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In most analytical studies of light ray propagation in curved spacetimes around a gravitating object
surrounded by a medium, it is assumed that the medium is a cold nonmagnetized plasma. The distinctive
feature of this environment is that the equations of motion of the rays are independent of the plasma
velocity, which, however, is not the case in other media. In this paper, we consider the deflection of light
rays propagating near a spherically symmetric gravitating object in a moving dispersive medium given by a
general refractive index. The deflection is studied when the motion of the medium is defined either as a
radially falling onto a gravitating object (e.g., black hole), or rotating in the equatorial plane. For both cases
the deflection angles are obtained. These examples demonstrate that fully analytic expressions can be
obtained if the Hamiltonian for the rays takes a rather general form as a polynomial in a given momentum
component. The general expressions are further applied to three specific choices of refractive indices, and
these cases are compared. Furthermore, the light rays propagating around a gravitating object surrounded
by a generally moving medium are further studied as a small perturbation of the cold plasma model. The
deflection angle formula is hence expressed as a sum of zeroth and first order components, where the zeroth
order term corresponds to the known cold plasma case, and the first order correction can be interpreted as
caused by small difference in the refractive index compared to the cold plasma. The results presented in this
paper allow to describe the effects caused by the motion of a medium and thus go beyond cold
nonmagnetized plasma model.
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I. INTRODUCTION

Light bending in a gravitational field is one of the famous
effects of general relativity. Soon after the theoretical
prediction, it has been probed during solar eclipse [1–4].
The deflection of light by gravity manifested itself in
various gravitational lensing phenomena which were also
confirmed by observations; see, e.g., [5–11].
Light trajectories are affected not only by the gravita-

tional field of a compact object they are passing by, but also
by the interaction with a medium through which they
propagate. Hence, in calculations focusing on a description
of relevant astrophysical situations, it is necessary to take
into account that the light propagation is determined by a
composition of several competing factors, such as gravi-
tation, refraction, and dispersion.
For an analytical description of light trajectories near

gravitating objects in a dispersive and refractive medium,
an approach developed many decades ago by Synge [12]

has recently been applied frequently. This formalism is
based on a Hamiltonian description of light in a geometrical
optics limit, and it is hence possible to study trajectories
of light rays. Investigation of the geometrical optics in a
medium in the presence of gravity was presented in Bičák
and Hadrava [13]; see also [14–16]. Furthermore, light ray
propagation in plasma was also deeply studied in a
monograph written by Perlick [17]. There, among others,
an exact formula for the integral form of light deflection
angle in the equatorial plane of a black hole described by
the Kerr metric surrounded by cold plasma was derived for
the first time. Magnetized plasma was considered by Breuer
and Ehlers [18–20], and Broderick and Blandford [21–23].
Gravitational lensing in the presence of refraction due to
nonhomogeneous plasma was also considered in a weak
deflection approximation in earlier works of Muhleman
et al. [24] (see also [25]) and Bliokh and Minakov [26].
In recent works based on the Synge’s formalism [27,28],

the light deflection in the presence of plasma was studied
first in the weak deflection approximation. These studies
assumed a Schwarzschild black hole and discussed both
homogeneous and nonhomogeneous plasma. In particular,
it was shown that the plasma effect is present already in the
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homogeneous case. Lensing in the weak deflection regime
was further considered in the Kerr metric and homogeneous
plasma by Morozova et al. [29]. The strong deflection
regime of gravitational lensing by a Schwarzschild
black hole was then studied in Tsupko and Bisnovatyi-
Kogan [30] for a system, where a homogeneous cold
plasma was assumed; properties of higher-order images
were calculated analytically. Calculation of a black hole
shadow in an arbitrary spherically symmetric spacetime
in the presence of a cold plasma was presented in Perlick
et al. [31]. Astrophysical effects of strong light bending
near compact objects in the presence of plasma were
considered in detail in a series of works by Rogers [32–35].
Light propagation in the Kerr spacetime in the presence

of a cold nonmagnetized plasma was studied in detail in
Perlick and Tsupko [36,37]. The necessary and sufficient
condition on the plasma electron density that guarantees
the separability of the Hamilton-Jacobi equation for light
rays was found. Calculation of a black hole shadow,
the deflection angle and different types of orbits were
considered. Crisnejo et al. [38] found the orbit equation
for light ray propagating in the equatorial plane of
stationary and axisymmetric spacetime surrounded by a
cold nonmagnetized plasma. Higher-order corrections for
the deflection angle of light rays in a nonhomogeneous
plasma in the weak deflection case were calculated.
Separability of the Hamilton-Jacobi equation and shadow
for light propagation in a plasma in an axially symmetric
and stationary spacetime were studied in [39]. General
conditions for both the spacetime and plasma which have
to be met in order to define the Carter constant were
introduced. Light deflection in the equatorial plane of
general axially symmetric stationary spacetimes and a
dispersive medium of a general refractive index was
considered in Bezděková and Bičák [40], with main
application to a cold plasma and the Hartle-Thorne
metric, and also to other axisymmetric spacetimes with
a quadrupole moment. The deflection angle for light rays
in such system was calculated [40].

Among other works about the subject, we refer to a
series of works by Crisnejo, Gallo et al. [38,41–44], Er and
Mao [45,46], and Kimpson et al. [47,48]. Calculation of
black hole shadow in the presence of plasma can also be
found in [31,36,37,39,49–58]. For different recent studies
of gravitational lensing in the presence of plasma, see
further [59–72].
As discussed above, most of the studies focusing on the

light propagation around a gravitating object surrounded by
a medium with dispersive and refractive properties assume
the cold nonmagnetized plasma model. This is the simplest
plasma approximation with interesting properties and
astrophysical applications.
The deflection of light in a spherically symmetric

spacetime filled by a general dispersive medium was
considered by Tsupko [73]. These results can be used
for arbitrary more complicated medium definitions. The
calculations were performed only when the medium was
assumed to be static.
In this paper, we investigate the deflection of light in a

moving medium in a spherically symmetric spacetime. It is
known that in the simplest case of a cold nonmagnetized
plasma, the motion of plasma does not affect the light
deflection (see, e.g., [17,31,59] and Sec. II for details).
However, it is not so in media of a different refractive index.
Therefore, the dependence of the deflection angle on the
velocity can characterize the difference of another plasma
medium from the cold plasma model.
The paper is organized as follows. We start from the

review of the Synge’s method and properties of cold
plasma model in its context (Sec. II). Then, we consider
two physically motivated scenarios (Fig. 1). The first is a
spherically symmetric accretion, where the matter is
radially falling onto a gravitating object. This is discussed
in Sec. III. Moreover, particular cases of three different
refractive indices definitions are compared with each other
in Sec. IV. The second scenario is a geometrically thin
rotating accretion disk in the equatorial plane, where the
matter is on circular orbits around a gravitating object,

FIG. 1. Two physical scenarios of a medium motion considered in this paper. Left panel: Spherically symmetric accretion of a
dispersive medium with refractive index nðω; rÞ onto a central object. The radial component of velocity vr is a function of the radial
coordinate r only. We calculate the deflection angle α̂ of a ray coming from infinity, reaching a minimum radius R and going back to
infinity. This case is considered in Secs. III and IV. Right panel: Rotating accretion disk of a dispersive medium in the equatorial plane.
The angular component of velocity vφ is a function of the radial coordinate r only. This case is considered in Sec. V.
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and it is studied in Sec. V. One more approach is presented
in Sec. VI, where the effect of a given medium is analyzed
as a small perturbation from the cold plasma case and the
light deflection is hence presented as a sum of zeroth and
first order components. This strategy was also employed
in a different context, for example when one studies the
propagation of light in effective quantum spacetime
models [74], in cosmological homogeneous and isotropic
symmetry [75,76], or in spherical symmetry [77,78]. Our
Conclusions are formulated in Sec. VII.
The metric signature is chosen as f−;þ;þ;þg. With

Latin indices we take i; k ¼ 0; 1; 2; 3, resp. ðt; r; ϑ;φÞ,
while for Greek indices it is assumed α; β ¼ 1; 2; 3, resp.
ðr; ϑ;φÞ. It is also used G ¼ c ¼ 1. Differentiation with
respect to the curve parameter present in the Hamiltonian
equations is denoted by a dot.

II. SYNGE’S METHOD AND SOME FEATURES
OF COLD PLASMA CASE

A. Basic equations of the Synge’s method

In Synge’s method [12], geometric optics in an isotropic
dispersive medium in the presence of gravity, is based on
the application of the so-called medium equation and the
resulting Hamiltonian. We emphasize that the method does
not cover anisotropic media such as a magnetized plasma.
Let us consider a spacetime filled by a transparent

dispersive medium. The spacetime geometry is given by
the components of the metric gik. The medium is specified
by its refractive index n (which is the reciprocal of the
phase speed) and the medium’s four-velocity Vi. The
refractive index is a given function of coordinates xi and
frequency ω,

n ¼ nðxi;ωÞ: ð1Þ

The medium’s four-velocity is a given function of coor-
dinates xi. The photon frequency,

ω ¼ ωðpi; xiÞ; ð2Þ

is measured in the instantaneous rest frame of the medium.
We have the following relation:

ωðpi; xiÞ ¼ −piVi: ð3Þ
Then, the medium equation is [12]

n2 ¼ 1þ pipi

ðpkVkÞ2 : ð4Þ

To apply the Hamiltonian formalism, the Eq. (4) is
rewritten in the form [12],

Hðxi; piÞ ¼ 0; ð5Þ

where the Hamiltonian takes the form,

Hðxi; piÞ ¼
1

2

n
gikpipk − ½n2ðxi;ωðpi; xiÞÞ − 1�ðpjVjÞ2

o
:

ð6Þ

Then, the propagation of the light rays is described by the
Hamilton’s equations,

ẋi ¼ ∂H
∂pi

; ṗi ¼ −
∂H
∂xi

: ð7Þ

We note that the solutions to Hamilton’s equations (7)
with (5) remain unchanged (up to reparametrization) if the
Hamiltonian (6) is multiplied with a nowhere vanishing
function that may depend on xi and pi.
It should be emphasized that the Eq. (4) is not the

definition of refractive index n. To use the method for a
specific medium, one should write the refractive index (1)
as an explicit function of xi and ω and substitute it into
Eq. (4) or Eq. (6). If medium is nondispersive, the refractive
index is the function of xi only; in dispersive medium it
depends also on the photon frequency (3).

B. Distinctive features of cold nonmagnetized plasma

The important example of a medium is the cold non-
magnetized plasma. First, it is the most relevant in terms of
astrophysical applications. Second, the cold plasma pro-
vides interesting dispersive properties due to the specific
form of a refractive index. The refractive index of a cold
plasma is given by

n2ðxi;ωðpi; xiÞÞ ¼ 1 −
ω2
pðxiÞ

ω2ðpi; xiÞ
; ð8Þ

where ωp is the electron plasma frequency, related to
electron number density as

ω2
pðxiÞ ¼

4πe2

me
NeðxiÞ: ð9Þ

Substitution of n in the form (8) into the medium
equation (4) leads to

−ω2
pðxiÞ ¼ pipi: ð10Þ

The substitution of (8) into Hamiltonian (6) yields

Hðxi; piÞ ¼
1

2
fgikpipk þ ω2

pðxiÞg: ð11Þ

Already at this stage, we can point out two remarkable
properties of light propagation in cold plasma (8).
(i) First, since ωðpi; xiÞ is dropped out, the Hamiltonian

(11) does not depend on Vi. This means that the motion of
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light rays in cold plasma is independent of the plasma
motion. Saying more specific, the light trajectory will be
the same for static and moving plasma as far as the
constants of motion of the ray are the same. For example,
two light rays, one in static plasma and one in moving
plasma, will follow the same paths if the photon frequency
at infinity and impact parameters are the same for these
light rays.
(ii) If cold plasma is homogeneous, i.e., ωpðxiÞ ¼ const,

then the substitution of ωp bym leads to the Hamiltonian in
the form,

Hðxi; piÞ ¼
1

2
fgikpipk þm2g: ð12Þ

This Hamiltonian describes the motion of massive (as
opposite to massless particles, like photon) particles in the
gravitational field in vacuum, e.g., [79]. Therefore, the
motion of light rays in homogeneous plasma is the same as
the motion of massive particles (with their mass equal to the
plasma frequency) in vacuum. This property was found by
Kulsrud and Loeb [15]; see also further discussion in
[21,28]. More generally, for any ωp with no zeros the light
rays are timelike geodesics of the conformally rescaled
metric ω2

pgij. This more general result is known since
Breuer and Ehlers [19].

C. Comments on the choice of an observer

Due to the fact that in the case of a cold plasma its motion
does not affect the deflection of rays, it becomes unnec-
essary to use an observer that is comoving with this plasma.
This makes it easier to deal with some of the issues
discussed below.
We will consider static and spherically symmetric

spacetimes. Let us first write the relation between the
photon frequency and the observer’s motion. If the observer
is moving with the four-velocity vi, then this observer
measures the frequency,

ωðpi; xiÞ ¼ −pivi: ð13Þ

This formula is valid for any observer. [It should not
be confused with formula (3), where the specific observer
with vi ¼ Vi is chosen.] In particular, if the observer is
static, then,

ωðpi; xiÞ ¼ −p0v0: ð14Þ

If the observer is radially moving, then there will be also
component vr on the right-hand side, i.e.,

ωðpi; xiÞ ¼ −p0v0 − prvr: ð15Þ

Let us now consider a moving cold plasma. For cold
plasma, the photon frequency ω is not present in the

Hamiltonian (11), there is only plasma frequency ωpðrÞ.
Since the velocity of the observer is only inside ω, we can
choose the observer we prefer more. It is convenient to
consider a static observer because the formula (14) is simpler
than (15). In the papers [31,36,37] about light propagation in
plasma we used a static observer. At the same time, all
formulas are valid both for static and moving plasma.
In the case of the motion of an arbitrary medium, we

cannot choose an arbitrary observer. Synge’s approach
assumes that we use the observer who is comoving with the
medium.
So the observes’s velocity vi is equal to the medium

velocity Vi. Correspondingly, in the formula for the photon
frequency (3) we write Vi, not vi. Therefore, the right-hand
side of equation for frequency will depend on the motion of
medium. If both medium and observer are static, then we
can write simply

ωðpi; xiÞ ¼ −p0V0: ð16Þ
This approach was used by Tsupko in [73]. If the medium
and observer are radially moving, then

ωðpi; xiÞ ¼ −p0V0 − prVr: ð17Þ

This is what we consider in the present paper in the next
two sections.
To conclude, in the case of a cold plasma, it is not

necessary to consider static plasma to use the simple
equation (14). It is possible to use the expression (14)
for a static observer for a moving plasma as well.
However, if the medium is different, the use of the simpler
expression (16) is possible only for a static medium (and,
consequently, for a static observer, because the observer is
comoving with the medium).

III. DEFLECTION ANGLE OF LIGHT RAY
IN A RADIALLY FALLING MEDIUM

In this section, we will consider the motion of light rays
in a spherically symmetric spacetime in the presence of a
spherically symmetric medium with nonzero radial velocity
(left panel of Fig. 1). Mainly, we are interested in the case
of a radially falling matter onto the central object.
Let us consider a spherically symmetric and static

spacetime of a general form,

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þDðrÞðdϑ2 þ sin2ϑdφ2Þ;
ð18Þ

where AðrÞ, BðrÞ and DðrÞ are positive coefficients. Since
we are going to deal with the notion of deflection angle, the
condition of asymptotic flatness is required and hence,

AðrÞ → 1; BðrÞ → 1;
DðrÞ
r2

→ 1; ð19Þ

BEZDĚKOVÁ, TSUPKO, and PFEIFER PHYS. REV. D 109, 124024 (2024)

124024-4



for r → ∞. We assume that the spacetime (18) is filled by
a spherically symmetric dispersive medium with given
refractive index nðr;ωÞ.
The restrictions above will hold throughout the paper.

In this section, we additionally assume that the medium is
radially falling onto an object (such as black hole). So, we
write the components of a medium four-velocity as

Vi ¼ ðV0; Vr; 0; 0Þ: ð20Þ
Further, we assume that Vr is a known function of r, say,

Vr ¼ fðrÞ: ð21Þ

Note that for a radially falling medium, fðrÞ < 0.
The component V0 can now be found from the nor-

malization condition,

ViVi ¼ −1; ð22Þ

which yields

V0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ BðrÞf2ðrÞ

AðrÞ

s
: ð23Þ

For simplification of further formulas, we will write only
V0ðrÞ, bearing in mind that the expression (23) should be
substituted everywhere.
For the photon frequency (3) we have

ωðpr;rÞ ¼−p0V0ðrÞ−prVr ¼−p0V0ðrÞ−prfðrÞ: ð24Þ

Note that if the motion of medium is given only by a
function of r, so it does not depend on time, p0 is still the
constant of motion. This can be seen from the equation for
ṗ0 derived from (7).
Recall that we assume that at r ¼ ∞ it holds AðrÞ → 1,

BðrÞ → 1. For simplicity, let us also set that fðrÞ → 0 at
r ¼ ∞. Taking (24) at infinity, we will find the relation
between ω0 (the photon frequency at infinity) and the
constant of motion p0, namely,

p0 ¼ −ω0: ð25Þ

As a result, the expression (24) for ωðpr; rÞ becomes

ωðpr; rÞ ¼ ω0V0ðrÞ − prfðrÞ: ð26Þ
Without a loss of generality, we will consider the

equatorial plane of metric (18), where ϑ ¼ π=2 and
pϑ ¼ 0. Using the metric coefficients (18) and the expres-
sion for photon frequency (24) in (6), we find relevant
Hamiltonian in the form,

H ¼ 1

2

�
p2
r

BðrÞ þ
p2
φ

DðrÞ −
ω2
0

AðrÞ þ wðωðpr; rÞ; rÞ
�
: ð27Þ

Here, we have introduced the function,

wðωðpr; rÞ; rÞ ¼ −ðn2 − 1Þω2ðpr; rÞ; n¼ nðωðpr; rÞ; rÞ:
ð28Þ

The function wðωðpr; rÞ; rÞ is convenient because it better
characterizes the main properties of the light propagation in
a medium in the gravitational field than refractive index n
only. In particular, for cold plasma we have w ¼ ω2

pðrÞ.
From the equations of motion for p0 and pφ, i.e.,

ṗ0 ¼ −
∂H
∂t

¼ 0; ð29Þ

ṗφ ¼ −
∂H
∂φ

¼ 0; ð30Þ

we find that p0 and pφ are indeed the constants of motion.
The equation for r reads

ṙ ¼ ∂H
∂pr

¼ pr

BðrÞ þ
1

2

∂w
∂ω

∂ωðpr; rÞ
∂pr

: ð31Þ

Using (24) and introducing the notation wω ≡ ∂w=∂ω for
compactness, we write

ṙ ¼ pr

BðrÞ −
1

2
wωfðrÞ: ð32Þ

Note that wω ¼ wωðpr; r;ω0Þ.
The equation for φ is

φ̇ ¼ ∂H
∂pφ

¼ pφ

DðrÞ : ð33Þ

For further calculations, it becomes necessary to express
pr. In a general case we can assume that a concrete form of
pr can be found from the condition H ¼ 0, where H is
given by (27). This has to be consecutively plugged
into (32), which will allow one to derive a corresponding
expression for dφ=dr. In the most general case, this can be
done numerically.
Let us assume that the value prðr;pφ;ω0Þ is known.

Then, dividing (33) by (32) we find

dφ
dr

¼ pφ

DðrÞ
�
prðr;pφ;ω0Þ

BðrÞ −
1

2
wωðpr;r;ω0ÞfðrÞ

�−1
: ð34Þ

In the calculation of the deflection angle we will integrate
from the distance of the closest approach R to infinity (see
the next section). In order to have the final angle as a
function of R and ω0 only, we need to exclude pφ. The
value pφðR;ω0Þ can be found from the equation,

prðR;pφ;ω0Þ
BðRÞ −

1

2
wðRÞ
ω fðRÞ ¼ 0; ð35Þ
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where wðRÞ
ω ¼ wωðprðR;pφ;ω0Þ; R;ω0Þ. This condition

stems from the fact that dr=dφ ¼ 0 at r ¼ R.

IV. ANALYTICAL CALCULATION
OF DEFLECTION ANGLE WITH THREE

PARTICULAR FORMS OF REFRACTIVE INDEX

As follows from the previous section, an explicit
analytical formula for dφ=dr can be found when it becomes
possible to express pr explicitly fromH ¼ 0, withH given
by Eq. (27). Obviously, it is not possible for a general case
because the function wðωðpr; rÞ; rÞ given by Eq. (28) may
depend on the photon frequency ωðpr; rÞ in a complicated
way. We recall that variable pr lies inside ωðpr; rÞ
through Eq. (26).
However, a fully analytical solution is possible, for

example, with a rather general form of refractive index,

n2ðr;ωÞ ¼ a0ðrÞ þ
a1ðrÞ
ω

þ a2ðrÞ
ω2

; ð36Þ

where coefficients a0ðrÞ, a1ðrÞ, and a2ðrÞ are arbitrary
functions of r and ω ¼ ωðpr; rÞ. All these coefficients can
be positive, zero or negative, with only restrictions that the
whole expression for n2 is non-negative and also that the
group velocity in such medium is less than c.
With the refractive index (36), the Hamiltonian (27) is

H ¼ 1

2

�
p2
r

BðrÞ þ
p2
φ

DðrÞ −
ω2
0

AðrÞ − a0ðrÞω2ðpr; rÞ

− a1ðrÞωðpr; rÞ − a2ðrÞ þ ω2ðpr; rÞ
�
; ð37Þ

where ωðpr; rÞ is given by Eq. (26).
The Hamiltonian (37) turns out to be a quadratic

polynomial of pr, which makes it possible to explicitly
express pr and, accordingly, obtain the deflection angle in a
compact form. Let us rewrite (37) as

H ¼ 1

2
½ArðrÞp2

r þ 2BrðrÞpr þ Crðr; pφÞ�; ð38Þ

where ArðrÞ, BrðrÞ, Crðr; pφÞ are some functions of r
[which should not be confused with the metric coefficients
of (18)]. Note that they also include ω0 as a parameter. For
our choice of the medium velocity, we can also set

Crðr; pφÞ ¼ Cr1ðrÞ þ
p2
φ

DðrÞ −
ω2
0

AðrÞ : ð39Þ

The coefficients in the Hamiltonian (38) are related with
the metric coefficients and functions in the refractive
index (36) as

ArðrÞ ¼
1

BðrÞ þ ð1 − a0ðrÞÞf2ðrÞ; ð40Þ

BrðrÞ ¼
�
ða0ðrÞ − 1Þω0V0ðrÞ þ 1

2
a1ðrÞ

�
fðrÞ; ð41Þ

Cr1ðrÞ ¼ −a2ðrÞ þ ω0V0ðrÞ½ð1 − a0ðrÞÞω0V0ðrÞ − a1ðrÞ�:
ð42Þ

Let us now perform general calculations for the
Hamiltonian in the form (38).
The corresponding equations of motion then read

simply as

ṙ ¼ ArðrÞpr þ BrðrÞ; ð43Þ
and

φ̇ ¼ pφ

DðrÞ : ð44Þ

In a full generality, condition H ¼ 0 returns the
expression,

pr ¼
−BrðrÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
rðrÞ −ArðrÞCrðr; pφÞ

q
ArðrÞ

; ð45Þ

or

ArðrÞpr þ BrðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
rðrÞ −ArðrÞCrðr; pφÞ

q
; ð46Þ

which starts to be convenient after plugging into formula
for ṙ because it then yields

ṙ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
rðrÞ −ArðrÞCrðr; pφÞ

q
: ð47Þ

This significantly simplifies the calculations, as we are now
dealing with a basic algebraic expression, and the orbit
equation can be written as

dφ
dr

¼ � pφ

DðrÞ ½B
2
rðrÞ −ArðrÞCrðr; pφÞ�−1=2: ð48Þ

This expression can be further abbreviated as

dφ
dr

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ArðrÞDðrÞp �

ω2
0

p2
φ
h2ðrÞ − 1

�−1=2
; ð49Þ

where we introduced the function,

h2ðrÞ ¼ DðrÞ
AðrÞ

�
1þ AðrÞ

ω2
0

�
B2
rðrÞ

ArðrÞ
− Cr1ðrÞ

��
: ð50Þ

Applying the condition at r ¼ R, one finds out that

p2
φ

ω2
0

¼ h2ðRÞ; ð51Þ
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and hence,

dφ
dr

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ArðrÞDðrÞp �

h2ðrÞ
h2ðRÞ − 1

�−1=2
: ð52Þ

Let us calculate the deflection angle α̂ of light ray moving
from infinity to a gravitating object, reaching the closest
approach valueR andmoving again to infinity (Fig. 1). For a
convenience, we can assume that the light ray moves in such
a way that its φ-coordinate increases (dφ > 0); by Eq. (44),
we have also pφ > 0 for this ray. Then, if the ray approaches
the center (r-coordinate decreases, dr < 0), we should use
minus-sign in the Eq. (52). And vice versa, if the ray moves
away from the center (r-coordinate increases, dr > 0), the
plus-sign in the Eq. (52) should be chosen.
The change of φ-coordinate for a considered ray is

given by

Δφ ¼
ZR
∞

dφ
dr

drþ
Z∞
R

dφ
dr

dr

¼ −
ZR
∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ArðrÞDðrÞp �

h2ðrÞ
h2ðRÞ − 1

�−1=2

þ
Z∞
R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ArðrÞDðrÞp �

h2ðrÞ
h2ðRÞ − 1

�−1=2

¼ 2

Z∞
R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ArðrÞDðrÞp �

h2ðrÞ
h2ðRÞ − 1

�−1=2
: ð53Þ

The value of Δφ is positive. Taking into account that the
straight-line propagation of light corresponds to Δφ ¼ π,
we find for the deflection angle α̂,

α̂ ¼ Δφ − π; ð54Þ

or

α̂ ¼ 2

Z∞
R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ArðrÞDðrÞp �

h2ðrÞ
h2ðRÞ − 1

�−1=2
dr − π: ð55Þ

Since we got rid of constant pφ, the formula (55) depends
only on the distance of the closest approach R and the
frequency of the photon at infinity ω0. The dependence of
hðrÞ on ω0 means that an observed lensing picture will look
like a “rainbow”. For cold plasma case, the effects are non-
negligible only for radioband, and the vacuum case is
recovered if ω0 → ∞. Recall that in vacuum the deflection
angle depends on R only. For vacuum case, formulas for
deflection angle in spherically symmetric metric can be
found, e.g., in [80,81].

As a side remark, such a rainbow feature also emerges in
the context of quantum gravity phenomenology, when one
models the propagation of light on quantum spacetime by a
modified dispersion relation [78,82]. In the context of
quantum gravity the relevant frequency depends on the
model, but usually non-negligible effects are assumed to
emerge for very high energetic photons [74] since the
modification of the general relativistic dispersion relation is
usually assumed to be suppressed by the Planck energy. In
this case, the classical vacuum result is obtained by sending
the Planck energy to infinity.
We remind that the formulas (52) and (55) were derived

under the assumption that for the refractive index (36)
the Hamiltonian can be written in the form (38) with
some functions ArðrÞ, BrðrÞ, and Crðr; pφÞ. This allows
us to separate explicitly the dependence on pr in the
Hamiltonian. After defining these functions for a specific
form of refractive index, the formula for deflection angle
can be easily written from the equation given above.
Let us now specify three examples of the medium.

Example 1.
Cold plasma model with the refractive index of the form,

n2ðr;ωÞ ¼ 1 −
ω2
pðrÞ
ω2

; ω ¼ ωðpr; rÞ: ð56Þ

In this case, the function wðωðpr; rÞ; rÞ defined in (28)
reduces to a simple form, independent of ωðpr; rÞ,

wðωðpr; rÞ; rÞ ¼ ω2
pðrÞ: ð57Þ

Correspondingly, the Hamiltonian (27) reduces to

H ¼ 1

2

�
p2
r

BðrÞ þ
p2
φ

DðrÞ −
ω2
0

AðrÞ þ ω2
pðrÞ

�
: ð58Þ

Then, the individual functions ArðrÞ, BrðrÞ, and Cr1ðrÞ are
as follows:

ArðrÞ ¼
1

BðrÞ ; ð59Þ

BrðrÞ ¼ 0; ð60Þ

Cr1ðrÞ ¼ ω2
pðrÞ: ð61Þ

Deflection angle (55) reduces to

α̂ ¼ 2

Z∞
R

ffiffiffiffiffiffiffiffiffi
BðrÞp
ffiffiffiffiffiffiffiffiffiffi
DðrÞp �

h2ðrÞ
h2ðRÞ − 1

�−1=2
dr − π; ð62Þ

with the function hðrÞ of the form,

h2ðrÞ ¼ DðrÞ
AðrÞ

�
1 − AðrÞω

2
pðrÞ
ω2
0

�
: ð63Þ
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Equation (62) with (63) was found in Perlick et al. [31]; see
Eq. (20) there.

Example 2.
Nondispersive medium, so the refractive index does

not depend on the photon frequency ω, but it is the function
of r only,

n ¼ nðrÞ: ð64Þ
In this case, the Hamiltonian in the equatorial plane is

H ¼ 1

2

�
p2
r

BðrÞ þ
p2
φ

DðrÞ −
ω2
0

AðrÞ þ wðω; rÞ
�
; ð65Þ

where n is not a function of ω anymore.
The coefficients ArðrÞ, BrðrÞ, and Cr1ðrÞ are as follows:

ArðrÞ ¼
1

BðrÞ − ðn2ðrÞ − 1Þf2ðrÞ; ð66Þ

BrðrÞ ¼ ðn2ðrÞ − 1Þω0V0ðrÞfðrÞ; ð67Þ

Cr1ðrÞ ¼ −ðn2ðrÞ − 1Þðω0V0ðrÞÞ2: ð68Þ

And the function hðrÞ takes the form,

h2ðrÞ ¼DðrÞ
AðrÞ

�
1þAðrÞ ðn2ðrÞ− 1ÞðV0ðrÞÞ2

1− ðn2ðrÞ− 1ÞBðrÞf2ðrÞ
�
: ð69Þ

Example 3.
A medium with the refractive index of the form,

n2ðr;ωÞ ¼ 1þ aðrÞ
ω

; ω ¼ ωðpr; rÞ: ð70Þ

In this case, the Hamiltonian in the equatorial plane takes
the form,

H ¼ 1

2

�
p2
r

BðrÞ þ
p2
φ

DðrÞ −
ω2
0

AðrÞ − aðrÞωðpr; rÞ
�
: ð71Þ

The coefficients ArðrÞ, BrðrÞ, and Cr1ðrÞ are as follows:

ArðrÞ ¼
1

BðrÞ ; ð72Þ

BrðrÞ ¼
1

2
aðrÞfðrÞ; ð73Þ

Cr1ðrÞ ¼ −aðrÞω0V0ðrÞ: ð74Þ

And the function hðrÞ takes the form,

h2ðrÞ ¼ DðrÞ
AðrÞ

�
1þ AðrÞ a

2ðrÞ
ω2
0

�
1

4
BðrÞf2ðrÞ þ ω0V0ðrÞ

aðrÞ
��

:

ð75Þ

V. DEFLECTION ANGLE IN A CASE OF
EQUATORIAL ROTATION OF MEDIUM

In this section, we will consider another case of a
medium motion (right panel of Fig. 1). We assume that
the medium is rotating in the equatorial plane of a compact
object (e.g., a black hole) in the form of a geometrically thin
accretion disk and consider the light propagation in this
plane only. The form of the metric (18) and conditions (19)
remain the same.
In the case under consideration, the medium four-

velocity is defined as

Vi ¼ ðV0; 0; 0; VφÞ: ð76Þ
Similarly to the previous case, we want Vφ to be a known
function of r which reads

Vφ ¼ fðrÞ: ð77Þ

Since the velocity does not depend on t, component p0 is
still the constant of motion.
As in the previous case, form of V0 is set from the

normalization of four-velocity, and in this case one gets

V0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þDðrÞf2ðrÞ

AðrÞ

s
: ð78Þ

In further expressions, we will restrict ourselves on writing
V0ðrÞ only, but it can be substituted as the form of (78)
anytime.
The photon frequency (3) in this case reduces to

ωðpφ; rÞ ¼ −p0V0ðrÞ − pφVφ ¼ −p0V0ðrÞ − pφfðrÞ:
ð79Þ

Because the used spacetime metric did not change and it
is still assumed that fðrÞ → 0 at r ¼ ∞, it therefore holds
that p0 ¼ −ω0. As a result, the expression (79) for ωðpφ; rÞ
becomes

ωðpφ; rÞ ¼ ω0V0ðrÞ − pφfðrÞ: ð80Þ

We will consider the photon motion in the equatorial
plane. Assuming ϑ ¼ π=2, pϑ ¼ 0, the corresponding
Hamiltonian reads

H ¼ 1

2

�
p2
r

BðrÞ þ
p2
φ

DðrÞ −
ω2
0

AðrÞ þ wðωðpφ; rÞ; rÞ
�
; ð81Þ

which looks the same as (27), but here the function,

wðωðpφ; rÞ; rÞ ¼ −ðn2 − 1Þω2ðpφ; rÞ;
n ¼ nðωðpφ; rÞ; rÞ; ð82Þ

is defined with the usage of Eq. (80).
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Due to a different definition of ω given by expression
(80) rather than expression (26), the Hamiltonian (81)
contains components pr and pφ in another way than the
Hamiltonian (27). This relation leads to a difference in
the derivation of the deflection angle. Indeed, in the
Hamiltonian (27) we had the momentum component p2

r
in the first term and also inside the term wðωðpr; rÞ; rÞ,
while the component pφ was only in the second term.
Correspondingly, the component pφ is easily expressed
from the equationH ¼ 0, but the component pr not. In the
case of the Hamiltonian (81), the component pr is only in
the first term, whereas the component pφ is in the second
term and also inside the function wðωðpφ; rÞ; rÞ. Hence, in
this case we can easily express the component pr from
H ¼ 0, but not pφ.
The equations of motion are

ṙ ¼ ∂H
∂pr

¼ pr

BðrÞ ; ð83Þ

φ̇ ¼ ∂H
∂pφ

¼ pφ

DðrÞ þ
1

2

∂w
∂ω

∂ωðpφ; rÞ
∂pφ

: ð84Þ

Note that the equations of motion for p0 and pφ remain the
same as in the previous case (see Sec. III), and hence one
can directly see that p0 and pφ are still the constants of
motion. We can further explicitly calculate ∂ωðpφ; rÞ=∂pφ.
This leads to the expression,

φ̇ ¼ pφ

DðrÞ −
1

2
wωðr; pφ;ω0ÞfðrÞ: ð85Þ

In this case, contrary to the case in Sec. III, it is possible
to easily express pr from the equation H ¼ 0. This yields

pr ¼ �
ffiffiffiffiffiffiffiffiffi
BðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0

AðrÞ −
p2
φ

DðrÞ − wðωðpφ; rÞ; rÞ
s

: ð86Þ

Plugging the obtained formula into previous equation leads
to the following equation of the trajectory:

dφ
dr

¼ �
ffiffiffiffiffiffiffiffiffi
BðrÞp
ffiffiffiffiffiffiffiffiffiffi
DðrÞp

8<
:

DðrÞ
p2
φ

h
ω2
0

AðrÞ − wðωðpφ; rÞ; rÞ
i
− 1h

1 − DðrÞ
2pφ

wωðr; pφ;ω0ÞfðrÞ
i
2

9=
;

−1=2

:

ð87Þ

To find an exact value of the deflection angle, one has to
again get rid of pφ in the final equation and express the
formula as a function of R and ω0 only. In this case, when
assuming that dr=dφ ¼ 0 at r ¼ R, it is necessary to find
form of pφðR;ω0Þ from the simple condition,

prðR;pφ;ω0Þ ¼ 0: ð88Þ

Moreover, one can now perform a similar calculation
as was done at the beginning of Sec. IV, but with respect to
pφ. We assume again the general form of the refractive
index (36), i.e.,

n2ðr;ωÞ ¼ a0ðrÞ þ
a1ðrÞ
ω

þ a2ðrÞ
ω2

; ð89Þ

but here the form of ω ¼ ωðpφ; rÞ is given by (80). The
Hamiltonian (81) hence takes the form,

H ¼ 1

2

�
p2
r

BðrÞ þ
p2
φ

DðrÞ −
ω2
0

AðrÞ − a0ðrÞω2ðpφ; rÞ

− a1ðrÞωðpφ; rÞ − a2ðrÞ þ ω2ðpφ; rÞ
�
: ð90Þ

It is again identical to (37) with the only difference in the
form of ωðpφ; rÞ defined here with (80).
We will rewrite the Hamiltonian (90) as

H ¼ 1

2
½AφðrÞp2

φ þ 2BφðrÞpφ þ Cφðr; prÞ�; ð91Þ

where AφðrÞ;BφðrÞ; Cφðr; prÞ are the functions of r
which should not be confused with the functions
ArðrÞ;BrðrÞ; Crðr; pφÞ defined in the case when Vr ≠ 0

(Sec. IV). However, they again include ω0 as a parameter.
For the suggested form of the medium velocity, one can
assume

Cφðr; prÞ ¼ Cφ1ðrÞ þ
p2
r

BðrÞ : ð92Þ

The functions AφðrÞ;BφðrÞ; Cφðr; prÞ for the refractive
index (89) then take the form,

AφðrÞ ¼
1

DðrÞ þ ð1 − a0ðrÞÞf2ðrÞ; ð93Þ

BφðrÞ ¼
�
ða0ðrÞ − 1Þω0V0ðrÞ þ 1

2
a1ðrÞ

�
fðrÞ; ð94Þ

Cφðr; prÞ ¼
p2
r

BðrÞ −
ω2
0

AðrÞ þ ω0V0ðrÞ½ð1 − a0ðrÞÞω0V0ðrÞ

− a1ðrÞ� − a2ðrÞ: ð95Þ

Note that function BφðrÞ is identical with function BrðrÞ,
while functions AφðrÞ, CφðrÞ differ from functions
ArðrÞ, CrðrÞ.
The equations of motion in this notation are

ṙ ¼ pr

BðrÞ ; ð96Þ

φ̇ ¼ AφðrÞpφ þ BφðrÞ: ð97Þ
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The condition H ¼ 0 in this case just leads to

pr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ½−AφðrÞp2

φ − 2BφðrÞpφ − Cφ1ðrÞ�
q

; ð98Þ

and when plugging this into formula for ṙ, it gives

ṙ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−AφðrÞp2

φ − 2BφðrÞpφ − Cφ1ðrÞ
BðrÞ

s
: ð99Þ

This can be applied in the orbit equation which further
reads

dφ
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞAφðrÞ

q �
B2
φðrÞ −AφðrÞCφ1ðrÞ

ðAφðrÞpφ þ BφðrÞÞ2
− 1

�−1=2
:

ð100Þ

As usual, it is desirable to get rid of the constant of
motion pφ. For that, we need to find an expression
describing the dependence of pφ on the closest radial
distance R and photon frequency at infinity ω0. In this case,
it leads to a quadratic equation with solutions,

pφ ¼
−BφðRÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
φðRÞ −AφðRÞCφ1ðRÞ

q
AφðRÞ

: ð101Þ

This formula can be used for expressing pφ with a concrete
choice of the Hamiltonian and refractive index and plugged
into the orbit equation (100).
To make the deflection angle formula more compact, it is

useful to define function hðrÞ similarly to (50) as it was
introduced in the previous sections, but in this case it is
more general, and it reads

hðrÞ ¼ 1

AφðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
φðrÞ −AφðrÞCφ1ðrÞ

q
: ð102Þ

With this notation, Eq. (101) looks as

pφ ¼ −
BφðRÞ
AφðRÞ

� hðRÞ: ð103Þ

This can also be rewritten as

AφðRÞpφ þ BφðRÞ ¼ �hðRÞ: ð104Þ

This formulation is particularly convenient for the given
definitions of the Hamiltonian and refractive index, and it
can be applied in the orbit equation to get

dφ
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞAφðrÞ

q 2
64 h2ðrÞ	

BφðrÞ
AφðrÞ −

BφðRÞ
AφðRÞ � hðRÞ



2
− 1

3
75
−1=2

:

ð105Þ
The orbit equation (105) contains plus-minus sign not

only in front of all terms in right-hand side [as it was
in (52)], but also in front of the term hðRÞ. This additional
plus-minus sign arises from the formulas (103) and (104). It
refers to the fact that due to the presence of the medium
rotation in φ-direction, the deflection will be different in the
corotation and counterrotation cases. In our consideration,
we do not assign a particular sign to quantity fðrÞ, so we
will differ these two situations on the basis of increasing or
decreasing φ-coordinate. Recall that in the previous case
(Secs. III and IV) we could consider only the case φ̇ > 0
without the loss of generality.
First, let us assume the motion with increasing

φ-coordinate (dφ > 0 or φ̇ > 0), same as we did in
Sec. IV after Eq. (52). Then, by (97), the combination
AφðrÞpφ þ BφðrÞ is positive. It means that the plus sign
should be chosen in (103) and (104). Correspondingly, the
plus sign should be used along with hðRÞ in formula (105).
Considering a ray moving from infinity to R and then

again to infinity, we choose plus-minus in front of all terms
in (105) in the same manner as in Sec. IV after Eq. (52).
As a result, we can calculate Δφ which will be positive in
this case,

Δφ ¼ 2

Z∞
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞAφðrÞ

q

×

2
64 h2ðrÞ	

BφðrÞ
AφðrÞ −

BφðRÞ
AφðRÞ þ hðRÞ



2
− 1

3
75
−1=2

dr: ð106Þ

Note the plus sign in front of hðRÞ.
Now, let us assume the motion with decreasing

φ-coordinate (dφ<0, or φ̇<0). Then, by (97), the combi-
nation AφðrÞpφ þ BφðrÞ is negative. Correspondingly, the
minus sign should be chosen along with hðRÞ in (103),
(104) and (105). The value Δφwill be negative in this case.
After an appropriate choice of plus-minus in front of all
terms in (105) we find

Δφ ¼ −2
Z∞
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞAφðrÞ

q

×

2
64 h2ðrÞ	

BφðrÞ
AφðrÞ −

BφðRÞ
AφðRÞ − hðRÞ



2
− 1

3
75
−1=2

dr: ð107Þ

Note the minus sign in front of hðRÞ.
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The formulas (106) and (107) can be combined together
with the help of deflection angle α̂ which is usually
considered as a positive value,

α̂ ¼ �Δφ − π: ð108Þ

We obtain finally the formula for the deflection angle,

α̂ ¼ 2

Z∞
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞAφðrÞ

q

×

2
64 h2ðrÞ	

BφðrÞ
AφðrÞ −

BφðRÞ
AφðRÞ � hðRÞ



2
− 1

3
75
−1=2

dr − π: ð109Þ

Here plus sign corresponds to the motion with φ̇ > 0 and
minus sign corresponds to the motion with φ̇ < 0.
Corotation and counterrotation of a light ray with the
medium depends not only on the sign of φ̇, but also on
the sign of Vφ-component given by fðrÞ. It should
also be noted that here we assume that ω0 is positive for
future oriented light rays; see the discussion in Sec. II
of [37].
It is interesting to compare this result (a spherically

symmetric compact object with a rotating moving medium)
with the Kerr case in cold plasma, see Sec. VI of Perlick
and Tsupko [17,37], and also with a general deflection
angle formula for an axially symmetric object presented
in [40].

VI. DEFLECTION ANGLE IN A CASE OF SMALL
PERTURBATION OF COLD PLASMA CASE

In this section, let us focus on the case when we can
linearize the refractive index as

n ¼ n0 þ εn1; ð110Þ

where n0 is a cold plasma refractive index (56), and ε ≪ 1
is a small parameter, while n1 is some known function of ω
and r. The idea of such linearization is that for a cold
plasma model (corresponding to n0), there is no effect
related with the medium motion and that the corrections to
first order in ε are caused by a small difference in the
refractive index to the cold plasma case. Limiting ourselves
to this simplification, in this section, however, we consider
a more general case of the medium motion, compared to the
previous sections. We assume that the four-velocity of the
medium contains both Vr and Vφ components different
from zero, namely,

Vi ¼ ðV0; Vr; 0; VφÞ: ð111Þ

We assume that both components are given functions of r
only: Vr ¼ f1ðrÞ, Vφ ¼ f2ðrÞ. As a result, p0 and pφ are

still constants of motion. The photon frequency ω will
contain both pr and pφ components of momentum

ωðr; pr; pφÞ ¼ −p0V0 − prVr − pφVφ; ð112Þ

or, together with p0 ¼ −ω0,

ωðr; pr; pφÞ ¼ ω0V0ðrÞ − prf1ðrÞ − pφf2ðrÞ: ð113Þ

As usual, the value of V0ðrÞ can be found from normali-
zation of ViVi ¼ −1.
With the refractive index in the form (110), the function

w defined by Eq. (28) is, in linear approximation in ε, given
by

w ¼ −ðn20 − 1Þω2 − 2εn0n1ω2: ð114Þ

We rewrite it as

w ¼ w0 þ 2εw1; ð115Þ
where

w0 ¼ ω2
pðrÞ; w1 ¼ −n0n1ω2: ð116Þ

In particular, w0 is independent of velocities or momenta.
The definition of w1 is further used when dealing with

the Hamiltonian, which now reads

Hðr;ω0; pr; pφÞ ¼
1

2

�
p2
r

BðrÞ þ
p2
φ

DðrÞ −
ω2
0

AðrÞ þ ω2
pðrÞ

�
þ εw1ðr;ω0; pr; pφÞ: ð117Þ

For the calculation of the deflection angle in the medium
with the Hamiltonian (117) we will follow the method
from the paper by Läänemets et al. [78] in the following
four steps.
First, we will use the fact that at the point of the closest

approach r ¼ R we have that ṙ ¼ 0 and so

∂

∂pr
HðR;ω0; pr; pφÞ ¼

pr

BðRÞ þ ε
∂

∂pr
w1ðR;ω0; pr; pφÞ

¼ 0: ð118Þ
This equation can be solved for prðR;ω0; pφÞ order by
order by setting

pr ¼ prðR;ω0; pφÞ ¼ 0 − εBðRÞ ∂

∂pr
w1ðR;ω0; 0; pφÞ:

ð119Þ

Second, since we are considering the motion of light, we
use (119) to solve HðR;ω0; prðR;ω0; pφÞ; pφÞ ¼ 0 for

pφ ¼ pφðR;ω0Þ ¼ p̄φ þ εpφε; ð120Þ
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with

p̄φ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðRÞðω2

0 − AðRÞω2
pðRÞÞ

AðRÞ

s
; ð121Þ

and

pφε ¼ −DðRÞw1ðR;ω0; 0; p̄φÞ
p̄φðR;ω0Þ

; ð122Þ

to parametrize all our findings in terms of R and ω0. We
introduced the notations p̄φ for the value of pφ in the limit
ε → 0. The symbol pφε denotes the first order correction
induced by w1.
The alternative, solving HðR;ω0;prðR;ω0;pφÞ;pφÞ ¼ 0

for ω0 ¼ ω0ðR; pφÞ in order to parametrize all expressions
in terms of R and pφ, will be discussed at the end of the
section.
Next, third, we can solve the dispersion relation

Hðr;ω0; pr; pφÞ ¼ 0 at any point r and use (120) to obtain
the radial momentum at any point,

pr ¼ prðr; R;ω0Þ ¼ p̄r þ εprε; ð123Þ

with zeroth order term,

p̄r ¼ �
ffiffiffiffiffiffiffiffiffi
BðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0

AðrÞ −
p̄2
φ

DðrÞ − ω2
pðrÞ

s
; ð124Þ

and first order correction,

prε ¼ −
BðrÞ
DðrÞ

1

p̄r
½p̄φpφε þDðrÞw1ðr;ω0; p̄r; p̄φÞ�: ð125Þ

Fourth and final, we can use the expressions we obtained
above to derive the integrand of the deflection angle.
Using (123) and (120), we can express the integrand for
the deflection angle in the variables ðr; R;ω0Þ,

dφ
dr

ðr; R;ω0Þ ¼
φ̇

ṙ
¼

∂H
∂pφ

∂H
∂pr

¼ p̄φ

p̄r

BðrÞ
DðrÞ þ ε

1

p̄2
r

BðrÞ
DðrÞ

�
p̄r

�
pφε

þDðrÞ ∂w1

∂pφ
ðr;ω0; p̄r; p̄φÞ

�

− p̄φ

�
prε þ BðrÞ ∂w1

∂pr
ðr;ω0; p̄r; p̄φÞ

��
:

ð126Þ

Using the relation (113), we can further express the
derivatives ∂w1=∂pr and ∂w1=∂pφ in (126) as

∂w1

∂pr
¼ −

∂w1

∂ω
f1ðrÞ;

∂w1

∂pφ
¼ −

∂w1

∂ω
f2ðrÞ: ð127Þ

This in principle concludes the derivation of the integrand
from which the deflection angle is obtained by integration,
in the same manner as in Eqs. (52) and (55).
However, for completeness we want to demonstrate how

this result would look like when parametrized in terms of
the angular momentum pφ instead of the frequency ω0.
The alternative path in the second step is to solve

HðR;ω0; prðR;ω0; pφÞ; pφÞ ¼ 0 for

ω0 ¼ ω0ðR; pφÞ ¼ ω̄0 þ εω0ε ð128Þ

with

ω̄0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðRÞðDðRÞω2

pðRÞ þ p2
φÞ

DðRÞ

s
; ð129Þ

and

ω0ε ¼ AðRÞw1ðR; ω̄0; 0; pφÞ
ω̄0

: ð130Þ

The third step is again to use the dispersion relation
Hðr;ω0; pr; pφÞ ¼ 0 at any point r and to use (128) to
obtain

pr ¼ prðr; R; pφÞ ¼ p̄r þ εprε; ð131Þ

with

p̄r ¼ �
ffiffiffiffiffiffiffiffiffi
BðrÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̄2
0

AðrÞ −
p2
φ

DðrÞ − ω2
pðrÞ

s
ð132Þ

and

prε ¼
BðrÞ
AðrÞ

1

p̄r
½ω̄0ω0ε − AðrÞw1ðr; ω̄0; p̄r; pφÞ�: ð133Þ

Now, the integrand of the deflection angle can be derived as
function of ðr; R; pφÞ using (131) and (128),

dφ
dr

ðr; R; pφÞ ¼
φ̇

ṙ
¼

∂H
∂pφ

∂H
∂pr

¼ pφ

p̄r

BðrÞ
DðrÞ

þ ε
1

p̄2
r

BðrÞ
DðrÞ

�
p̄rDðrÞ ∂w1

∂pφ
ðr; ω̄0; p̄r; pφÞ

− pφ

�
prε þ BðrÞ ∂w1

∂pr
ðr; ω̄0; p̄r; pφÞ

��
:

ð134Þ

Depending on the situation which we wish to describe or
which information is accessible, one can now derive the
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deflection angle either as a function of ðR;ω0Þ by integrat-
ing (126) or as a function of ðR; pφÞ by integrating (134).
Last but not least, we would like to remark that the whole

linearization procedure is valid for the Hamiltonian (117)
with ωp ¼ 0. This then would describe light deflection in a
dispersive medium that is so thin that the deviation from
vacuum light propagation is very small.

VII. CONCLUSIONS

In this paper, we have investigated gravitational deflec-
tion of light rays in a spherically symmetric spacetime filled
with a moving dispersive medium characterized by its
refractive index. We exploit the approach of Synge [12],
which is applicable for geometrical optics in a curved
spacetime in the presence of a medium, and it is widely
used in the literature. The main ideas of Synge’s approach
and specific properties of the cold plasma case were
reviewed in Sec. II. Previous works on this subject have
usually considered either particular case of cold nonmag-
netized plasma (in which medium motion does not affect
the angle of deflection) or a general medium of arbitrary
refractive index, but only static (see, e.g., Tsupko [73]).
Here, the general dispersive medium in motion has been
considered.
We have studied two physically motivated scenarios of

the medium motion (Fig. 1), for which we have written
down the Hamiltonian, the equations of motion and then
derived the deflection angle.
(1) First, we assumed a spherically symmetric accretion

of matter onto a gravitating object (see Secs. III and
IV). Consequently, only the radial spatial component
of the velocity is present, and we set that it depends
solely on the radial coordinate and not on time, i.e.,
Vr ¼ fðrÞ, Vφ ¼ 0. This guarantees that p0 is a
constant of motion even in the moving medium.
We have shown that for the refractive index of a

rather general form (36), the deflection angle can
be found analytically in a compact form given by
Eq. (55) (Sec. IV). As particular examples, we
considered three media: cold plasma case with re-
fractive index (56), refractive but nondispersive
medium characterized by (64), and dispersivemedium
with a specific refractive index in the form (70).
Comparison of the results obtained for these examples
clearly shows which terms occur in the deflection
angle due to the presence of a medium motion.

(2) As the second scenario, we have considered a
rotating accretion disk in the equatorial plane, where

φ-motion is present: Vφ ¼ fðrÞ, Vr ¼ 0. This is
described in Sec. V. In this case, we assumed that a
light ray propagates in the disk plane. The resulting
expression for the deflection angle is again quite
compact and it is given by (109). Note that in
comparison to the previous case, the deflection angle
has two solutions, depending on whether the light
propagates in the same direction as the disk rotates or
opposite.

The main aim of this paper was to consider media
beyond the cold plasma case. For cold plasma, the motion
of the medium has no effect on the light deflection. This
result was previously known, and we discussed that in
detail in Sec. II. Thus, dependence of the deflection angle
on the medium velocity is relevant only for more general
refractive indices. In other words, dependence of the
deflection angle on the medium velocity is an indicator
that the medium is not cold plasma, and it is most probably
described by a more complex model.
With this motivation, we have considered the refractive

index in the form of a cold plasma with a small perturbative
term of a general form, given as Eq. (110). Thus, it was
possible to calculate the deflection angle perturbatively up
to the first order (Sec. VI). Then, the null term corresponds
to the cold plasma case and thus does not depend on the
medium velocity, while the linear term is present due to
the medium velocity arising from the dependence on the
photon frequency; see formulas (126) and (134).
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