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During a binary black hole merger, multiple intermediary marginally outer trapped tubes connect the
initial pair of apparent horizons with the final (single) apparent horizon. The marginally outer trapped
surfaces (MOTSs) that foliate these tubes can have complicated geometries as well as nonspherical
topologies. In particular, toroidal MOTSs form inside both of the original black holes during the early
stages of a head-on merger that starts from time-symmetric initial data [1]. We show that toroidal MOTSs
also form in the maximal analytic extension of the Schwarzschild spacetime as Kruskal time advances from
the 7 = 0 moment of time symmetry. As for the merger simulations, they cross the Einstein-Rosen bridge
and are tightly sandwiched between the apparent horizons in the two asymptotic regions at early times. This
strongly suggests that their formation is a consequence of the initial conditions rather than merger physics.
Finally, we consider MOTSs of spherical topology in the Kruskal-Szekeres slicing and study their
properties. All of these are contained within the apparent horizon but some do not enclose the wormhole.
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I. INTRODUCTION

Horizon evolution during a binary black hole merger has
been studied for more than five decades. For event
horizons, the qualitative' picture of how two black holes
become one has been understood since at least the early
1970s [2,3],2 but while some knowledge of apparent
horizon mergers dates to the same time [3,5] it is only
recently that the more intricate process for apparent
horizons has been quantitatively studied in numerical
simulations [1,6—12]. Event horizon mergers are described
by the fairly simple “pair-of-pants” diagram [2], however
the process by which two distinct apparent horizons
become one is significantly more complicated and involves
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'Here “qualitative” is being used in the sense that important
general features of the mergers have been known since that time,
but the quantitative details of any particular merger had to wait for
detailed numerical simulations.

%See also [4] for recent work on this subject.

2470-0010/2024/109(12)/124023(15)

124023-1

multiple marginally outer trapped surfaces (MOTSs)
with complicated (often self-intersecting) geometries.
Identifying these surfaces has required the introduction
of new MOTS-finding techniques [12-14].

While studying the full horizon evolution during a
merger necessarily involves numerical simulations, it turns
out that some aspects of the process can also be studied
with exact solutions. Notably, self-intersecting MOTSs,
which were first observed in numerical simulations [7],
have subsequently been found to be very common, includ-
ing in many exact black hole solutions [14-16]. Following
from the example of event horizons [17,18], there has also
been an attempt to understand the horizon dynamics of
extreme mass ratio mergers using the pure Schwarzschild
spacetime [14].

In this paper, we return to the Schwarzschild spacetime
to investigate another phenomenon that was first observed
in numerical simulations. During the merger simulations
of [1], toroidal MOTSs were observed inside both of the
original apparent horizons. See Fig. 1 for an equatorial
cross section of a snapshot of this simulation and then
Fig. 2 for how the blue kidney-shaped MOTSs rotate into
tori. However, as is evident from the figure, these tori
existed at a time when the two black holes were still fairly
well-separated and not exhibiting strong gravitational

© 2024 American Physical Society
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FIG. 1. During the early stages of a head-on black hole merger
toroidal MOTSs (the blue dashed lines) were observed to form
between the (black) outermost MOTSs (the apparent horizons)
and the (red) inner MITSs (apparent horizons relative to the
asymptotic regions on the other sides of the wormhole). The
central (light blue) points are oo in the “internal” asymptotic
regions. This is adapted from Fig. 9, T = M in [1]. See that paper
for details of the simulation.

FIG. 2. Three-dimensional cross section showing the equatorial
cross sections from Fig. 1 rotated into tori. As usual the light-blue
dot in the center is actually oo in the internal asymptotic region.

distortions.”> As such it seemed likely that the toroidal
MOTSs were not a consequence of merger physics.

Toroidal MOTSs were also present at earlier times in the
simulation. However, at those earlier times, they are harder to
visually distinguish.

-
- MOTS = MITS \{

External Universe

(a) Initial data: moment of time symmetry

-

F—MITS\

Oorus—

MoTS”

External Universe
(b) Black holes fall towards each other

FIG. 3. Cartoon of the early stages of a black hole merger,
departing from a moment of time symmetry; (a) represents the
initial conditions; a moment of time symmetry in which the
horizons from both asymptotic regions coincide, and (b) is after
some time evolution when the horizons have separated and the
toroidal MOTS have appeared. Dashed green lines are the “north
poles” of the black holes.

Instead, we suspected that they were a byproduct of
the initial conditions. These simulations were started from
Brill-Lindquist initial data. This is time symmetric and
avoids the black hole singularities by using time slices that
extend through the Einstein-Rosen throats of both black
holes into the “universes” on the other side of the worm-
holes [19]. This is depicted in Fig. 3(a) with the usual
asymptotic region on the bottom and the two internal ones
on top. As a consequence of the time symmetry, MOTSs are
minimal surfaces of the original time-slice intrinsic geom-
etry and so are also marginally inner trapped surfaces
(MITSs). Equivalently, each is marginally outer trapped
with respect to both the top and bottom asymptotic regions
(which in this case serve to distinguish between outward
and inward directions). This is also shown in the figure.

Once the evolution begins and the spacetime evolves
away from the initial moment of time symmetry, the
degeneracy is lost and the two minimal surfaces split into
a distinct MOTS and MITS (or equivalently two MOTSs
with one facing the external and one the internal asymptotic
regions). These are on opposite sides of the narrowest part
of the wormhole throat and the toroidal MOTS lies in
between them, straddling the throat. All of this is shown in
Fig. 3(b). Note that unlike embedding diagrams commonly
seen in introductory textbooks, this is not a surface of
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constant radial coordinate in the equatorial plane
(6 = =/2). Instead, it is a double copy of the ¢ = 0 and
¢ = 7 meridians with 0 < € < z. To emphasize this point,
the north pole 8 = 0 is shown as a dotted green line in the
figure (and the south pole is invisible on the other side).

The Schwarzschild spacetime written in Kruskal-
Szekeres coordinates can be used to test the idea that
toroidal MOTSs are a byproduct of the departure from
time symmetry, rather than a core property of black hole
mergers. The spacelike hypersurface at timelike coordinate
T =0 in this coordinate system is a moment of time
symmetry (and is an example of a Brill-Lindquist space-
time with one black hole). However, the surfaces for other
values of T are no longer time symmetric and so we can use
this simplest black hole spacetime to explore the departure
from time symmetry.

This paper is then organized in the following way. In
Sec. I we collect a number of results that will be crucial for
the analysis in the manuscript. We review the Kruskal-
Szekeres slicing of the Schwarzschild spacetime, derive
the equations to determine MOTSs in this slicing, discuss
the methods used for visualizing MOTSs, the methods for
determining the topology of a MOTS, and discuss the
stability operator and the pseudospectral numerical tech-
niques we use to obtain its eigenvalue spectrum. Then, we
present our results in a streamlined fashion. First, in Sec. I1I
we analyze the MOTSs of toroidal topology found in the
Kruskal-Szekeres slicing. These MOTSs are the main result
of our work. In Sec. IV we discuss additional MOTSs
with spherical topology, including those with and without
self-intersections.

Note that while we believe that [20] represents the first
observation of toroidal MOTSs in black hole merger
spacetimes, it was certainly not the first time that toroidal
MOTSs or event horizons have appeared in the literature.
For example, [21] constructed spacetimes satisfying the
dominant energy condition and containing MOTSs of a
variety of topologies, [22] constructed time-symmetric
vacuum initial data that contained toroidal MOTSs, [23,24]
identified toroidal MOTS in closed Friedmann-Lemaitre-
Robertson-Walker spacetimes and [25] constructed time
symmetric nonvacuum initial that contained toroidal
MOTSs. Furthermore, [26,27] observed event horizons
with toroidal cross sections during black hole mergers
(though these are, of course, not MOTSs).

II. GENERAL CONSIDERATIONS

To streamline the presentation, here we collect all the
necessary preliminary details used in our analysis.

A. Intrinsic and extrinsic geometry of a two-surface S

Let (S, gap, D,) be a spacelike two-surface embedded in
a four-dimensional spacetime (M, g,,, V,). The metric on
S is induced by the full spacetime metric:

qdAB = ef\e%gab’ (1)

where ¢ is the pullback operator.

The normal space at any point on S can be spanned by a
pair of null normal vectors #, and Z_. We assume that
these can be extended to smooth vector fields over S and
for purposes of this paper scale them so that

£yt =-2. (2)

Then the inverse metric can be written as
1
0 = eheht S (= hen). (3)

Derivatives of the null vectors over the surface character-
ize the extrinsic geometry of S:

1

a ,b + _
etepV. 0, =5

0:qap + Oaps (4)
where 6. = ¢V ¢/ are the traces of the left-hand
quantities and the o7, are the trace-free parts. We assume
that S has an identified inside and outside and further that
¢_ points in while # points out. Then .. are, respectively,
the expansion of congruences of null curves that cross S
tangent to £, while o3, are the shears. Such surfaces are
outer trapped if 8, <0 and marginally outer trapped
if0, =0.
Finally, the Héjicek one-form [28],

1
wp = _Eeg’/ﬂ;vhfi, (5)

is the connection on the normal bundle to S. Under
rescalings of the null vectors 7, = e*7#, it transforms as

(Z)A = Wy + DA}/ (6)

For now we are chiefly interested in 6., but the shear
and the Hégjicek one-form will return in Sec. II F when we
consider the stability operator.

B. Kruskal-Szekeres coordinates

The well-known maximal analytic extension of the
Schwarzschild exterior solution is the Kruskal geometry,

ds? = N2(=dT? + dX?) + r2dQ2, (7)

where T, X €R and dQ? = d#? + sin?d¢? is the standard
unit round metric on S2, with € (0,7) and ¢ ~ ¢ + 2x.
The lapse N is defined by

32M3 e
N2 =2l (8)

r
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while r > 0 is defined implicitly in terms of 7 and X by

X = <1 —ﬁ)ﬁ. (9)

The explicit solution to this equation is
_T2 X2
(T, X) :ZM[l +W<4+>], (10)
e

where W is the Lambert-W function.

Note that, in contrast to the region outside the event
horizon covered by Schwarzschild coordinates, the full
Schwarzschild spacetime is not static. In particular, the
timelike vector field dr is not Killing and it is clear that
the metric components depend on 7. However, there still
remains one moment of time symmetry: 7 = 0.

The Schwarzschild geometry can be represented in
Kruskal-Szekeres diagrams such as in Fig. 4, where the
vertical and horizontal axes correspond to the 7, X € R
coordinates, respectively. On these diagrams, constant ¢, r
slices are hyperbolic with the singularity at r = 0 corre-
sponding to 72 — X2 = 1. The surfaces of constant Kruskal
time can equally well be represented on the familiar
Schwarzschild Carter-Penrose diagram, which we show
in Fig. 5. For T? < 1, the surfaces of constant time form
Einstein-Rosen bridges (wormholes) connecting the left
and right asymptotically flat regions. When T2 = 1, the
throat of the wormhole touches the singularity at the
symmetric point X = 0. For T? > 1, the surfaces of
constant time are comprised of two disconnected compo-
nents terminating at X = £V T2 — 1. These ideas are
concretely visualized in the embedding diagrams such
as Fig. 6.

FIG. 4. A Kruskal-Szekeres diagram highlighting four constant
T slices, which correspond to Figs. 5 and 6. The dashed line is the
event horizon r = 2M, the dotted line is the curvature singularity
at r = 0. The solid lines are the T, X axes.

—T=15
—T=10

— T=05
— T=00

FIG. 5.

A typical Carter-Penrose diagram of the maximally
extended Schwarzschild spacetime. Lines correspond to the same
lines in Fig. 4. For |T| < 1, the £; have two asymptotically flat
ends; i{ and 5.

C. MOTS in the Kruskal-Szekeres time slices

Given a foliation of a spacetime M into spacelike three-
surfaces (2, h; I D;) and a two-surface S embedded in one
27, a natural (though certainly not unique) scaling of the
null normals to S is

£, =a+N and Z_=0-N, (11)

where i is the forward-in-time pointing normal to the X
and N is the outward pointing unit spacelike normal to S
in ZT.4

With this scaling the outward null expansion can be
written as

0, = q"K;; + qijDiva (12)

where K;; = e?ejb.vaitb is the extrinsic curvature of X; in

M and ¢' = el epq”? is the push forward of the inverse

metric on S into X7. Then our goal in this section is to solve
for S with . = 0. To do this, we apply the formalism
of [16] which is a generalization and systemization of that
used in [12].

The formalism assumes a rotational symmetry of A;;
and K;; generated by a coordinate vector field d,. It then
identifies axisymmetric MOTS in X7 by manipulating (12)
into a pair of coupled differential equations on the (two-
dimensional) orbit space X := X;/SO(2). The equations
describe an accelerated curve:

'V, T = kmorsN°, (13)
where 7 and N are the unit tangent and normal vectors

to the curve in £ and kyors is the magnitude of the
acceleration. Solutions of these equations are dubbed

“It is in order to make this choice that we are choosing the
scaling 7, - £_ = 2.
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6 € (0,m)

FIG. 6. Embedding diagrams of T = 0.0, 0.5, 1.0, 1.5 hypersurfaces, respectively from left to right. The solid black line is the r = 2M
horizon at X = T and the solid red is the » = 2M horizon at X = —T. The solid blue line is the toroidal MOTS at T = 0.5 (in the family
of MOTSs depicted in Fig. 7). The solid purple line is the once-intersected MOTSs in the respective T slices (exemplary of the MOTSs
shown in Fig. 15). The dashed green lines are the poles at @ = 0 and € = x in the usual Kruskal-Szekeres coordinate {7, X, 0, ¢}. By
mirroring these diagrams about § = 0, 7, one would recover the cartoon in Fig. 3.

MOTSodesics and can be rotated by 9, into full MOTS
in X

The main work of the formalism is calculating xyors-
For nonrotating spacetimes, it is relatively straightforward.
For rotating ones it can be quite involved. Luckily, we are
dealing with a nonrotating spacetime but nevertheless,
readers who are only interested in the final form of the
equations may want to skip directly to (25) and (26).

On the X; surfaces of constant 7" the induced metric is

h;jdx'dx/ = N2dX?* + r*dQ? (14)
and the extrinsic curvature is

K, dxidy = NpdX? + %dm. (15)

The extrinsic curvature is most easily calculated by recall-
ing that K;; = 3 L;h;; and applying

h=—— (16)

where N and r were defined in (8) and (10), respectively.
Clearly 9, is a symmetry of both h;; and K;; and, with
r =r(T,X), both are explicitly time dependent.

Following the formalism of [16] we fix coordinates
x? = (X, 0) with the remaining coordinate ¢ representing
the symmetry direction. Then, the orbit space (Z, A, V)
has the metric,

hapdxedx? = N2dX2 + r2dé?, (17)

and the Christoffel symbols associated to the metric
connection V are

N X rry ry
ngzﬁ’ Egé):_ﬁ and Eg)m:?’ (18)
where a subscript X denotes partial differentiation with
respect to X.

We consider unit speed curves x“(s) = (P(s),0(s)) in

. These have tangent vector field

. .0 .0
T=P—+6— 1
ax 9% (19)

where the overdot denotes differentiation with respect
to the arc length parameter s. The unit speed condition
imposes the constraint

N2P? 4 1?0% = 1. (20)

The corresponding unit normal vector field along this

curve is
N r\. o N\. 0
N = <N>®_6X_ <7>P% (21)

Then from Sec. 2 of [16] the acceleration

kvots = K+ Ky + Kg 4. (22)
where
K= h?"K,,.
Ky = NV, <ln M) and
Kpp=K,T'T/. (23)
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FIG.7. Toroidal MOTSs (in blue) found in the 7 = 0.9 to T = 0.2 hypersurfaces. The event horizon MOTS is shown in black (X = T)
and MITS in red (X = —T). The place of spatial symmetry X = O is shown as a dashed-gray line. Note the non-Euclidean axes.

Explicitly these are

NP’
¢) N cot ®P
Ky = & _NeotoP
N r

(24)

where a subscript 7 denotes a partial derivative with
respect to 7.

Then by (13), (18) and (24) we obtain the MOTSodesic
equations:

. Nx\ ; X\ ¢ TKMOTS \ ¢
P=—(=2)|pP? — @2 —_— 2
(N> +<N2>® +( N )@, (25)
2 . .
6= _<£>p@_<m>p’ (26)
r r
where
r Ncot®) . ry\ -
KMOTSZF;,—( p >P+<1\)7(>®
) rrT -5
+ (N7)P* + N 0°. (27)

As a simple check, consider a cross section of the
event horizon branch defined by X = T = constant.
We then have P = 0 and the unit speed condition implies
©® = +£(2M)~! so that ® = 0. Choosing the upper sign for
concreteness, note that (26) is automatically satisfied. We
then find (25) reduces to the requirement,

rx+rT_0
MN? ’

(28)

which holds automatically since ry = 4Me™'X = —ry
when evaluated on the surface 7 = X. This verifies
that the cross sections of the event horizon are indeed
MOTS.

D. Visualizing the MOTS

We visualize the MOTS by plotting their corresponding
MOTSodesics in . However, we first need to choose a way
to represent . We use two different methods, each one with
advantages and disadvantages.

(1) Polarlike coordinates: The first is to map ¥ into the
half-plane via (x,y) = (¢Xcos@, X sind). In these
coordinates, X — —oco maps to the origin (0, 0) while
X — oo sends x, y — oo0. The throat of the wormhole
(X = 0) is the unit semicircle in these coordinates.

This method gives a simple, two-dimensional
representation of the MOTS (see, for example,
Fig. 7). However, the coordinate system distorts
the geometry. While the two asymptotic ends of =
are geometrically equivalent, they appear very differ-
ently in this coordinate system.

(2) Embedding: The second is to represent  as an
embedded surface in the half of Euclidean R? that is
covered by cylindrical coordinates 0 < p < o0,
—oo <z<oo and 0 <d <z Note that this is
different from standard embedding diagrams. One
typically embeds the disk at fixed @ = z/2 on the
full Euclidean R3. However, the interesting features
of the MOTSs are encoded in the € coordinate, so
embedding the orbit space X better showcases their
properties.

The metric is

ds? = dz? + dp? + p*d®>. (29)
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A surface parametrized by z = z(X) and p = p(X)
then has metric

dz\2  [dp\2
ds? = ((d—;> + (d—§> )dxz+p2da2. (30)

Matching with the induced metric (17) on s [holding
T constant such that r(7,X) — r(X)] we obtain
equations for the embedding:

9 =0, p=r(X) and
, dz\? dp\?
e (@) @) e
On (numerically) solving the differential equation
for z(X) we have a parametrization of the embed-
ding surface in terms of (X, 9). Due to the symmetry
about X = 0, the solution for z(X) is multiplied by a
factor of sign(X) to encode this symmetry about
the z =0 plane. Figure 6 shows the embedding
diagrams of the same constant-7 slices that appeared
in Figs. 4 and 5 along with examples of MOTSs.
The Einstein-Rosen bridge is clearly shown,
along with the fact that it pinches off at 7 = 1.
The symmetry about X =0 has also been con-
structed to be shown about the z =0 plane. We
emphasize that these diagrams do not reflect the
axisymmetry (invariance under rotations in the
periodically identified coordinate ¢). The MOTSs
are ultimately the curves in £ (such as those depicted

in Figs. 7, 10, 12, 15) rotated about the ¢ direction to
result in surfaces such as Fig. 2.

E. Topology of a MOTS

The MOTSs considered here are two-dimensional and
orientable and so their topology is completely determined
by the Euler characteristic. This is found by integrating the
Gauss curvature K over the MOTS with induced area

element da = \/det(q,pz)ds A de,

1
¥y =— [ Kda. (32)
2 S

The Gauss curvature K = %R@), where R is the scalar
curvature associated to the induced metric on the MOTS

qapdxtdx? = ds? + q,,(s)dg?, (33)

where s is the arc length parameter on the curve
(P(s),0(s)) which generates the surface. Explicitly,

Gpp(s) = (T, P(s))*sin’@(s). (34)

In the present case, the induced metric is both diagonal and
axisymmetric, so

1 d q
RO — 4 ( 0o ) (35)
(%4;)1/2 ds (('I(/Id))l/z

The (P(s),O(s)) from (25) and (26) determine ¢,z and K.
Then in cases in which the topology is unclear we can
check the topology with (32).

F. The stability operator

The stability operator encodes detailed information
about a MOTS in its spectrum [29-31]. Generically, the
spectrum of the stability operator is complex, but the
principal (smallest) eigenvalue is guaranteed to be real.
A MOTS is called strictly stable if its principal eigenvalue
is positive, stable if it is non-negative, and unstable if it is
negative. Strictly stable MOTSs enjoy a number of proper-
ties that make them well-suited to serve as quasilocal black
hole boundaries. They are guaranteed to persist under time
evolution and they serve as boundaries separating trapped
and untrapped regions. For these reasons we use the term
“apparent horizon” to refer to a MOTS that is strictly stable,
in line with [1]. (Note that this characterization of an
apparent horizon is related to the “standard” definition of an
apparent horizon—the boundary of the region containing
trapped surfaces—by Theorem 2.1 of [31].)

While unstable MOTSs are unsuitable as quasilocal
horizons they still play an important role in black hole
dynamics. For example, the continuous sequence of
MOTSs connecting the initial and final states in the
head-on merger of two axisymmetric nonrotating black
holes are largely made up from unstable MOTS [7].
In particular unstable MOTSs are responsible for annihilat-
ing the apparent horizons of the original black holes in such
a merger [11]. Here we will study the spectrum of the
stability operator for the MOTSs found in the Kruskal
slicing of the Schwarzschild black hole.

Following the conventions of [29] the stability
operator is
Lly] = Ay + 20" o4y
R® 1 2 A 2
+ 15 5 losl + Dao’ ~lol* |y (36)
1
=P Pay +5 (R = o, Py (37)

where [lo. |2 = 4867 o] = @'wy and Py = Dy — w,.

The shear and connection w, were defined in Sec. I A;
however, for purposes of this section it is also useful to
write them relative to initial data:

Wy = EZKUNJ-, (38)
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oy = ehep(Ki; + D). (39)

Note that there is no need to subtract the trace to obtain a
trace-free o4 ,. With

0, = CIABeixe{a(Kij +D;N;) =0, (40)

it is automatically trace-free.

In general the stability operator is not self-adjoint and
has complex eigenvalues, however if @ is exact then there is
a significant simplification. This is most easily seen from
the second form of the stability operator. If , = D,y for
some ¥, then for any scalar or tensor T a direct calculation
shows that

Pa(e'T) = (Dy — wy)(e'T) = e’DyT.  (41)

It then follows that

PPy = DD,y (e ) (42)
and so
Lly] = e'Lle"y], (43)
for
L=~ + 3[R = lo, ] (44)

For further discussion of this transformation and its
equivalence to rescaling the null vectors, see [32,33].
The transformation is significant as an operator of the
form (44) is self-adjoint and so necessarily has a real
eigenvalue spectrum with a smallest principal eigenvalue
Ao. However, it is clear from (43) that if Ly; = A;; then
L(e7y;) = A;(e"w;): they have the same eigenvalue
spectrum and the eigenfunctions of one are simple rescal-
ings of those of the other. For our purposes we only care
about the eigenvalue spectrum and so if w, is exact, we can
forget about w, and instead study (44).

For the S generated by rotating the MOTSodesic
(P(s),0(s)) an application of (21) and (38) gives

2\/
® = F(s)ds forF(s):=P®rT<%(1]VV—2)— ) (45)

This is exact and so henceforth we can forget about the
complications of (36) and instead calculate the eigenvalue
spectrum of (44).

Calculating the rest of the terms in L, the Laplacian for
metric (33) is

1/d 3} 1 7
A=R+= (1 T2 46
s +2<ds<0gq‘/"/’)) as+q¢¢a¢2 (46)

and the Ricci scalar was already calculated in (35). The
shear is a little more involved. Keeping in mind that g, is
diagonal, it follows from (40) that

oy = —=q"c},. (47)

Then, with 6,4 = 0 we have

2
o 2 = A0 n
rsin*@®’
where
. sin’® , _ .
Opp = N (rrr + r*ry®) — cos @ sin ONrP.

With these expressions in hand and given a numerical
solution of (25) and (26), we determine the spectrum of the
stability operator numerically using pseudospectral tech-
niques [34,35]. Since these methods have been described
in detail elsewhere, e.g. [13,15], we will be relatively brief
with our overview.

We are restricting here to MOTSs that share the
axisymmetry of the spacetime. Therefore, we expand the
eigenfunctions of the stability operator as

m=0oo0

wis.d)= > wuls)e™, (49)

m=—0oo

reducing the eigenvalue problem to a one-dimensional one.
In the following we will restrict attention to the m = 0
eigenfunctions since the principal eigenfunction, which
determines the stability, must be invariant under the
isometries of the MOTS.

With the ¢-direction suppressed, the MOTS of interest
reduces to an arc length parametrized MOTSodesic
(P(s).0(s)) with s €0, sp.,]. We expand the eigenfunc-
tion of the stability operator in Chebychev polynomials,

Yls) = Z ancos ) (50)

s max

and divide the interval [0, s,,,,,] into N + 1 equally spaced
points,

Smax . .
sj:Nmijz] for je{1,2,...,N,N +1}. (51)

Since the Chebychev polynomials are regular at s =0
and § = s, it iS not necessary to implement additional
boundary conditions.
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Using the numerically determined MOTSodesic
(P(s),0(s)) and the Chebyshev expansion of the eigen-
function, we construct a derivative matrix corresponding to
the stability operator,

Lyl =2 - L;;a; = AD;;a; (52)

where L;; = (Ly¢;)(s;) and @;; = ¢;(s;). The spectrum of
the stability operator is then determined by finding the
eigenvalues of the matrix M = ®~'L, which we do using
Mathematica. Convergence is tested by repeating the
process for several distinct values of N.

III. TOROIDAL MOTSs

The main result of our analysis is the observation of
MOTSs of toroidal topology in the Kruskal-Szekeres time
slices. Toroidal MOTSs are located in the black hole
interior and, in the examples we have found, the MOTS
straddles the throat of the wormhole, meaning portions of
the surface have X > 0 while other portions have X < 0.
The extent of the toroidal MOTS in both asymptotic regions
is equal, thus in these symmetrical cases we say the MOTS
“straddles” the wormhole throat. In all cases, the numeri-
cally computed Euler characteristic is zero to within
numerical precision. None of the toroidal MOTSs we have
located have self-intersections.

We show several representative toroidal MOTSs in
Fig. 7 for different values of Kruskal time. Numerically,
we can resolve with confidence toroidal MOTSs from
0.145 < T < 1. For T < 0.145 there are indications that
these surfaces continue to exist, but their numerical
identification is hampered due to a large number of nearby
MOTSs.

As T — 1, the time slices approach the singularity. We
find that the toroidal MOTSs gradually shrink and at some
finite time before 7 = 1 we no longer have the numerical
accuracy to locate them. Moreover, we have found no
examples of toroidal MOTSs for 7" > 1. This suggests that
these surfaces are present only when Kruskal time slices
connect the left and right asymptotic regions via an
Einstein-Rosen bridge.

We can be more confident in this conclusion by
studying the area of the MOTSs as a function of time 7'
The area of the MOTSs can be evaluated by integrating
da = \/mds A d¢ over the surface,

Area = 21 / KT, P(s))sin(0(s))ds. (53

We show that the area of several MOTSs studied in this
work in Fig. 8. The plot shows the area of the toroidal
MOTSs is monotonically decreasing, approaching zero in
the limit 7 — 1.

The behavior as T — 0 is more subtle, since we can only
resolve the torodial MOTS for T > 0.145. We find no clear

P — — ———
r . o —— Bifurcation 2-sphere
F )
[ ° . — Once-intersecting MOTS
40 o0 o 4 ”
r *e, [ — Twice-intersecting MOTS

™ L L
E [ ° - _ — Toroidal MOTS
Ik 3Feeeoee
© t e, bR Non-enclosing MOTS
— T . .

? [ ® e #® — Once-intersecting NE MOTS
QO 2 cececececenge, . q
& [ ety 00,
< [ *e

) °

)

1 L] .'.
L] \.

0 e et 00 aa
0.0 0.5 1.0 1.5

T

FIG. 8. Areas of several families of MOTSs as a function of 7.

The dots correspond to numerical data, while the solid lines are
interpolation and extrapolation of the numerical results. Note that
not all MOTSs are shown to avoid overcrowding. The cyan and
green class of MOTSs are introduced in Sec. IV.

indication that the toroidal MOTS annihilates with another
surface. Instead, the resolution issue is related to the large
number of MOTSs present in a smaller numerical domain.
In the limit 7" — 0, the MOTS and MITS corresponding to
the intersection of the event horizon with the Kruskal time
slices become closer together. All interior MOTSs are
sandwiched between the horizon MOTS/MITS, and dis-
tinguishing them from one another requires increasing
precision as 7" — 0.

Tracking the area of this surface as T — 0 we see that it
approaches twice the area of the bifurcation two-sphere.
This is consistent with the idea that as T — 0, the toroidal
MOTS becomes increasingly sandwiched between the
horizon MOTS/MITS, effectively wrapping the bifurcation
two-sphere twice as 7 — 0. Confirming this qualitative
picture will require improving the resolution of our
numerical MOTS finder.

Finally, we discuss the stability of the toroidal MOTSs.
The toroidal MOTSs found in the numerical simulations
performed in [1] were all unstable with a negative principal
eigenvalue. We find similar results here. Like that work,
here we find that the shear o, is nonvanishing for the
toroidal MOTSs. This fact should be thought of in the
context provided by Lemma 9.2 of [30]. This Lemma
indicates that a toroidal MOTS must be either unstable
or shear free (and Ricci flat). Since we find here that the
shear is nonvanishing, we can conclude that these MOTSs
are unstable.’

This expectation is confirmed via a direct evaluation of
the spectrum of the stability operator. In Fig. 9 we plot the
first few m = O eigenvalues of the stability operator as a
function of Kruskal time. The first three of these eigen-
values are strictly negative, confirming that the surfaces are

3See also [36]—in particular Theorems 1.2 and 1.3—for
related rigorous results.
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FIG. 9. Lowest 10 eigenvalues of the stability operator on the
toroidal MOTSs, as in Fig. 7, for different slices T.

unstable MOTSs. All other eigenvalues are positive. In the
limit 7 — 1, all eigenvalues appear to grow without bound.
For smaller values of 7, the first three eigenvalues take on
large negative values. This is consistent with these eigen-
values diverging as 7' — 0. The remaining eigenvalues
remain finite as 7" is decreased.

IV. TOPOLOGICALLY SPHERICAL MOTSs

In addition to the toroidal MOTSs, we find many other
examples of MOTSs that all have spherical topology
with numerically computed Euler characteristic y = 2.
These MOTSs are reminiscent of the MOTS shown in
Fig. 12 of [1]. There are examples without and with self-
intersections.

This class of topologically spherical MOTSs do not
enclose the r = 0 curvature singularity. As such, we will
synonymously refer to these MOTSs as the “nonenclosing
(NE)” MOTSs. The toroidal MOTSs also do not enclose

T=09

T=08

T=0.6

| / ‘ ‘ -"'. ‘ Ao
LpY

ar R 8
K Ar

2F / 10

/ As
0 o M
Az
o o
A1

4+

‘ L ‘ ‘ ‘ ‘ e
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 11. Lowest 10 eigenvalues of the stability operator on
the topologically spherical but non-intersecting MOTSs (as in
Fig. 10) for different slices 7.

the singularity, but are uniquely identified with the
“toroidal” name.

Focusing first on examples without self-intersections, we
present some examples of such surfaces in Fig. 10. These
MOTSs are topological spheres with one pole occurring
for X > 0 and the other occurring for X < 0. They are not
geometric spheres and do not, for example, have constant
Ricci curvature.

MOTSs of this type can be located only for 7 < 1. As
T — 1, these MOTSs shrink in area and ultimately appear
to vanish—see the cyan curve in Fig. 8 for the area as a
function of time. On the other hand, as T — 0, this MOTS
becomes sandwiched between the horizon MOTS/MITS.
While we ultimately cannot track this MOTS all the way to
T =0, its area evolution is suggestive of the fact that it
ultimately wraps the horizon twice in this limit.

These MOTSs are also unstable, as can be seen from
their stability operator spectrum in Fig. 11. There is a single
negative eigenvalue in the m = 0 sector of the spectrum.

T=04 T=02

X cosf
eX cosf
e cosd

L

e~ cosf
X cosf

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5

eX sind e~ sinf

eXsinf

1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

eX sinf eX sind

FIG. 10. Nonintersecting nonenclosing MOTSs (in blue) found in the 7 = 0.9 to 7' = 0.2 hypersurfaces. The event horizon MOTS is
shown in black (X = T) and MITS in red (X = —T). The place of spatial symmetry X = 0 is shown as a dashed-gray line. Please mind

the non-Euclidean axes.
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FIG. 12. Once-intersecting nonenclosing MOTSs (in blue) found in the 7 = 0.9 to 7' = 0.2 hypersurfaces. The event horizon MOTS is
shown in black (X = T) and MITS in red (X = —T). The place of spatial symmetry X = 0 is shown as a dashed-gray line. Please mind
the non-Euclidean axes.
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FIG. 13. The once-, twice-, thrice-, four-times-, and five-times-intersecting nonenclosing MOTSs (in blue) found in the 7' = 0.98

hypersurface. The event horizon cross section at X = —T is shown in red—the other sphere at X = T is out of frame. The place of spatial
symmetry X = 0 is shown as a dashed-gray line. Please mind the non-Euclidean axes.

This eigenvalue tends toward —oo as T — 0, while all other
eigenvalue approach finite values. In the limit 7 — 1 all 2 ' ' ' ]
eigenvalues appear to diverge. {//fi‘f S
Generalizations of these surfaces with self-intersections 1.
also exist, with examples shown in Fig. 12. These surfaces 0 T
share the feature of having one pole at positive X and the :
other at negative X. They span the throat of the wormhole,
and can only be located for 0 <7 < 1. At Kruskal-
Szekeres times near the collapse of the wormhole
(T=1-¢), we are able to numerically resolve more

w ]

Ry e 1

self-intersecting nonenclosing MOTSs, shown in Fig. 13. -t .
This suggests a large number of self-intersecting non- I T A C ‘ ‘ R
enclosing MOTSs that exists in the 72 < 1 domain of o - o T o o o "o

hypersurfaces. We focus our attention only on the once-

intersecting NE MOTSs in our stability operator analysis.
These MOTSs are also unstable, as can be seen in the
stability operator eigenvalues plotted in Fig. 14. There are

FIG. 14. Lowest 10 eigenvalues of the stability operator on
the once-intersecting MOTSs (such as in Fig. 12) for different
slices T.
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Once-intersecting MOTSs (in blue) found in the 7 = 1.1 to T = 0.2 hypersurfaces. The event horizon MOTS is shown in

black (X = T) and MITS in red (X = —T). The place of spatial symmetry X = 0O is shown as a dashed-gray line. Please mind the non-
Euclidean axes other than the left-most panel. The leftmost panel uses a Euclidean axes format to make clear the connection with [14].

three negative eigenvalues, two more than the correspond-
ing surfaces with no self-intersections. All the eigenvalues
appear to diverge as 7 — 1, while only the negative
eigenvalues appear to diverge in the limit 7 — 0. In this
latter limit, it appears that the MOTS approaches the
bifurcation two-sphere, wrapping around it four times—
see the green curve in Fig. 8.

Finally, there are examples of self-intersecting MOTSs
that are similar to those observed in Painleve-Gullstrand
time slices of the Schwarzschild spacetime [14]. We show a
time progression for one of these MOTSs in Fig. 15. These
MOTSs are topologically spherical, and have both their
poles located at positive X values. These are also the only
MOTSs we have discussed so far that can be tracked
beyond T = 1—see the blue curve in Fig. 8. We find
examples of MOTSs of this type with multiple self-
intersections, Fig. 15 plots the time progression for the
once-intersecting surface, while we include the area evo-
lution of both the once- and twice-intersecting surfaces of
this kind in Fig. 8.

For T < 1, as is clear from Fig. 15, a portion of the
MOTS extends across the wormhole at early times. As time
increases toward 7 = 1, this MOTS pulls back until it is
entirely contained in the X > 0 region. The MOTS can be
continued to be tracked for larger values of 7 > 1, for
which the time slices terminate at the singularity. As T
continues to become larger, the MOTS becomes increas-
ingly distorted and eventually can no longer be numerically
resolved. See Fig. 6, which illustrates some of these
features on an embedding diagram.

On the other hand, as 7 — 0 these MOTSs become
sandwiched between the two components of the event
horizon. This is shown in Fig. 15 and is similar to what
happens with all the MOTSs described earlier. Just like in
that case, it is not possible to numerically resolve what

happens in the strict 7 — 0 limit, but tracking the area of
the MOTS as a function of time is suggestive of the fact that
it limits to a MOTS that wraps the bifurcation sphere some
number of times. The number of wrappings appears to be
equal to 2L + 1, where L is the number of loops formed by
self-intersection. It would be interesting to see if these new
types of MOTSs arise generically in maximally extended
black hole spacetimes.

Just as in the Painlevé-Gullstrand slicing, these looping
MOTSs are unstable. The m = 0 eigenvalues of the
stability operator are shown in Fig. 16 for the once-
intersecting MOTS. There are two negative eigenvalues,
and both of these appear to be divergent in the 7 — 0 limit.
The positive eigenvalues appear to have finite limits as
T — 0. As T increases, a number of eigenvalues begin to
grow large, suggesting they ultimately diverge. However,
the time at which this divergence occurs is no longer equal
to T =1, as these MOTSs can be be tracked beyond that
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FIG. 16. Lowest 10 eigenvalues of the stability operator on the
once-intersecting MOTSs (as in Fig. 15) for different slices of T.
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point. There may be a connection between the loss of the
ability to numerically resolve this once-looping MOTS
and the divergence of its eigenvalue spectrum. As T
increases, the time slices tend increasingly toward being
null. A similar feature was observed for these MOTSs
in the generalized Painlevé-Gullstrand slicing of the
Schwarzschild spacetime—cf. Fig. 5 of [15].

V. CONCLUSIONS

We have investigated the existence of axisymmetric
MOTSs with toroidal topology lying in constant 7 space-
like hypersurfaces in the maximally extended Kruskal-
Szekeres spacetime. This work is motivated by more
sophisticated numerical simulations in [1] that reveal that
toroidal MOTSs arise naturally in dynamical black hole
mergers. Their appearance in these examples suggests that
toroidal MOTSs are not intrinsically associated with merger
physics, but instead can be attributed to the departure from
time symmetry.

Along the way, our analysis demonstrated the existence of
new spherical MOTSs in the Schwarzschild interior. These
novel MOTSs are symmetric about the wormhole throat (i.e.
about the timelike line X =0 in the standard Kruskal-
Szekeres coordinates). In the region 7€ (—1,0) U (0, 1),
these MOTSs “straddle” the two asymptotic regions
connected by the FEinstein-Rosen bridge. For the hyper-
surfaces with |T'| > 1, however, the Einstein-Rosen bridge
collapses and the surface must intersect the singularity (as
depicted in Figs. 4, 5, and 6).

The construction of these axisymmetric MOTSs
is an application of the MOTSodesic method introduced
in [14-16]. These new types of MOTSs are unstable,
as we demonstrated by a numerical analysis of the stability
operator and its spectrum. In particular, the toroidal MOTSs
appear to have three negative m = 0 eigenvalues of the
stability operator, whereas the topologically spherical
MOTSs have a number of negative eigenvalues related
to the number of self-intersections in a manner consistent
with previous studies. The negative eigenvalues imply that
these MOTSs do not separate an inside region which can be
foliated by outer trapped surfaces from an outside regions
that can be foliated by outer untrapped surfaces [30].

Finding MOTSs becomes difficult for 7 — 0 and 7 > 1
(besides, of course, the MOTS corresponding to the event
horizon). It can be shown that the constant 7 spacelike
hypersurfaces asymptote to null surfaces as 7 increases.
This is reflected by the divergence of eigenvalues of the
stability operator. Near 7 — 0, the density of MOTSs is
substantial, as all found MOTSs are sandwiched between
the two apparent horizons, and the problem becomes
distinguishing them.

It is unclear whether the loss of MOTSs as 7 > 1 is due
to them annihilating with other MOTSs at critical values
of T. For example, “annihilation” or “bifurcation” have

been observed in previous studies [1,15] and occur simul-
taneously with a vanishing eigenvalue of the stability
operator. As there is no evidence of any found eigenvalues
going to zero together with eigenvalues diverging near the
loss of the MOTS, we expect that these MOTSs are lost
due to lack of numerical precision. Improving this issue is
not trivial; simply increasing numerical precision will not
definitively extend the range of our MOTS finding tech-
niques. There are a large number of axisymmetric MOTSs
located in the Schwarzschild interior. As 7 — 0, these are
“sandwiched” into the increasingly small domain between
the two apparent horizons and it becomes very difficult to
distinguish individual MOTSs in this limit. Meanwhile, as
T > 1, it has been previously observed how MOTSs
behave for slices that transition from spacelike to null—
they steadily warp into a sharp surface that nears the r = 0
singularity in the near-null coordinates. This behavior is
difficult to deal with numerically.

The eigenvalue spectrum of the stability operator on the
nonapparent horizon MOTSs exhibits a curious behavior as
T — 0. We observe that the non-negative eigenvalues of the
stability operator of all nonapparent-horizon MOTSs tends
towards the corresponding eigenvalues of the event horizon
cross section, but with multiplicities. The multiplicity of
each eigenvalue is equal to ratio of the area of the MOTSs
to the area of the event horizon cross section as 7 — 0,
which is an integer (Fig. 8). As an example, the eigenvalue
spectrum of the stability operator (Fig. 14) for the once-
intersecting NE MOTSs (Fig. 12) showcases this. From the
plots of its area as T varies (Fig. 8), the area of the once-
intersecting NE MOTS approaches 4 times that of the event
horizon cross section. Towards the rightmost panel of
Fig. 12, this MOTS “wraps” the event horizon cross
sections four times, hence the quadruple area factor. As
this MOTS gets sandwiched between the two horizons, its
unit normal vector N begins to coincide with that of the
horizons with degeneracy due to the multiple wrapping.
This picture is consistent with the multiplicities of the
positive m = 0 eigenvalues and the negative eigenvalues
may be thought of as a result of the normal vector field
pointing tangentially to the horizons. Investigating this
feature may be a topic for future work.

It would be interesting to see whether similarly extended
spacetimes would exhibit similar behavior, for example a
Kruskal-Szekeres extension of the Reissner-Nordstrom
spacetime. The MOTSs within the charged black hole
have been studied in an earlier work [15] using a further
generalized Painlevé-Gullstrand slicing and exhibit the
aforementioned annihilation/bifurcation events in the
charge parameter space Q. Other coordinate systems that
have a nonvanishing extrinsic curvature and that span both
asymptotic regions, such as hyperboloidal slicings, could
be studied further to see whether they harbor similar
MOTSs to the ones found here.

124023-13



KAM TO BILLY SIEVERS et al.

PHYS. REV. D 109, 124023 (2024)

ACKNOWLEDGMENTS

The author order of this paper is students (the first three
authors) by degree of contribution, followed by more
senior authors in alphabetical order by last name. We
thank Graham Cox and Daniel Pook-Kolb for helpful
comments. The work of R. A. H. received the support of a
fellowship from “la Caixa” Foundation (No. 100010434)
and from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sktodowska-
Curie Grant Agreement No. 847648 under fellowship code
LCF/BQ/PI21/11830027. 1.B. and L.N. were supported
by Natural Science and Engineering Research Council of
Canada (NSERC) Discovery Grant No. 2018-04873. H. K.

was supported by NSERC Discovery Grant No. 2018-
04887. S.M. and K.T.B.S. were supported by both of
these NSERC Discovery Grants. K. T. B. S. acknowledges
support from NSERC via a Postgraduate Scholarship,
Doctoral award. Memorial University (St. John’s campus)
is situated on traditional territories of diverse indigenous
groups, and we acknowledge with respect the diverse
histories and cultures of the Beothuk, Mi’kmaq, Innu,
and Inuit of Newfoundland and Labrador. McMaster
University is located on the traditional territories of the
Mississauga and Haudenosaunee nations, and within the
lands protected by the “Dish with One Spoon” wampum
agreement.

[1] D. Pook-Kolb, I. Booth, and R. A. Hennigar, Ultimate fate
of apparent horizons during a binary black hole merger. II.
The vanishing of apparent horizons, Phys. Rev. D 104,
084084 (2021).

[2] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-Time, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
1973).

[3] S. W. Hawking and J.B. Hartle, Energy and angular
momentum flow into a black hole, Commun. Math. Phys.
27, 283 (1972).

[4] M. Gadioux and H. S. Reall, Creases, corners, and caustics:
Properties of nonsmooth structures on black hole horizons,
Phys. Rev. D 108, 084021 (2023).

[5] A. Cade?, Apparent horizons in the two-black-hole prob-
lem, Ann. Phys. (N.Y.) 83, 449 (1974).

[6] P. Mosta, L. Andersson, J. Metzger, B. Szilagyi, and J.
Winicour, The merger of small and large black holes,
Classical Quantum Gravity 32, 235003 (2015).

[7] D. Pook-Kolb, O. Birnholtz, B. Krishnan, and E. Schnetter,
Interior of a binary black hole merger, Phys. Rev. Lett. 123,
171102 (2019).

[8] D. Pook-Kolb, Dynamical horizons in binary black hole
mergers, Ph.D. thesis, Hannover: Institutionelles Reposito-
rium der Leibniz Universitit Hannover, 2020.

[9] D. Pook-Kolb, O. Birnholtz, B. Krishnan, and E. Schnetter,
Self-intersecting marginally outer trapped surfaces, Phys.
Rev. D 100, 084044 (2019).

[10] D. Pook-Kolb, O. Birnholtz, J. L. Jaramillo, B. Krishnan,
and E. Schnetter, Horizons in a binary black hole merger i:
Geometry and area increase, arXiv:2006.03939.

[11] D. Pook-Kolb, R. A. Hennigar, and I. Booth, What happens
to apparent horizons in a binary black hole merger?, Phys.
Rev. Lett. 127, 181101 (2021).

[12] I. Booth, R. A. Hennigar, and D. Pook-Kolb, Ultimate fate
of apparent horizons during a binary black hole merger. 1.
Locating and understanding axisymmetric marginally outer
trapped surfaces, Phys. Rev. D 104, 084083 (2021).

[13] D. Pook-Kolb, O. Birnholtz, B. Krishnan, and E.
Schnetter, Existence and stability of marginally trapped
surfaces in black-hole spacetimes, Phys. Rev. D 99,
064005 (2019).

[14] L. Booth, R. A. Hennigar, and S. Mondal, Marginally outer
trapped surfaces in the Schwarzschild spacetime: Multiple
self-intersections and extreme mass ratio mergers, Phys.
Rev. D 102, 044031 (2020).

[15] R. A. Hennigar, K.T.B. Chan, L. Newhook, and I.
Booth, Interior marginally outer trapped surfaces of
spherically symmetric black holes, Phys. Rev. D 105,
044024 (2022).

[16] L. Booth, K. T. B. Chan, R. A. Hennigar, H. Kunduri, and S.
Muth, Exotic marginally outer trapped surfaces in rotating
spacetimes of any dimension, Classical Quantum Gravity
40, 095010 (2023).

[17] R. Emparan and M. Martinez, Exact event horizon of a
black hole merger, Classical Quantum Gravity 33, 155003
(2016).

[18] R. Emparan, M. Martinez, and M. Zilhao, Black hole fusion
in the extreme mass ratio limit, Phys. Rev. D 97, 044004
(2018).

[19] D.R. Brill and R.W. Lindquist, Interaction energy in
geometrostatics, Phys. Rev. 131, 471 (1963).

[20] D. Pook-Kolb, O. Birnholtz, I. Booth, R. A. Hennigar, J. L.
Jaramillo, B. Krishnan, E. Schnetter, and V. Zhang, MOTS
Finder version 1.5 (2021).

[21] R.P. A.C. Newman, Topology and stability of marginal
2-surfaces, Classical Quantum Gravity 4, 277 (1987).

[22] S. Husa, Initial data for general relativity containing a
marginally outer trapped torus, Phys. Rev. D 54, 7311 (1996).

[23] J. L. Flores, S. Haesen, and M. Ortega, New examples of
marginally trapped surfaces and tubes in warped spacetimes,
Classical Quantum Gravity 27, 145021 (2010).

[24] P. Mach and N. Xie, Toroidal marginally outer trapped
surfaces in closed Friedmann-Lemaitre-Robertson-Walker
spacetimes: Stability and isoperimetric inequalities, Phys.
Rev. D 96, 084050 (2017).

124023-14


https://doi.org/10.1103/PhysRevD.104.084084
https://doi.org/10.1103/PhysRevD.104.084084
https://doi.org/10.1007/BF01645515
https://doi.org/10.1007/BF01645515
https://doi.org/10.1103/PhysRevD.108.084021
https://doi.org/10.1016/0003-4916(74)90206-1
https://doi.org/10.1088/0264-9381/32/23/235003
https://doi.org/10.1103/PhysRevLett.123.171102
https://doi.org/10.1103/PhysRevLett.123.171102
https://doi.org/10.1103/PhysRevD.100.084044
https://doi.org/10.1103/PhysRevD.100.084044
https://arXiv.org/abs/2006.03939
https://doi.org/10.1103/PhysRevLett.127.181101
https://doi.org/10.1103/PhysRevLett.127.181101
https://doi.org/10.1103/PhysRevD.104.084083
https://doi.org/10.1103/PhysRevD.99.064005
https://doi.org/10.1103/PhysRevD.99.064005
https://doi.org/10.1103/PhysRevD.102.044031
https://doi.org/10.1103/PhysRevD.102.044031
https://doi.org/10.1103/PhysRevD.105.044024
https://doi.org/10.1103/PhysRevD.105.044024
https://doi.org/10.1088/1361-6382/acc306
https://doi.org/10.1088/1361-6382/acc306
https://doi.org/10.1088/0264-9381/33/15/155003
https://doi.org/10.1088/0264-9381/33/15/155003
https://doi.org/10.1103/PhysRevD.97.044004
https://doi.org/10.1103/PhysRevD.97.044004
https://doi.org/10.1103/PhysRev.131.471
https://doi.org/10.1088/0264-9381/4/2/011
https://doi.org/10.1103/PhysRevD.54.7311
https://doi.org/10.1088/0264-9381/27/14/145021
https://doi.org/10.1103/PhysRevD.96.084050
https://doi.org/10.1103/PhysRevD.96.084050

MARGINALLY OUTER TRAPPED TORI IN BLACK HOLE ...

PHYS. REV. D 109, 124023 (2024)

[25] J. Karkowski, P. Mach, E. Malec, N. O Murchadha, and N.
Xie, Toroidal trapped surfaces and isoperimetric inequal-
ities, Phys. Rev. D 95, 064037 (2017).

[26] S.L. Shapiro, S. A. Teukolsky, and J. Winicour, Toroidal
black holes and topological censorship, Phys. Rev. D 52,
6982 (1995).

[27] A. Bohn, L.E. Kidder, and S.A. Teukolsky, Toroidal
horizons in binary black hole mergers, Phys. Rev. D 94,
064009 (2016).

[28] P. Hdjicek, Three remarks on axisymmetric stationary
horizons, Commun. Math. Phys. 36, 305 (1974).

[29] L. Andersson, M. Mars, and W. Simon, Local existence of
dynamical and trapping horizons, Phys. Rev. Lett. 95,
111102 (2005).

[30] L. Andersson, M. Mars, and W. Simon, Stability of margin-
ally outer trapped surfaces and existence of marginally outer
trapped tubes, Adv. Theor. Math. Phys. 12, 853 (2008).

[31] L. Andersson, M. Mars, J. Metzger, and W. Simon, The time
evolution of marginally trapped surfaces, Classical Quan-
tum Gravity 26, 085018 (2009).

[32] J.L. Jaramillo, Black hole horizons and quantum
charged particles, Classical Quantum Gravity 32,
132001 (2015).

[33] L. Booth, G. Cox, and J. Margalef-Bentabol, Symmetry and
instability of marginally outer trapped surfaces, Classical
Quantum Gravity 41, 115003 (2024).

[34] J.P. Boyd, Chebyshev and Fourier Spectral Methods
(Dover Publications, New York, 2001).

[35] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang,
Spectral Methods: Fundamentals in Single Domains, Sci-
entific Computation (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007).

[36] G.J. Galloway, Rigidity of outermost MOTS—the initial
data version, Gen. Relativ. Gravit. 50, 32 (2018).

124023-15


https://doi.org/10.1103/PhysRevD.95.064037
https://doi.org/10.1103/PhysRevD.52.6982
https://doi.org/10.1103/PhysRevD.52.6982
https://doi.org/10.1103/PhysRevD.94.064009
https://doi.org/10.1103/PhysRevD.94.064009
https://doi.org/10.1007/BF01646202
https://doi.org/10.1103/PhysRevLett.95.111102
https://doi.org/10.1103/PhysRevLett.95.111102
https://doi.org/10.4310/ATMP.2008.v12.n4.a5
https://doi.org/10.1088/0264-9381/26/8/085018
https://doi.org/10.1088/0264-9381/26/8/085018
https://doi.org/10.1088/0264-9381/32/13/132001
https://doi.org/10.1088/0264-9381/32/13/132001
https://doi.org/10.1088/1361-6382/ad3dab
https://doi.org/10.1088/1361-6382/ad3dab
https://doi.org/10.1007/s10714-018-2353-9

