improve the physical boundary

conditions, in most SpEC production simulations [3] the
incoming GWs at the boundary are treated by freezing the
Weyl scalar ψ0 to zero [84], which effectively eliminates all
backscatter from beyond the outer boundary.
It was pointed out that the characteristic evolution is a

natural system to compute the value of the backscattered
radiation in an exact and efficient way, e.g., see Ref. [4] and
references therein. A matching of the internal Cauchy
system and the exterior characteristic system is expected
to provide accurate physical boundary conditions for the
Cauchy module. In this way, the interface between the two
grids is transparent and GWs can pass cleanly off of and
onto the Cauchy grid. This algorithm is known as Cauchy-
characteristic matching (CCM). Historically, the idea of
CCM was outlined in Refs. [89] and [90]. Then the
algorithm was applied to the evolution of a scalar field
on a flat background [91,92], and around a Schwarzschild
BH [93] (with metric being fixed). The CCM simulation of
gravitational systems was also visited by a series of papers
[94–98] that assumed cylindrical symmetry [94,95,98] and
axial symmetry [96,97]. Meanwhile, CCM was used to
study an Einstein-perfect fluid system [99] and an Einstein-
Klein-Gordon system [100] with spherical symmetry.
Going to the 3D regime, Bishop et al. investigated a scalar
wave [101]. Szilagyi et al. [102] performed the matching
in linearized harmonic coordinates. An alternative to
CCM is Cauchy-perturbative matching [103–105], where
the exterior region is not evolved fully nonlinearly with a
characteristic code but instead is treated as a linearized
Schwarzschild BH. This algorithm led to a simulation
of a 3D Teukolsky wave [106] propagating on a flat back-
ground [103]. Later, this topic was revisited [107] in 2005
after years of progress in numerical relativity. However,
until now, all the existing matching algorithms for the
gravitational sector are based on either assumptions (sym-
metries) or approximations (perturbative matching, linear-
ized equations); a full matching in three spatial dimensions
is still missing. Further, although the existence and unique-
ness of CCE solutions have been established in [108,109],
and a linearized characteristic system was found to be sym-
metric hyperbolic3 [111], the full CCE system is only weakly
hyperbolic [112–114], rendering CCM not well-posed.
As a step toward addressing those questions, in this

paper, we perform fully relativistic 3D CCM for physical
degrees of freedom of gravitational fields without any
approximation. The code is implemented in SpECTRE

[74,75]. Unlike CCE, the data in CCM flows in both
directions, meaning that the Cauchy and characteristic
systems need to be evolved simultaneously. The commu-
nication from the Cauchy to the characteristic system has
been discussed extensively [9–11]. In this paper, we will be

2In this paper we restrict our discussions to the outer boundary.

3See also [110] for the well-posedness of the characteristic
formulation for the Maxwell equations.
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explaining how to feed the information of the characteristic
module back to the Cauchy system.
This paper is organized as follows. In Sec. II, we review

the Cauchy evolution in SpECTRE, with particular attention
given to its physical boundary conditions. Next in Sec. III
we discuss some basic information about the characteristic
module in SpECTRE. Then a thorough algorithm to complete
the matching procedure is introduced in Sec. IV. Our code
is tested with several types of physical systems in Sec. V.
Finally, we summarize the results in Sec. VI.
Throughout this paper we use Latin indices i; j; k;… to

denote 3D spatial components; and Greek indices μ; ν;…
for 4D spacetime components. We generally avoid using
abstract indices, denoted by Latin letters from the first part
of the alphabet a; b;…, to keep the text concise, unless
stated otherwise.

II. SUMMARY OF THE CAUCHY EVOLUTION
AND ITS BOUNDARY CONDITIONS

The detailed communication (matching) algorithm
depends on the formulation of the Cauchy evolution. For
instance, the perturbative matching in Ref. [103] was
performed through Dirichlet and Sommerfeld boundary
conditions. In SpECTRE, the Cauchy data are evolved with

the GH formalism [83]. Outer boundary conditions are
imposed via the Bjørhus method [84,115]: the time deriv-
atives of the incoming characteristic fields are replaced on
the boundary. In this section, we provide a brief overview of
the Cauchy evolution and refer the reader to Ref. [83] for
more details. We specifically give more attention to the
physical subset of the boundary conditions [84].
The Cauchy evolution relies on the 3þ 1 decomposition

of a metric tensor gμ0ν0

ds2 ¼ gμ0ν0dx0μ
0
dx0ν0

¼ �−α2 þ βi
0
βi

0
γi0j0
�
dt02 þ 2βi

0
γi0j0dx0j

0
dt0

þ γi0j0dx0i
0
dx0j0 ; ð2:1Þ

with α the lapse function, βi
0
the shift function, and γi0j0

the spatial metric.4 We use primes on the coordinates to
distinguish them from different coordinate systems that will
be introduced later; see Fig. 1. Then the vacuum Einstein
equations, Rμ0ν0 ¼ 0, can be cast into a first-order sym-
metric hyperbolic (FOSH) evolution system

FIG. 1. Coordinate systems used in the SpECTRE CCE and CCMmodules. The interior Cauchy evolution uses the Cauchy coordinates,
whereas the exterior characteristic system adopts the partially flat Bondi-like coordinates. To achieve their communication, two
intermediate coordinate systems are introduced.

4In Ref. [83], the authors used ψa0b0 and gi0j0 to refer to the
spacetime metric and the spatial metric, respectively.
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∂t0uα
0 þ Ak0α0

β0∂k0uβ
0 ¼ Fα0 ; ð2:2Þ

where uα
0 ¼ fgμ0ν0 ;Πμ0ν0 ;Φi0μ0ν0 g is a collection of dynami-

cal variables, Πμ0ν0 ¼ α−1ðβi0∂i0gμ0ν0 − ∂t0gμ0ν0 Þ and Φi0μ0ν0 ¼
∂i0gμ0ν0 are related to the time and spatial derivatives of the
metric.
The FOSH system in Eq. (2.2) is symmetric hyperbolic,

and its characteristic fields uα̂
0 ¼ eα̂

0
β0uβ

0
play an important

role in imposing boundary conditions. Here the left eigen-

vectors e
bα0
β0 are defined by

eα̂
0
μ0sk0Ak0μ0

β0 ¼ vðα̂0Þeα̂
0
β0 ; ð2:3Þ

where sk
0
is the outward-directed unit normal to the

boundary of the computational domain:

st
0 ¼ 0; sk

0 ¼ γi
0k0
∂i0r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γi
0j0
∂i0r0∂j0r0

q ; ð2:4Þ

and vðα̂0Þ are the eigenvalues. As pointed out by Kidder
et al. [84], a convenient way to impose the Bjørhus
boundary conditions [115] can be achieved via

dt0uα̂
0 ¼ Dt0uα̂

0 þ vðα̂0Þ
�
d⊥uα̂

0 − d⊥uα̂
0 ��
BC

�
; ð2:5Þ

with

dt0uα̂
0 ≡ eα̂

0
β0∂t0uβ

0
; d⊥uα̂

0 ≡ eα̂
0
β0sk

0
∂k0uβ

0
; ð2:6Þ

and

Dt0uα̂
0 ≡ eα̂

0
β0
�
−Ak0β0

α0∂k0uα
0 þ Fβ0

�
: ð2:7Þ

Here Eq. (2.5) replaces the normal derivative d⊥uα̂
0
by its

desired value d⊥uα̂
0 jBC on the boundary while leaving the

tangential derivative unchanged.
The boundary conditions in Eq. (2.5) must be imposed

on each incoming characteristic field vðα̂0Þ < 0 [116–118].
As discussed in Refs. [83,84], for the fully first-order
generalized harmonic formulation there are fifty evolved
variables in the Cauchy domain (gμ0ν0 ;Πμ0ν0 ;Φi0μ0ν0 ), and
there are (for typical values of the shift vector at the outer
boundary) forty incoming characteristic fields on the outer
boundary. Thirty-four of these incoming fields, namely u0̂μ0ν0,

u2̂i0μ0ν0 , and four components of u1̂−μ0ν0 [see Eqs. (32)–(34)
in Ref. [83] for their expressions], are directly related to the
influx of constraint violations. So the appropriate boundary
conditions for those forty fields are those that preserve the
constraints; we use Eqs. (63) through (65) of [83], which
prevent influx of constraint violations without any approxi-
mation. Thus CCM matching is unnecessary for these
fields, and furthermore CCM matching for these fields is

not well-motivated because constraints are local and must
be preserved independent of the solution in the character-
istic domain.
This leaves six incoming characteristic fields, which are

the remaining six components of u1̂−μ0ν0 that are not related
to constraints. These fields require incorporating addi-
tional information into the Cauchy system. Four of these
correspond to incoming gauge modes, and two represent
incoming physical degrees of freedom, as described in [83].
In this paper we use CCM to set the physical boundary
conditions, and we leave the gauge boundary conditions for
future work. We note that, after matching the physical and
gauge boundary conditions, our CCM system converges to
the exact infinite domain problem in the continuum limit.
The physical boundary condition for u1̂−μ0ν0 reads

dt0u1̂−μ0ν0 ¼ PPρ0τ0
μ0ν0

h
Dt0u1̂−ρ0τ0−

�
αþ sj0βj

0�
×
�
w−
ρ0τ0 − w−

ρ0τ0
��
BC

− γ2si
0
c3i0ρ0τ0

�i
; ð2:8Þ

where the constraint fields c3i0ρ0τ0 can be found in Eq. (57) of

Ref. [83]; and the physical projection operators PPρ0τ0
μ0ν0 are

given by

PPρ0τ0
μ0ν0 ≡

�
Pμ0

ρ0Pν0
τ0 −

1

2
Pμ0ν0Pρ0τ0

�
; ð2:9Þ

with

Pμ0ν0 ¼ gμ0ν0 þ nμ0nν0 − sμ0sν0 ; ð2:10Þ

as well as the normal vector of the time slice nμ0 .
Crucially, w−

ρ0τ0 in Eq. (2.8) are the inward propagating
components of the Weyl tensor Cμ0η0ν0α0,

w−
ρ0τ0 ¼ PPμ0ν0

ρ0τ0 ðnη
0 þ sη

0 Þðnα0 þ sα
0 ÞCμ0η0ν0α0 ; ð2:11Þ

where nα
0
is the spacetime unit normal vector to the spatial

hypersurface and w−
ρ0τ0 jBC are the desired values of w−

ρ0τ0 at
the outer boundary. The effect of the boundary condition,
Eq. (2.8), is to drive w−

ρ0τ0 toward w−
ρ0τ0 jBC. We find it is

convenient to write w−
ρ0τ0 in terms of the Weyl scalar ψ 0

0:

w−
ρ0τ0 ¼ 2

�
ψ 0
0m̄ρ0m̄τ0 þ ψ̄ 0

0mρ0mτ0
�
; ð2:12Þ

where we have used an identity [Eq. (2.10)]

Pρ0τ0 ¼ mρ0m̄τ0 þmτ0m̄ρ0 ; ð2:13Þ

and the definition of ψ 0
0:

ψ 0
0 ¼ Cμ0ν0ρ0τ0 lμ

0
mν0 lρ

0
mτ0 : ð2:14Þ
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Here flμ0 ; kμ0 ; mμ0g refer to the null tetrad within the
Newman-Penrose formalism. The choice of the null vectors
lμ

0
(outgoing) and kμ

0
(ingoing) are determined uniquely by

Eqs. (2.10) and (2.11) (namely the Cauchy system):

lμ
0 ¼ 1ffiffiffi

2
p ðnμ0 þ sμ

0 Þ; ð2:15aÞ

kμ
0 ¼ 1ffiffiffi

2
p ðnμ0 − sμ

0 Þ: ð2:15bÞ

However, the choice of mμ0 is not unique. The require-
ments on mμ0 read:

mμ0lμ0 ¼ 0; mμ0kμ0 ¼ 0; mμ0m̄μ0 ¼ 1: ð2:16Þ

As we shall show later, the only allowed gauge freedom on
mμ0 is a rotation: mμ0 → mμ0eiΘ, but the values of wρ0τ0 in
Eq. (2.11) do not depend on the gauge variable Θ. There-
fore, in our following calculations, we will take advantage
of this fact and choosemμ0 as close as possible to that of the
characteristic system, in order to simplify calculations.
As mentioned earlier, production SpEC simulations set

w−
ρ0τ0 jBC in Eq. (2.8) to zero. But within the CCM frame-

work, we shall use the characteristic system to determine
w−
ρ0τ0 jBC from Eq. (2.12), where the ψ 0

0 in Eq. (2.12) will be
computed from the characteristic evolution and interpolated
back to the Cauchy grid. We will explain more details in
Sec. IV below.

III. SUMMARY OF THE CHARACTERISTIC
EVOLUTION

In this section, we briefly summarize the SpECTRE char-
acteristic system as described in Refs. [10,11]. The proce-
dures for extracting the Cauchy quantities on the worldtube,
evolving the characteristic variables in the exterior region,
and computing waveform quantities at future null infinity are
identical for CCE versus CCM. For more details of the
characteristic algorithm, see Refs. [10,11].
The SpECTRE characteristic system is based on Bondi-

Sachs metric in partially flat Bondi-like coordinates
fr̂; x̂Â; ûg [10,11]

ds2 ¼ −
�
e2β̂

V̂
r̂
− r̂2ĥÂ B̂Û

ÂÛB̂

�
dû2 − 2e2β̂dûdr̂

− 2r̂2ĥÂ B̂Û
B̂dûdx̂Â þ r̂2ĥÂ B̂dx̂

Âdx̂B̂; ð3:1Þ

where x̂Â stands for the pair of angular coordinates fθ̂; ϕ̂g.
With this coordinate system, a few gauge conditions have
been imposed: gr̂ r̂ ¼ 0, gr̂ Â ¼ 0, and the determinant of the
angular components ĥÂ B̂ is set to that of the unit sphere
metric qÂ B̂

detðĥÂ B̂Þ ¼ detðqÂ B̂Þ ¼ sin2 θ̂: ð3:2Þ

Consequently, the system is characterized by 6 degrees of

freedom (4 quantities): Ŵ ¼ ðV̂ − r̂Þ=r̂2, ĥÂ B̂, Û
B̂, and β̂.

Near future null infinity, the metric components need to
follow falloff rates [10,11]:

lim
r̂→∞

Ŵ ¼ Oðr̂−2Þ; ð3:3aÞ

lim
r̂→∞

ÛÂ ¼ Oðr̂−2Þ; ð3:3bÞ

lim
r̂→∞

ĥÂ B̂ ¼ qÂ B̂ þOðr̂−1Þ: ð3:3cÞ

Note that the conditions in Eq. (3.3) are not sufficient for
the metric to asymptotically approach the Minkowski
metric, as true Bondi-Sachs coordinates do. To bring the
partially flat Bondi-like coordinates to a true Bondi-Sachs
system (up to BMS transformations), one needs to further
impose

lim
r̂→∞

β̂ ¼ Oðr̂−1Þ: ð3:4Þ

In practice, it was found that most computations are more
straightforward in partially flat Bondi-like coordinates
fr̂; x̂Â; ûg where Eq. (3.4) is not satisfied. We transform
into true Bondi-Sachs coordinates only when necessary
for computing waveform quantities at future null infinity
[10,11]. See Fig. 1 (and also Table I of [10]) for the various
coordinate systems used in CCE and CCM.
Following the algorithm outlined in Refs. [10,11], the

characteristic system needs to take boundary data on a
timelike worldtube from the inner Cauchy system. There-
fore, one has to perform gauge transformations to convert
the Cauchy 3þ 1 metric in Eq. (2.1) to the Bondi-Sachs
metric in Eq. (3.1). The procedure involves three steps, and
we summarize them in Fig. 1. First, the spacelike foliation
of Eq. (2.1) is converted to a null foliation. To achieve this
goal, one needs to construct a class of null vectors ∂λ at the
worldtube surface.

ð∂λÞa ¼ δ
a
a0

na
0 þ sa

0

α − γi0j0β
i0sj

0 ; ð3:5Þ

where λ is an affine parameter, a0 and a are abstract indices,
the unit vector sa

0
is defined in Eq. (2.4), and na

0
still stands

for the normal vector of the time slice. A new null
coordinate system fu; λ; xAg is introduced, and quantities
are transformed into this coordinate system. This coordi-
nate system is discussed in more detail in Sec. IVA 1.
The second step is to transform the null-radius coor-

dinates to so-called Bondi-like coordinates fu; r; xAg by
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imposing the gauge condition in Eq. (3.2). At this stage, the
metric is brought into Bondi-Sachs form

ds2 ¼ −
�
e2β

V
r
− r2hABUAUB

�
du2 − 2e2βdudr

− 2r2hABUBdudxA þ r2hABdxAdxB: ð3:6Þ

The coordinates still differ from the partially flat Bondi-like
coordinates because the falloff rates in Eq. (3.3) are now
relaxed to

lim
r→∞

W ¼ Oðr0Þ; ð3:7aÞ

lim
r→∞

UA ¼ Oðr0Þ; ð3:7bÞ

lim
r→∞

hAB ¼ Oðr0Þ: ð3:7cÞ

The transformation to this coordinate system is discussed
in detail in Sec. IVA 2.
Finally, the Bondi-like coordinates are transformed to the

partially-flat Bondi-like coordinates fr̂; x̂Â; ûg by removing
the asymptotic value of UA at null infinity, Uð0ÞA. Here we
define Uð0ÞA by

UA ¼ Uð0ÞA þOðr−1Þ: ð3:8Þ

Details can be found in Sec. IVA 3.
Once the worldtube quantities have been computed in

partially flat Bondi-like coordinates, they serve as inner
boundary conditions to evolve the characteristic system.
This evolution step is described in detail in Refs. [10,11]
and is identical for CCM versus CCE. Here we emphasize
again that the characteristic evolution with the partially-flat
Bondi-like coordinates is only weakly hyperbolic, which in
turn makes CCM not well-posed [114].
After determining all the metric components with the

characteristic algorithm, we can now computeWeyl scalars.
For CCM, we need the Weyl scalar ψ0 in the exterior
characteristic region, which will be used in the outer-
boundary condition for the interior Cauchy system. To
assemble ψ0 from the metric components, we adopt the
tetrad provided by Ref. [10]

mμ ¼ −
1ffiffiffi
2

p
r

 ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 1

2

r
qμ −

Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ KÞp q̄μ

!
; ð3:9aÞ

kμ ¼
ffiffiffi
2

p
e−2β

�
δμu −

V
2r

δμr þ 1

2
Ūqμ þ 1

2
Uq̄μ

	
; ð3:9bÞ

lμ ¼ 1ffiffiffi
2

p δμr ; ð3:9cÞ

where J, K, and U are spin-weighted scalars, defined by5

U≡ UAqA; J ≡ 1

2
qAqBhAB; ð3:10aÞ

K ≡ 1

2
qAq̄BhAB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ JJ̄

p
; ð3:10bÞ

The complex dyads qA and qA read

qA∂A ¼ −∂θ −
i

sin θ
∂ϕ; ð3:11aÞ

qAdxA ¼ −dθ − i sin θdϕ: ð3:11bÞ

They obey the identity

qAqA ¼ 0; qAq̄A ¼ 2: ð3:12Þ

Note that the tetrad vectors in Eq. (3.9) are constructed with
the Bondi-like coordinates, of which the partially flat
Bondi-like coordinates are subclasses. Therefore, Eq. (3.9)
can be applied directly to the partially flat Bondi-like co-
ordinates as long as all variables are replaced by their
partially flat Bondi-like counterparts. With the tetrad
vectors at hand, we can now derive a full expression of
the Bondi-like ψ0 in relation to Bondi quantities [10]

ψ0 ¼
�
r∂rβ − 1

4Kr

��
ð1þ KÞ∂rJ −

J2∂rJ̄
1þ K

	
þ Jð1þ K2Þ∂rJ∂rJ̄

8K3
þ 1

8K

�
J2∂2r J̄
1þ K

− ð1þ KÞ∂2rJ
	

−
JJ̄2ð∂rJÞ2 þ J3ð∂rJ̄Þ2

16K3
: ð3:13Þ

Similarly, Eq. (3.13) is also applicable to the partially-flat-
Bondi-like ψ̂0 when the Bondi quantities are evaluated with
the partially flat Bondi-like coordinates.

IV. MATCHING CHARACTERISTIC
AND CAUCHY SYSTEMS

We are now in a position to accomplish Cauchy-
characteristic matching for the physical degrees of freedom.
The goal is to use the Weyl scalar ψ0 obtained with the
characteristic system to compute the boundary value
w−
ρ0τ0 jBC that goes into the physical boundary condition of

the Cauchy system [Eq. (2.8)]. This is done by evaluating
w−
ρ0τ0 jBC by inserting the characteristic system’s ψ0 into

Eq. (2.12). Notice that the tetrad adopted by the character-
istic system in Eq. (3.9) differs from the one used by

5We note that there is a typo in Eq. (10e) of Ref. [10]; the
correct expression is given in Eq. (3.10b).
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Cauchy evolution in Eq. (2.15), so we need to perform
Lorentz transformations to obtain (a) the Cauchy Weyl
scalar ψ 0

0 [defined in Eq. (2.14)] and (b) the null covariant
vector mμ0 in Eq. (2.12). Necessary ingredients for the
Lorentz transformations involve a set of Jacobian matrices
across different coordinate systems. So in Sec. IVAwe first
work out the explicit expressions for these Jacobians,
and then in Secs. IV B and IV C we carry out the trans-
formations. Notice that the evaluation of ψ0 with the
characteristic system [Eq. (3.13)] could be done in either
the partially flat Bondi-like coordinates [Eq. (3.1)] or the
Bondi-like coordinates [Eq. (3.6)], and different choices
lead to different Lorentz transformations. In order to keep
our discussions as general as possible, we consider both
choices in Secs. IV B and IV C, respectively. We also
illustrate these two options in Fig. 1 (see two arrows labeled
by “CCM”), serving as a roadmap for the CCM algorithm.
The final step toward finishing the matching is to inter-
polate the values of ψ 0

0 and mμ0 from the characteristic grid
to the Cauchy grid. This is done in Sec. IV D.
For ease of future reference, we summarize the two

primary matching steps below:
(1) Construct ψ 0

0 and mμ0 from either the partially flat
Bondi-like coordinates (Sec. IV B) or the Bondi-like
coordinates (Sec. IV C).

(2) Interpolate ψ 0
0 andmμ0 from the characteristic grid to

the Cauchy grid. See Sec. IV D.

A. Jacobians for CCM

As outlined in Sec. III and summarized in Fig. 1,
two intermediate coordinate systems are introduced to
convert the worldtube data from the Cauchy coordinates
to the partially flat Bondi-like coordinates. Below, we
provide the definition of these transformations and their
Jacobians.

1. Cauchy and null-radius coordinates

The null-radius coordinates consist of fu; λ; xAg, where λ
is the affine parameter of the null vector in Eq. (3.5).
Meanwhile, the time and angular coordinates are the same
as the Cauchy coordinates:8>><>>:

u ¼ t0;

xA ¼ δ
A
A0x0A

0
;

λ ¼ λðt0; r0Þ:
ð4:1Þ

Consequently, the metric components in the null-radius
coordinates are [10]

gλ u ¼ −1; gλ λ ¼ 0; gλA ¼ 0; gu u ¼ gt0t0 ;

guA ¼ δA
0

A gt0A0 ; gAB ¼ δA
0

A δ
B0
B gA0B0 : ð4:2Þ

Equation (4.2) lead to the Jacobian between two coordinate
systems:

∂ðt0; r0; x0A0 Þ
∂ðu; λ; xAÞ ¼

0B@
1 ∂λt0 0

0 ∂λr0 0

0 0 δA
0

A

1CA ð4:3Þ

2. Null-radius and Bondi-like coordinates

To bring the null-radius coordinates to Bondi-like
coordinates, one needs to impose the gauge condition in
Eq. (3.2) and define the Bondi-like radius:

r ¼
�
detðgABÞ
detðqABÞ

	
1=4

: ð4:4Þ

Then the Bondi-like coordinates fu; r; xAg can be written as8><>:
u ¼ u;

xA ¼ δAAx
A;

r ¼ rðu; λ; xAÞ:
ð4:5Þ

Equation (4.5) result in the Jocobian

∂ðu; r; xAÞ
∂ðu; λ; xAÞ ¼

0B@ 1 0 0

∂ur ∂λr ∂Ar

0 0 δAA

1CA; ð4:6Þ

and its inverse

∂ðu;λ; xAÞ
∂ðu;r;xAÞ ¼

0B@ 1 0 0

−∂ur=∂λr ð∂λrÞ−1 −δAA∂Ar=∂λr

0 0 δ
A
A

1CA: ð4:7Þ

3. Bondi-like and partially flat Bondi-like coordinates

One difference between these two coordinate systems is
that the quantity UA is finite at future null infinity, but the

quantity ÛÂ vanishes. To remove the asymptotically con-
stant part of UA, the angular coordinates x̂Â must satisfy

∂ux̂Â ¼ −∂Ax̂ÂUð0ÞA; ð4:8Þ

where Uð0ÞA is defined by Eq. (3.8). In practice, the
quantities x̂Â are evolved numerically on the characteristic
grid along with the evolution of the characteristic metric
components. The Bondi-like radius r also needs to be
adjusted accordingly to meet the gauge condition in
Eq. (3.2). Finally, the time coordinate û ¼ u remains
unchanged. In summary, the transformation is given by
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8><>:
û ¼ u;

x̂Â ¼ x̂Âðu; xAÞ;
r̂ ¼ rω̂ðu; xAÞ;

ð4:9Þ

where ω̂ðu; xAÞ is a conformal factor

ω̂ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂ ¯̂b−â ¯̂a

q
; ð4:10Þ

and two spin-weighted Jacobian factors â and b̂ are given by

â ¼ q̂Â∂Âx
AqA; ðspin-weight 2Þ ð4:11Þ

b̂ ¼ ¯̂qÂ∂Âx
AqA: ðspin-weight 0Þ ð4:12Þ

Since fqA; q̄Ag (fq̂Â; ¯̂qÂg) form a complete basis for the

angular subspace spanned by fxAg (fx̂Âg), we can expand
∂Âx

A into6

∂Âx
A ¼ 1

4

�
q̂Â; ¯̂qÂ

�� ¯̂a ¯̂b

b̂ â

� 
qA

q̄A

!
; ð4:13Þ

where the expression is written in terms of matrix products.
Note that the determinant of the middle 2 × 2 matrix
(together with the factor of 1=4) is equal to −ω̂2 [see
Eq. (4.10)]. In practice, we find it is also convenient to
define spin-weighted factors that are related to the inverse
of the Jacobian:

a ¼ qA∂Ax̂Âq̂Â; ðspin-weight 2Þ ð4:14Þ

b ¼ q̄A∂Ax̂Âq̂Â; ðspin-weight 0Þ ð4:15Þ

as well as the conformal factor ωðû; x̂ÂÞ associated with
them

ω ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bb̄ − aā

p
: ð4:16Þ

Similarly, the counterpart of Eq. (4.13) reads

∂Ax̂Â ¼ 1

4

�
qA; q̄A

�� ā b̄

b a

� 
q̂Â

¯̂qÂ

!
: ð4:17Þ

At the same spacetime point, the identity ∂Âx
A
∂Ax̂B̂ ¼ δB̂

Â
leads to

a ¼ −
â
ω̂2

; b ¼
¯̂b
ω̂2

: ð4:18Þ

Plugging Eq. (4.18) into Eq. (4.16) we obtain another
identity

ωω̂ ¼ 1: ð4:19Þ

We then use Eq. (4.9) to get the Jacobian between the
Bondi-like and the partially flat Bondi-like coordinates

∂ðr̂; x̂Â; ûÞ
∂ðr; xA; uÞ ¼

0B@ ω̂ r∂Aω̂ r∂uω̂

0 ∂Ax̂Â ∂ux̂Â

0 0 1

1CA: ð4:20Þ

Its inverse reads

∂ðr; xA;uÞ
∂ðr̂; x̂Â; ûÞ

¼

0B@ω rδA
Â
∂A lnω r∂u lnωþ rUð0ÞA

∂A lnω

0 ∂Âx
A Uð0ÞA

0 0 1

1CA;

ð4:21Þ

where we have used Eq. (4.8) to simplify the result.

B. Choice 1: Transforming mμ̂ and ψ̂0
to the Cauchy tetrad

We first consider choice 1, as summarized in Fig. 1,
where the tetrad vector mμ̂ and the Weyl scalar ψ̂0 are
evaluated in the partially flat Bondi-like coordinates, using
Eqs. (3.9a) and (3.13). Before transforming them into the
Cauchy tetrad, we first observe a useful and important fact:
The characteristic outgoing null tetrad vector lâ at the
worldtube surface, as defined in Eq. (3.9c), is by con-
struction proportional to that of the Cauchy system la

0
,

defined in Eq. (2.15a). Again, here â and a0 stand for
abstract indices. To see this, we write

lâ ¼ 1ffiffiffi
2

p ð∂r̂Þâ ¼
1ffiffiffi
2

p ð∂λr̂Þ−1δâað∂λÞa

¼ 1ffiffiffi
2

p e2β̂δâað∂λÞa; ð4:22Þ

where the first equality comes from Eq. (3.9c), the second
equality is due to the combination of the Jacobian matrices
in Eq. (4.7) and (4.21), and the final equality is based on a
relationship [see Eqs. (19a) and (33a) of Ref. [10]]

β̂ ¼ −
1

2
lnð∂λr̂Þ: ð4:23Þ

On the other hand, the null vector ð∂λÞa in Eq. (4.22) is

proportional to the Cauchy outgoing null vector la
0
needed

6To obtain Eq. (4.13), one can exhaust all the possible linear
combinations formed by the two bases fq̂Â; ¯̂qÂg and fqA; q̄Ag,
and then determine the coefficients uniquely via Eqs. (3.12),
(4.11), and (4.12).
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by the boundary condition [see Eqs. (2.15a) and (3.5)], but
with a different normalization. After combining Eq. (4.22)
with (2.15a) and (3.5), we obtain:

la
0 ¼ �α − γi0j0β

i0sj
0�
e−2β̂lâδa

0
â : ð4:24Þ

Therefore, the statement la
0 ∝ lâ is proven. Under this

constraint, the allowed Lorentz transformation between
the characteristic and Cauchy tetrads can be split into two
categories

(i) Type I: (l unchanged)

l → l; k → kþ κ̄mþ κm̄þ κκ̄l;

m → mþ κl; m̄ → m̄þ κ̄l: ð4:25Þ

(ii) Type II: (both l and k changed)

l → Al; k → A−1k;

m → eiΘm; m̄ → e−iΘm̄; ð4:26Þ

where the complex scalar κ has a spin weight of 1, A
and Θ are real scalars. The Weyl scalar ψ̂0 transforms
correspondingly:

(i) Type I:

ψ̂0 → ψ̂0: ð4:27Þ

(ii) Type II:

ψ̂0 → A2e2iΘψ̂0: ð4:28Þ

Notice that ψ̂0 is not mixed with other Weyl scalars. In
particular, it remains unchanged within the t I category.
Below we will take advantage of this observation to
simplify the calculation.
As summarized in Fig. 1, for choice 1, we need to

transform both mμ̂ and ψ̂0 to the Cauchy tetrad in order to
evaluate the inward propagating components of the Weyl
tensor w−

ρ0τ0 jBC [Eq. (2.12)] in the correct tetrad. We treat the
transformation of mμ̂ and ψ̂0 separately in the two follow-
ing sections.

1. Type I transformation of mμ̂

The characteristic system’smμ̂ [Eq. (3.9a)] is not aligned
with that of the Cauchy system [Eq. (2.16)]. This is because
our choice of the ingoing null vector kμ for the character-
istic system [Eq. (3.9b)] is not the same as kμ

0
used in the

Bjørhus boundary condition, which is defined uniquely by
Eq. (2.15b). To transform the characteristic vector m to the
corresponding choice in the Cauchy boundary condition, it
suffices to add some multiple of the outgoing null vector l

to m; thus we need to perform a type I transformation. We
want to emphasize that the value of ψ̂0 is not impacted by a
type I transformation, so when performing such a trans-
formation it is not necessary to keep track of the explicit
Lorentz parameter [namely κ in Eq. (4.25)] that was used in
the transformation. Accordingly, in the vector expressions
below, we will simply drop terms that are proportional
to the outgoing null vector l, since these terms can be
eliminated through a type I transformation. Whenever
this is done we will indicate that such terms have been
dropped by a type I transformation by using the symbol ≈
instead of ¼.
By combining Jacobians in Eqs. (4.3), (4.7), and (4.21),

we obtain the relationship

∂Â ¼ ð∂ÂxAÞδA
0

A ∂A0 þ ∂λ ×

�
∂Âr
∂λr

−
∂Ar

∂λr
ð∂ÂxAÞδAA

	
ð4:29Þ

Since ∂λ is the outgoing null vector given in Eq. (4.22), the
second term in Eq. (4.29) can be removed via a type I
Lorentz transformation. We then insert Eqs. (4.29) and
(4.13) into Eq. (3.11), which yields

qμ̂ ≈
1

2
âδμ̂μ0 q̄

μ0 þ 1

2
¯̂bδμ̂μ0q

μ0 ; ð4:30Þ

where ≈ implies that a type I Lorentz transformation has
been performed, as described above. Plugging Eq. (4.30)
into Eq. (3.9a), we obtain

mμ̂ ≈ −
δμ̂μ0ffiffiffi
2

p
r̂

240@ ffiffiffiffiffiffiffiffiffiffiffiffi
K̂ þ 1

2

s
1

2
â −

Ĵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ K̂Þ

q 1

2
b̂

1Aq̄μ
0

þ
0@ ffiffiffiffiffiffiffiffiffiffiffiffi

K̂ þ 1

2

s
1

2
¯̂b −

Ĵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ K̂Þ

q 1

2
¯̂a

1Aqμ
0

35: ð4:31Þ

Or equivalently

mμ̂ ≈ δμ̂μ0m
μ0 ; ð4:32Þ

with mμ0 being the components of a new contravariant
vector ma0

ma0 ¼ M̂θ0 ð∂θ0 Þa0 þ M̂ϕ0
i

sin θ̂ðθ0Þ ð∂ϕ0 Þa0 ; ð4:33Þ

and

4r̂M̂θ0 ¼ ðâþ ¯̂bÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
K̂ þ 1

p
− ð ¯̂aþ b̂Þ Ĵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ K̂Þ
q ; ð4:34Þ

4r̂M̂ϕ0 ¼ ð ¯̂b − âÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
K̂ þ 1

p
− ð ¯̂a − b̂Þ Ĵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ K̂Þ
q : ð4:35Þ
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At this stage, we have constructed a Cauchy tetrad vector
ma0 in Eq. (4.33) that differs from the original characteristic
tetrad vector mâ by only a type I transformation. Mean-
while, we can see ma0 has components only within the
Cauchy angular subspace fθ0;ϕ0g. Therefore it meets all
the requirements in Eq. (2.16). Consequently we can
convert it to its covariant form ma0 and insert it into
Eq. (2.12) to evaluate w−

ρ0τ0 jBC.
Since Cartesian coordinates are used to evolve the

Cauchy system, we write down the Cartesian components
of two angular bases ð∂θ0 Þa0 and ð∂ϕ0 Þa0 for completeness:

ð∂θ0 Þa0 ¼ R0
wtðcosϕ0 cos θ0; sinϕ0 cos θ0;− sin θ0Þ; ð4:36Þ

ð∂ϕ0 Þa0 ¼ R0
wt sin θ0ð− sinϕ0; cosϕ0; 0Þ: ð4:37Þ

2. Type II transformation of ψ̂0

Equation (4.24) indicates that two outgoing null vectors
la

0
and lâ are related by a type II transformation

[Eq. (4.26)], with the Lorentz parameter Â given by

Â ¼ ðα − γi0j0β
i0sj

0 Þe−2β̂; ð4:38Þ

which leads to

ψ 0
0 ¼ Â2ψ̂0: ð4:39Þ

On the other hand, there is one more gauge freedom:
the rotation of m with a phase factor eiΘ. However, the
combination ψ 0

0m̄ρ0m̄τ0 that appears in w−
ρ0τ0 [Eq. (2.12)] is

invariant under such a phase rotation because ψ 0
0 is also

transformed accordingly due to Eq. (4.28). Physically
speaking, the incoming characteristics w−

ρ0τ0 do not depend
on the choice of the angular tetrad vector. Therefore, we can
neglect this gauge freedom while performing the matching.

C. Choice 2: Transforming mμ and ψ0
to the Cauchy tetrad

Then we consider choice 2, where the characteristic
quantities mμ and ψ0 are evaluated in the Bondi-like
coordinates. Similar to Sec. IV B, below we treat the
transformation of mμ and ψ0 separately.

1. Type I transformation of mμ

By combining Jacobians in Eqs. (4.3) and (4.7), we
obtain

∂A ≈ δA
0

A ∂A0 ; ð4:40Þ

which leads to

qμ ≈ δμμ0q
μ0 : ð4:41Þ

Here we have used the definition of qμ in Eq. (3.11a).
Inserting Eq. (4.41) into Eq. (3.9a) yields

mμ ≈ δμμ0m
μ0 ; ð4:42Þ

with mμ0 being the components of the vector ma0

ma0 ¼ Mθ0 ð∂θ0 Þa0 þMϕ0
i

sin θ0
ð∂ϕ0 Þa0 ; ð4:43Þ

and

2rMθ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 1

p
−

Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ KÞp ; ð4:44Þ

2rMϕ0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
K þ 1

p þ Jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ KÞp : ð4:45Þ

We remark that the null vector mμ0, which differs from mμ

by only a type I transformation, is now in the Cauchy
angular subspace fθ0;ϕ0g, as required by the Cauchy
boundary condition in Eq. (2.16). Therefore, its covariant
form can be used to construct w−

ρ0τ0 jBC in Eq. (2.12).
In practice, the characteristic system is evolved with the

partially flat Bondi-like coordinates, as summarized in
Fig. 1. Therefore, we need to transform the partially flat
Bondi quantities Ĵ and K̂ [Eq. (3.10)] to the Bondi-like
coordinates via [10]

J ¼ b̄2Ĵ þ a2 ¯̂J þ 2ab̄ K̂
4ω2

; ð4:46Þ

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ JJ̄

p
; ð4:47Þ

and then insert the results into Eq. (4.43) to construct the
tetrad vector mμ0 for matching.

2. Type II transformation of ψ0

In the meantime, after obtaining J and K from Eqs. (4.46)
and (4.47), we can evaluate ψ0 with Eq. (3.13). Similar to the
discussion in Sec. IV B 2, the two outgoing null vectors lμ

0

and lμ are related by a Type II transformation, and the
corresponding Lorentz parameter A reads

A ¼ ðα − γi0j0β
i0sj

0 Þe−2β: ð4:48Þ

Consequently, the desired ψ 0
0 is given by

ψ 0
0 ¼ A2ψ0: ð4:49Þ

D. Interpolating to the Cauchy coordinates

Now we have obtained the desired tetrad vector mμ0 and
the Weyl scalar ψ 0

0. But they are still evaluated on the
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characteristic grid for both choices.7 The final step to
complete the matching is to interpolate the results to the
Cauchy grid. Specifically, since the matching is performed
on a 2D spherical surface, we need to construct a map from
the partially flat Bondi-like angular coordinates x̂Â ¼
fθ̂; ϕ̂g to the Cauchy angular coordinates x0A0 ¼ ðθ0;ϕ0Þ
for each time step of simulations. Recall from Fig. 1 that the
Bondi-like angular coordinates xA are constructed to be the
same as x0A0

; therefore the task is equivalent to constructing
the dependence of xA on x̂Â.
The inverse problem, namely x̂Â as functions of xA, has

been worked out while we are constructing the worldtube
data for the characteristic system [10,11]—the partially flat
Bondi-like angular coordinates x̂Â are evolved with respect
to Bondi-like angular coordinates xA using Eq. (4.8). In
principle, one can invert the dependence numerically to
fulfill our purpose, but the process might be numerically
expensive. A cheaper way is to evolve xA as functions of x̂Â

simultaneously. The counterpart of Eq. (4.8) for the
evolution of xA can be read off directly from the
Jacobian in Eq. (4.21):

∂ûxA ¼ Uð0ÞA: ð4:50Þ

In practice, we find it is more convenient to convert xA to
Cartesian coordinates xi on a unit sphere,

xi ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ; ð4:51Þ

since the spin-weight of xi is 0 and we can make use of the
spin-weighted derivatives [119]

ðxi ¼ qBDBxi; ð̄xi ¼ q̄BDBxi; ð4:52Þ

where DA denotes the covariant derivative associated with
the metric qAB ¼ 1=2ðqAq̄B þ q̄AqBÞ. Then Eq. (4.50) can
be written as

∂ûxi ¼
1

2
Ûð0Þð̄xi þ 1

2
¯̂U
ð0Þðxi; ð4:53Þ

where we have introduced an auxiliary variable Uð0ÞÂ such
that

Uð0ÞÂ
∂Âx

B ¼ Uð0ÞB; ð4:54Þ

Uð0Þ ¼ Uð0ÞÂqÂ: ð4:55Þ

The two equations above imply

Uð0Þ ¼ 1

2ω̂2

� ˆ̄bUð0Þ − âŪð0Þ�; ð4:56Þ

and its inverse

Uð0Þ ¼ 1

2ω2

�
b̄Uð0Þ − aŪð0Þ�: ð4:57Þ

For completeness, we also cast Eq. (4.8) into its Cartesian
version

∂ux̂î ¼ −
1

2
Uð0Þð̄x̂î −

1

2
Ūð0Þðx̂î: ð4:58Þ

In practice, Eq. (4.53) is evolved numerically along with
the evolution of Eq. (4.58) and the evolution of the charac-
teristic metric components. This determines the map
xAðû; x̂ÂÞ. We then adopt the spin-weighted Clenshaw
algorithm [11] to perform the angular interpolation of
mμ0 and ψ 0

0 to the Cauchy grid, and we assemble these
interpolated quantities into the incoming characteristics
w−
μ0ν0 using Eq. (2.12).

V. NUMERICAL TESTS

We now present numerical tests of our CCM algorithm
using three physical systems. First, in Sec. VA, we examine
the linear and nonlinear propagation of gravitational
Teukolsky waves [106] on a flat background. Next, in
Sec. V B, we perturb a Kerr BH with a Teukolsky wave.
Finally, in Sec. V C, we initialize a GW pulse on the
characteristic grid and inject it into the Cauchy domain.
Throughout the simulations, we primarily focus on the
choice 2 algorithm outlined in Sec. IVC, since this approach
involves a single Lorentz transformation, simplifying its
implementation and facilitating future code development.
In the code, we use the third-order Adams-Bashforth

time stepper for time integration, with the time step being
fixed to 0.001. The Cauchy domain, as detailed in [120],
is configured with a refinement level of 3. It is radially
partitioned at radii of 6, 12, and 26. In each dimension,
every domain element has 5 grid points. The numerical
settings of CCE can be found in [11]. The angular
resolution of the CCE domain is set to l ¼ 24, and there
are 12 grid points in the radial direction.

A. A Teukolsky wave propagating within
a flat background

Following the tests in Refs. [9,11], we investigate the
propagation of a Teukolsky wave [106] on a flat background.
The initial data of the Cauchy system is constructed utilizing
the extended conformal thin sandwich (XCTS) formula-
tion [121,122], which accounts for nonlinear effects that
arise when the amplitude of the Teukolsky wave is large.
Subsequently, the system undergoes full nonlinear evolution.

7For Choice 2, the Bondi-like J and K obtained from
Eqs. (4.46) and (4.47), as well as the Weyl scalar ψ0 built upon
them, are functions of the partially flat Bondi-like coordinates,
rather than the Bondi-like coordinates.
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We carry out two tests: one with a small-amplitude
Teukolsky wave that has an analytic perturbative solution,
and one with a large-amplitude wave. In the perturbative
regime, the metric is described by [106]:

ds2 ¼−dt02þð1þAfr0r0 Þdr02þ 2Bfr0θ0r0dr0dθ0

þ 2Bfr0ϕ0r0 sinθ0dr0dϕ0 þ �1þCfð1Þθ0θ0 þAfð2Þθ0θ0
�
r02dθ02

þ 2ðA− 2CÞfθ0ϕ0r02 sinθ0dθ0dϕ0

þ �1þCfð1Þϕ0ϕ0 þAfð2Þϕ0ϕ0
�
r02 sin2 θ0dϕ02; ð5:1Þ

with

A ¼ 3

�
Fð2Þ

r03
þ 3Fð1Þ

r04
þ 3F

r05

	
; ð5:2aÞ

B ¼ −
�
Fð3Þ

r02
þ 3Fð2Þ

r03
þ 6Fð1Þ

r04
þ 6F

r05

	
; ð5:2bÞ

C ¼ 1

4

�
Fð4Þ

r0
þ 2Fð3Þ

r02
þ 9Fð2Þ

r03
þ 21Fð1Þ

r04
þ 21F

r05

	
; ð5:2cÞ

and

fr0r0 ¼ 4

ffiffiffi
π

5

r
Y20ðθ0;ϕ0Þ; fr0θ0 ¼ 2

ffiffiffi
π

5

r
∂θ0Y20ðθ0;ϕ0Þ;

fr0ϕ0 ¼ 0; fð2Þθ0θ0 ¼ −1; fθ0ϕ0 ¼ 0;

fð1Þθ0θ0 ¼ 2

ffiffiffi
π

5

r �
∂
2
θ0 − cot θ0∂θ0 −

∂
2
ϕ0

sin2θ0

�
Y20ðθ0;ϕ0Þ;

fð1Þϕ0ϕ0 ¼ −fð1Þθ0θ0 ; fð2Þϕ0ϕ0 ¼ 1 − fr0r0 : ð5:3Þ

The spherical harmonic Y20ðθ0;ϕ0Þ is given by

Y20 ¼
1

8

ffiffiffi
5

π

r
ð1þ 3 cos 2θ0Þ: ð5:4Þ

We are free to specify the form of Fðu0Þ in Eq. (5.2). Here
we consider an outgoing Gaussian pulse:

Fðu0Þ ¼ Xe−
ðu0−r0cÞ2

τ2 ; ð5:5Þ

where u0 ¼ t0 − r0 is the retarded time, r0c is the center
of the pulse at t0 ¼ 0, τ is its width, and X is its amplitude.
In Eq. (5.2) the symbol FðnÞ denotes the nth derivative
of Fðu0Þ:

FðnÞ ≡
�
dnFðu0Þ
du0n

	
u0¼t0−r0

: ð5:6Þ

Our numerical setup is sketched in Fig. 2. Initially,
the Gaussian pulse is centered at r0c ¼ 20, with a width of
τ ¼ 2. We begin by simulating the system with a small
Cauchy domain, where the outer grid radius r0out ¼ 41 is
sufficiently small to highlight the impact of backscattering
of GWs at the outer boundary, allowing the code to resolve
the improvements provided by CCM. The evolution of the
system is performed using both CCE and CCM, with the
time-like worldtube consistently positioned at r0out ¼ 41,
coinciding with the outer boundary of the Cauchy domain.
It is expected that the CCM system will provide more
accurate boundary conditions at r0out, better representing
the true evolution of the system. Therefore, we need to
establish a reference system that serves as an exact solution
uncontaminated by numerical approximations such as
inaccurate boundary conditions. This can be achieved
differently under two separate scenarios.
First, when the amplitude of the Teukolsky wave X

[Eq. (5.5)] is adequately small, we are in the perturbative

FIG. 2. An illustration for the propagation of an outgoing Teukolsky wave within a flat background. The horizontal black line
represents the spatial domain of the Cauchy grid. The Teukolsky wave is initially located at r0c ¼ 20 and has a width of τ ¼ 2. We use
CCE and CCM to evolve the system with a small Cauchy domain ðr0out ¼ 41Þ. For comparison, we carry out a reference simulation
without CCM, with a distant outer boundary r0ref at 900 to ensure it is causally disconnected from the system throughout the entire
simulation. The worldtube for the characteristic system is situated at r0out ¼ 41, indicated by the vertical blue dashed line.
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regime, where the analytic solution if given by Eq. (5.1).
Therefore, we can compare the CCE and CCM simulations
with the analytic results. This scenario is explored below in
Sec. VA 1, where X is set to 10−5.
Next in Sec. VA 2, we address the second case where

the amplitude X is large, and nonlinear effects cannot be
neglected. The reference system is chosen to be a CCE
simulation with a larger Cauchy computational domain,
and its outer boundary remains casually disconnected
from the system throughout the simulation. It is worth
noting that, despite the weakly hyperbolic nature of
CCE [112–114], previous studies [11,76,78,123] have
shown that the SpECTRE CCE system can yield high-quality
waveforms at future null infinity, establishing it as a
reasonable reference for comparison. To ensure the inde-
pendence of the reference run, we employ another NR
code, the Spectral Einstein Code (SpEC) [73], developed
by the Simulating eXtreme Spacetimes (SXS) collabo-
ration [72]. As illustrated in Fig. 2, we place the outer
boundary of the reference system at r0ref ¼ 900. The
location of the worldtube for CCE wave extraction remains
at r0wt ¼ 41, consistent with the other two systems, facili-
tating fair comparisons.

1. Perturbative regime: X = 10− 5

We adopt CCE and CCM to evolve the system with three
different numerical resolutions, spanning over 1000 code
units. The duration of our simulation greatly exceeds the
timescale of the physical process of interest, which involves
the propagation of the Teukolsky wave from its initial
location to null infinity within the first 50 code units.
Throughout our investigation, we do not observe any
numerical instabilities. As a standard numerical diagnostic,
in Fig. 3, we plot the pointwise Euclidean L2 norm of the
GH gauge constraint Ca [Eq. (40) of [83]]:

Gauge constraint ¼








ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
a¼0

C2
a

vuut 





; ð5:7Þ

and the three-index constraint [Eq. (26) of [83]]:

Three-Index constraint ¼








ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

X3
a;b¼0

C2
iab

vuut 





; ð5:8Þ

where k · k denotes the L2 norm over grid points in the
Cauchy domain. We find that the CCE and CCM systems
yield nearly identical constraint evolutions. Moreover, as
anticipated, the constraints decrease with increasing
resolution.
Next, we analyze the strain h measured at future null

infinity. Considering our initial data in Eq. (5.3), which
comprises a single ðl ¼ 2; m ¼ 0Þ harmonic, the only

non-zero component of the strain is h20. In the perturbative
limit, its time evolution reads [106]

½rh20�Iþ ¼
ffiffiffiffiffiffi
6π

5

r
Fð4Þ: ð5:9Þ

In the top panel of Fig. 4, we compare the perturbative
expression (in blue) with the results produced by CCE
(in black) and CCM (in red), observing consistency among
them. To provide a quantitative assessment, we estimate the
error in the CCM waveform by comparing two numerical
resolutions. The resulting difference is plotted as the red-
dashed curve in the bottom panel of Fig. 4. Additionally,
we compute the differences between CCM’s and CCE’s
results (in black), as well as between CCM’s result and the
perturbative expression (in blue). It can be seen that the
discrepancies across the three systems (CCE, CCM, and
the perturbative limit) are smaller than the numerical error.
This implies that the code cannot resolve the distinction
between the CCE and CCM systems, which is reasonable
because backscattered waves are effectively suppressed in
the current perturbative limit, so that the new matching term
in Eq. (2.8) becomes negligible. On the other hand, the
agreement between our numerical systems (CCE and CCM)

FIG. 3. The evolution of the GH gauge constraint violation
(top) and three-index constraint violation (bottom) for the CCM
system, as defined in Eqs. (5.7) and (5.8). The CCE system yields
identical constraint violations as CCM. We simulate the propa-
gation of an outgoing Teukolsky wave (depicted in Fig. 2) with
three numerical resolutions. The amplitude of the wave X is
set to 10−5.
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and the analytic expression in Eq. (5.9) serves as a cross-
check for the accuracy of our numerical code.
Appendix A presents comprehensive comparisons for the

Weyl scalars ψ0…4 and the News N for CCE and CCM
versus the analytic solution, for this same case. These
findings align with the observations we made regarding h20.

2. Nonperturbative regime: X = 2

Next, we switch our attention to the nonlinear case
X ¼ 2. Again, the system can undergo stable evolution
without encountering numerical instabilities. Furthermore,
the application of CCM does not lead to any worsening
or improvement in the constraint violations [see Eqs. (5.7)
and (5.8)] when compared to the CCE system, as shown
in Fig. 5.
At future null infinity, we first compute the evolution of

the Weyl scalar ψ ðl¼2;m¼0Þ
3 and the strain h20. In the top left

panel of Fig. 6, we present the results obtained using the

CCM method for ψ ð2;0Þ
3 (in red). This plot clearly illustrates

the physical process: The primary outgoing Teukolsky
pulse, initially located at r0c (Fig. 2), reaches the Cauchy
outer boundary r0out after a time interval of r0out − r0c ¼ 21.

Because of the null slicing of the characteristic system,
any outgoing null GW is instantaneously transmitted to
future null infinity as soon as it intersects the worldtube.8

Consequently, we observe that the main pulse also appears
at Iþ at a time of 21. On the other hand, since our
constructed NR initial data is not a perfect error-free
solution for a solely outgoing Teukolsky wave, there is a
wave component that travels inward, commonly known as
junk radiation. As the evolution progresses, this component
falls toward the coordinate center, crosses it, and bounces
back out. The junk wave eventually reaches the Cauchy
outer boundary (which coincides with the worldtube)
and Iþ at a time of r0out þ r0c ¼ 61. This junk wave can
be seen as a secondary pulse at time 61 in the top left panel
of Fig. 6. Moreover, we find the appearance of a tertiary
wave at a time of 100. This arises because a portion of
the primary Teukolsky wave reflects off the numerical
boundary between the Cauchy and characteristic systems.
Subsequently, this reflected wave traverses the entire
Cauchy region, with a propagation time of 2rout, namely

FIG. 4. Top: the ðl ¼ 2; m ¼ 0Þ harmonic of the strain, mea-
sured at Iþ, of the Teukolsky wave with an amplitude of
X ¼ 10−5. The strain is extracted with CCE (in black) and CCM
(in red), respectively. Both are compared to the perturbative
expression given in Eq. (5.9), represented by the blue curve.
Bottom: the differences between the waveforms. The numerical
error of the CCM method (dashed red curve) is estimated by
calculating the difference between two numerical resolutions.

FIG. 5. (Similar to Fig. 3) The evolution of the GH three-index
constraint violation (top) and gauge constraint violation (bottom)
for the CCM system, except that the amplitude of the Teukolsky
wave X is set to 2. The CCE system yields identical constraint
violations as CCM.

8Note that the instantaneity applies specifically to outgoing
GWs when the characteristic system adopts outgoing null hyper-
surfaces. Conversely, ingoing GWs would be instantaneously
transmitted if we had used a characteristic system that utilizes
ingoing null hypersurfaces, see e.g., Ref. [124].
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the domain’s diameter. At t ¼ 2rout þ ðr0out − r0cÞ ¼ 103,
the reflected wave escapes to future null infinity.
The presence of the tertiary reflected wave indicates that

our current CCM algorithm cannot entirely eliminate the
spurious reflection at the numerical boundary. We attribute
this issue to the gauge part of the boundary conditions.
As previously mentioned, the boundary conditions can be
classified into three subsets [83,84]: constraint-preserving,
physical, and gauge conditions. Although we have made
progress in accounting for the physical degree of freedom
by appropriately matching the backscattered GWs, the
gauge aspect remains largely unexplored. Here we simply
follow Ref. [87] and adopt Sommerfeld boundary con-
ditions for the gauge subset, which could be a major source
of the spurious numerical reflection. In principle, the gauge
information is also encoded in the characteristic system,
thereby offering a potential avenue to extend our current
matching algorithm to encompass the gauge degrees of
freedom. We leave the relevant discussions for future work.
Nevertheless, upon comparing the results obtained using

CCE and CCM to the reference ones (in blue) in Fig. 6, we
find that the new physical boundary conditions already lead
to noticeable improvements. Specifically, the differences
between the waveforms shown in the bottom panels of
Fig. 6 clearly demonstrate that the CCM method system-
atically reduces the deviation from the reference system by

approximately one order of magnitude. This conclusion holds
true for other Weyl scalars and the News function as well. For
more detailed information, please refer to Appendix B.
In addition to the gauge constraint violation defined

in Eq. (5.7), an analysis of the Bondi gauge provides an
additional self-consistency test to assess the quality of the
waveforms [24,125]: With the Bondi gauge, one can write
the Bianchi identities in the Newman-Penrose formalism,
which yields a set of constraint equations for the Weyl
scalars and the strain [24,125]

Cψ4
≡ ψ4 þ ḧ ¼ 0; Cψ3

≡ ψ3 −
1ffiffiffi
2

p ðḣ ¼ 0; ð5:10aÞ

Cψs
≡ ψ̇ s þ

1ffiffiffi
2

p ðψ sþ1 −
3 − s
4

h̄ψ sþ2 ¼ 0; ð5:10bÞ

with s ¼ 0, 1, 2. Moreover, the requirement for the Bondi
mass aspect to be real-valued introduces an additional
constraint [126]

CImψ2
≡ Imψ2 þ Im

�
1

2
ð2hþ 1

4
h̄ ḣ

�
¼ 0: ð5:11Þ

We compute the norms of these constraints with the Python

package SCRI [127–131], and plot the results in Fig. 7.

FIG. 6. Top: the ðl ¼ 2; m ¼ 0Þ harmonic of the Weyl scalar ψ3 (left) and strain (right), measured at Iþ, of the Teukolsky wave with
an amplitude of X ¼ 2. They are extracted with CCE (in black) and CCM (in red), respectively. The third reference run (in blue) is
performed independently with another NR code SpEC, where the outer boundary of the Cauchy domain remains causally disconnected
from the system throughout the simulation. Bottom: the differences between the waveforms. Solid curves show the deviation of the
CCE’s and CCM’s results from the reference ones. For comparison, we also estimate the numerical error of the waveforms (dashed
curves) by calculating the difference between two numerical resolutions.
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We see the CCM method systematically reduces the con-
straint violations compared to CCE, with the exception of
the constraints given in Eq. (5.10a), for which CCM and
CCE are similar.

B. Perturbing a Kerr BH with a Teukolsky wave

Our second type of test involves perturbing a Kerr BH
with a Teukolsky wave. In this case, we set the dimension-
less spin of the BH, denoted as χ, to 0.5. To maintain
conciseness, we assume a BH mass of 1 throughout the
discussions.
We still build the initial data nonlinearly by solving

the XCTS formulation. In particular, we use spherical

Kerr-Schild coordinates [132] to compute the conformal
metric. With these coordinates, the outer horizon of the
Kerr BH remains spherical, with a coordinate radius of
rþ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
¼ 1.87. We excise the Cauchy domain

at 1.8, slightly inside the horizon. In addition, we set the
worldtube at r0out ¼ 150, aligned with the outer boundary.
For the Teukolsky wave, we replace the free function Fðu0Þ
in Eqs. (5.2) and (5.5) with the following expression:

Fðv0Þ ¼ Xe−
ðv0−r0cÞ2

τ2 ; ð5:12Þ
where v0 ¼ t0 þ r0 is the advanced time. This replacement
ensures the Teukolsky wave falls into the BH rather than

FIG. 7. The norms of the violations of Bondi-gauge constraints [Eq. (5.10)] and the real-valued constraint for ψ2 [Eq. (5.11)]. The
propagation of a Teukolsky wave with an amplitude of 2 is considered. The system is evolved using CCE (in black) and CCM (in red),
respectively. They are compared to the third reference run (in blue), which is independently performed with another NR code SpEC.
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escaping. Initially, the center of the pulse is located at
r0c ¼ 40. We choose X ¼ 0.01 and τ ¼ 2.
We evolve the system with three numerical resolutions.

Figure 8 displays the evolution of the gauge and three-
index constraints. Similarly to the previous tests, we find
that the CCM method produces identical constraint evo-
lutions compared to CCE. We also check that CCM does
not introduce extra numerical instabilities—the system can
be evolved stably for more than 1000M. Next, in Fig. 9,
we present the News measured at Iþ. The first peak at
a time of ∼110 corresponds to the junk radiation: Since
our numerically constructed initial data is not a perfectly
ingoing GW pulse, a fraction of the wave travels outward
once the evolution starts, and it reaches the worldtube at a
time of r0out − r0c ¼ 110. On the other hand, the ingoing
Teukolsky wave collides with the Kerr BH and excites its
quasinormal ringing. This ringdown signal disperses to null
infinity at a time of r0c þ r0out ¼ 190. Utilizing the Python

package QNM [133], we verified that the frequency and
damping rate of the quasinormal ringing align with the
prediction of BH perturbation theory.
As shown in the bottom panel of Fig. 9, the difference

between CCE and CCM (solid curve) is smaller than the
numerical errors (dashed curves), which suggests that the
influence of the matching term in the boundary condition
[Eq. (2.8)] is insignificant for the present system. A similar

conclusion can also be drawn from other waveform
quantities. Please refer to Appendix C for more compar-
isons. This is because the decay of the ingoing component
of the Weyl scalar ψ0 is rapid with distance, specifically,
following a fifth power law in the context of BH perturba-
tion theory (see Table I of Ref. [134]) and the Teukolsky
wave [see Eq. (A2g)]. Consequently, the rapid decay
significantly reduces the strength of the backscattered wave
at the outer boundary r0out ¼ 150. To accentuate the differ-
ence, it would be necessary to bring the outer boundary
closer. However, this would also require a more precise
gauge boundary condition. Detailed discussions on these
aspects are reserved for future studies.

C. Initializing a GW pulse on the characteristic grid

Our final test is to initialize a GW pulse on the
characteristic grid. To do this, we adopt the following
initial data for the Bondi variable Ĵ on the initial null slice:

Ĵðŷ; θ̂; ϕ̂Þ ¼

8><>:
0; ŷ≤ ŷmin;

þ2Y20
ðθ̂; ϕ̂ÞJ ðŷÞ; ŷmin ≤ ŷ≤ ŷmax;

0; ŷ≥ ŷmax;

ð5:13Þ

FIG. 8. The evolution of the GH gauge constraint violation
(top) and three-index constraint violation (bottom) for the CCM
system, as defined in Eqs. (5.7) and (5.8). The CCE system yields
identical constraint violations as CCM. We perturb a Kerr BH,
whose dimensionless spin is 0.5, with an ingoing Teukolsky
wave. Three numerical resolutions are adopted.

FIG. 9. Top: the ðl ¼ 2; m ¼ 0Þ harmonic of the Weyl scalar
ψ4, measured at Iþ, emitted by a Kerr BH with a dimensionless
spin of 0.5. The BH is perturbed by an ingoing Teukolsky wave.
The waveform is extracted with CCE (in black) and CCM (in
red), respectively. Bottom: the differences between the wave-
forms. The numerical errors of CCM and CCE are computed by
calculating the difference between two numerical resolutions.
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where ŷ ¼ 1–2R̂=r̂, and R̂ is the partially flat Bondi-like
radius of the worldtube. The spin weight of the pulse is set
to 2 in order to match with that of ψ0. The radial profile
J ðyÞ reads

J ðŷÞ ¼ 4Z
ðŷmax − ŷÞðŷ − ŷminÞ

ðŷmax − ŷminÞ2
e−

ðŷ−ŷcÞ2
τ2 : ð5:14Þ

Meanwhile, the inner Cauchy domain is initialized to a flat
(Minkowski) spacetime. Figure 10 depicts our numerical
setup. The center of the pulse ŷc is initially at 0. In addition,
we choose ymin ¼ −0.8; ymax ¼ 0.8; τ ¼ 0.15; Z ¼ 10−3.
Here, the amplitude of the pulse Z is small enough to
ensure it does not collapse into a BH. Finally, the outer
boundary of the Cauchy grid is 41, coinciding with the
worldtube.
Since the pulse is imposed on an outgoing null surface, it

naturally propagates inward once we allow the system to
evolve. By using the CCM algorithm, the interface between
the Cauchy and characteristic grid becomes transparent
to this incoming pulse. As a result, the GW is transmitted to
the Cauchy domain through the matching term in the
boundary condition [Eq. (2.8)]. Subsequently, the pulse
descends toward the center and bounces back. Eventually, it
leaves the inner Cauchy region and disperses to null infinity
after the crossing time of the Cauchy domain (namely its
diameter). On the contrary, if we deactivate the matching
term and evolve the system with the standard CCE
algorithm, the worldtube will become a perfectly reflective
mirror. As a result, the inner Cauchy system remains
unaffected by the incoming pulse, and Minkowski space-
time persists.
In the top panel of Fig. 11, we plot the evolution of

ψ ðl¼2;m¼0Þ
0 on the outer boundary of the Cauchy domain,

which characterizes the incoming GW received by the inner

Cauchy system. We identify the moment when ψ ðl¼2;m¼0Þ
0

reaches its first trough, labeled as t1, as the point at which
the pulse enters the Cauchy domain. The bottom panel of

Fig. 11 exhibits the evolution of ψ ðl¼2;m¼0Þ
4 at future null

infinity. In the absence of the matching (CCE), the ingoing
pulse is entirely reflected by the worldtube—the first peak
of the reflected wave shows up at t1. In contrast, for CCM,
the reflected wave is significantly suppressed at that
moment. After the crossing time of the inner Cauchy
domain, which is its diameter ð2RÞ, the pulse exits the
Cauchy grid at t2 ¼ t1 þ 2R and disperses to null infinity.
This result verifies that our CCM algorithm successfully
directs the characteristic pulse into the Cauchy system.
To close this section, we present the evolution of the GH

three-index and gauge constraints [Eqs. (5.8) and (5.9)] in
Fig. 12. We see the constraints exhibit an initial rise soon
after the simulation starts, followed by a plateau that
persists throughout the duration of the simulation time
under consideration. In addition, the constraints converge
with the numerical resolutions.

FIG. 10. An illustration depicting the propagation of a GW
originating from an initial location on the characteristic grid. The
inner Cauchy region is initialized with Minkowski spacetime.
The worldtube is positioned at 41, coinciding with the outer
boundary of the Cauchy grid.

FIG. 11. The ðl ¼ 2; m ¼ 0Þ harmonic of the Weyl scalar ψ0

measured at the worldtube (top), and ψ4 extracted at null infinity
(bottom), from the system shown in Fig. 10. The first trough of

ψ ðl¼2;m¼0Þ
0 , marked by the vertical blue-dashed line (t1), repre-

sents the time when the pulse reaches the outer boundary of the
Cauchy domain. The vertical yellow-dashed line ðt2 ¼ t1 þ 2RÞ
indicates the time when the pulse again reaches the outer
boundary of the Cauchy domain after passing through the origin
and propagating back outward.
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VI. CONCLUSIONS

In this paper, we implemented a fully relativistic 3D
CCM algorithm for physical degrees of freedom in the
numerical relativity code SpECTRE. The method is generic
and applicable to any physical system. Core steps toward
matching involve (a) evaluating the Weyl scalar ψ0 and the
Newman-Penrose tetrad vector mμ at the outer boundary of
the Cauchy domain; (b) performing tetrad transformations
to the Cauchy tetrad; (c) interpolating the quantities to the
Cauchy grid; and (d) computing the physical subset of the
Cauchy Bjørhus boundary conditions.
To evaluate the performance and correctness of the

CCM algorithm, various physical systems were designed
and tested.9 These tests include the propagation of
Teukolsky waves within a flat background, the pertur-
bation of a Kerr BH with a Teukolsky wave, and the
injection of a GW pulse from the characteristic grid.
Notably, no numerical instabilities were found in the
CCM simulations.
Comparing the CCM algorithm to CCE, it was observed

that the CCM algorithm did not alter the evolution of GH
constraint violations (e.g., gauge and three-index con-
straints). However, it demonstrated the ability to suppress

violations of Bondi-gauge constraints. When testing the
propagation of a Teukolsky wave with a large amplitude
(X ¼ 2), where nonlinear effects are significant, the CCM
waveforms exhibited better agreement with reference
results, indicating more accurate boundary conditions for
the Cauchy evolution. Additionally, the test involving the
initialization of a GW pulse on the characteristic grid
demonstrated the successful directing of characteristic
information into the Cauchy system.
Our preliminary tests show that CCM allows for placing

the outer boundary of a Cauchy system at smaller radii
without significant loss of waveform precision, thus
improving computational efficiency. However, the gauge
aspect of the boundary conditions poses a major limitation
in moving the outer boundary further inward. Currently we
adopt the Sommerfeld condition that minimizes the reflec-
tion of a gauge wave at the outer boundary [87]. However,
it is less physically motivated and may lead to spurious
reflections under some scenarios. Since the gauge infor-
mation is in principle encoded in the characteristic system,
future work could generalize the matching algorithm to
include the gauge subset, which will enable the construc-
tion of more accurate boundary conditions for Cauchy
evolution.
On the other hand, it has been shown that CCM is only

weakly hyperbolic [112–114], suggesting potential numeri-
cal instabilities. In our simulations that involve only smooth
data, we did not observe any instabilities in the tests
conducted. It is possible that instabilities may manifest
over longer timescales or during more violent gravitational
processes, such as BH mergers, or processes that might
produce high-frequency bursts, such as neutron-star merg-
ers. Therefore, robust stability tests with high frequency
data [136–138] would be a valuable avenue for future
research.
Nevertheless, if CCM proves capable of handling BBH

collisions, it will have the potential to enhance the accuracy
and computational efficiency of future NR simulations.
This advancement would be particularly significant for
third-generation GW detectors [139–142].
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FIG. 12. The evolution of the GH gauge constraint violation
(top) and three-index constraint violation (bottom), as defined in
Eqs. (5.7) and (5.8). We initialize a GW pulse on the character-
istic grid (depicted in Fig. 10), which subsequently propagates to
the Cauchy grid. The system is evolved with three numerical
resolutions.

9Their simulation data are available in a Github repository [135].
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APPENDIX A: TEUKOLSKY WAVE IN THE
PERTURBATIVE LIMIT: X = 10− 5

In the perturbative limit, it is straightforward to obtain
analytic expressions for the Weyl scalars, News, and strain
for a Teukolsky wave:

ψ0 ¼ −
ffiffiffiffiffiffi
2π

15

r
þ2Y20

�
ð6C̈ − 3ÄÞ þ 1

2
rð3B::: þ A

:::Þ
	
; ðA1aÞ

ψ1 ¼
1

2

ffiffiffiffiffiffi
2π

15

r
þ1Y20

½rA::: þ 3B̈�; ðA1bÞ

ψ2 ¼ −
ffiffiffi
π

5

r
Y20Ä; ðA1cÞ

ψ3 ¼
1

2

ffiffiffiffiffiffi
2π

15

r
−1Y20½rA

:::
− 3B̈�; ðA1dÞ

ψ4 ¼
ffiffiffiffiffiffi
2π

15

r
−2Y20

�
ð3Ä − 6C̈Þ þ 1

2
rð3B::: þ A

:::Þ
	
; ðA1eÞ

N ¼ −
ffiffiffiffiffiffi
2π

15

r
−2Y20

�
ð3Ȧ − 6ĊÞ þ 1

2
rð3B̈þ ÄÞ

	
; ðA1fÞ

h ¼ −
ffiffiffiffiffiffi
2π

15

r
−2Y20

�
ð3A − 6CÞ þ 1

2
rð3Ḃþ ȦÞ

	
: ðA1gÞ

Here we have used the Appendix of [106]. The (spin-
weighted) spherical harmonics sYlm are given by

−2Y20 ¼þ2 Y20 ¼
1

4

ffiffiffiffiffiffi
15

2π

r
sin2θ;

−1Y20 ¼ þ1Y20
¼ −

1

4

ffiffiffiffiffiffi
15

2π

r
sin 2θ;

Y20 ¼
1

8

ffiffiffi
5

π

r
ð1þ 3 cos 2θÞ:

By substituting Eqs. (5.2), Eq. (A1) can be simplified at
future null infinity Iþ:

rhjIþ ¼
ffiffiffiffiffiffi
6π

5

r
Fð4Þ × −2Y20; ðA2aÞ

rNjIþ ¼
ffiffiffiffiffiffi
6π

5

r
Fð5Þ × −2Y20; ðA2bÞ

rψ4jIþ ¼ −
ffiffiffiffiffiffi
6π

5

r
Fð6Þ × −2Y20; ðA2cÞ

r2ψ3jIþ ¼
ffiffiffiffiffiffi
6π

5

r
Fð5Þ × −1Y20; ðA2dÞ

r3ψ2jIþ ¼ −
ffiffiffiffiffiffi
9π

5

r
Fð4Þ × Y20; ðA2eÞ

r4ψ1jIþ ¼
ffiffiffiffiffiffiffiffi
27π

10

r
Fð3Þ × þ1Y20; ðA2fÞ

r5ψ0 ¼ −
ffiffiffiffiffiffiffiffi
27π

10

r
Fð2Þ × þ2Y20: ðA2gÞ

Note that Eq. (A2g) is in fact valid throughout the entire
spacetime. It shows that ψ0 follows a fifth power decay law
with distance. Consequently, the backscattered wave
decays quickly as one moves away from the origin.
We focused on comparing the strain in Sec. VA 1. Below

in Figs. 13 and 14, we complete the comparisons by providing
the results of the Weyl scalars ψ0…4 and the News N.
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FIG. 13. Continuation of Fig. 4. The Weyl scalars of the Teuskolsky wave with an amplitude of X ¼ 10−5.
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FIG. 14. Continuation of Fig. 13. The Weyl scalars of the Teuskolsky wave with an amplitude of X ¼ 10−5.
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APPENDIX B: TEUKOLSKY WAVE IN THE NONLINEAR REGIME: X = 2

Figures 15 and 16 display the Weyl scalars and News of the Teukolsky wave with an amplitude of X ¼ 2, complementing
the discussions in Fig. 6.

FIG. 15. Continuation of Fig. 6. The Weyl scalars of the Teuskolsky wave with an amplitude of X ¼ 2.
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FIG. 16. Continuation of Fig. 15. The News of the Teuskolsky wave with an amplitude of X ¼ 2.
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APPENDIX C: PERTURBING A KERR BH WITH A TEUKOLSKY WAVE

Figures 17 and 18 display the Weyl scalars, News, and strain of the χ ¼ 0.5 Kerr BH perturbed by the Teukolsky wave,
complementing the discussion in Fig. 9.

FIG. 17. Continuation of Fig. 9. The Weyl scalars of the χ ¼ 0.5 Kerr BH perturbed by the Teukolsky wave.
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