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We investigate black holes and gravitational perturbations when both the scalar Gauss-Bonnet and
dynamical Chern-Simons gravity sectors coexist in addition to the Einstein-Hilbert term, and both sectors
are coupled to a single canonically normalized scalar field. The presence of the scalar Gauss-Bonnet gravity
sector allows the scalar field to possess a nonvanishing background solution, resulting in additional
couplings between odd and even-type gravitational perturbations arising from the dynamical Chern-Simons
gravity sector. We illustrate the impact of these even-odd gravitational couplings in gravitational
perturbations around a static spherically symmetric black hole. Although the couplings between the
odd and even-type gravitational perturbations are known to appear in purely tensorial gravity theories with

higher-curvature corrections, we demonstrate it in scalar-tensor theories.
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I. INTRODUCTION

Since the first detection of gravitational waves (GWs)
from a black hole binary merger by the LIGO/Virgo
experiment [1,2], numerous GW events have been observed
by interferometers. GWs emitted from binary black holes
contain valuable information in the strong-gravity regime
and provide an opportunity to test theories of gravity. The
observed waveforms closely match those predicted by
general relativity (GR) [1]. Future precise observations
could detect deviations from general relativity through
gravitational waves (GWs) if physics beyond general
relativity exists. During the ringdown phase of a black
hole merger, GWs are computed as perturbations around
the final remnant black hole. Quasinormal modes (QNMs)
represent the characteristic frequencies of perturbations
around a black hole, and the GWs during the ringdown
phase are described by a superposition of QNMs (for
reviews [3-9]).

General relativity (GR) faces several challenges of the
late-time acceleration [10,11], the formation of black hole
singularities [12—14], and the quantization of gravity at
both low- and high-energy scales. These strongly suggest
that the theory of gravity should be modified from general
relativity. In most cases, the modification of gravity
involves adding extra degrees of freedom to the metric.
In fact, the simplest modification is to introduce a
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nonminimal coupling of the metric to a scalar field, i.e.,
a scalar-tensor theory. As a typical example, we focus both
on the scalar Gauss-Bonnet (sGB) gravity [15-18] and the
dynamical Chern-Simons (dCS) gravity [19-21]. Both
theories of gravity are known as low-energy theories of
string theory [16,22-25]. The sGB gravity sector breaks the
four-dimensional topological invariance of the Gauss-
Bonnet term by coupling the dynamical scalar field,
whereas the dCS gravity sector has a parity-violating
coupling between the scalar field and the Pontryagin term.'
The dCS gravity should be regarded as a low-energy effec-
tive field theory because of the presence of ghost modes
around a static spherically symmetric black hole [29] and
any spacetime [30]. The black hole solutions and QNMs
have been studied in the sGB gravity [31-40] and the dCS
gravity [31,41-46], respectively, where the deviations from
the GR case can be expressed as a series of small couplings.
Recently, in the context of the effective field theory (EFT),
corrections to black hole solutions and QNMs with small
EFT couplings have been studied [47-57].

In this paper, we study black holes and gravitational
perturbations when both the sGB and dCS gravity sectors

'We note that the sGB gravity is a healthy classical theory
included in the Horndeski theory which is the most general theory
with the second-order equations of motion [26-28].
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coexist, and both sectors are coupled to a single scalar field.
The presence of the sGB gravity sector allows the scalar
field to have a background value, leading to additional new
couplings between the odd and even-type gravitational
perturbations appearing through the dCS gravity sector. We
illustrate the impact of the even-odd gravitational couplings
in the perturbations around the static spherically symmetric
black hole solutions. While the couplings between the
odd- and even-type gravitational perturbations are known
to appear in purely tensorial gravity theories with higher-
curvature corrections [48,50,54,58], we demonstrate it in
scalar-tensor theories.

The paper is structured as follows. In Sec. II, we introduce
a system in which the scalar Gauss-Bonnet gravity sector
and the dynamical Chern-Simons gravity sector coexist. We
then construct static spherically symmetric black hole
solutions. In Sec. III, we present the master equations for
gravitational perturbations around the static spherically
symmetric black hole solutions. In Sec. IV, we analyze
the quasinormal frequency for each mode. In Sec. V, we
discuss slowly rotating black hole solutions without the Z,
symmetry. In Sec. VI, we discuss the tidal response due to
the even-odd gravitational couplings. Finally, we summarize
our results in Sec. VII. We use the natural unit, c = 72 = 1.

II. EQUATIONS OF MOTION AND STATIC
SPHERICALLY SYMMETRIC BLACK HOLE
SOLUTIONS

A. Scalar Gauss-Bonnet and dynamical
Chern-Simons system

We consider gravity theories with both the sGB sector
[15-18] and dCS sector [19-21] in four dimensions,2

M3 o1 1 b,
=—R—= 2 —m?p* +—¢p(R*> — 4R, R*

by -
+ R ,GR ) + N PR o R (1)

where My, is the Planck mass, A is the cutoff scale, b; and
b, are constants, R"”ﬂ(, = S”D"ﬁR(l/gl,(,, e = et /| /=g,
and €"7? is an antisymmetric symbol with €"'?3 = 1. The
first three terms represent the free part of the fields, while
the fourth and fifth terms represent the sGB coupling and
the dCS coupling, respectively. A similar setup has been
investigated in cosmology [60]. In this paper, we consider
the weak couplings of a single scalar field and curvatures of
spacetime. The equations of motion and their solutions can
be obtained by considering the zeroth-order solutions and
the corrections written as a series of small coupling terms.
The zeroth-order solutions are determined by the free

*We use the notation of the sGB coupling in Ref. [59] while
that of the dCS coupling is different from Ref. [42] by the
numerical factor 8.

part, and according to the no-hair theorem [61,62], these
solutions coincide with the vacuum solution of GR and
exhibit Ricci flatness. We consider leading relevant scalar-
tensor couplings in black holes. Using conformal trans-
formations, the quadratic derivative terms with the scalar
field and curvatures, such as ¢R, can be transformed into
canonical free parts and higher-order self-couplings for the
fields. At the next order of derivative terms, terms such as
¢R* and ¢R2, vanish in the equations of motion due to the
Ricci flatness. The leading-order scalar-tensor couplings
are the “linear” sGB and dCS couplings as depicted in
Eq. (1). In the context of the EFT extension of GR with a
single scalar field around black holes, the sGB and dCS
couplings in Eq. (1) are also leading operators [63].> The
equation of motion for ¢ is given by

b
(D B m2)¢ - _Xl (R2 - 4R/‘”R}w + Rﬂy/}ﬂRuvlm)
by -~ .
- XRWJ/)(;RU//) . (2)

Varying the action with respect to the metric g,,, we also
obtain the equations of motion for the metric,
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3 (B 30uk)
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= and)aygb - Eg;w 5 (645) + Em ¢
- % {-2RV, V¢ +2(g,,R — 2R,,) ¢
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(ulplv)

1 -
{v/}¢€/ (I(ﬂv Ru)o’ + 5 \% VG¢R/)(MD)H} . (3)
Hereafter, for simplicity, we consider a massless scalar field.

B. Static spherically symmetric black hole solutions

Let us consider static spherically symmetric black hole
solutions. The Ansatz for the static spherically symmetric
metric and the scalar field is as follows:

ds?* = g, dx"dx"

= —A(r)dr* +

B0) dr’* + r*(d6* + sindg?), (4

3As shown later, the non-GR effect in the QNMs of the black
holes in Eq. (1) emerges at O(1/A?). While the ¢* coupling to
the quadratic curvature term d)zRﬁyﬂ,, /A? affects the scalar QNM
spectra at O(1/A?), such terms do not have an impact on the
gravitational QNM spectra at the same order. In this paper, we
focus primarily on the gravitational QNMs to demonstrate the
gravitational mixing effect in scalar-tensor theories. Therefore,
for simplicity, we do not consider these terms.
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¢ = ¢(r). (5)

The sGB and dCS couplings affect the solutions as
corrections. The zeroth-order solutions are given by the
GR ones, i.e., the Schwarzschild metric. The corrections
are characterized by the dimensionless small parameter,

1

€= AMpry’ (6)
where r, is the Schwarzschild radius. As discussed below,
the leading correction to the scalar field is of the order of
O(e) whereas the correction to the metric is of the order of
O(€?). In the following section, the equations of motion are
solved up to O(e?) to derive the corrections to the GR
solutions.

Due to the no-hair theorem in GR [61,62], there is no
scalar field configuration and no modification to the
Schwarzschild metric at O(e®).* We set the metric and
scalar field to

A() = 1=t cay(r) + Eap(r).  (7)
B(r) = 1=+ cby(r) + (). (8)
B(r) = emiy (1) + o (r). ©)

Substituting this Ansatz into the equations of motion,
Egs. (2) and (3), and solving perturbatively in €, one can
determine the unknown functions, a, b, and . Its structure
is as follows. At the lowest order, the equations of motion
are automatically satisfied since they are solutions of GR.
At first order, the correction of the scalar field 7y is
sourced by the GR solution on the right-hand side of Eq. (2)
while those for the metric, a4 and b, are not sourced by
the right-hand side of Eq. (3) due to the vanishing scalar
field in GR. On the other hand, at second order, the correc-
tion of the scalar field z,,4 is not sourced by the right-hand
side of Eq. (2) due to the absence of first-order solutions for
the metric while the corrections for the metric, a,,q and
bng, are sourced by the right-hand side of Eq. (3). The
unknown functions are determined analytically,

alst(r) = blst(r) =0, (10)

() re N

) gy T (g le e 1
Moy, 1r< +2r+3r2 ’ (11)

“The massless scalar field can be constant as the lowest-order
solution, but such a solution makes no additional contribution to
the higher-order equations of motion. In this paper, ¢ = const
brunch is not considered.

4[9% rg 13r 33r2 1273 542
— 718 g g g_~"8 , 12
ana(r) == r3< T TR TS5 A (12)
2 ro 13r2 Bt 238
b —8p2E(14+-8 &, ' , '8 "8
2nd(r) 1.2 ( 2r 3r2 + 4’,3 + 5’,.4 6}"5
(13)
ﬂznd(r> = 0 (14)

We have required that the solutions are regular at r = r,.
Under parity transformation, the static spherically sym-
metric metric and scalar field have even parity. Therefore,
the dCS term that breaks parity symmetry does not
affect the static spherically symmetric solutions, which is
exactly the reason why these background solutions depend
only on by. Our result aligns with this symmetry argument
and reproduces the previous results in the weak coupling
regime [31,32]. Due to the corrections in the metric, the
horizon scale deviates from the Schwarzschild radius.
From the condition A(ry) = O(e®), the horizon radius

rg becomes
98
g = rg<1 —€2b%?>. (15)

The thermodynamics are studied in the context of black
holes in the Horndeski theory [64].5

III. GRAVITATIONAL PERTURBATIONS

In this section, we study gravitational perturbations
around the static spherically symmetric background sol-
utions g, and (2) in Egs. (4) and (5) with Egs. (7)—(14). The
perturbed scalar field is given by

p(t.7.0) = P(r) + e TI(r)Y 1 (0). (16)

The time evolution is assumed to be characterized by the
factor e~'’, while the angular dependence is represented by
the spherical harmonics Y,, with the azimuthal number
m = 0.° We mainly focus on # >2 modes. The metric
perturbation can be decomposed by parity symmetry in the
case of GR. At zeroth order in €, the theory is GR, and then
we can take the standard Regge-Wheeler gauge [65] for the
metric perturbations. The first-order corrections are sourced
by the GR solution. So, higher-order corrections are also

SFor fixed €, by, and M, the black hole solution in our setup is
uniquely determined. This implies that the solution is thermo-
dynamically stable, which is consistent with the results in Sec. IV
where the quasinormal modes correspond to damped oscillations.

®Because of the spherical symmetry, it is enough to consider
the m = 0 case. Other spherical harmonics with m # 0 can be
obtained by acting the ladder operators constructed from the
generator of the spherical symmetry.
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determined by the GR solution. We still use the background
metric and the standard metric perturbations with the
Regge-Wheeler gauge,

9w = g/,w + h;_w + h;w (17)

h;l,d_x”dx’/ — Ze—iwt sin 969Yf0d¢(h0dt =+ hldr), (18)
—i 2 H, ,
hy dxtdx” = e 'Y po3 AHodt* + 2H dtdr + fdr
+ K (d6* + sin*0d¢?) } (19)

where hg, h;, Hy, H;, H,, and K are functions of r. The
odd (—) mode components A, i, and the even (+) mode
components Hy, H;, H,, and K are not independent, but
related through the equations of motion. In our setup, the
metric perturbations have two helicity-2 modes.

A. Master equations

To derive the master equations for the scalar field, odd
and even-type gravitational modes, we substitute Eqs. (16)
and (17) into the equations of motion, Egs. (2) and (3), and
expand the equations up to O(II), O(h,, ), and O(e?). At the
lowest order, ¢ = 0, the master equations are decoupled and
given by the single master variables as in the case of GR,

—
My,

ih
y- — (1_2)’_17 (21)

r raw

1 i
gt {—r2K+ <1—§> i 1}, (22)
/lr—3rg r 10}

where 1 = #? + £ — 2. The master equations are given by

(20)

Fex(r) 3 (Fex(n 5 )

+ {@® = For(r)Vig }¥' =0,

(i=s,—,+), (23)

where Fgg(r) =1—ry/r, and

. A+2)r+r
VGR = Tg, (24)
_ (A+2)r—3r
Var =5+ (25)
1
Vig = G {973 + 92r2r + 32%r,r?
+ 22 (A +2)r*}. (26)

The equations for the odd and even gravitational modes
are called the Regge-Wheeler and Zerilli equations [65,60].
At O(e), the scalar-odd mode and scalar-even mode
couplings can appear on the right-hand side in the equations
of motion, Egs. (2) and (3). At O(€?), the kinetic terms and
potential terms are modified due to modification of the
background metric. As in the case of the background
solutions, there is no mixing among the scalar field and
metric perturbations at second order. However, new cou-
plings can appear between the odd and even gravitational
modes because the source terms from the dCS coupling do
not vanish thanks to the background value of the scalar
field. The resultant master equations are given by

F(r) d <F(r) ﬂ) + {@*(I + Ac*) - F(r)

dr dr
X (VGR + Vcorrection)}\l‘ =0, (27)
where F(r) := \/A(r)B(r), and
{I';s
Y= 9y |, (28)
1i,l+
Acz 0 0
A2 =eF(r)] 0 A2 0 |, (29)
0 0 Aci
Vir 0 0
Vor = 0 Var 0 R (30)
0 0 VéR
0 Vii Vi
V correction = € V?;t 0 0
V?; 0 0
Vind 0 0
+é? 0 Viond Vgnfi . (31)

0 Vg Viu

The explicit forms of ¥, Ac? and Vo yecion are written in
Appendix A. Since Ac?> vanishes at the horizon, the
propagation speed of each mode coincides with the speed
of light. This implies that information inside the horizon
cannot propagate outside of the horizon. The nondiagonal
components of the potential matrix in Eq. (31) represent the
mode mixing. We note that the scalar-odd and scalar-even
coupling terms at O(e?) in Eq. (31) vanish because the next
leading terms appear at O(e?). Considering both sGB and
dCS couplings, new terms, V5, can appear in the master
equations. In particular, the even-odd gravitational cou-
plings have been known to be a generic feature of purely
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tensorial gravity theories with higher-curvature corrections
[48,50,54,58]. We find that this is characteristic not only in
purely tensorial gravity theories but also when both the sGB
term and the dCS term are present. In the context of cosmo-
logy, it has been known that the even-odd gravitational
couplings can appear in a similar system where both sGB
and dCS gravity sectors coexist [60].

The new even-odd gravitational couplings are of the
order of €? in Eq. (31) while the scalar-odd and scalar-even
couplings are of the order of e!. At first glance, the latter
couplings lead the observables. However, the effect of
the new couplings and that of the scalar couplings give the
same order contributions to the QNMs. With the new even-
odd gravitational couplings, our model has new features in
slowly rotating solutions and the tidal response sourced by
an external gravitational object.

IV. QUASINORMAL MODES

QNMs are the characteristic oscillation modes of per-
turbations around black holes. The quasinormal frequen-
cies are defined by the solutions of @ in the master
equations imposing the purely ingoing condition at the
horizon and the purely outgoing condition at inﬁnity.7 The
Leaver method [71] is used to calculate the quasinormal
frequencies. This calculation method is briefly presented
for both decoupled and coupled systems. In the decoupled
system, the master equation is described by a single master
variable P,

10 (705 ) + @ = rviw =0, (32)

where V(r) is a potential term, and f(r) = 1 — ry/r. The
wave function W can be factorized by a series of f,

Wy — e—ia)r*f—Zia)rH Z ajij (33)
j=0

where dr/dr, = f. The wave function ¥ of this form
satisfies the QNM boundary condition at the horizon thanks
to the prefactor e~/ f~2i®"_Substituting this Ansatz into
the master equation (34) yields the recursion relation for the
coefficients a;. For a given ay, the higher-order coefficients
a;j(j=1,2,...) can be determined by the recursion rela-
tion® in the form a; = G,(w)a,, where G;() is a function
in j and w. If the wave function (33) satisfies the QNM

In the context of initial value problems, QNMs are defined
as poles in Green’s function and they correspond to the purely
ingoing condition at the horizon and the purely outgoing
condition at infinity for massless fields in asymptotically flat
black holes [4,5,7,8,67-70].

Since the boundary condition at the horizon has already been
imposed, the first term @, determines the solution of the master
equation.

boundary condition at infinity f = 1, then the sum of the
series % a; should converge. Such a solution can be
derived approximately by imposing a; = 0 for sufficiently
large j. Thus, we need to solve G;(w) = O for sufficiently
large j, and the quasinormal frequencies are given by those
solutions [71]. In GR, for # =2 and the fundamental
modes, the quasinormal frequency for the scalar field is
(0.96728774 —0.19359239i)/(2M) [7] where M is the
black hole mass, and for the odd and even gravitational
modes, it is (0.74734337 — 0.17792463i)/(2M) [7,72]. In
the case of non-GR gravity theories, if the master equation
is expressed as a perturbation from the GR case, the quasi-
normal frequencies can be obtained as small deviations
from the GR values [48-52,54-56,73-77].

In a coupled system, the master equations have non-
diagonal parts of the potential matrix’

10 (7005 ) + (T = rvin e =0, (4

where W is a multicomponent wave function, V is a
potential matrix, and I is a unit matrix. The Ansatz of
the wave function which satisfies the QNM boundary
condition at the horizon is generalized to

Wy — e_,'wr*f—2ier Z ajfj’ (35)
=0

where the coefficient a; are also multicomponents.
Substituting this Ansatz into the master equations also
yields recursion relations for a; Using the recursion
relations, we can write a; in the form a; = M;(®) ay,
where M () is a matrix of functions of j and w. The QNM
boundary condition at the spatial infinity corresponds to the
convergence of the sum of the series in Eq. (35) at infinity
S = 1. This implies that the limit of a; vanishes as j — co.
The approximate solution is expressed as a; = M;(w)
ay = 0 for sufficiently large j. Requiring the existence
of the solution with a; # 0, the relation

detM;(w) = 0, (36)

should be satisfied for sufficiently large j, and the QNMs
are approximately determined by this condition. Let us
discuss the quasinormal frequencies of our system (27). For
simplicity, we focus on # = 2 and the fundamental modes.
We expand the frequency @ around the lowest order as

Qi
o= 215‘;}‘ + 28w, (i = s, grav), (37)

9Changing the master variable, the master equations (27) can
be written in the form of Eq. (34) (see Appendix A in [73]).

124022-5
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where QL , (i =s, grav) are the dimensionless Schwarzschild
quasinormal frequencies normalized by the Schwarzschild
radius for the scalar field, the odd and even gravitational
modes. '’ For the fundamental modes, the values of Qgch are
given by Q% = 0.96728774 —0.19359239i and Q5 =
0.74734337 — 0.17792463i. Substituting these Ansdtze into
Eqg. (36) in our system and expanding them with respect to €,
we obtain the equations determining dw;.

For the scalar field-led QNMs, ie., the case of
o=, /(2M) + €*6w,, Eq. (36) becomes

Fo(Qe) + € {F20(Qe) + F21 ()00} + O(e*) =0,
(38)

where F, F,, and F, ; are functions of g, . The lowest-
order value Qg , is determined by the equation Fy = 0. The
|

second order O(e?) expression of Eq. (38) determines the
value of éw,. We note that the term F,; is the derivative
of F with respect to the frequency, and the term F, is
affected by the correction terms V3 ; and Vi in Eq. (31).
The QNM correction dwq is given by

(2M)Sw, = b?(45.225150 + 4.2484788)
+ b3(148.38628 + 20.29223/).  (39)

Its limit of b, =0 corresponds to the QNM in sGB
gravity,'' while that of b, = 0 corresponds to the QNM
in dCS gravity [74].

The corrections to the lowest-order values of the odd
and even gravitational modes are determined by the self-
couplings of those modes V5, and V3, ;. and the even-odd
gravitation coupling V5 f. Equation (36) is given by

Fo(Qga ) + € {Fa0(Q8ah ) + Fa.1 (@ ) 80gray | +€*{Fa0 (e ) + Fa1 (Qeh ) 00gray + Fa2 (8 ) 6031y } +O(°) = 0.

The terms Fo, Fpq, Fy1, Fug, Fy, Fy, are functions of
Q5 - We solve the above equation order-by-order in €. The
lowest-order quasinormal frequency of the gravitational
modes Q§' is determined by F;, = 0. Since the spectra of
even and odd gravitational modes are degenerate at the
lowest order, the terms F 20 and F,,, which are propor-
tional to the first derivative of F 0, also vanish. Thus, the

|

(40)

[
QNM correction éwgy,, is determined from Eq. (40) with
O(e*). We note that the term Fy, is the second derivative
of 2F, with respect to the frequency, and the terms F 4.00
F,, are affected by the correction terms Vi, V5, and
V$¥ in Eq. (31). The QNM correction OWgray has two
branches

(2M)8wkyy, = (—5.3012524 + 2.1911460i)b? — (31.506265 + 16.076674i)b3

+ \/ (75.825646 + 47.7591961)b* + (532.00613 + 469.859291)h2b2 + (734.18529 + 1013.0319i)b3,

(41)

(2M)5w,, = —(5.3012524 + 2.1911460i)b? — (31.506265 + 16.076674i) b3

- \/ (75.825646 + 47.759196i)b* + (532.00613 + 469.859291)h2b2 + (734.18529 + 1013.0319:)b3.

The existence of the two branches implies that the
degeneracy of QNM spectra is broken at this order. The
b3b3 term in the square root includes the effect of the new
even-odd couplings V. and the scalar-gravity couplings

lOPractically, we first calculate 6@; with ® = Qéch /ry + €26@;,
and then we can obtain éw; in Eq. (37) as dw; = o@; —
SRySQL . /(2M), where ry = 2M (1 + €*6Ry).

(42)

V$E. Note that similar spectral features can be seen in the
matrix toy models of Eq. (B10) in Appendix B. One can
take the limits of the dCS and sGB gravity in Egs. (41)

"In Ref. [32], the authors investigate the GB term coupled
with the exponential sector ae?, where « is a coupling constant.
In this case, an effective mass term appears in the scalar field
equation. This mass term also modifies the QNMs of the scalar
field at the order O(«).
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0 Im[ngIraV]
s L
o
=5 10k
N I Re [6Q4:av]
20k
1 1 1
0 7t/ 4 /2
e

FIG. 1. The dependence of 6w}, and Swg,,
and imaginary parts of 5QIgraV = (2M)5wérav /B2 and 5Qgrav —

ok Im[ OQ;ay]
HE 2O Re[802L,]
S of
,60_
0 ot/ 4 ot/ 2

e

on b; and b,. Introducing b; = Bsin# and b, = B cos 6, we plot the values of the real
(2M)Swyy,, /B*. The dCS limit (b, = 0) corresponds to 6§ = 0 and the

sGB limit (b, = 0) corresponds to 6 = z/2. Since (Swlgrav and (Swlglm are functions of b% and b%, we have only to consider the

range 0 <0 < /2.

and (42) by setting b; = 0 and b, = 0, respectively.'” In
Fig. 1, we plot the dependence of Swj,, and Swh,, on b;
and b,, where we introduce b, = Bsin6, b, = Bcos0,
5QIgrav = (2M)5wlgrav/B2’ and 5QIgII'aV = (2M)6ngIYdV/Bz'
The limits of # =0 and 0 = z/2 represent the cases of
the dCS and sGB gravity, respectively. From Fig. 1, for a
fixed value of B, the decaying rates of both branches, i.e.,

—Im[6wly,y] and —Im([Swly,, ], decrease as € increases.

V. ROTATING BLACK HOLE SOLUTIONS
WITHOUT 7, SYMMETRY

In this section, we study the slowly rotating black holes
up to the first order of the spin parameter. We demonstrate
that the parity-violating term in the dCS sector with the
nonvanishing background value of the scalar field ¢
leads to the Z, violating rotating black holes. For this
purpose, we consider the £ = 1 time-independent pertur-
bations around the static spherically symmetric black hole
solutions (for example, see [48]). We note that £ > 2 time-
independent perturbations vanish at the first order of the
spin parameter. The Ansatz of the £ = 1 time-independent
perturbations is given by

¢ = ¢+ 5¢p(r) cos b, (47)

9w = g/w + 59/41/7

where the background solutions ¢ and G are given by
Egs. (4) and (5) with Egs. (7)—(14), and the form of &g, is
given by

8¢, dx*dx? = —2hsin*0dtdep + cos Q{AHOdt2
H
+ 2H, dtdr + f dr* } . (48)

We expand the perturbed quantities 6¢, hy, H, and H, as

8p(r) = 8¢ + edp!*t + 25¢™, (49)
ho(r) = )™ + ehf™ + e2h3™, (50)
H(r) = H™ + eH ™ + e H™, (51)
H,(r) = HY™ 4 eH* 4 €*H3™. (52)

Solving the equations of motion (2) and (3) with the Ansatz
(47)—(52) perturbatively, we obtain slowly rotating black
hole solutions. The lowest-order solution O(e”) corre-
sponds to the slowly rotating Kerr black hole up to the
first order of the spin parameter y

“In the limit of the dCS gravity (b; = 0), the QNM frequencies are given by

odd mode: (2M)éwy.,,

even mode: (2M)8wly,y = 0,

while in the limit of the sGB gravity (b, = 0), those are given by

odd mode: (2M)8wly,, = b?(3.7937608 + 0.43442445),

even mode: (2M )6a)gmv

—b3(63.012530 + 32.153348i), (43)
(44)
(45)
—b3(14.396266 + 4.81671641). (46)

We confirmed that these values are consistent with the values for the weakly coupled regime in [32,74]. We note that the odd mode
corresponds to 5wgmv for by = 0 but 50)};rav for b, = 0, and vice versa for the even mode. This kind of branch exchange can be seen in the
spectra of the matrix toy models in Egs. (B12) and (B13) of Appendix B.
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8¢ =0, (53)
oh _ e
hy" = 7)( > (54)
HO = 0, (55)
HY = 0. (56)

The higher-order components up to O(y) are determined as

re(10rry + 9rg + 1077)

5¢lst _ MP1b2)( = , 5¢2nd =0, (57)
hit =0, (58)
pond _ _po 2ri(140r° ry + 45r7rg + 36rr; — 50rg + 18r%) 2 re(240rr, + 189r + 280r%) 5

o — —bx 7 X 6 ) (59)

15r Tr

4b b1, (1761%r, + 2431312 + 447213 — 57t — 14412 + 8817
His =0, H2 = y 1hary g g — g g g ) (60)
r
H%St =0, H%nd =0, (61)
. 4b b, (3887412 + 47713 r3 — 204121t — 507rry — 76878 + 264r°r,)
HéSt:O, H%d:)( g g 2 7g g g g ) (62)
r
The corresponding nonvanishing slowly rotating components of the perturbed metric are given by
4.0 3.3 2 4 5 6 5
50, = E4b1by Cos€<1 B rg> 4(176r rg +243r°r, + 44r r% —5Trry — 144rg + 88r rg) , (63)
r Tr
50, — byb, cos 04(388r*rg + 4771 r; — 204;»2;»:_,}7— 507rry — 76878 + 264r°r,) ’ (64)
- Tr
r 2r3(140°3 r, + 457212 4+ 367 — 50r% + 18/*
891y = — = ysin’0 + bie’ysin’0 el g g - g g )
r 15r
r4(240rr, + 18972 + 28072

+ b3e?ysin’0 o £ £ ). (65)

750

Note again that O(e”) term in Eq. (65) represents the slowly rotating Kerr solution. These slowly rotating solutions violate
the Z, symmetry @ — 7 — 6 through the cos @ terms in (63) and (64). This kind of Z, violation can be seen in the purely
tensorial gravity theories with higher-curvature corrections [48,49] and parity-violating modified gravity [78,79].

VI. MODE MIXING IN TIDAL RESPONSE

Another effect of the new even-odd gravitational couplings is the tidal response from an external gravitational source.
The tidal response of a black hole is described by the ratio of growing and decaying modes to the static solution of the
master equation, which is regular at the horizon. This ratio is called the tidal Love number [80-83] and is useful to test
gravity theories [84]. For simplicity, we focus on the £ = 2 perturbations. In the Schwarzschild limit ¢ = 0, the £ = 2 static
solutions of Eq. (27) with the regularity at the horizon are given by

- P
= C (65 —65+—). 66
S ( a ’”2H+’”H> (¢6)
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3

~ _r
Wi = C . (67)
"
- Cct r3 r2
yir o= — (4 —6—
Seh =I5 37 < ) 6r2H + 3), (68)

where C* and C* are integration constants, corresponding
to the strength of the external tidal fields. The absence of
decaying modes in the far region in Egs. (66)—(68) implies

|

vanishing Love numbers around Schwarzschild black holes
[81]. To determine the non-GR effect, we expand the static
solutions of Eq. (27) as

W= Wi, + Pl (r) + €Wh(r) (i=s.—4).  (69)
Solving Eq. (27) with the Ansatz in Eq. (69), we obtain the

forms of Wi, and W) ;. The explicit forms are shown in
Appendix C. The new even-odd couplings yield

T r

r? 7 7

1728 4407y  6(129024¢(3) — 154199) 2 153672 128073
ru, 6(129 Cgs) 99)“*}—b1bzc+(”*+m)1n<r>, (70)

lij;nd|r—>c>o - _b1b2C+{—7_+

'y

- 2 2 3
1728 208 ry n 6(129024¢(3) 154439)r_H} + bybyC <1536V_H n yr_}[) ln( r > (71)

pr = b b,C{———
2ndlr—co 12{ 7 T 35

where {(3) is the Riemann zeta function {(n) with n = 3.
This result shows that an even parity external tidal field C*
induces an odd-parity gravitational response in ‘i‘gnd, and
vice versa for the odd parity external tidal field C~, as seen
in [48]. However, due to the presence of the logarithmic
terms in Egs. (70) and (71), it is not obvious how to define
the tidal Love number."”® Nevertheless, the tidal response
through the even-odd gravitational couplings can be sug-
gested. The origin of the number ¢(3) in Egs. (70) and (71)
is the regularity condition at the horizon, so the asymptotic
forms of W5, and ‘i’jnd probably contain information

about the horizon. This suggests that ¥5,4 and V5, , contain
decaying modes, i.e., the nonvanishing tidal responses,
because purely growing modes, which are determined only
from the behavior around the asymptotic region r — oo, are
not expected to contain information about the horizon.

VII. SUMMARY AND DISCUSSION

In this paper, we investigate the effect of new even-odd
gravitational couplings in the case where both the sGB
gravity sector and the dCS gravity sector coexist. In the
weak coupling regime, the effect of the new couplings
appears as a correction to the GR solution. Through the
sGB gravity sector, the scalar field acquires a background
value in static spherically symmetric black hole solutions,
and as a result, the metric also deviates from the
Schwarzschild solution while the dCS gravity sector does
not affect it due to parity symmetry. The master equations

BNote that the logarithmic terms appear in the worldline
EFT of a black hole [85-90] even in GR, modified gravity
theories [91], and gravitational EFTs [88,92-94]. In the world-
line EFT, it is argued that these logarithmic terms can be canceled
out by taking into account ultraviolet physics in concrete models,
and the tidal Love number becomes well-defined [87].

2 7 7 5 rH

|

for gravitational perturbations around a static spherically
symmetric solution are coupled among the scalar field and
the odd and even gravitational modes of metric perturba-
tions. In particular, new even-odd gravitational couplings
appear in the master equations.

To estimate the effect of the new couplings, the quasi-
normal frequencies around static spherically symmetric
black holes, slowly rotating black holes, and tidal responses
sourced by external gravitational objects were examined.
The tensor-led quasinormal frequencies are quantitatively
affected by the new couplings because the explicit expres-
sions contain the square root forms given in Egs. (41)
and (42). The appearance of the square root form is a
specific feature of the eigenvalue problem when the lowest-
order spectra are degenerate. Thanks to the new even-odd
couplings, the slowly rotating solution breaks the Z,
symmetry between the northern and southern hemispheres.
The static solution of the gravitational modes exhibits
logarithmic terms due to the mediation of scalar fields.
Because of the presence of these logarithmic terms, the
tidal Love number cannot be well-defined. However,
characteristic terms appear in the solutions after imposing
regularity at the horizon, which suggests that the tidal
response is induced by the new even-odd gravitational
couplings.

Finally, we discuss the generality of even-odd gravita-
tional couplings in scalar-tensor theories. If we assume that
the scalar field ¢ has a background value ¢, the dCS gravity
sector in the Lagrangian behaves as

by - b -
quﬁR”",mRW/’" ~ Xz¢azh-a2h+, (72)

where h* are the odd and even-type gravitational pertur-
bations, respectively. This demonstrates the existence
of the even-odd gravitational couplings when ¢ # 0.
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This structure is common in scalar-tensor theories with a
single scalar field coupled to a parity-violating term other
than the Pontryagin term. While the even-odd gravitational
couplings have already appeared in higher-curvature grav-
ity theories [48,50,54,58], such couplings generically arise
in scalar-tensor theories with parity-violating terms. The
analysis of even-odd gravitational couplings in the general
setting is left for future work [63].
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APPENDIX A: EXPLICIT FORMS OF MASTER
VARIABLES, DEVIATIONS OF SOUND SPEED,
AND POTENTIALS

In Egs. (27)-(31), the coupled master equations of the
scalar, odd, and even gravitational modes are derived. Due
to the couplings, the master variables are mixed with other
modes at higher orders in ¢. The relations of the master
variables in the coupled master equation (27) and those in
Egs. (20)—(22) are given by

(P(A+2)r° + 344+ 2)r*ry + 6(2+3)rr

1612

-6(4+ 3)r§)‘I’+ _4\/§’"g(r3 - ) dqﬁ} 2

AA+2)7 dr

blez{ VA 2)(2+3)20(r + 3r,)

(2(A+2)r" + 344+ 2)rr,

+ (A2 4+ 92+ 18)rrg + (247 + 112> + 184+ 9)r*ry 4 (1647 + 874 + 117)r*rg — 2A(A + 3)r’r;

322r (r* = r)(Ar + 3727, +2(A + 3)r) AP
+2(A+3)*(BA—1)rr§ +4(A+3)%ry) ¥ - £ = £ 8, Al
(A+3P(3A= Drrg +4(2+3)r3) VIV 20+ 3)r (r + 3ry) dr (A
B — 2w 4 e 4b3r3(30r° +260r* ry + 135132 + 24r7ry — 582rr¢ + 280r;) -
! 157%(r - re)
b 4ri(—60Ar* — 45(A+ 8)riry — 3(16A 4 45)r*r2 + 4(251 — 36) rra + 480r¢) -
157°(Ar + 3r,)
16r3(r* = r}) d¥*
g g A2
+ r dr }’ (A2)
- 8(Ar3 +3r%r, +2(A+3)r3) 12
=9 +b 2 £+ ble? —2042(227 + 92 + 272* + 2433
T P (1 3y +ore 10935(ﬂ+3)2r6(ﬂr—|—3rg)2( (247 + 98 + 274 +

+ 14582 + 4374) 17 ry — 729023 (A + 2)r® — 90A(A(A(A(22* + 923 4 272 + 243) — 162) — 486) + 1458)1°72
— 60A(A(A(22* + 92% + 274 + 81) — 1701) — 4374) 1513 + 45(A + 3)2(A(A(A(22 — 3) + 243) + 1188) + 486)r*r}
— 54(4 4 3)(A(A(A(24 = 159) — 1710) — 6345) — 5670)r°r3 + 81(24 + 3) (A(A(924 + 951) + 3240) + 5265)r2r

— 972(A 4 3)2(412 = 90)rr] — 138510(4 + 3)2r8) ¥+ +

167,(r? = r3)(Ar* +3r%ry + 2(A 4+ 3)r}) d¥+
(A+43)r°(Ar + 3ry) dr

2187

1622(A+3)(24~3)(A=3)A+9) </1r + 3rg) v

-

(A3)

b b 1673 (60Ar* + 15(2 +24)rrg + 3(44 + 15)r?rg — 4(354 = 9)rry — 600ry)
172 15/%(Ar 4 3r,)
N 64r{3;(r - rg)(r2 +rry + ré) dy-
r dr [’
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where we remind A = #? + £ — 2. When the scalar field is allowed to have a background value, the propagation speed of
each mode and the potential terms through the couplings are modified. The deviations of the sound speed of propagation
modes in Eq. (29) are given by

A2 — 32b%rs(r 4 2r,) (Ad)
s (A+3)r
AL - — 32b1ry(2r7 —|—S3rrg +4rg) ’ (A5)
r
A2 32b7ra {221 + 34(A+ 6)r*ry +2(A+5) (24 + 3)r*ry + (344 + 45)rr; + 60rg} (A6)
L =- .

P (Ar +3ry)?

The potential term can be decomposed in € order as seen in Egs. (30) and (31). At the lowest order, they are given in
Egs. (24)—(26). At first order, the scalar-odd and scalar-even couplings lead to the nondiagonal part of the potential
in Eq. (26),

24./22() + 2)b,r3
vig = SRR E Dbt (A7)
r
o 4/2A(A+2)byry(3A%r* + 13Arry + 15r%)
vlst == 5 2 . (Ag)
r(Ar+3ry)

At the second order, the correction terms in Eq. (31) are given by

Vi = 1152[’%% Lkl Gt 3)2’{’5(% oy (PR0R 4 344 8)r7 + 40A(1T2 + 282 = 212 - 36)1°r,
—US(TA4 = 3210% — 468% + 1744 + 144)1512 — 6(167* + 24573 — 2239)% — 1440, + 450) 7
+3(6907* — 4587 — 872377 + 80134 — 1530)° 14 + 8(26351% + 2661/% — 160834 + 3267) 17
+6(12305/% + 268234 — 30276) 1% + 86580(4 + 3)rl}. (A9)
_ Zb%ré 5 4 3.2 2.3
2 =~ o {3002 = 4)F° +20(381 = 221)r*r, + 15152+ 146)° 2 + 216(2 = 3)°1}
— 6(2051 — 5286)rr% — 3114073}, (A10)
Vig=-— 2birg {24024 (A + 2) 110 + 3043 (4% — A% + 247 + 48)r°r
& 15(2 + 3)r7(Ar 4 3ry)* ¢

+ 20A3(742% + 4152% 4 6872 + 72)rbrk + 1522 (154* + 8631° + 36464% + 52441 + 612)r"r}

+ 124(1847 + 2454% + 39432% + 963042 + 63004 + 1620)r5r¢ — 6(2052° + 24172° + 41884

— 179792% — 261904 + 247051 — 2430)r°ry — 12(851% 4 49874% + 138931° — 110792

— 217352 + 18225)r*r§ + 27(5604* + 34844 + 47172% + 9751 + 9180) r* rj — 72(12404°

— 396312 — 227342 4 945)r?rS — 162(32252 + 56714 — 12012) rry — 604260(4 + 3)ri0}, (A11)

V_+ _ 16b1b27‘2
2 5(3+3)r° (Ar + 3,
— 30(404% + 692 — 180)r*r2 — 21(904% + 2712 + 781 + 225)r°r}
+ 2(10004° — 18382% — 145414 — 81)r?rf + 294(354% 4 624 — 129)rry + 13440(4 + 3)r8}. (A12)

7 {302(2% + 142 + 36)r° + 10A(=172* + 874 + 468)r°r,
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The master variables are related to the original perturbed scalar field in Eq. (16) and the metric perturbations in Eq. (17) as

1 A +2) ¥4 p PA4+2)r +34A+2)r'ry + 6(A+3)r’rk = 6(A+3)r; B _ . ry\ d¥*
- =Y ~ @ P € - | —
Mp, 2V2 ! (A+3)r*(Ar +3ry) 2Ty ) dr
272200+ 2)r
+ b2e? 78 A+ (443 44 +3 —2(A=3)rr +2(34> + 84 -3
DL (/1r—|—3 { + )rr + (44 + )rr 2( )rrg—l— (3% + )rr
+16(2+3)r3 } P, (A13)
ho= """ (9 4 r dv- e r8(30r° 4 980r*r, — 465173 +784r2r§ — 4122rrg 4 3640r3) o
2r dr 15r
r3(30r° 4 260r*ry + 1577 rz + 24r°r3 — 582rrg + 400r; )d‘I’
+
1570 dr
el e[ o (3602215 + 454(3A + 44)r*r, + 6(220% + 752 + 360) 7
02 15,7 (zr+3g)2 g Tl
+ (=122012 4 4324 + 135)2F3 — 12(5804 — 9)rrt — 9360r3)
(r—r) (A +2)r +322r%r, + 94rr2 + 9r2)\ | -
— 60r*(r* 4 rry + rg) <a)2 - £ At 3rg)2g £ )1yt
4r3( ro) dg+
— £ & 20t +15(4+ 12 3(44 + 15 —4(504 = 9)rr3 — 42074 —— %, Al4
1570 (/1’,_|_3 )[ r*+15(4 + )I’ rg + (42 + ) ( )rl’g rg] i } ( )
iro - 5, iréa) 5 5
h=————=Y +bie" (30r +260r*ry + 135 rg + 24r7r; — 582rrg + 280r; )‘P
2(r — rg) 1574 (r - rg)
2 4”;(” 4 3 2.2 3 AT+
b A T 6047 + 45(4 + 8)Pry + 3(164 + 45)r212 — 4(25) — 36)rr3 — 48074 @

16l'rga)(r2 +rry + ré) d‘i“*} (A15)

r dr

o {/12(1 +2)P + 32, +9Arrg + 913 FPa? }lil— 3Arrg — 2Ar* 4+ 3r: d¥-
0= - -

2r%(Ar + 3ry)? r—rq 24r* 4 6rr dr
2V2\/AA+2)r 2? 24/AA+2
+ bie V2V Pe— V2 I “+2) 5| (PA+2)P + (T2 +12)r*r
(A+3)(r—ry) (A+3)r*(Ar + 3r,)

+3(5A+6)r°r2 + (423 + 1222 + 9)2r] + 14A(A+ 3)rré + 12(A + 3)r)) ¥

dys
+ (242 — (A= 12)Ar'ry —6(A—3)r’rg = 9r*ry — 2A4(A+ 3)rrg — 6(A + 3)r§) i } }

v
+ b%&{— 50+ 3)r8(g/1r +3ry)
+ 1023 (1643 + 9922 + 1414 — 60)r8r2 — 2002(J* — 3373 — 17812 — 3061 + 36)r7r
CSP2(4A% + TIR — TS 4 240 + 756)r F = 42(250° + 4230 + 131673 — 1089/12
— 33750+ 4050) 13 + 2(23545 — 1295/* — S817A° + 1188922 + 325357 — 1215) 14/
+24(110/% + 7540° + 160242 + 18457 + 2565)1° r] + 3(=35804% + 144/% + 360272 + 10125) 273
— 108(41542 + 11274 — 354)rr) — 35370(4 + 3)rl0] 9+

[804%(2 + 2)r10 — 4023 (22 = 34 — 12)1°r,
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2riw?
+
1574 (r — ry)*(Ar + 3ry)

5 [10427% + 104(194 + 66)r° ry + 3(112% + 1804 + 270)r*r?

+6(4% + 332+ 165)7 73 + (=110 = 8162 +297)r2 74 + 12(254 — 132)r73 + 8107] li'+}

4r}
2 [60(1 = 16)22r0 + 151(2% + 1184 — 144)r° 3M(42% + 631+ 1740)r*r2
15/%(Ar + 3r, )2[ ( JAT 4 ISHA )rry + 34(447 + 634 + )rtr
+ (—1402% 4 31164% + 8554 + 3240)° r} 4 3(—17004% 4 27961 + 405)r*r
8raw?(—120r° + 157, + 18rrk + 230rg) -

15r%(r —ry)

+ blbzez{—

—36(4602 — 33)rr3 — 1098078] ¥~ —

4r}
T (60(2 — )47 + 45025, + 3(134 4 60)r°7 + (—60A% + 4647 + 135)1273
+[ 577+ 3ry) (OO ™ AP 450y + (1324 60)r°ry + (<608 + 4642 + 135)r°r

32 3.2(,2 2 -
T 12(12 = 552)rrd — 300 4222 (" ?rrngrg)] d;P } (A16)
r r
iw(=2Ar* + 3rrg +3r2) dyt iv/22(A+2)w
Hy =" P b 24 — (A= 6)rry = 3812
LT T 2(r =) (Ar + 31y " a3 (= ) + 3ry) [22r% = (4= O)r'ry = 3r°ry
7 4t iryw
— 22+ 3) )W 4+ 283 (r = 1) (Ar + 3ry) —— ¢ + b2 e 12043(2 4 2)r10
@+ )rg] +2r(r = rg)(dr  3ry) dr }+ i {15(/1+3)r6(r—rg)2(/1r+3rg)3[ (A +2)r

— 12042(A2 = 24— 6)rry + 302(472% + 131 4 6)r8r2 — 104(2904% + 29742 — 17014 — 162)r7r3

+ 154(674% — 94912 — 35524 — 522) 1514 — 396424 + 681° + 137742 + 275404 + 13770)r° 13

+ (59904* + 969623 — 1464372 + 224374 — 21060)r*rS + 3(—9204* + 5466/° + 3296442 + 263431 + 4455)rr]
— 6(21704% + 821122 — 56434 — 32238)72r8 — 90(38/2 + 9814 + 2601)rr2 + 25920(2 + 3)r0] ¥+

 Rirge’ (Pt rrg ) & 8irgw
rz(r— rg)(/lr—|-3rg) r5(}m+3rg)2

[(A=2)Ar* + (2 + 24— 12)Pry + (22 4 24 = 3)r*r}

dy+ 4irlw
104 -3 27 bbye?< — :
+( )rr el ] dr } +bibae { 157%(r — re)(Ar +3ry)
+3(72 = 120)7372 + (12042 — 26841 + 45)r2r3 + 12(2154 — 567)rré + 552073 | P~
B 32iryw* (r* + rry+r3) $ _ 8irgw(75r% + 78rry — 10r%) dP~
r(r— rg) 1517 dr [’

[<120(2 — 6)4r° —30(232 — 48)r*r,

(A17)

H, - {/12(/1 +2)r° 4+ 3421 rg + 9Arri + 913 _ rw’ }liﬁ B =222 + 32rry + 3r2 APt

2r*(Ar + 3r )2 r—r, 2% + 617, dr
2\/20(0 + 2)rw? . 220+ 2)
b s — PZA+2)P + T4+ 12)°
16{ (A+3)(r—r,) (A +3)r*(ar + 3r,)? BA+2Dr + 471+ 12)0%r,

+3(54+ 6)r3r§ + (84° +242% + 9)r2r2, + 3844 + 3)rrg +48(4+ 3)r§)‘i’s

dys
+ 1’(2&2 P — (A= 12)artry = 6(A=3)rrg — 9r*ry = 2A(A+ 3)rrg — 6(A + 3)r§) P } }

-
_ 2

{ 5(0+3)8(r + 3rg)4

+ 1043 (40/13 + 19542 + 2374 — 6O)r8r§ + 2012(3/14 + 17313 4+ 61042 + 59421 — 36)1”71‘3

=+ b%e2

[804%(2 +2)r!0 —4023(242 = 34— 12)7°r
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+ 1522 (42*% 4 5123 + 9694% + 22002 + 324)rr§ — 44(1052° + 6432* + 2962° — 111694 — 228154 + 4050)r°ry
—2(12054° + 609524* + 293723 — 4536947 — 908551 + 1215)r*rS — 24(3904* + 6864° — 223242 — 42751 — 5805)r°r}
+ 3(—146202° — 2937642 + 489871 + 16605)r*r§ — 108(9354% + 26271 — 534)rry — 74250(4 + 3)ri0| ¥*

2r§a)2
+
1574(r — re)*(Ar +3ry)

5 [4902275 + 10(354 — 50)2r°r, + 3(112% = 3002 + 1710) 7472

— 6(1964% — 334 + 195)7°r3 + (85042 — 80162 + 297)r2r% + 12(5054 — 1032)rr3 4 945075 ¥+

,
_ g
5(A+3)r"(Ar + 3ry)’

= [4023 (A + 2)r° — 402(22 — A — 6)rPry + 1042(4722 + 1234 — 42) 17 2

— 10A(8843 4 294> — 6751 + 54)r"r2 —52(192° + 130342 + 31804 — 1530)r5rg
— (10522* 439352 + 165874% + 421204 — 810)r4r§ + (14702 — 131043 — 192872% — 175414 — 33480)r3rg

+ (995023 + 2176242 — 261994 — 5805)r2r] + 6(356512 + 103774 — 954) 78 + 15030(4 + 3)2]

32rgw*(r* + rry + r}) dyt 3

r(Ar +3ry) dr

4
+b1b2€2 12871 A2 rg 5
157°(Ar + 3r,)

+36(5804 — 363)rr3 + 3(364% + 13742 — 19804 + 1440)r

dyt
dr

[18042(2 + 8)rS + 154(74% — 542 + 336)r°r,

412 — (34023 + 371642 4 4952 + 7560)r 13

+3(12204% = 50761 — 765)r*r§ + 2394078 | P~

_ 8rga)2(120r3 + 135}"2rg + 138rr§ - 250r§) -

15/4(r — rg)
43
- m [60(2 — 12)Ar° + 30(314 — 48)r*ry + 3(531 + 540)r*r2 + 12(342 — 1752) rr.

dy-

+ (=604 + 17844 + 495)r*rj — 4620r3] &

APPENDIX B: PERTURBATIVE EIGENVALUES
OF SYMMETRIC MATRIX

In this section, we study the eigenvalues of symmetric
matrices that are diagonal at the lowest order but have
nondiagonal components perturbatively. Since the charac-
teristics of the perturbative spectrum of eigenvalues of
symmetric matrices are similar to those of the spectrum of
quasinormal frequencies of black holes, this study is useful
for understanding the results of Sec. IV.

1. 2 x 2 case: Nondegenerate

We consider a toy model in which there are two
components with a mixing term characterized by a small

parameter 0,
( 1 0 > ( 0 o >
M= + ,
0 2 6 0

and the spectra are not degenerate at the lowest order.
For simplicity, let the lowest-order eigenvalues be 1 and 2
because this choice does not lose the essence of the
argument. This model mimics the spectral problems of a
coupled system of a single scalar mode and a single

(B1)

N 32r§a)2(r2 +rry + ré) d¥-
r dr |-

(A18)

gravitational mode. The eigenvalues A are determined by
the characteristic equation

Det[M — 1] =0, (B2)
where I is the unit matrix, and this equation for Eq. (B1)
becomes

(1-2)2=-2)-8=0. (B3)
Substituting 4 = 1 + AA into Eq. (B3), we obtain —AA —
8* =0 at O(AZ). Thus, the corresponding eigenvalue is
A=1-=68+ O(8). On the other hand, substituting A =
2 + Alinto Eq. (B3), we obtain A4 — §* = 0 at O(A4), and
the corresponding eigenvalue becomes A = 2 + 8% + O(&°).
For symmetric matrices which are not degenerate at the
lowest order, we can see that the correction of the
eigenvalue appears at O(5%).

2. 2 x 2 case: Degenerate

We consider a matrix whose spectra are degenerate at the
lowest order,
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M >0 + 00 (B4)
- \0 2 5 0)

where we assume the lowest order eigenvalues to be 2 for
simplicity. This model mimics the spectral problems of a
coupled system between even and odd gravitational modes.
The characteristic equation (B2) for the matrix (B4)
becomes

(2-2)2-8=0. (B5)
Substituting 4 =2+ A4 into Eq. (B5), we obtain
(AA)?> =& = 0. This implies that the eigenvalues are
A =2 =+ 6. For symmetric matrices that are degenerate at
the lowest order, the correction of the eigenvalue appears at
O(8). This is because the leading-correction term of A4 in

the characteristic equation is O((AA)?) if the lowest-order
spectra are degenerate.

3. 3x 3 case

Let us consider the eigenvalues of a 3 x 3 symmetric
matrix, with a spectral feature similar to the coupled system
among scalar, even, and odd gravitational modes calculated
in Sec. IV. We set a matrix M as

1 0 O US€2 b2€ b1€
M=1[0 2 0|+ | be v_e by |,
0 0 2

bie bye® v e

(B6)

where € is a small parameter, and the coefficients in front of
€ and €? are constants. As shown below, this choice of the
correction terms results in O(e?) corrections to the eigen-
values of the matrix.

Substituting 1 =1+ f,e*> + O(¢&?) into the character-
istic equation (B2) for the matrix (B6), we obtain

(vg— b2 — b3 — f1)e® + O(e*) = 0. (B7)

Thus, the corresponding eigenvalue up to O(e?) is

AI =2 + 62(’1]_ + b%), /1[1

j.] =2 + 62(U+ + b%), /IH

If p takes different values when b, = 0 and when b, = 0
while keeping the condition b b, + b3 = 0, the branches of
Eqgs. (B12) and (B13) exchange for b; =0 and b, =0
cases. This phenomenon can be seen in the QNM spectra
for our setup.

=2+ (vy + b)),

=2+ (v_ + b3),

A =1+ (vg— b} —b3)e. (B8)
Similar to the case of a 2 x 2 matrix with nondegenerate
spectra at the lowest order, squared terms of the non-
diagonal components appear in the leading correction term
in Eq. (BS).

On the other hand, substituting 1 = 2 + f,e> + O(€?)
into the characteristic equation (B2) for the matrix (B6), we
obtain

{2b,bybs5 + b3 — B3v_ — b3v, + (b3 + b3)f>

—(fa=v)(fa—vy) et + O(e°) = 0. (B9)

Solving this equation at O(e*), the corresponding eigen-
values up to O(e?) are determined as

2

A:AI,II:2+%(v_+v++b%+b§
+ \/(v_ -, +b§—b%)2+4(b1b2+b3)2).

(B10)

Due to the degeneracy at the lowest order, the spectra are
expressed in a complicated form. If b3 o b b, and v « b7,
the form of Eq. (B10) is similar to the tensor-led quar-
inormal frequencies in Eqgs. (41) and (42).

As an interesting limit, we study the case with b{b, +
bz =0 in Eq. (B10). In that case, the square root in
Eq. (B10) becomes

V(o= v+ B3 =) = (=1 (0 = vy + B3~ 1),
(B11)
where p = 0 for Re[v_ — v, + b5 — b?}] > Oand p = 1 for

Re[v_ — vy + b3 — b?] < 0. In that case, the eigenvalues
become

for p =0, (B12)

for p = 1. (B13)

APPENDIX C: STATIC SOLUTIONS AS TIDAL
RESPONSE FOR ¢ =2

In Sec. VI, we discussed the tidal response from the new
even-odd couplings. In this section, we present explicit
forms of the static solutions with the regularity condition at
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the horizon for £ = 2, w = 0 in the master equations (27). To obtain perturbative solutions in ¢, we expand the solutions
around the lowest-order solutions up to O(e?) as Eq. (69). The lowest-order solutions ¥, 5., and ‘i’;ch are given by
Egs. (66)—(68), which corresponds to the Schwarzschild case. We derive the correction terms by solving Eq. (27) with the
Ansatz in Eq. (69).

1. Scalar field-led case

First, we consider solutions led by the scalar external tidal field. The lowest-order growing solution for the scalar
field (66) is given by

2

~ r r r
Y, =C|6—5—6—+—|. Cl1
Sch ( r13{ r12-1+rH> (€D

Through the scalar-odd coupling V3, and scalar-even coupling V37, and the self-scalar coupling V3, in Eq. (31), the higher-
order solutions are given by

Pla =0, (€2)
- 1 . r 2
Yie=-— i 2b2CS{144r4L12 (1 - a) + 12rg(67%ry + 1277 + 4rrd + 3r3) In <7H)
+ 72r*1n? <L> —36r%rf — 144 ry + 247%r* + 128rr3; — 117rf{}, (C3)
Tn
- 1 r
W = 4b CS{—144 “327, + 6rry + 4)Li <1 ——) + 1008773
T B (44 3rg) ( H H )Li . H
+24721n <L> <2rH(12r2 + 24rry + 1373) = 3(6r2ry + 43 = 3r3) In <L>) (C4)
rg ryg
+8(53 + 972)r?riy — 144(a% — 4)r*ry — 967210 — 282rrf; + lSrf{}, (C5)
i 3nd = Xz_led7 (C6)
P34 =0, (C7)
¥ia =0, (C8)
where Li, is the second polylogarithm function
L In(l —1¢
Liy(x) = —/ dtu, (C9)
0

and ¢(n) is the Riemann zeta function. The function X$7'*® is defined as the solution of the master equation for li!ﬁ” with the
regularity at the horizon. Although it is difficult to write an explicit form of the function X3¢, we can discuss its asymptotic
behavior at spatial infinity. In the asymptotic region, the nonvanishing solutions behave as

B 7 2 3 4
Bl = by [06v3 = 230 96‘/§er 87 96‘/54”‘
r 25r V33 49r
. 96\/§r%1 16V/3r3 96\/§rﬁ r
_b2C< Yo 10 IOV (L), (C10)
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LiH—

Istlr—oc0

30v/3 1891V/3r%  17531r3, 744619374,
_ o483 =203 ‘CFH -2 \Cr‘*
r 50r 200/3713 392007

b (_ 1925\r/2§r§I _645\/5@i _ 10434;}?@) ln<é>, (1
B = pC (_ 5?5; . 23(;9: ~ 22748 N 2034:@ N 4r§I(32256(1)§g3r)2 —372959) L )

e (— 5;%2* - 83‘;?‘ ¥ > In (é)

e (16r2H(86407CS(32) —13451) N 8r13{(86402§5(33) —6251) L >

+B3C (— “;25”5* - 1759r26r§, 4 ) In (i) (C12)

2. Odd-led case

Let us consider solutions led by the odd parity external tidal field. The lowest-order growing odd solution is given
by Eq. (67)
~ r3
lPSCh - C_ 3 (C13)
"

Through the scalar-odd couplings Vi, the first-order solutions are modified as

B, = 16V3h,C — {6(6r2 — 6rry + 12)Li, (1 - L) +3(61% = 6rry + 13)In <i>
15

iy Iy 'y
+62%r* = 6(6 + ) rry + 18ry(2r — ry) In <r—H) + (27 + 772)”%1}7 (C14)
r
li’1_st =0, (€13)
Bt —0 (c16)

At second order, through the self-odd coupling V3, ; and the even-odd gravitational coupling V5., in Eq. (31), the second-
order solutions are

Ppa = 0. (C17)
g = Xodd-led, (C18)
Wi, = X3, (C19)

where the functions X°44-1¢¢ and X9%4-1¢d are defined as the solutions of the master equations for W5, and ¥, ; with the
regularity at the horizon. In the asymptotic region, nonvanishing solutions behave as

16[_4\/51»}1_ 1723 26\/§r]3{+m) _b2C_<16\/§r12_I+24\/3_’r?{+”.> ln(r

- — ], (C20
ro 2532 25° 5r2 5r° > (20

= B 3
lstlr—>oo - _b2C (
H
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- 40r; 16087 96877 6912/%,(8¢(3) —9)  384r%,(24£(3) — 29
Pondlroco Zb%C‘<—32+ oy rH+--~> +b§C—< r(86(3) =9) | 384ry(240(3) )+--->,
r

572 33 52 r
(c21)
- 1728 208ry  6:%(129024(3) — 154439) 153674 51273 r
5 =b,b,C [ - H H o) bbb o[ 220H H, . \mnl 2
ndir—co 1€ < + Tr + 3512 + +hibC 7r? + 7r3 * t ru
(C22)

In the limits of the sGB gravity (b, = 0) or the dCS gravity (b; = 0), the odd mode (C21) does not include the logarithmic
terms. In those cases, using the definition of the tidal Love numbers in [84], we obtain

12032

sGB case: kB = Tb%ez, (C23)
18432

dCS case: kY = =2~ (8¢(3) — 9} b3 (C24)

In the limit of the dCS gravity (b, = 0), our result coincides with that in [84].

3. Even-led case

We study solutions led by the even parity external tidal field. The lowest-order growing solution is given by Eq. (68) as

- C+ r3 r2
Y = | —6—+—-4—+3). C25
Sch 4+3rH/r( r?{ r%{—'_ > ( )

Through the scalar-even coupling Vi

1 in (31), the first-order solutions are given by

s
Ist —

4\/§blC+{48r2(4r + 3ry)(6r* = 6rry + %)L, <1 - L)
'y

rry(4r + 3ry)
+ 6087273 + 872 r (4r + 3ry) (612 — 6rry + 1) — 115214 ry — 2477, + 51
+2472(4r + 3ry) In <L> {(6# —6rry + %) In (L> + 6ry(ry — 2r)] } (C26)
I'H rH
¥, =0, (C27)
@ 0 (c29)

Via the new even-odd gravitational coupling V5. in Eq. (31), the second-order solutions are

P54 =0, (C29)
Pr,g = Xeven-led, (C30)
By = X, (C31)

where the functions X¢¥*"~1d and X<¥*"~'*d are defined as the solutions of the master equations for %5, and V5, , with the
regularity at the horizon. The asymptotic forms of the nonvanishing solutions are given by

- 2V/3ry 613 49137 32V3ry 4831 r
; =b,CH{-8V3 - - H _ Hi. .. )+bpcCt H Hi . ..)lm(—), (C32
1st|r—>oo 1 ( \/_ r 50\/§r2 20073 + ) + b ( 52 + 573 + n . ( )
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1728  440ry

l'i,£r1d|r—><>o = _blb2c+ (

1536/

128073
— bby,CT H
172 ( 72

150972 2927r 667333

Tr H

Pl = HC” (_ 140ry

7072, 3360

1984897y, o . (19207 6407,
o T )+b1C ( +

677,(129024£(3) — 154199) L
7 7r 3572

(C33)

: ) In <é) (C34)
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