
Vacuum spacetime with multipole moments: The minimal size conjecture,
black hole shadow, and gravitational wave observables

Shammi Tahura ,1,2,3,* Hassan Khalvati ,1,2 and Huan Yang 1,2,†

1University of Guelph, Guelph, Ontario N1G 2W1, Canada
2Perimeter Institute for Theoretical Physics, Ontario, N2L 2Y5, Canada

3Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA

(Received 22 September 2023; accepted 9 May 2024; published 10 June 2024)

In this work, we explicitly construct the vacuum solution of Einstein’s equations with prescribed
multipole moments. By observing the behavior of the multipole spacetime metric at small distances, we
conjecture that for a sufficiently large multipole moment, there is a minimal size below which no object in
nature can support such a moment. The examples we have investigated suggest that such minimal size
scales as ðMnÞ1=ðnþ1Þ [instead of ðMn=MÞ1=n], where M is the mass and Mn is the nth order multipole
moment. With the metric of the “multipole spacetime,” we analyze the shape of black hole shadow
for various multipole moments and discuss the prospects of constraining the moments from shadow
observations. In addition, we discuss the shift of gravitational wave phase with respect to those of the Kerr
spacetime, for a test particle moving around an object with this set of multipole moments. These phase
shifts are required for the program of mapping out the spacetime multipole moments based on gravitational
wave observations of extreme mass-ratio inspirals.
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I. INTRODUCTION

Black holes are the most compact astrophysical objects
in the Universe as predicted by the theory of general
relativity. Since the direct observation of gravitational
waves in 2015, various properties of black holes (e.g.,
the ringdown tests [1–6]) have been examined in the strong-
gravity regime. In recent years the observation of black hole
image (“shadow”) using very long baseline interferometry
(VLBI) [7,8] provides an alternative probe to the spacetime
region within several gravitational radii. In order to further
facilitate the test of black holes, many options of black hole
mimickers have been discussed in the literature, including
ultracompact objects [9–13], gravastar/ anti–de Sitter bub-
bles [14–17], wormholes [18–21], etc. It is plausible that
these black hole mimickers have a different set of multipole
moments from a Kerr black hole with the same mass and
spin. As a result, sometimes it is useful to define a test of
black hole mimickers as measuring the multipole moments
of the spacetime as initiated in [22,23], although theoreti-
cally it is possible to have a non-black hole object with
exactly the same multipole moments as Kerr [24].
In Newtonian gravity it is straightforward to obtain the

multipole moments from the decomposition of the gravi-
tational field. The Newtonian gravitational field is charac-
terized by its multipole moments in the sense that given a

set of multipole moments, the gravitational potential can be
constructed uniquely. On the other hand, as the Einstein
equations are nonlinear, the same statement is nontrivial in
general relativity (GR). In the general-relativistic context, a
definition of multipole moment has been given by Geroch
for a vacuum static spacetime [25] and later by Hansen
for stationary spacetimes [26]. Geroch and Hansen’s
definition of multipole moments is given in terms of
conformal compactification of trajectories of time trans-
lation Killing vectors. The moments are totally symmetric
trace-free (STF) tensors at spatial infinity constructed from
derivatives of the norm and twist of the spacetime. The
definition is mathematically elegant and manifestly coor-
dinate independent.
Another definition was given by Kip Thorne for slowly

changing fields suitable for studying gravitational waves
(GWs) in the post-Newtonian context [27]. Thorne’s
method adopts the physical metric in De Donder gauge
in asymptotically Cartesian and mass-centered coordinates.
The metric is expanded in the inverse of radial coordinates
in terms of two sets of mass and current multipole
moments. The equivalence of the two definitions was
proven for slowly evolving stationary systems modulo
some normalization constant [28]. Geroch-Hansen and
Thorne multipole moments have also been defined in some
modified or alternative theories of gravity [29–31].
As we are interested in the strong-field gravity regime

where the post-Newtonian approach may not be applicable,
we will consider the Geroch-Hansen multipole moments in
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this paper. For an axisymmetric stationary system, the
Geroch-Hansen multipole moments can be computed
relatively easily via Ernst formalism: an expansion of
the complex Ernst potential along the symmetry axis at
spatial infinity [32]. Following such an approach, an
algorithm was provided in Ref. [33] for computing multi-
pole moments of stationary axisymmetric systems in
vacuum GR. Using a similar approach, multipole moments
were also computed for radiating systems [22] and electro-
vacuum spacetimes [34,35]. In particular, recently
Fodor et al. (Ref. [34]) provided an efficient algorithm
for computing gravitational and electromagnetic multipole
moments in stationary electrovacuum spacetime. They
implement the tools of complex null vector fields and
the idea of leading order parts of functions introduced by
Bäckdahl and Herberthson [36,37], which simplifies the
computation of the STF part of a tensor with a reduced
number of variables.
Given a set of the Geroch-Hansen moment, it has been

shown that the vacuum regime of the exterior spacetime is
indeed uniquely determined [25], similar to the Newtonian
case. In addition, the mathematical procedure described
in [34] may be reversed to construct the exterior metric
associated with the given moments. In this work, we
explicitly carry out the procedure to construct the “multi-
pole spacetime”—the vacuum spacetime with prescribed
moments. Namely, we use the algorithm in Ref. [34] to
compute the coefficients of the power series expansion of
the complex Ernst potential recursively from multipole
moments. The norm and twist of the spacetime then can be
extracted from the Ernst potential, and any other metric
functions can be computed from these two by directly
integrating the Ernst equations.
We apply the multipole spacetime for two main objec-

tives. First, it helps to study properties of the underlying
source, i.e., the source size. Second, because of the one-to-
one correspondence between the spacetime and the
moments, we can discuss possible gravitational wave
and electromagnetic observables in the strong-gravity
regime that can be used to infer the spacetime multipole
moments. Note that the original proposal in [22,23] is only
valid in the asymptotic region.
In the first objective, we are particularly interested in

the connection between the size of the source and the
associated moments. For the monopole moment, i.e., the
mass M, Thorne conjectured that the size of the circum-
ference enclosing a source cannot be smaller than Oð1ÞM
(as indicated from the “Hoop Conjecture”). With a similar
motivation, it is instructive to ask the following question:
are the generic mass and current moments Ml; Sl related
to the minimal size of the source as well? In Newtonian
gravity, it is obvious that such a relation exists since the
field multipole moments of the gravitational potential are
identical to the source multipole moments. The scaling of
the multipole moments is such that the nth order multipole

moment scales asMLn where L is the characteristic size of
the source. In the post-Newtonian regime, Thorne’s multi-
pole moments can be written as integrals of some effective
stress-energy tensor of the source. The mass multipole
moments in the case of a slow-moving source in weak field
in Thorne formalism also generically scales as MLn [see
Eq. (5.21) of [27]]. It is not obvious that the same scaling
will hold in the strong-gravity regime when the effect of
curvature is non-negligible. Nevertheless, it is physical to
expect that a bound source cannot produce arbitrarily large
field multipole moments even in strong-field gravity. As a
result, we expect that there is a minimal size source that can
support a particular set of multipole moments. In the large
moment limit, this size limit may satisfy certain scaling law
with the moments.
The multipole spacetime, as a solution of the vacuum

Einstein’s equations, is constructed based on the moments
extracted at spatial infinity and then extended toward a
smaller radius. The formalism in [34] allows the metric to
be written in powers of 1=r, so that by including more terms
the power-law expansion asymptotes the true solution
for generic radius. However, we find that the multipole
spacetime cannot be extended all the way to the origin
at r ¼ 0—the solution always hits a curvature singularity
at a finite radius (depending on the angular directions).
Therefore, no matter what kind of source is generating the
multipole moments at infinity, the source size cannot be
smaller than the radius where we encounter the singularity,
i.e., this radius can serve as a lower bound on the size of the
source. For a static axisymmetric spacetime with a large
multipole moment of order n, such an approach suggests

that the minimal size of a source scales as M1=ðnþ1Þ
n , which

is different from the intuition in the Newtonian regime:
ðMn=MÞ1=n. It is plausible that such a scaling law applies
for general stationary spacetimes, but so far we have not
found an explicit construction of a source that can generate

a multipole moment Mn with size ∼M1=ðnþ1Þ
n . On the other

hand, we have also studied the regime that the multipole
moments only differ from the Kerr values by a small
magnitude. The corresponding location of singularity is
close to the Kerr horizon radius.
The multipole spacetime metric for the latter case is

particularly useful as we are interested in how well various
observables can be used to measure the difference between
the spacetime multipoles from the Kerr values. The
sensitivity characterizes our ability of probing/constraining
black hole mimickers. In this work we analyze two
commonly discussed experiments in the literature: black
hole shadow/critical curve measurement with VLBI and
gravitational wave measurement on extreme mass-ratio
inspirals (EMRIs).
We construct the multipole spacetime with weakly

perturbed quadrupole moment M2 from the Kerr value
while keeping other moments unchanged. The spacetime
critical curve is then computed with respect to this
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spacetime metric. In addition, since the black hole spin,
mass, and the observer’s inclination angle are not known
a priori, we vary these parameters to generate Kerr critical
curves that best mimic the one of the multipole spacetime.
The resulting relative mismatch (see the definition in
Sec. IV) is around δM2=ð40M3Þ. Notice that if δM2 is
large (see Fig. 5), the minimal size of the source might
exceed the size of the light ring, so that there is no
meaningful critical curve of the spacetime. For cases
where the critical curve still lies within the light ring,
the mismatch obtained here is likely not resolvable by
the next-generation Event Horizon telescope, which is
expected to sample at most the n ¼ 1 light ring with its
longest baselines (at 345 GHz).
Secondly, we explore the prospect of probing the

spacetime multipole moments with GWs from EMRIs.
EMRIs are mainly produced by scattering in the nuclear
cluster and disk-assisted migration [38–40], and they are
one of the main sources of future space-based GW
observatory, e.g. LISA, Taiji, and Tianqin [41–43]. They
are ideal for probing the spacetime as the stellar-mass
compact object is generally in band for 104–105 cycles
during the observation period, so that small variation in the
spacetime geometry may lead to an accumulated phase shift
over many cycles. For this study we focus on the non-
resonant part of the waveform, where the discussion of the
general EMRI resonant dynamics in a perturbed Kerr
spacetime can be found in [44]. For a sample system with
a 106M⊙ host black hole and 10M⊙ secondary black hole,
we find that a four-year observation can constrain δM2 to
the 10−4 level.
The rest of the paper is organized in the following

manner. Section II gives the necessary definitions of metric
and multipole moments and develops the framework for
computing metric components from multipole moments.
Section III A discusses the methodology we implement to
estimate the size of a source from properties of metric and
curvature. Section III B focuses on computing the location
of divergence of static axisymmetric metric and curvature
with a large multipole moment, while Sec. III C has a
similar target for a stationary spacetime with a small
deviation from Kerr quadrupole. In Sec. IV we compute
black hole (BH) shadows for the metric in Sec. III C and
find the mismatch between such shadows and Kerr BH
shadows. In Sec. V, we derive the EMRI waveforms for the
same metric as in Sec. III C. Finally, we present concluding
remarks in Sec. VI. Throughout the paper, we use the
geometrized unit system G ¼ c ¼ 1.

II. STATIONARY SPACETIME WITH
MULTIPOLE MOMENTS

In this section, we briefly present the formalism of
computing multipole moments of stationary spacetimes
following the approach given by Hansen [26]. We also
discuss how to reconstruct the metric of a spacetime from a

set of multipole moments in axisymmetric spacetimes, with
the formalism discussed in [34]. Hansen’s approach is
based on quantities defined at spatial infinity via conformal
compactification of a three manifold of timelike Killing
vector trajectories, i.e., the manifold to which the Killing
vector field is tangent everywhere [26,45].

A. Definition of Geroch-Hansen multipole moments

Let us consider a four-dimensional manifold M with a
metric gab of signature ð−;þ;þ;þÞ that has a timelike
Killing vector ξa. The induced metric hab on the three-
dimensional submanifold V of the trajectories of ξa is
positive definite and is related to the full spacetime metric
in the following way:

hab ¼ λgab þ ξaξb: ð2:1Þ

λ ¼ −ξaξa is the norm of the Killing vector which is the
analog of Newtonian potential for static spacetimes [25].
Let us also denote the covariant derivative of the metric hab
as Da. ðhab; VÞ is defined to be asymptotically flat by
requiring that a manifold Ṽ with a metric h̃ab exists such
that [25,46]
(1) Ṽ ¼ V ∪ Λ, where Λ is a single point,
(2) h̃ab ¼ Ω2hab is a smooth metric on Ṽ, and
(3) ΩjΛ ¼ 0; D̃aΩjΛ ¼ 0; D̃aD̃bΩjΛ ¼ 2h̃abjΛ.

Here Ω is the conformal factor and the point Λ corresponds
to the spacelike infinity. D̃a is the covariant derivative of the
metric h̃ab.
Let us now define a complex function ϕ on V such that

ϕ̃ ¼ Ω−1=2ϕ extends smoothly to Λ on Ṽ. The multipole
moments are then defined with certain tensorial quantities
atΛ containing ϕ̃ and its derivatives. Let us define Pð0Þ ¼ ϕ̃

and a set of multi-index tensors Pð1Þ
ã1
; Pð2Þ

ã1ã2
; Pð3Þ

ã1ã2ã3
…

recursively as

PðnÞ
ã1���ãn ¼ C

h
D̃ã1P

ðn−1Þ
ã2���ãn −

1

2
ðn − 1Þð2n − 3ÞR̃ã1ã2P

ðn−2Þ
ã3���ãn

i
:

ð2:2Þ
Here we have chosen a set of coordinates xã on the manifold
Ṽ. R̃ã b̃ is the Ricci tensor of the metric h̃ã b̃, and the operator
C½� � �� takes the symmetric trace-free projection of its argu-
ment. The nth order multipole moment of the spacetime is

then the tensor PðnÞ
ã1���ãn evaluated at Λ [25,26]:

MðnÞ
ã1���ãn ¼ PðnÞ

ã1���ãn

���
Λ
: ð2:3Þ

B. Axisymmetric spacetimes
with prescribed multipole moments

The metric of a stationary axisymmetric vacuum
spacetime is suitably expressed in Weyl-Papapetrou
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coordinates. The field equations are also rather simplified
in such coordinates [47]. We consider the Weyl-Papapetrou
coordinate ðt; ρ; z;ϕÞ with z being the axis of symmetry:

ds2¼−fðdt−ωdφÞ2þ1

f
½e2γðdρ2þdz2Þþρ2dφ2�: ð2:4Þ

The metric functions f, γ, and ω depend on ρ and z only.
ω characterizes the rotation of the spacetime, so that setting
ω ¼ 0 leads to a static spacetime (which we will use when
we first introduce the minimal size conjecture). Comparing
Eq. (2.4) to Eq. (2.1) we can find that λ ¼ f is the norm
and the metric on the submanifold V is given by
hab ≡ Diag½e2γ; e2γ; ρ2�.
A complex Ernst potential for the spacetime above is

defined as E ¼ f þ iχ [32], where

∂ρχ ¼ −ρ−1f2∂zω; ∂zχ ¼ ρ−1f2∂ρω: ð2:5Þ

Integrating the above equation, one can obtain ω from f.
From Einstein’s equations, the following set of equations
can be obtained for γ, which can be solved hierarchically
from metric functions ω, and f [48]:

∂ργ ¼
1

4
ρf−2½ð∂ρfÞ2 − ð∂zfÞ2� −

1

4
ρ−1f2½ð∂ρχÞ2 − ð∂zχÞ2�;

ð2:6Þ

∂zγ ¼
1

2
ρf−2∂ρf∂zf −

1

2
ρ−1f2∂ρχ∂zχ: ð2:7Þ

Let us define a new potential ξ ¼ ð1 − EÞ=ð1þ EÞ; then
from Einstein’s equations, the so-called Ernst equation is
obtained in the following form:

ðξξ̄ − 1ÞD2ξ ¼ 2ξ̄DaξDaξ; ð2:8Þ

where an overhead bar denotes the complex conjugate
of a quantity and D2 ¼ DaDa, where Da is the covariant
derivative compatible with hab.
By choosing a conformal factor of Ω ¼ 1=r2 and a new

set of coordinates ρ̃ ¼ ρ
r2 and z̃ ¼ z

r2, starting from the metric

hab in (2.4), a conformally transformed metric h̃ã b̃ ¼ r̃4hã b̃
can be obtained, where r̃2 ¼ ρ̃2 þ z̃2. The spatial infinity
in the coordinate system ðρ̃; z̃;ϕÞ has coordinate values
ρ̃ ¼ z̃ ¼ 0. In addition, the Ernst equation can be expressed
in terms of the conformally rescaled potential ξ̃ ¼ Ω−1=2ξ
on Ṽ as

ðr̃2ξ̃ ¯̃ξ−1ÞD̃2ξ̃ ¼ 2¯̃ξD̃ãðr̃ ξ̃ÞD̃ãðr̃ ξ̃Þ: ð2:9Þ
Let us now present the definition of multipole moments

of the spacetime described by Eq. (2.4). We will choose
ϕ̃ ¼ ξ̃ for the multipole moments defined in Eq. (2.2). For a
stationary axisymmetric spacetime, multipole moments
take a simple form in terms of a scalar potential Mn and
products of unit vectors along the symmetry axis [26]. In
our case, they are [34]

MðnÞ
ã1���ãn ¼

2n!
2nn!

MnC½nã1 � � � nãn �jΛ: ð2:10Þ

Consequently, we have

Mn ¼
1

n!
MðnÞ

ã1…ãn
nã1…nãn jΛ ¼ 1

n!
MðnÞ

z̃…z̃: ð2:11Þ

For a stationary spacetime, multipole moments can be
calculated in terms of coefficients of expansion of ξ̃
on the symmetry axis. Let us adopt an expansion
of ξ̃ ¼ P∞

k¼0;l¼0 aklρ̃
kz̃l which in general becomes

ξ̃ ¼ P∞
n¼0mnz̃n on the symmetry axis. Namely, the coef-

ficients satisfy a0l ¼ ml. Plugging these expansions into the
Ernst equation inEq. (2.9), one can obtain a recursive relation
that can be used to generate all akl in terms of mn [34]:

ðrþ 2Þ2arþ2;s ¼ −ðsþ 2Þðsþ 1Þar;sþ2 þ
X

kþmþp¼r
lþnþq¼s

aklāmn½apqðp2 þ q2 − 2p − 3q − 2k − 2l − 2pk − 2ql − 2Þ

þ apþ2;q−2ðpþ 2Þðpþ 2 − 2kÞ þ ap−2;qþ2ðqþ 2Þðqþ 1 − 2lÞ�: ð2:12Þ

Note that in Ref. [34], above recursion relation also includes
terms related to electromagnetic multipole moments [see
Eqs. (79) and (80) of Ref. [34]]. The terms related to
electromagnetic moments correct some errors of Ref. [49],
but the gravitational multipole moments seem to agree with
those in Ref. [49] and also in Ref. [33].
With the above equation in Eq. (2.12), ξ̃ can be computed

everywhere on Ṽ. Furthermore, using ϕ̃ ¼ ξ̃, scalar multi-
pole moments Mn can also be obtained. To do so, one first

computes ξ̃ as a function of mn using the recursion in
Eq. (2.12). Then, one can compute the derivatives of ξ̃ and
the Ricci tensors Rã b̃ and use them in Eqs. (2.2), (2.3),
and (2.11) to compute scalar multipole moments as a
function of mn. To facilitate the calculation, Ref. [34]
implemented the concept of the leading order part of a
function and introduced complex null vectors following
Refs. [36,37] to make the procedure of taking symmetric
trace-free projection easier. Such techniques allow one to
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derive higher-order multipole moments in a simplified
manner. For example, the moments Mn are evaluated
and expressed in terms of mn up to n ¼ 6 in Ref. [34].
Note that for a Kerr spacetime, such moments are simply
Mn ¼ mn ¼ MðiaÞn with M and a denoting the mass and
spin parameter J=M, respectively [34,35].
In this work, we will focus on a set of prescribed

multipole moments and compute the metric functions from
the moments. To do so, the procedure above needs to be
reversed. First, however, one has to compute the moments
Mn as a function of coefficients of Ernst potential mn using
the procedure described above up to a certain order (a
Mathematica notebook is provided in Ref. [34] that
includes the computation of moments as a function of mn).
Then, solving formn in terms ofMn, one can use Eq. (2.12)
to compute ξ̃ as a function ofMn and evaluate ξ ¼ ξ̃=r. The
set of moments we assume are identical to those of the Kerr
spacetime moments Mn ¼ MðiaÞn except for M2. In other
words,M2 has a small deviation from that of Kerr, namely,
M2 ¼ −Ma2 þ δM2. From the real and imaginary parts of
ξ we can then obtain f and χ, respectively, which we use to
compute ω from Eq. (2.5). Finally, γ is obtained by using f
and ω computed in Eq. (2.6) or (2.7). To avoid conical
singularity on the symmetry axis, we impose the boundary
conditions that ω and γ vanish on the symmetry axis. In
order to guarantee the asymptotic flatness, γ and ω must
vanish as ρ → ∞ or z → ∞. Because the metric functions
are all computed in a power-law expansion form of 1=r, the
level of accuracy of the metric (or the order in 1=r up to
which Einstein equations are satisfied) depends on up to
which order in 1=r the potential ξ is computed. Denoting n
as the highest order of multipole moments considered, ξ is
accurate up to ð1=rÞnþ1, f is accurate up to ð1=rÞnþ1, ω is
accurate up to ð1=rÞn, and γ is accurate up to ð1=rÞnþ1.

III. CONVERGENCE RADIUS AND THE MINIMAL
SIZE CONJECTURE

In this section, we define the minimal size conjecture
and discuss how to compute the minimal size of a source
that generates certain multipole moments at infinity. In
Sec. III A, we present various methods we adopt to
compute the minimal size of the source. In Sec. III B,
using the metric computed with the Ernst formalism, we
derive the minimal size in the case of a static axisymmetric
source, in the large multipole moment limit. In Sec. III C,
we consider a stationary axisymmetric spacetime that is
weakly perturbed from Kerr. With a small deviation to the
Kerr quadrupole moment, we analyze the associated
minimal size of the source.
Given the mass of an object, the minimal size (or

maximum compactness) of the object is set by the limit
that the object is a black hole. It is then an interesting
question: if we know the multipole moments of the object,
do they provide additional constraint on the size of the

object as well? Beside the theoretical interests, this question
also has its own practical applications because if the size of
black hole mimicker is larger than the light-ring size or the
radius of the inner most stable orbit, it will significantly
influence a VLBI measurement on the spacetime critical
curve and gravitational wave measurement using EMRIs.
In Newtonian gravity, there is a correlation between a

multipole moment and the size of a source creating such a
moment. This is due to the fact that the field multipole
moments and source multipole moments are identical in
Newtonian gravity for isolated objects [50]. A multipole
moment decomposition of Newtonian gravitational poten-
tial outside a source in spherical polar coordinates ðr; θ;ϕÞ
is given by

UN ¼
X
l;m

4π

2lþ 1
IlmðtÞ

Ylmðθ;ϕÞ
rlþ1

: ð3:1Þ

The multipole moments of the mass distribution of the
source IlmðtÞ are

Ilm ¼
Z

ρðt; r⃗ÞrlYlmðθ;ϕÞd3r; ð3:2Þ

where ρðt; r⃗Þ is the mass density. Here multipoles Ilm scale
asMLl with L denoting the characteristic size of the source.
Then, one is motivated to assume that the minimum size of a
source creating such a l-th order moment should scale as
ðIlm=MÞ1=l. This scaling, however, is not guaranteed to hold
in strong field. In fact, based on the analysis of static
spacetimes in Sec. III B, we conjecture that the minimal size
of a compact source with a given multipole moment Mn,
when it is sufficiently large, should scale as ðMnÞ1=ð1þnÞ.
Notice that theoretically the central object does not neces-
sarily have to be a starlike body; it may also be a surface that
is attached to another patch of spacetime like a wormhole,
although the stability may be another issue [16].
Notice that the multipole spacetime metric discussed in

Sec. II B is a series expansion in 1=r. The expression is
completely regular near the spatial infinity, but as the r
decreases, it may fail to converge at finite radius. We refer
to this radius as the “convergence radius” and check that it
actually corresponds to a curvature singularity instead of
coordinate artifact. Once this is confirmed, the convergence
radius actually sets a lower bound on the size of the object,
because the vaccum spacetime that is smooth at spatial
infinity cannot be regularly extended beyond this point,
assuming the vacuum Einstein’s equation is still valid.

A. Methodology

Let us consider the following Taylor series,

FðxÞ ¼
X∞
n¼0

anxn; ð3:3Þ
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where the coefficients an are real and independent of the
variable x. For such a series, it is not clear what will be the
most efficient way of determining the convergence radius,
as the asymptotic behavior of an can be rather complicated.
Various converge tests exist, and for a power series, usually,
the tests provide an interval of convergence for the variable
x [51]. In realistic implementations, we only have a finite
number of terms in the power-law expansion because of the
computational cost, which limits the performance of some
of the more sophisticated methods. The latter point is
particularly relevant for the analysis in Sec. III C. We adopt
three different methods for obtaining the convergence
radius of the spacetime metric, which we present below.
For the first two tests (ratio test and root test) readers may
refer to Ref. [52] or Chapter 1 of Ref. [51].

1. Ratio test

Ratio test (also known as the d’Alembert ratio test or
Cauchy ratio test) is a measure of absolute convergence of
the series. Absolute convergence means that if we replace
the terms in the series with their absolute values the
resulting series is convergent. Note that the actual series
may still be convergent if it is not absolutely convergent,
and in that case the series is called conditionally con-
vergent. For the series in Eq. (3.3), the ratio test states that
the convergence radius is R ¼ limn→∞ j an

anþ1
j. The series

converges when jxj < R and diverges if jxj > R, but the
ratio test cannot tell us if the series is convergent or
divergent at the boundary x ¼ R, so one requires other
methods to check convergence on the boundary. The
Schwarzshild metric is a nice example where the ratio
test works well. If we expand the gtt component of the
Schwarzschild metric in Schwarzschild coordinates in
terms of inverse distance and use the ratio test, we find
the radius of convergence as 2M, which is the location
of the horizon, and gtt does blow up on the horizon.
However, the ratio test for a power series is not particularly
useful if the ratios oscillate in the large n limit, which we
will encounter in Sec. III B.

2. Root test

For the series in Eq. (3.3), the radius of convergence is
R ¼ 1=ðlim supn→∞janj1=nÞ, and the series converges in the
interval −R < x < R. This test is known as the Cauchy root
test or simply root test. Similar to the ratio test, the root test
gives absolute convergence and does not give information
of convergence on the boundary jxj ¼ R.

3. Upper-bound test

In an actual physics problem, the coefficients an are
functions of physical parameters, and most likely, what is
relevant is how the convergence radius varies if one
changes a physical parameter. An upper-bound test is
useful in that regard. First, we set an upper bound for F

in Eq. (3.3), which may have only a finite number of terms
on the right-hand side. Let us consider that all coefficients
are functions of one single physical parameter b. Then
choosing a value for the physical parameter, one can solve
for x that gives that upper bound. Varying b and repeating
the procedure, then we can find a relation between x and b
so that F is fixed. If the relation does not change by
changing the upper bound on F to various high values, we
can assume that the same relation will hold if F could be set
to infinity, and so the convergence radius will have a similar
scaling with respect to b.

B. Static spacetimes and the minimal size conjecture

In order to investigate the convergence radius of a
multipole spacetime, in this section we assume a static
axisymmetric spacetime by setting ω ¼ 0, which allows us
to obtain semianalytical results. Let us choose a new set of
coordinates on the submanifold V characterized by ðr; θÞ
by defining ρ ¼ r sin θ and z ¼ r cos θ [note that these
coordinates are not necessarily the same as the isotropic
spherical polar coordinates in Eqs. (3.1) and (3.2)]. Let us
also define f ¼ e2U. The metric in Eq. (2.4) can be
rewritten as

ds2 ¼ −e2Udt2 þ e−2U½e2γðdr2 þ r2dθ2Þ þ r2 sin2 θdϕ2�:
ð3:4Þ

For small U, we expect that e2U ≃ 1þ 2U where U is the
analog of Newton’s potential. In our case, we will see that
U can be large as we work in a strong-field scenario. The
function U satisfies the Laplace equation D2U ¼ 0, for
which the exact solution is known in terms of Legendre
polynomials:

U ¼ −
X∞
n¼0

Anr−ðnþ1ÞPnðcos θÞ: ð3:5Þ

Notice that Pl here are the Legendre polynomials
(not to be confused with multipole moments), and the
coefficients An are functions of multipole moments.
Corresponding γ is [48]

γ ¼ −
X∞
l¼0

X∞
m¼0

AlAmr−ðlþmþ2Þ ðlþ 1Þðmþ 1Þ
ðlþmþ 2Þ

× ðPlPm − Plþ1Pmþ1Þ: ð3:6Þ

For simplicity, we will keep both M and M2 moments
and set all other moments to be zero. Implementing the
algorithm given, Eq. (2.12), we can find f for the static
metric from which we compute U as U ¼ ð1=2Þ log f.
Expanding U in terms of 1=r and matching with Eq. (3.5),
one can extract An. In the case that there are only nonzero
M and M2 moments, we find that An ¼ 0 for odd n.
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Now let us further assume that M2 ≫ M3, which
basically says that the scale defining the quadrupole
moment is much bigger than that of the monopole moment.
Consequently, at each order in 1=r, the term with the
highest power in M2 dominates. Keeping only such terms
at each order, we find a power series expansion of U
in 1=r that can be rearranged in the following closed-form
expression:

U¼−
X∞
n¼0

�
MnP6nþ2ðcosθÞκ6nþ3

þ M

M1=3
2

ð2nþ1Þð5nþ1Þð10nþ3Þ
3ð3nþ1Þð6nþ1Þ MnP6nðcosθÞκ6nþ1

þ M2

M2=3
2

ð2nþ1Þð3nþ2Þð5nþ8Þ
2ð10nþ7Þ MnP6nþ4ðcosθÞκ6nþ5

�
;

ð3:7Þ

with

Mn ¼
2−2n−115nþ1ð6nþ 2Þ!
ð2nÞ!!ð10nþ 5Þ!! ; ð3:8Þ

where we defined a new variable κ ¼ M1=3
2 =r. Monopole-

quadruple solutions of static axisymmetric spacetime were
previously studied in Ref. [53]. By keeping the leading
order term inM2 at each order in Eq. (26) of Ref. [53], one
can obtain the above series with a rescaling of M2 → 3M2.
The first series in Eq (3.7) corresponds to the pure
quadruple solution discussed in Ref. [53].
For the above series, if we implement the ratio test,

the convergence radius R should depend on the ratio of
the asymptotic form of the Legendre polynomials and the
factorials:

Pnðcos θÞ ∼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πn sin θ
p cos

��
nþ 1

2

�
θ −

π

4

�
; ð3:9Þ

n! ∼ ð2πnÞ1=2
�
n
e

�
n
; ð3:10Þ

n!! ∼ ðπnÞ1=2
�
n
e

�
n=2

; when n is even; ð3:11Þ

n!! ∼ ð2nÞ1=2
�
n
e

�
n=2

; when n is odd: ð3:12Þ

Using the above expressions, then, for example, for the first
series in Eq. (3.7), we get

R ¼ lim
n→∞

����
�

Mn

Mnþ1

�
P6nþ2ðθÞ
P6nþ8ðθÞ

����
¼ 2500

2187
lim
n→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3nþ 4

3nþ 1

r ���� cos
�
π
4
−
	
5
2
þ 6n



θ
�

cos
�
π
4
−
	
17
2
þ 6n



θ
�
�����

¼ 2500

2187
lim
n→∞

���� cos
�
π
4
−
	
5
2
þ 6n



θ
�

cos
�
π
4
−
	
17
2
þ 6n



θ
�
�����: ð3:13Þ

The limit above exists for several angles such 0; π=3; π=6,
and π=2; for each case, we find R ¼ 2500=2187, which is
close to unity. The same applies to the other two series in
Eq. (3.7). However, for other angles, An oscillates as n
increases so that there is no single converged limit for
such ratios. This example reflects the fact that the ratio
test applies for rather limited cases where An does not
have asymptotic oscillatory behavior in n. On the other
hand, if we use the root test for Eq. (3.7), we find R ¼
2500=2187 for any angle 0 < θ < π. As a result, Eq. (3.7)
converges when κ6 < ð2500=2187Þ which implies
κ < ð2500=2187Þ1=6 or r > ð2187=2500Þ1=6M1=3

2 . Let us
define

R ¼ ð2187=2500Þ1=6: ð3:14Þ

Note that here both ratio and root tests provide us with
the magnitude of the radius of convergence. However, if
we extend the metric function to the complex plane of r, it
may not be singular for all rwith the same magnitude. For
example, the singularity that limits the convergence
behavior may be located at a negative r, so that the
metric actually has an analytical continuation through
r ¼ RM1=3

2 . In order to check whether it is the case, one

needs to verify whether U blows up at r ¼ RM1=3
2 by

plotting U up to high order terms of n. If the magnitude of
U rises up rapidly at that location, it is an indication
of singularity, which is indeed the case for Eq. (3.7) for
large M2. In this particular example, the convergence
radius can indeed be determined unambiguously for
arbitrary θ with analytical arguments. Let us consider
the first sum in Eq. (3.7):

X∞
n¼0

MnP6nþ2ðcos θÞκ6nþ3 ð3:15Þ

For large n, each term in the sum can be expressed as

MnP6nþ2ðcos θÞκ6nþ3

∝
R6n

n3=2
ffiffiffiffiffiffiffiffiffi
sin θ

p cos

��
6nþ 5

2

�
θ −

π

4

�
κ6nþ3

∝ Re

�
1

n3=2
ðe6iθκ6R6Þneið52θ−π

4
Þ
�
; 0 < θ < π: ð3:16Þ
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As a result, Eq. (3.15) becomes

Re

�
eið52θ−π

4
ÞX∞
n¼1

1

n3=2
ðe6iθR6κ6Þn

�
þ Finite Part

¼ Li3
2
ðzÞ þ Finite Part; ð3:17Þ

where the finite part is related to the small n contribution
to Eq. (3.15) and z is defined as z ¼ e6iθκ6R6. Similarly,
the second and third sum in Eq. (3.7) can be expressed in
terms of the polylogarithm function Li1

2
ðzÞ. These poly-

logarithm functions have branch cuts along the real axis
from z ¼ 1 to ∞, meaning the solution of U that
corresponds to jzj > 1 is not a simple connected solution.
As we extend the multipole spacetime solution toward the
origin with real r but different angle θ, the solution can
be summarized by this function that is defined in the
complex z plane. If the solution in the complex z plane is
no longer continuous because of the branch cut, the
physical solution written in terms of ðr; θ;ϕÞ is also not
continuous. Therefore, the continuity requirement sets up
the convergence radius as κ ¼ R, which reconfirms that
the convergence radius of U is at M1=3

2 R. In general, the

above analysis can be applied for the cases that An in
Eq. (3.5) [or an in Eq. (3.3)] asymptote

an; An ∼ Re

�
einαþβ

nγRn

�
; ð3:18Þ

where α, β, γ, R are all constants. The resulting con-
vergence radius is R.
The convergence radius discussed so far is for Eq. (3.7),

which omits terms with lower powers of M2 and is not an
exact solution of Einstein equations. To see if the above
convergence radius is consistent with the actual solution
of U in Eq. (3.5), we consider the upper bound test. For
various upper bounds of U, we vary M2 and find the
location r with the corresponding upper bound. The
location of the upper bound follows a power-law depend-
ence onM2 with r ¼ aMn

2 þ b where a and b are constants
and n ≈ 1=3. This is demonstrated in Fig. 1, with theM2 vs
r plot with various upper bounds of U showing the same
exponent n.
The scaling law of M1=3

2 is interesting as it is generally
smaller than the expectation from Newtonian gravity.
Indeed for a source with mass M and size L, one would

FIG. 1. Distance (r) from the source vs quadrupole moment (M2) plots along the symmetry axis θ ¼ 0 keeping magnitudes of metric
function U fixed and M2 ∈ ½2000; 100000�ðs3Þ. U has been computed up to order n ¼ 50 defined in Eq. (3.5). In each plot, we have
chosen a large value for U and varied the quadrupole moment M2 and plotted the location where U reaches such a magnitude for
corresponding M2. The plots follow a power-law relationship of r ¼ aMc

2 þ b, where a, b, c are constants and c ≈ 1=3. Such a
relationship further strengthens the analytical result obtained from root and ratio tests for Eq. (3.7), that the location of divergence of U

scales as M1=ðnþ1Þ
n when the multipole moment Mn is large.
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expect that the largest M2 is achieved by placing the mass
on the boundaries, which leads to M2 ∼ML2. This means
the Newtonian intuition is not necessarily correct in the
case of a GR definition of multipole moments and their
relation with the size of an object, suggesting such a
difference with Newtonian physics is possibly due to
strong-field effects. In particular, the “ultracompact” sol-
ution reaching the lower bound in size may be highly
nontrivial, which may not have a post-Newtonian, fluid-
type source construction. More studies are required to find
an explicit construction of the source that saturates the
bound. Similarly, observing a few higher-order moments,
we find that if the metric is dominated by the multipole

moment Mn, the convergence radius scales as M1=ðnþ1Þ
n .

While the above convergence tests provide us with
information on the location of divergence of the metric
components, metric components are coordinate-dependent
quantities, so that the divergence could be the result of a
choice of coordinates. As a result, we need to check the
behavior of curvature invariants at the convergence radius
to see if they are indeed divergent. If a curvature invariant
blows up at the convergence radius, it is an indication that
the vacuum solution breaks down and that the convergence
radius indeed limits the size of the source. For this purpose,
we compute the Krestchmann scalar K ¼ RabcdRabcd for
the metric in Eqs. (3.5) and (3.6) in the limit of M2 ≫ M3.
The behavior of the curvature, of course, depends on the

number of terms we keep inU and γ. While for consecutive
orders, the magnitude of K may display an increasing or
decreasing trend at the location of convergence radius, as
we keep higher and higher-order terms in n, K unambig-
uously increases significantly. This suggests that the
curvature invariant will also diverge at the convergence
radius of U if we keep a sufficient number of terms in the
expansion. This feature is shown in Fig. 2 by comparingffiffiffiffi
K

p
considering metric for n up to n ¼ 10, n ¼ 20, and

n ¼ 30. Furthermore, performing upper-bound tests withffiffiffiffi
K

p
also shows that the convergence radius scales as

M1=ðnþ1Þ
n . In Fig. 3, we show the upper bound tests with

curvature
ffiffiffiffi
K

p ¼ 2 and
ffiffiffiffi
K

p ¼ 10 for the M2 ≫ M3 case.
For both upper bounds, the location of the curvature scales
as M1=3

2 .

C. Kerr mimickers

We now consider the limit that spacetime multipoles
are weakly perturbed from Kerr values. This scenario is
particularly useful for the tests of black hole mimickers. For
simplicity, we assume the spacetime only deviates
from Kerr in its quadrupole moment. In other words,
Mn ¼ MðiaÞn for all n except M2 ¼ −Ma2 þ δM2, where
we consider δM2 to be small in magnitude compared
to the Kerr quadrupole moment −Ma2. For numerical

FIG. 2. Square root of Krestchmann curvature (
ffiffiffiffi
K

p
) vs distance

(ρ) plot on equatorial plane z ¼ 0 in Weyl-Papapetrou coordi-
nates for the metric described in Eqs. (3.5) and (3.6). We have
chosen M ¼ 1 and M2 ¼ 2000 and ignored other multipole
moments. The vertical dashed line shows the location RM1=3

2

on the horizontal axis. Curvature increases rapidly when ρ is
smaller than the convergence radius and increases with order n in
Eqs. (3.5) and (3.6).

FIG. 3. Location (r) of curvature threshold vs M2 plot on
the z ¼ 0 plane for the metric in Eq. (3.4) dominated by the
quadrupolar moment. We perform upper bound tests with the
square root of Kretschman curvature

ffiffiffiffi
K

p ¼ 2 and
ffiffiffiffi
K

p ¼ 10. We
find that similar to the upper bound test with metric function U,
the location of the curvature threshold follows the power law
r ¼ aMc

2 þ b, with the exponent c being close to 1=3.
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computations and presentations in the plots, we use the
normalization that M ¼ 1. Following the procedure dis-
cussed in the last paragraph of Sec. II B, we computemn in
terms of moments up to n ¼ 25 and then compute the
metric functions. The power-law expansion of the non-Kerr
part of the metric is accurate up to Oð1=r26Þ in terms of a
quasi-Cartesian set of coordinates, while we take the
background to be exact Kerr. Here a is still defined as
J=M, with J being the angular momentum of the source.
We will explore how the radius of convergence depends on
δM2 and the spin parameter a. In almost all the analyses
here and the rest of the paper, we consider δM2 to be
positive; as a result, we will refer to the condition of small
Kerr quadrupole modification as δM2 < Ma2.
Because the metric is only weakly perturbed from Kerr,

we find it convenient to convert the metric expressed
in Weyl-Pappapetrou coordinates to Boyer-Lindquist-like
coordinates to compute the convergence radius. Notice that
the coordinate transformation is the same as the one that
takes a Kerr metric from Weyl-Papapetrou coordinates to
Boyer-Lindquist coordinates:

ρ ¼ ðr2BL − 2MrBL þ a2Þ1=2 sin θBL;
z ¼ ðrBL −MÞ cos θBL: ð3:19Þ

We also transform φ as φ → −φ. Note that the above
coordinate transformation works only outside the Kerr
horizon so that ρ is real and positive.
In the original discussion of the no-hair theorem of Kerr

black holes, it was realized that the homogeneous pertur-
bation of the spacetime that introduces a nonzero modifi-
cation to multipole moments at infinity has to blow up at
the black hole horizon (a curvature singularity) [54]. This
fact is also used regarding the calculation of black hole tidal
Love numbers [55]. In the small δM2 limit, the perturbed
spacetime we compute here is essentially the “blowing-up-
at-horizon” piece of the homogeneous solution. Of course,
as δM2 increases, the radius of singularity deviates from the
black hole horizon. This is consistent with the curvature of
our metric presented in Fig 4, for which we consider an
upper-bound test in Fig. 5. Ideally, one would want to study
the curvature in the limit of very large n. In our case, the
highest three orders we used for computing curvatures are
shown in Fig. 5. For a certain upper bound on

ffiffiffiffi
K

p
, the

location where we reach the upper bound fluctuates with
orders. Setting an upper bound and computing the distance

FIG. 4. Square root of Krestchmann curvature (K1=2) vs
distance (rBL) plot in Boyer-Lindquist-like coordinates on the
equatorial plane (θBL ¼ π=2) at various orders in inverse radial
distance. The magnitude of curvature at a location increases with
order in general but may fluctuate for consecutive orders. The
horizontal range between the black dotted line and the red dotted
line shows the variation of the location of

ffiffiffiffi
K

p ¼ 2 for orders
n ¼ 23; 24; 25. Spin is chosen as a ¼ 0.3 and non-Kerr modi-
fication δM2 ¼ 0.08. Note that by order n, we mean the highest
order of multipole moments included in the metric computation is
of order n.

FIG. 5. Location (rBL) of curvature threshold vs δM2 plot on
the equatorial plane for spin a ¼ 0.3. The red line denotes the
location of

ffiffiffiffi
K

p ¼ 10, and the blue line denotes the location offfiffiffiffi
K

p ¼ 2 for various non-Kerr modifications. Each point shows
the mean value of location obtained from orders n ¼ 23; 24, and
25. The vertical “error bar” corresponding to each point shows
how much the location varies depending on orders. The hori-
zontal black dashed line corresponds to rBL ¼ 2.50M which is
the cutoff radius considered for generating BH shadows in
Sec. IV. For a comparison, at rBL ¼ 2.50M, from Fig. 4, we
obtain

ffiffiffiffi
K

p
≈ 0.8 by averaging over the three orders, while for the

Kerr solution,
ffiffiffiffi
K

p ¼ 0.4 at the equatorial prograde photon orbit
radius.
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from the source to the location of the bound for each of
the three orders, we compute a range of fluctuation of the
curvature.
Qualitatively, the distance from the source to the location

of curvature bound (see Fig. 5) increases with increasing
magnitude of δM2. This is also true for negative non-Kerr
deviations, and choosing a different curvature upper bound
produces a similar result. Furthermore, for any small δM2, a
large curvature threshold can be achieved outside the Kerr
horizon, while for Kerr such magnitudes of curvature are
located inside the horizon. If a curvature singularity exists
near the source, the location of singularity should constrain
the minimal size of the source. Although the radius values
presented in Fig. 5 are coordinate dependent, the mono-
tonic trend still suggests that bigger objects create larger
δM2 for a fixed spin.

IV. SHADOW MEASUREMENT

One way to search for deviations from the Kerr metric in
spacetimes with different sets of multipole moments is to
measure the shadows (or critical curves) in such space-
times. Searching for the relation between the critical curve
and the multipole moments has recently been discussed
in [56], which is mostly focusing on photon orbits on the
equatorial plane for a set of spacetimes with slow spins or
linearized metric perturbations. In this work, we apply the
explicit metric constructed in Sec. III C and numerically
compute the black hole shadows/critical curves. The
technical term “shadow” represents the projection of the
critical photon sphere of the central object on the camera
plane being observed by a distant observer. If the central
object has a hard surface, the emission from accreted
material on the surface likely significantly changes the
radio image [57]. If the size of the surface is larger than the
radius of the critical curve of the spacetime, there are likely
no “photon rings” showing up in the radio image, similar to
the ones predicted for black holes.
In this section, we compute the shadow of the central

object with the stationary Weyl-Papapetrou metric dis-
cussed in Sec. III C. Using the coordinate transformations
in Eq. (3.19), we transform the metric to the Boyer-
Lindquist-like coordinates. As a sample problem, we
choose a spin of a ¼ 0.3 setting M ¼ 1 and consider
two different values of δM2 of 0.01 and 0.08. We choose
such a set of parameters so that the photon ring of Kerr
spacetime with the corresponding spin value a ¼ 0.3
(prograde photon ring radius is r−ph ¼ 2.631) is outside
the curvature bound in Fig. 5. Note that the actual photon
ring of our metric is not necessarily that of Kerr, and it is not

guaranteed that there will be a photon ring outside the
source for this set of parameters. However, later in this
section, we show how we find a cutoff radius in our shadow
simulation compatible with this assumption and also with
the qualitative measure of the upper bound for the curvature
in Fig. 5.
In general, we do not expect a Carter-like constant for

generic multipole spacetimes. As a result, the geodesic
equations are not necessarily separable to be solved
analytically in a straightforward way. To calculate the
shadow of our case study spacetime we solve the null
geodesics backward in time fully numerically.2 The method
is commonly known in the field also as “backward null ray
tracing.” For this purpose, we modify the ray-tracing part
of the publicly available code, “Odyssey” [59] (excluding
the radiative transfer part). In addition, since the metric
components are expressed in series expansions in the
inverse radial coordinate involving numerous terms, we
interpolate the metric data and then compute the Christoffel
symbols numerically, e.g., for the right-hand side of the
geodesics equation:

d2xμ

dλ2
¼ Γμ

αβ

dxα

dλ
dxβ

dλ
≡ Fμ

intðr; θÞ: ð4:1Þ

In the last step, we numerically integrate the geodesic
equations (the left-hand side of the equation above) in the
relevant domain of interest. The interpolant functions
for the metric components are accurate up to 10−6 in the
fractional difference. It is also worth mentioning that this
makes our code capable of calculating the shadow for any
arbitrary axisymmetric spacetime. It is also easily extend-
able to more general spacetimes. In the following, we will
discuss the initial conditions of the rays and the choice of
integration domain in more technical detail.

A. Numerical shadow details

To calculate the shadow of the central object numeri-
cally, we employ the backward ray-tracing method, a well-
established technique in which the null geodesic equations
are numerically integrated in reverse time. First, we
establish a correspondence between the initial conditions
of each ray on the camera in the observer frame (or the
camera frame) and the central object’s frame (the object
responsible for creating the shadow). We refer to points on
the camera plane as “pixels.” The coordinates tied to the
central object are the Boyer-Lindquist-like coordinates
(rBL; θBL;ϕBL). However, in order to keep notations simple
we will denote them by (r; θ;ϕ) without the subscript “BL.”

1Note that the unstable spherical Kerr photon orbits
have radius r−ph ≤ r ≤ rþph where r−ph and rþph are the circular
prograde and retrograde photon orbits in the equatorial plane.
We can find these two radii analytically using r�ph ¼ 2M½1þ
cos ½ð2=3Þcos−1ð∓ a=MÞ�� [58].

2Numerical integrations are performed for all eight equations
corresponding to the four Boyer-Lindquist coordinates t; r; θ;ϕ
and their time derivatives, without resorting to any constants of
motion such as energy or angular momentum.
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The transformation procedure that relates a pixel in the
camera frame to that of the central object’s frame follows
the methodologies outlined in Refs. [59,60] as briefly
described below:

xCO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2O þ a2

q
sin θO − yc cos θO; ð4:2Þ

yCO ¼ xc; ð4:3Þ

zCO ¼ rO cos θO: ð4:4Þ

The subscripts “O” and “CO” refer to “Observer” and
“Central Object,” respectively. Specifically, (rO; θO;ϕO)
denotes the location of the observer in the central object’s
frame. The coordinates ðxCO; yCO; zCOÞ are Cartesian coor-
dinates of the pixels in the central object’s frame, and the
coordinates ðxc; yc; zcÞ are the pixel coordinates in the
camera frame, with zc ¼ 0. In addition, the z coordinate in
both the observer’s and central object’s frame is chosen to
be aligned. For details of the coordinate transformation
between these two frames readers can refer to [59]. Since
the spacetime in our case study still has axial symmetry,
we can set ϕO ¼ 0 without any loss of generality. We then
transform ðxCO; yCO; zCOÞ to Boyer-Lindquist-like coordi-
nates in the central object’s frame, which let us relate any
sets of pixel coordinates (as our initial positions of the rays)
to the BL coordinates in the CO frame:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 4a2z2CO
p

2
;

s
ð4:5Þ

θ ¼ cos−1
�
zCO
r

�
; ð4:6Þ

ϕ ¼ tan−1
�
yCO
xCO

�
; ð4:7Þ

t ¼ 0; ð4:8Þ

where u ¼ x2CO þ y2CO þ z2CO − a2. Accordingly, the initial
conditions for velocities are

ṙ ¼ −
rR sin θ sin θO cosϕþR2 cos θ cos θO

ðr2 þ a2cos2θÞ ; ð4:9Þ

θ̇ ¼ −
R cos θ sin θO cosϕ − r sin θ cos θO

ðr2 þ a2cos2θÞ ; ð4:10Þ

ϕ̇ ¼ sin θO sinϕ csc θ
R

; ð4:11Þ

in which R≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
. The overhead dot denotes the

derivative with respect to an affine parameter. The initial
value for ṫ is then calculated numerically for each pixel

using the null condition pμpμ ¼ 0, where pμ denotes the
four-momentum.
As mentioned previously, we compute the photon sphere

of a compact object with our spacetime metric numerically
using the backward ray-tracing method. Therefore, a major
issue in simulating the shadow of this spacetime is the
choice of the integration domain. Our integration begins at
points located on the equatorial plane, with initial con-
ditions (θ0 ¼ π=2, and arbitrary ϕ0). The starting radial
coordinate is r0 ¼ 600M, and integration proceeds back-
ward to a point we designate as the cutoff radius rcut.
Unlike the case of a black hole, we cannot integrate all the
way back to the horizon because the convergence radius in
our model exceeds that of the Kerr horizon. Additionally,
our metric loses its smoothness as it approaches small
distances from the center of CO (due to the limited number
of terms in the expansion series).
Therefore, we set a cutoff radius for our ray-tracing

procedure to ensure that, upon passing rcut, the photon
would ultimately be captured by the CO. To validate this
choice, we experiment with different values for the cutoff
radius, all of which are less than or equal to 2.63M (the
radius of Kerr’s prograde photon ring for a ¼ 0.3).
Specifically, we test the range rcut ¼ ½2.63; 2.38� and
observe that for rcut ≤ 2.5, the border of the shadow
converges to a fixed point. As a result, we select rcut <
2.48M as our integration cutoff radius in addition to the
condition ṙ < 0 which ensures that the rays passing the
cutoff radius would have a negative radial velocity. These
conditions confirm null rays’ eventual capture by the CO.
Keep in mind that this particular concern would arise only
on the left side of the shadow along the equatorial line.
At this location, null rays would be corotating with the
CO’s spin, and the photon sphere radius reaches its
minimum value. This allows the rays to come as close
as possible to the CO. While we do not have an analytical
expression for the exact location of the photon sphere in our
metric, its symmetry closely resembles that of the Kerr
metric. Therefore, we anticipate that, even in our metric, the
photon sphere radius will be larger at any point other than
the left side of the shadow. For this reason, we compare our
cutoff radius with the equatorial photon ring radius instead
of the photon sphere. Besides, the fact that the equatorial
prograde edge of the shadow (left side of the shadow)
saturates to a fixed radius, means that the surface of the CO
lies within the rcut, which can be a numerical proof of what
is shown in Fig. 5.
Let us now discuss the characteristics of the simulated

shadow of the central object. We assume that the observer is
located on the compact object’s equatorial plane. For an
initial quantitative assessment of the shadow boundaries
obtained from our simulation, we consider the equatorial
diameter of the shadow, denoted as de ¼ rþph þ r−ph. Here
r�ph represent the radii of unstable equatorial circular null
rays that corotate (−) or counterrotate (þ) with the direction
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of the black hole’s spin. Two key points warrant further
discussion. First, the left side of the shadow is shaped by rays
that corotate with the CO in the equatorial plane, thereby
approaching it more closely.3 As these rays draw closer to
the CO, deviations from the Kerr metric become increasingly
evident. Consequently, we anticipate the greatest difference
in the shadow to manifest along the left side of its border.
Second, for comparative purposes, we have a readily
available analytical expression for the radius of unstable
circular orbits in the equatorial plane in the Kerr scenario, as
outlined in footnote 1. We find that the deviation from a
corresponding Kerr spacetime shadow for the case with
δM2 ¼ 0.01 is not noticeable (δde ¼ 0.2%) (see Fig. 6),
while the δM2 ¼ 0.08 case differs from the Kerr by
δde ¼ 1.74%. Notice that the deviation in the equatorial
diameter for our numerical Kerr shadow from the analytical
Kerr value of that is only δde ¼ 6 × 10−5.
To have a better illustrative comparison between the

deviations of the borders we also plot the shadow border in
the polar coordinates in the camera frame ðrc;ϕÞ Fig. 7,
where

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c þ y2c

q
ϕ ¼ arctan

�
yc
xc

�
: ð4:12Þ

A distinguishing feature of this spacetime is the
deviation in the vertical size of the shadow on the camera
plane—the shadow radius when ϕc ¼ π=2 or ϕc ¼ 3π=2—
from that of the Kerr black hole. In the case of the Kerr
black hole, this vertical size remains constant and is
identical to the Schwarzschild black hole’s, regardless
of its spin value. To show this specific characteristic, we
plot rc against ϕc for δM2 ¼ 0.08, δM2 ¼ 0.01, and the
corresponding Kerr δM2 ¼ 0 (see Fig. 7). We find that after
cocentering the origin of the shadows on the camera plane
(lower panel of Fig. 7), δM2 ¼ 0.08 produces a larger
deviation in the vertical size of the shadow from that of Kerr
compared to δM2 ¼ 0.01, which suggests a correlation
between non-Kerr deviation and vertical shadow size.
However, the mass and spin of the central object are not
known a priori, so the absolute size of the shadow cannot
be used as a convincing observable for the non-Kerrness of
the object. Because of this reason, instead of focusing on
the comparison with a particular Kerr BH shadow, we need
to consider the difference in “shape” between the shadow of
the central object and a Kerr shadow. We will define a
measure for the area of the mismatched region between this
compact-object shadow and Kerr shadows with a range of
mass and spin parameters. For this purpose, we apply a
semianalytical approach for computing Kerr shadows

which is computationally less expensive than evolving
the null geodesics in the ray-tracing method.

B. Semianalytical Kerr shadow

The Kerr spacetime is described by the metric below in
the Boyer-Lindquist coordinates:

FIG. 6. Critical photon ring seen by an observer in the camera
frame on the equatorial plane (θO ¼ π=2). The top panel shows the
shadow edge of a Kerr BH withM ¼ 1 and a ¼ 0.3 computed in a
semianalytical method and also using our numerical method, along
with two cases of δM2 ¼ 0.01 and δM2 ¼ 0.08. The lower panel is
the enlarged box for the left part of the shadowwhich corresponds to
the corotating null geodesics. The Kerr shadows computed semi-
analytically and numerically are almost indistinguishable, which
verifies the accuracy of our numerical simulations.

3The null prograde rays form an unstable circular orbit with a
smaller radius than the retrograde ones.
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ds2¼−
�
1−

2Mr
Σ

�
dt2−

4aMrsin2θ
Σ

dtdϕþΣ
Δ
dr2

þΣdθ2þ
�
r2þa2þ2a2Mrsin2θ

Σ

�
sin2θdϕ2; ð4:13Þ

with Σ and Δ being

Σ≡ r2 þ a2 cos2 θ; ð4:14Þ

Δ≡ r2 − 2Mrþ a2; ð4:15Þ

where M and a are the black hole’s mass and the spin
parameter respectively. The Kerr shadow can be computed
semianalytically following the approach discussed in
[61,62]. In general, spherical null orbits in Kerr spacetime
can be characterized by solving the equations

VrðrÞ ¼ 0; V 0
rðrÞ ¼ 0 ð4:16Þ

simultaneously. Here prime ( 0) denotes the derivative with
respect to r. VðrÞ is the radial potential of the Kerr metric,
in a way that we can write the radial geodesics equation as
follows [63]:

Σṙ ¼ �ðVrÞ1=2;
¼ ½Eðr2 þ a2Þ − La�2 − Δ½ðL − aEÞ2 þQ2�; ð4:17Þ

and the dot is the derivative with respect to the affine
parameter. E, L, and Q are energy, angular momentum,
and Carter constant of the photon, respectively. Solving
Eq. (4.16), we find the radius of unstable spherical null
orbits (rphðE;L;QÞ). The aim here is to find sets of these
constants of motions that could distinguish the photons
passing the rph and falling into the horizon from those
that run to infinity. Additionally, the null rays in the Kerr
spacetime can be described by the two following indepen-
dent ratios:

λ ¼ L
E
; q ¼ Q

E2
; ð4:18Þ

where λ and q are characteristics of a null ray direction
as seen by a distant observer, or so-called impact param-
eters [61]. Hence, instead of using the three constants of
motion, we can deal with these two impact parameters to
classify the null geodesics. The first step to calculate
the shadow border is to use the translation of the impact
parameters into coordinates in the camera frame, using the
notations in [62,64]:

xc¼−
λ

sinθO
; yc¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþa2cos2θO−λ2cot2θO

q
: ð4:19Þ

The � determines the region above and below the equa-
torial plane respectively. Now, using the solution of (4.16),
we find the radius of unstable spherical null orbits
(rphðE;L;QÞ); accordingly we can inverse that to write
both impact parameters in terms of rph:

λ ¼ −
r2phðrph − 3MÞ þ a2ðrph þMÞ

aðrph −MÞ ;

q ¼ r3phð4a2M − rphðrph − 3MÞ2Þ
a2ðrph −MÞ2 : ð4:20Þ

This means that for any set of impact parameters ½λ; q�, we
would have two corresponding coordinates ½xc; yc�� in the
camera frame. Photons on an unstable spherical orbit would
inevitably pass the equatorial plane, and Carter constant by
definition −Q ¼ p2

θ þ ½L2 csc2 θ − a2E2� cos2 θ− would be
positive for θ ¼ π=2. As a result, a photon passing the
equatorial plane has a positive Carter constant, Q > 0.
A zero Carter constant corresponds to orbits in the
equatorial plane with pθ ¼ 0. Consequently, for spherical

FIG. 7. The shadow border’s radius (rc) as a function of the
polar angle (ϕc) at the center of the camera frame, where rc ¼
ðx2c þ y2cÞ1=2 and ϕc ¼ arctan ðyc=xcÞ. In the lower panel, the
shadows have been cocentered to the origin of the coordinate
system in the camera frame. The small oscillation appearing in
the critical curve at ϕc ¼ π is due to the limited number of terms
in the metric series expansion.
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orbits, considering Eq. (4.18), q should be q ≥ 0. The
solution to q ¼ 0 gives us the radii of equatorial unstable
circular orbits for photons corotating and counterrotating
the BH’s spin, r�ph ¼ 2M½1þ cosð2=3cos−1ð∓ a=MÞÞ�. To
extract the allowed values of ½xc; yc� representing the
shadow border, we inserted different values for rph from
the interval of ½r−ph; rþph� into Eq. (4.20), which results only
in non-negative values of q, and an interval for λ.
Additionally, for a nonequatorial observer θO ≠ π=2, we
applied the condition of yc being real as well. A comparison
between a Kerr shadow computed semianalytically and
using the numerical method in Sec. IVA is presented
Figs. 6 and 7 which show that they are fairly consistent.

C. Shadow degeneracy

The shape of the shadow of a Kerr black hole depends on
its spin, mass, and the inclination angle θO of the observer’s
location with respect to the black hole’s coordinate system.
Since these parameters are not known a priori, for a given
measure of mismatch, we should sample all the Kerr
shadows in the ða;M; θOÞ parameter space and determine
the minimal mismatch with the measured data. If this
mismatch is larger than the sensitivity limit of the detector,
then one can claim a positive evidence of Kerr deviation.
For this purpose, we define the “mismatch” between
two shadows as the area of nonoverlapping parts of these
two shadows, after cocentering them at the origin of the
camera’s reference frame. This allows us to measure the
accumulated deviations along the edge of the shadows,
summarizing them into a single variable. Mathematically,
this mismatch quantity can be defined as Mismatch≡R
2π
0 jδrcjdϕc, which is essentially the magnitude of the area
in the δrc vs ϕc plot, where rc ¼ ðx2c þ y2cÞ1=2.
We calculate the mismatch parameter between the

shadow of Kerr spacetime and the spacetime with δM2 ¼
0.08 in two different scenarios. Firstly, we fix the observer’s
inclination angle θO ¼ 90° (Fig. 8 top panel) for various
mass and spin values within the range M∈ ½0.98; 1.1�, and
a∈ ½0.2; 0.99�, with the M ¼ 1 in our simulation results.
Secondly, we allow θO to vary (Fig. 8 lower panel). The
minimum mismatch parameter with a Kerr shadow for the
θO ¼ 90° case in such a parameter regime has been found
to have a relative deviation4 of 0.35% which is realized at
a ¼ 0.67 andM ¼ 1.0077. On the other hand, by allowing
the variation of the angle θO ∈ ½π=10; π=2�, the minimum
mismatch of 0.17% has been found for θO ¼ 25.58°,
a ¼ 0.99, and M ¼ 1.0632. It is worth mentioning that
the relative deviation of the shadows from the Kerr of
the same spin and mass values is 0.92% and 0.11% for
δM2 ¼ 0.08, and δM2 ¼ 0.01 respectively. This means that

the mismatch analysis for the case of δM2 ¼ 0.01 can be
approximated to be linearly scaled.
Fundamental physics tests with black hole imaging may

be limited by astrophysical uncertainties in modeling the
accretion flows and their emissions, so it is important to
identify observables that are less susceptible to the influ-
ence of astrophysical uncertainties [65]. The light-ring/
critical-curve signatures of black holes may serve as a
viable option [66]. For the sample system considered, in
order to detect δM2 to the level of 0.08M3, the detector has
to be able to resolve shadow mismatch at the level of
≈0.3% (see Fig. 9). This sensitivity requirement may only
be realized with Earth-space or space-based VLBI [66,67].
On the other hand, because of the degeneracy between
parameters, if a central object indeed has nonzero δM2 but

FIG. 8. The mismatch contour plots in spin vs mass space.
Injected shadow is the spacetime with δM2 ¼ 0.08; a ¼ 0.3;
M ¼ 1. The plot at the top shows that the minimum mismatch
of a Kerr shadow in the equatorial point of view with the injected
shadow happens for a ¼ 0.67 and M ¼ 1.0077 with a relative
deviation of 0.35%. The plot at the bottom shows the mismatch in
the M − θO plane for fixed spin of a ¼ 0.99. In this case, the
minimum mismatch happens for θO ¼ 25.58°, M ¼ 1.0632, and
the relative deviation is 0.17%.

4Relative deviation is defined as the mismatch parameter over
the total area of the simulated shadow.
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its shadow is fitted with a Kerr black hole template, the
inferred values of the spin may be severely biased.

V. EMRI WAVEFORM

EMRIs generally comprise a massive black hole and a
stellar-mass compact object. The mass ratio, denoted as
q ¼ μ

M (with μ being the smaller mass), typically falls
within the range of q ¼ 10−6–10−4. The evolution time-
scale of an EMRI approximately scales inversely with the
mass ratio (q−1) as it is driven by the gravitational radiation
reaction. Consequently, there is a clear separation of
timescales between the orbital timescale and the evolution
timescale of orbital energies. The smaller compact objects
typically spend a significant number of orbits (104–105) in
the detector’s band before finally plunging into the more
massive object. This extended period of observation allows
for the accumulation of small changes in the spacetime’s
structure or environmental effects over many cycles to be
amplified.
Therefore EMRIs are ideal probes for the spacetime

of the central object. A small variation of the multipole
moments generally leads to a metric different from Kerr,
so that the EMRI evolution within the underlying space-
time and the corresponding waveform are also modified.
Similar studies of the effect of deviation in quadrupole
moment on the orbits around the massive compact objects
have been done in [68] using their “bumpy black hole”
models. However, we are using the metric computed in
the first part of the paper which fully describes the entire
spacetime even in the strong regime. In this work, we
consider an EMRI system comprised of a massive central
object associated with the beyond-Kerr spacetime and a
compact object in the form of a stellar mass point particle

that inspirals toward it. By comparing the accumulated
phase of the gravitational wave emitted by this system to
that of the Kerr spacetime, we can quantify the dephasing
between these two spacetimes. This dephasing serves as
an observable that can be used to probe the spacetime
multiples.
We have chosen a sample EMRI system with a secon-

dary compact object of mass μ ¼ 10M⊙ moving in an
equatorial quasicircular orbit, adiabatically inspiraling
toward the central body of mass M ¼ 106M⊙ and spin
a ¼ 0.3. The initial radial distance is set to be ri ¼ 11.43M
and the final radius (of consideration) rf ¼ 5.0M, and
consequently the orbit starts from a gravitational wave
frequency of fGW ≈ 1.6 mHz, and ends before it reaches
the Kerr innermost stable circular orbit (ISCO)
(rISCO ¼ 4.978M for Kerr black hole of spin a ¼ 0.3).
Therefore we believe the rf ¼ 5M would be a safe choice
for our analysis making sure that the adiabatic approxi-
mation would still hold, and it is a typical choice to be
compared with an EMRI with a nonrotating central black
hole. The entire orbit would then correspond to the GW
frequency interval of fGW ∈ ½1.5; 5.5� mHz, which lies
within the LISA frequency sensitivity band [69].
In the adiabatic approximation, the secondary object

moves along the instantaneous geodesics of the background
spacetime on a timescale much shorter compared to the
radiation reaction timescale [70]. Following this argument
and considering the Fourier transform of the waveform
under the stationary phase approximation [71], the gravi-
tational waveform may be written as

hðfÞ ∼ AðfÞeiψðfÞ; ð5:1Þ

where the total phase may be computed by using the energy
of the secondary body and the energy loss rate [72]:

d2ψ
dΩ2

¼ 2E0ðΩÞ
Ė

: ð5:2Þ

Here the prime denotes the derivative with respect toΩ, and
Ė is given by dE

dt ¼ −F, with F being the total energy flux
radiated to infinity and down toward the central object
(to the Horizon in the case of Kerr). Equation (5.2) can be
easily rearranged in terms of the gravitational wave
frequency f (of the 22 mode) rather than the orbital angular
frequency Ω by using Ω ¼ πf. Throughout the computa-
tion process, we are using the geometrized units
G ¼ c ¼ 1, and we set M ¼ 1 which is the total mass
of the spacetime. At the end to make the plots, we recover
the units to report the results in SI units.
Because the spacetime of the central object is only

weakly perturbed from Kerr, we write down the back-
ground metric as

g0 ¼ gK þ ϵh; ð5:3Þ

FIG. 9. In this figure we show the shadow border (rC)
corresponding to two minimum mismatch cases discussed in
Fig. 8. Two highlighted regions reflect 0.3% (gray), and 1.0%
(yellow) uniform deviation from the central object of the
δM2 ¼ 0.08 case. This shows the detection resolution needed
for distinguishing the Kerr with different mass and spin values
from our multipole spacetime.
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where we split the background metric g0 into two parts, the
Kerr metric gK plus a modification ϵh due to the deviation
in the quadrupole moment (δM2 ≠ 0). Here ϵ is a book-
keeping index. Our main goal is to compute the accumu-
lated phase difference δψ ¼ ψδM2

− ψK as a function of Ω
for a fixed value of δM2. To obtain δψ , we could use the
approximation below for the right-hand side of Eq. (5.2),
up to linear order in ϵ:

d2δψ
dΩ2

¼ δ

�
2E0ðΩÞ

Ė

�
≈
�
2δE0ðΩÞ

Ė

�
−
2E0ðΩÞδĖ

Ė2
; ð5:4Þ

where

δE ¼ E − EK; ð5:5Þ

δE0ðΩÞ≡ δdE
dΩ

¼ dE
dΩ

−
dEK

dΩ
: ð5:6Þ

Before proceeding further, it is important to note that in
this work we are only considering the waveform modula-
tion due to δE in Eq. (5.4). In general δĖ is not zero and
should have modifications of the same order in both the
mass ratio and ϵ, although the frequency dependence may
be different. However, it requires developing a modified
Teukolsky equation in order to obtain the modified energy
flux [44], which is beyond the scope of this work. By
disregarding the terms associated with δĖ, we can still
obtain a result that provides a reasonably accurate estimate
of the order of magnitude for δψ, albeit without incorpo-
rating those modifications.
On the other hand, let us consider a stationary axisym-

metric spacetime in Boyer-Lindquist coordinates with line
elements of

ds2 ¼ gttdt2 þ 2gtϕdtdϕþ grrdr2 þ gθθdθ2 þ gϕϕdϕ2:

ð5:7Þ

The conserved energy of a test particle orbiting around the
central body is

Eðr; δM2Þ
μ

¼ −gtt
dt
dτ

− gtϕ
dϕ
dτ

; ð5:8Þ

assuming that the test particle moves along an equatorial,
circular orbit (θ ¼ π

2
, dr

dτ ¼ 0, and dθ
dτ ¼ 0). The angular

velocity can be calculated as follows:

Ωðr; δM2Þ ¼
dϕ
dt

¼
−gtϕ;r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tϕ;r − gtt;rgϕϕ;r

q
gϕϕ;r

; ð5:9Þ

for which all the relevant metric components are functions
of the spin parameter, a, the radial distance from the center,
r, the polar angle θ and δM2. The above formula is useful as

we can compute E0ðΩÞ ¼ dE
dΩ using the metric data in

Eqs. (5.8) and (5.9), and the chain rule:

dE
dΩ

¼ dE
dr

�
dΩ
dr

�
−1
: ð5:10Þ

Since the metric for this spacetime is expressed as
power-law expansions with a large number of terms for
each component, it is not straightforward to write down a
compact analytical expression for dE=dΩ, which is com-
puted numerically. Operationally we compute E0ðΩðrÞÞ
and ΩðrÞ on the same grids of r that cover the relevant
parameter range, and numerically interpolate E0 over Ω,
such that the right-hand side of Eq. (5.6) can be evaluated.
In addition, to compute the accumulated phase using
Eq. (5.4), we have numerically computed the Teukolsky
flux including ðl; mÞ modes up to lmax ¼ 10, on the same
grid points of r (and therefore the same grid of Ω) for a
point particle orbiting a Kerr black hole of spin a ¼ 0.3.
Having these interpolated numerical functions, we perform
the numerical integration twice on the right-hand side of
Eq. (5.4) to obtain δψðΩÞ.
Although for the sample problem, we are assuming a

spacetime with δM2 ¼ 0.08, the linear approximation in ϵ
for the δψ enables us to compute the waveform modulation
corresponding to other small δM2, as δψ ∝ δM2. To
validate the accuracy of our linear approximation, we have
used the exact metric data for two other different values of
δM2, and compared the resulting values of the final δψ with
those obtained from the linear approximation in Table I,
while assuming a fixed value of mass ratio q ¼ 10−5.
According to Table I, the linear approximation is valid to a
good accuracy.
Figure 10 demonstrates the accumulated dephasing

δψðfÞ as a function of actual gravitational wave frequency
for a sample case of δM2 ¼ 10−5. This value of δM2 has
been chosen only to require that the minimum phase shift is
still above a conservative detection threshold of 1 rad [73].
Since LISA has at least a four-year observation window, we
consider the last four years of the EMRI evolution before
the plunge in Fig. 10.

TABLE I. In this table, we present the accuracy of the linear
approximation. In the second row, the relative error is the relative
difference between the actual phase difference for the corre-
sponding value of δM2 and the scaled version of the linear phase
difference. The third row also shows the ratio between phase shift
corresponding to each δM2 and the main case of δM2 ¼ 0.08,
which actually shows how linear they are (up to δM2 ¼ 0.16).
Evidently, the linear approximation is applicable to our choice of
parameters where δM2 < 0.09.

δM2 0.08 0.16 0.0008
Relative error 0.036% 0.59% 0.5%
δψ=δψ0.08 1.0ð�10−3Þ 2.0ð�10−3Þ 10−2ð�10−5Þ
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Since EMRI evolution generally follows the adiabatic
approximation except at the plunge phase, the gravitional
wave phase can be expressed as expansions of 1=q, with
the leading order term being δψ ∝ q−1 [70]. However, if the
period of observation is smaller than the period of the
EMRI staying in band, the accumulated dephasing is
mainly limited by the observational period instead of the
radiation reaction timescale. In this case, the dephasing is
approximately

δψ ∼Oð1Þ
�

δM2

10−5M3

�
: ð5:11Þ

It is evident that EMRI systems are superior probes of
the spacetime multipole moments compared to direct
observation of the critical curve of the central object
by VLBIs.

VI. CONCLUSION

BH mimickers may support spacetimes with arbitrary
multipolar structures. The field multipole moments at large
distances are limited by the source’s properties, such as its
size and motion, which contribute to the source multipole
moments. Our study explores how field multipole moments
should scale with the size of a source in the strong-field
relativistic limit, particularly for the cases with large
moments. We find that the source’s size should be smaller
than the radius of convergence of metric components

expressed as a Taylor series expansion in the inverse radial
distance. Determining the radius of convergence requires a
metric accurate up to a sufficiently high order in the inverse
radial distance. We have implemented the Ernst formalism
in an axistationary spacetime for that purpose. Our findings
indicate that for sufficiently large Geroch-Hansen multipole
moments in a static axisymmetric spacetime, the depend-
ence of such moments on source length scale is remarkably
different from Newtonian expectations. The characteristic
size of the source L scales with the scalar multipole
moment Mn as M1=ðnþ1Þ instead of the traditional
Newtonian scaling of M1=n

n . This implies that a source
of a smaller size than the Newtonian estimation can create
an equally large multipole moment.
In order to test the “Kerrness” of a spacetime, it is

interesting to study those with small deviations from
the Kerr moments. In particular, we have considered
the case with a small deviation from a Kerr quadrupole
moment and have semiquantitatively estimated the rela-
tion between minimal size and the non-Kerr quadrupole
moment using an upper bound test on the curvature. There
is a correlation between the non-Kerr quadrupole moment
and the size of the source when it comes to the pattern
exhibited by the radius of curvature threshold, assuming
the location of the curvature threshold is directly related to
the minimal size of the source. For example, for a positive
non-Kerr quadrupole deviation, we find that a larger size
for the object (in terms of coordinate values) corresponds
to a bigger non-Kerr quadrupole modification when the
spin is kept fixed.
In order to measure non-Kerr deviations in the quadru-

pole moment to observations, we have looked into shadows
of compact objects observable by Event Horizon Telescope
(EHT). We have implemented the backward ray-tracing
method to compute the shadows of these compact objects.
In order to probe the difference between Kerr shadows and
a shadow created by a compact object with quadrupole
deviation, we have computed the mismatch in the area of
shadows. As a sample spacetime with mass set to be unity,
spin parameter set to be a ¼ 0.3, and a quadrupole moment
deviating from the Kerr value by approximately 88% in
magnitude, our analyses show a minimum mismatch of
0.17% with a Kerr shadow of a BH with massM ¼ 1.0632
and a spin of a ¼ 0.99. This means that the parameter
degeneracy seriously limits our ability to measure the
spacetime multipole moments with EHT observations.
Compared to the challenges with EHT observations, we

have also examined the possibility of measuring GWs
from EMRIs to probe the non-Kerr deviations. EMRIs are
unique in the sense that the time spent in the inspiral phase
is much longer than the orbital timescales, and future space-
based telescopes such as LISAwill be able to harness such
opportunity to measure the black hole spacetime. For
example, considering a central object of mass of 106 solar
mass with spin being a ¼ 0.3, our analyses show that such

FIG. 10. Accumulated phase difference (dephasing) of the
gravitational wave as a function of both time and frequency,
during four years of observation time. We have considered a point
source of mass μ ¼ 10M⊙ in an equatorial quasicircular orbit
around the central object of massM ¼ 106M⊙, spin parameter of
a ¼ 0.3 with the deviation in quadrupole moment δM2 ¼ 10−5.
The starting, and ending orbital radii are chosen to be 11.43M,
and 5.0M respectively, such that the secondary object plunges
within the four years of observation.
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observations will be sensitive to the deviation from Kerr
quadrupole moments that is at least 0.01% in the relative
magnitude compared to Kerr.
We conclude by pointing to several possible future

extensions of our work. Firstly, one can investigate the
minimal size conjecture in general relativity without
assuming the axisymmetry. A possible approach is to
compute the conformal metric, keeping desirable multi-
poles in a set of normal coordinates around spatial infinity
as outlined in Ref. [74], and then transforming back to
physical spacetime. However, computing metrics to a
sufficiently high order to determine the convergence
radius may be time-consuming without assuming certain
symmetries. Secondly, the analysis using EMRI systems
to measure the spacetime of a compact object requires the
calculation of modified GWenergy flux in such perturbed
spacetime. Such a task is nontrivial as it calls for a proper
calculation with modified Teukolsky equations. The
EMRI motion near the resonant regime also has to be
accounted for [44]. Finally, we can include non-Kerr
deviations to other multipole moments in addition to the
quadrupole to investigate how they affect the conclusions
of our analyses.
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